III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.

Wielkość: px
Rozpocząć pokaz od strony:

Download "III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań."

Transkrypt

1 III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi na pytanie, jak zmieni się globalny przebieg rozwiązań pod wpływem małych zaburzeń warunków początkowych lub prawej strony równania. Rozpoczniemy od ogólnej definicji stabilności w sensie Lapunowa i asymptotycznej stabilności rozwiązania równania różniczkowego postaci (1.1) x = f(t, x) z funkcją f : R n+1 R n klasy C 1. Definicja 1.1. Niech ϕ(t) będzie rozwiązaniem równania (1.1) w przedziale [0, ). Mówimy, że rozwiązanie ϕ(t) jest stabilne w sensie Lapunowa dla t, jeżeli dla każdego ε > 0 istnieją takie t 0 0 oraz takie δ > 0, że każde rozwiązanie ϕ(t) równania (1.1) takie, że spełnia dla wszystkich t > t 0 warunek Jeśli dodatkowo ϕ(t 0 ) ϕ(t 0 ) < δ, ϕ(t) ϕ(t) < ε. lim ϕ(t) ϕ(t) = 0, t + to mówimy, że rozwiązanie ϕ(t) jest asymptotycznie stabilne dla t. Dalej naszą uwagę skoncentrujemy na badaniu stabilności punktów krytycznych (czyli stałych rozwiązań) równań autonomicznych (1.2) x = f(x) z funkcją f : Q R n, Q R n, n 1, klasy C 1 (Q). 1

2 Zauważmy, że z definicji 1.1 wynika w szczególności, że punkt osobliwy x równania (1.2) jest stabilny w sensie Lapunowa (krótko stabilny), jeśli dla każdego otoczenia U punktu x istnieje takie otoczenie W punktu x, że dla każdej trajektorii x(t) równania (1.2) startującej z W spełniony jest warunek x(t) U dla wszystkich t 0. Natomiast punkt osobliwy x będzie asymptotycznie stabilny, jeśli dodatkowo każda taka trajektoria zbiega do x, tzn. jeśli dla każdej trajektorii x(t) równania (1.2) spełniającej x(0) W otrzymujemy lim t x(t) = x. Zbiór punktów p = x(0), dla których rozwiązanie x(t; p) dąży do x przy t, będziemy nazywać obszarem przyciągania przez x. Jeśli zbiór ten jest całą przestrzenią fazową (lub przynajmniej jej wnętrzem), to punkt osobliwy x będziemy nazywać globalnie stabilnym. Rozwiązanie równania różniczkowego, w szczególności jego punkt osobliwy, które nie jest stabilne będziemy nazywać niestabilnym. 2. Klasyfikacja i stabilność punktów osobliwych układów liniowych na płaszczyźnie. Rozważmy jednorodne równanie liniowe (2.1) x = A x [ ] a11 a ze stałą macierzą A = 12, czyli układ postaci a 21 a 22 { x 1 = a 11 x 1 + a 12 x 2 x 2 = a 21 x 1 + a 22 x 2. Uwaga 2.1. Niech A będzie dowolną macierzą typu 2 2. (i) Układ x = Ax można sprowadzić do układu w tzw. postaci kanonicznej (2.2) y = J y, gdzie J = K 1 A K jest formą kanoniczną macierzy A dla pewnej niosobliwej macierzy K. Ponadto x = Ky. Istnienie takiego niosobliwego przekształcenia 2

3 K jest zagwarantowane przez tw. Jordana. Kolumny macierzy K zbudowane są z wektorów bazy kanonicznej wyrażonych we współrzędnych x. (ii) Macierz J = K 1 A K może mieć jedną z czterech poniższych postaci [ λ1 0 (1) J = 0 λ 2 [ λ0 0 (3) J = 1 λ 0 ] [ λ0 0, (2) J = 0 λ 0 ] [ α β, (4) J = β α (iii) Portrety fazowe układu x = A x i odpowiadającego mu układu w postaci kanonicznej są topologicznie równoważne. Stąd wystarczy ograniczyć się do analizy układów w postaci kanonicznej. ], ]. Definicja 2.2. Układ (2.1) nazywamy prostym, jeżeli macierz A jest nieosobliwa, tj. deta 0. Rozpoczniemy od przedstawienia portretu fazowego dla prostego układu dwóch równań różniczkowych liniowych. Skoncentrujemy się na badaniu zachowań rozwiązań tego układu w otoczeniu jego punktu osobliwego oraz na analizie stabilności tego punktu. Łatwo zauważyć, że jeśli deta 0, to jedynym punktem krytycznym układu (2.1) jest punkt x = (0, 0). Postać rozwiązania rozważanego układu zależy od pierwiastków równania charakterystycznego macierzy A det (A λ I) = λ 2 (tr A) λ + det A = 0, czyli wartości własnych macierzy A danych wzorami λ 1 = tr A + 2 gdzie = (tr A) 2 4det A. 3, λ 2 = tr A, 2

4 Znajomość wartości własnych macierzy A pozwala wyznaczyć bazę przestrzeni R 2, w której macierz A ma postać kanoniczną. Należy więc rozważyć kilka przypadków. Zakładamy, że deta Przypadek > 0. A ma dwie różne rzeczywiste wartości własne λ 1, λ 2, a odpowiadające im wektory własne są liniowe niezależne [ i tworzą ] kanoniczną bazę przestrzeni R 2 λ1 0. Macierz J ma postać J =, więc równanie (2.1) sprowadza 0 λ 2 się do układu { y 1 = λ 1 y 1, y 2 = λ 2 y 2, którego rozwiązania dane są wzorami (2.3) y 1 (t) = c 1 e λ 1 t, y 2 (t) = c 2 e λ 2 t, gdzie stałe c 1 i c 2 zależą od warunków początkowych, tj. c 1 = y 1 (0) = y 0 1 i c 2 = y 2 (0) = y 0 2. Dla c 1 = 0 lub c 2 = 0 orbitami są półosie układu współrzędnych. Proste przekształcenie wzorów (2.3) prowadzi do równania orbit w przestrzeni fazowej M = R 2 λ 2 λ y 2 = C y 1 1, gdzie C jest stałą. Stąd obraz orbit w otoczeniu punktu krytycznego x = (0, 0) zależy w sposób istotny od znaku wartości własnych λ 1 i λ 2, ponadto orientacja tych orbit (symbolizująca kierunek wzrostu zmiennej t w rozwiązaniach zawartych w tych orbitach) jest związana z warunkami początkowymi. 4

5 Rozpatrzmy dokładnie poszczególne sytuacje λ 2 < λ 1 < 0. Punkt krytyczny x = (0, 0) nazywamy węzłem stabilnym. Punkt ten jest asymptotycznie stabilny, przy czym jest to globalna stabilność tj. wszystkie rozwiązania dążą do x = (0, 0) przy t λ 1 < λ 2 < 0. Punkt krytyczny x = (0, 0) nazywamy węzłem stabilnym. Punkt ten jest asymptotycznie stabilny λ 2 > λ 1 > 0. Kształt orbit taki sam jak w 1.1, przy czym ewolucja na orbitach odbywa się w przeciwnym kierunku. Punkt krytyczny x = (0, 0) nazywamy węzłem niestabilnym λ 1 > λ 2 > 0. Kształt orbit taki sam jak w 1.2, przy czym ewolucja na orbitach odbywa się w przeciwnym kierunku. Punkt krytyczny x = (0, 0) nazywamy węzłem niestabilnym λ 1 < 0 < λ 2. Punkt krytyczny x = (0, 0) nazywamy siodłem. Siodło jest punktem krytycznym niestabilnym λ 2 < 0 < λ 1. Punkt krytyczny x = (0, 0) nazywamy siodłem. Siodło jest punktem krytycznym niestabilnym. 5

6 PODSUMOWANIE: Jeżeli różne rzeczywiste wartości własne macierzy A są: ujemne, to punkt krytyczny x = (0, 0) nazywamy węzłem stabilnym, dodatnie, to punkt krytyczny x = (0, 0) nazywamy węzłem niestabilnym, przeciwnych znaków, to punkt krytyczny x = (0, 0) nazywamy siodłem. Węzły stabilne są asymptotycznie stabilne, zaś węzły niestabilne i siodła są niestabilnymi punktami osobliwymi. 2. Przypadek = 0. A ma podwójny rzeczywisty pierwiastek charakterystyczny λ 0, któremu może odpowiadać jeden lub dwa liniowe niezależne wektory własne. Jeżeli wartości własnej λ 0 odpowiadają dwa liniowo niezależne wektory własne, [ to postać ] kanoniczna macierzy A, tj. macierz J ma postać λ0 0 J =, więc równanie (2.1) sprowadza się do układu 0 λ 0 { y 1 = λ 0 y 1, y 2 = λ 0 y 2, którego rozwiązania dane są wzorami y 1 (t) = c 1 e λ 0 t, y 2 (t) = c 2 e λ 0 t, gdzie stałe c 1 i c 2 zależą od warunków początkowych, tj. c 1 = y 1 (0) = y 0 1 i c 2 = y 2 (0) = y 0 2. Stąd równanie orbit w przestrzeni fazowej ma postać y 2 = c 2 c 1 y 1. Dla c 1 = 0 orbitami są półosie osi 0y 2. 6

7 Rozpatrzmy dwie sytuacje λ 0 > 0. Punkt krytyczny x = (0, 0) nazywamy węzłem gwiaździstym niestabilnym λ 0 < 0. Punkt krytyczny x = (0, 0) nazywamy węzłem gwiaździstym stabilnym. Punkt ten jest asymptotycznie stabilny. Jeżeli wartości własnej λ 0 odpowiada jeden liniowo niezależny wektor własny, [ to postać ] kanoniczna macierzy A, tj. macierz J ma postać λ0 0 J =, więc równanie (2.1) sprowadza się do układu 1 λ 0 { y 1 = λ 0 y 1, y 2 = y 1 + λ 0 y 2, którego rozwiązania dane są wzorami y 1 (t) = c 1 e λ 0 t, y 2 (t) = (c 2 + c 1 t) e λ 0 t, gdzie stałe c 1 i c 2 zależą od warunków początkowych, tj. c 1 = y 1 (0) = y 0 1 i c 2 = y 2 (0) = y 0 2. W celu narysowania portretu fazowego warto rozważyć izoklinę o równaniu y 2 = 0, czyli prostą y 1 + λ 0 y 2 = 0. Rozpatrzmy kolejne dwie sytuacje λ 0 > 0. Punkt krytyczny x = (0, 0) nazywamy węzłem zdegenerowanym niestabilnym. 7

8 2.4. λ 0 < 0. Punkt krytyczny x = (0, 0) nazywamy węzłem zdegenerowanym stabilnym. Punkt ten jest asymptotycznie stabilny. 3. Przypadek < 0. A ma dwie sprzężone zespolone wartości własne λ 1 = α + iβ oraz λ 2 = [ α iβ. Postać ] kanoniczna macierzy A, tj. macierz J ma postać α β J =, β > 0, więc równanie (2.1) sprowadza się do układu β α (2.4) { y 1 = α y 1 β y 2, y 2 = β y 1 + α y 2, którego rozwiązania dane są wzorami y 1 (t) = e α t (c 1 cos β t + c 2 sin β t), y 2 (t) = e α t (c 1 sin β t c 2 cos β t), gdzie stałe c 1 i c 2 zależą od warunków początkowych, tj. c 1 = y 1 (0) = y 0 1 i c 2 = y 2 (0) = y 0 2. W celu łatwiejszego wyznaczenia portretu fazowego można układ (2.4) sprowadzić do układu we współrzędnych biegunowych. Mamy a stąd y 1 = r cos θ, y 2 = r sin θ, y 1 = r cos θ r θ sin θ = α r cos θ β r sin θ, y 2 = r sin θ + r θ cos θ = β r cos θ + α r sin θ. Mnożąc obustronnie pierwsze równanie przez cos θ, zaś drugie przez sin θ, następnie dodając i odejmując stronami, otrzymujemy ostatecznie układ { r = α r, θ = β, którego rozwiązaniami są funkcje r(t) = r 0 e α t, θ(t) = θ 0 + β t. 8

9 Rozpatrzmy trzy sytuacje α < 0. Punkt krytyczny x = (0, 0) nazywamy ogniskiem stabilnym. Punkt ten jest asymptotycznie stabilny. Orbity są spiralami zwijającymi się do punktu x = (0, 0) α > 0. Punkt krytyczny x = (0, 0) nazywamy ogniskiem niestabilnym. Orbity są spiralami odwijającymi się od punktu x = (0, 0) α = 0. Punkt krytyczny x = (0, 0) nazywamy środkiem. Punkt ten jest stabilnym, ale nie asymptotycznie stabilnym punktem stałym. Orbity są koncentrycznymi okręgami wokół punktu x = (0, 0). Przejdziemy teraz do badania portretów fazowych układów postaci (2.1) w przypadku, gdy det A = 0, czyli układów, które nie są proste. Jeżeli det A = 0, to przynajmniej jedna z wartości własnych macierzy A jest zerem. W ogólności możliwe są dwa przypadki: (i) rz A = 0 - macierz A jest zerowa i każdy punkt płaszczyzny jest punktem krytycznym układu (2.1), (ii) rz A = 1 - istnieje cała prosta (przechodząca przez punkt (0, 0)) złożona z punktów krytycznych. Wobec trywialności sytuacji (i) rozważymy przypadek (ii). Zatem niech rz A = Przypadek > 0. A ma dwie wartości własne λ 1 0 i λ 2 = 0. Wtedy postać kanoniczna macierzy A, tj. macierz J ma postać 9

10 [ λ1 0 J = 0 0 ], więc równanie (2.1) sprowadza się do układu { y 1 = λ 0 y 1, y 2 = 0, którego rozwiązania dane są wzorami y 1 (t) = c 1 e λ 1 t, y 2 (t) = c 2, gdzie stałe c 1 i c 2 zależą od warunków początkowych, tj. c 1 = y 1 (0) = y 0 1 i c 2 = y 2 (0) = y 0 2. Punktami krytycznymi są wszystkie punkty leżące na osi 0y 2, zaś orbitami proste y 2 = C. Rozpatrzmy dwie sytuacje λ 1 < 0. Wszystkie punkty krytyczne są stabilne, ale nie są asymptotycznie stabilne λ 1 > 0. Wszystkie punkty krytyczne są niestabilne. 5. Przypadek = 0. A ma podwójną wartość własną λ 0 macierzy [ A, tj. macierz J ma postać 0 0 J = 1 0 = 0. Wtedy postać kanoniczna ], więc równanie (2.1) sprowadza się do układu { y 1 = 0, y 2 = y 1, którego rozwiązania dane są wzorami y 1 (t) = c 1, y 2 (t) = c 1 t + c 2, gdzie stałe c 1 i c 2 zależą od warunków początkowych, tj. c 1 = y 1 (0) = y 0 1 i c 2 = y 2 (0) = y

11 Punktami krytycznymi są wszystkie punkty leżące na osi 0y 2, zaś orbitami proste y 1 = C. Przedstawiliśmy lokalne portrety fazowe równania (2.1) w otoczeniu punktu krytycznego x = (0, 0) w układzie współrzędnych odpowiadającym bazie kanonicznej macierzy A, tj. w zmiennych y 1, y 2. W celu narysowania portretu fazowego naszego układu w zmiennych wyjściowych x 1, x 2 wystarczy poprzez przekształecenie K przeprowadzić bazę kanoniczną na bazę przestrzeni wyjściowej. Przykład. Narysujemy portret fazowy układu { x 1 = x 1 + x 2, x 2 = 2x 1, Określimy typ i stabilność punktu osobliwego tego układu. Na zakończenie wróćmy do topologicznej równoważności układów liniowych. Rozważmy równanie w przestrzeni R n x = A x z macierzą A wymiaru n n o stałych współczynnikach. Niech (R n, e t A ) będzie potokiem generowanym przez to równanie. Definicja 2.3. Mówimy, że potok (R n, e t A ) jest hiperboliczny, jeżeli wszystkie wartości własne macierzy A mają niezerowe części rzeczywiste. O punkcie krytycznym x = 0 mówimy wtedy, że jest hiperbolicznym punktem stałym, zaś sam układ x = Ax nazywamy układem hiperbolicznym. 11

12 Twierdzenie 2.4. Dwa hiperboliczne potoki (M, e t A 1 ) i (M, et A 2 ) są topologicznie równoważne, jeżeli macierze A 1 i A 2 mają taką samą ilość wartości własnych z dodatnią częścią rzeczywistą oraz taką samą ilość wartości własnych z ujemną częścią rzeczywistą. W myśl twierdzenia 2.4 punkty krytyczne prostych układów liniowych o stałych współczynnikach na płaszczyźnie rozpadają się na cztery nierównoważne topologicznie klasy: punkty krytyczne niestabilne (węzły i ogniska niestabilne), siodła, punkty krytyczne stabilne (węzły i ogniska stabilne), punkty odpowiadające potokom niehiperbolicznym (środki). 12

Wykład z modelowania matematycznego.

Wykład z modelowania matematycznego. Załóżmy, że równanie różniczkowe x (t) = f (t, x) (1) ma rozwiązanie ogólne x(t) = ϕ(t, c). (2) Załóżmy, że równanie różniczkowe x (t) = f (t, x) (1) ma rozwiązanie ogólne x(t) = ϕ(t, c). (2) Rodzina funkcji

Bardziej szczegółowo

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w

Bardziej szczegółowo

II. Równania autonomiczne. 1. Podstawowe pojęcia.

II. Równania autonomiczne. 1. Podstawowe pojęcia. II. Równania autonomiczne. 1. Podstawowe pojęcia. Definicja 1.1. Niech Q R n, n 1, będzie danym zbiorem i niech f : Q R n będzie daną funkcją określoną na Q. Równanie różniczkowe postaci (1.1) x = f(x),

Bardziej szczegółowo

Wykład Analiza jakościowa równań różniczkowych

Wykład Analiza jakościowa równań różniczkowych Na podstawie książki J. Rusinka, Równania różniczkowe i różnicowe w zarządzaniu, Oficna Wdawnicza WSM, Warszawa 2005. 21 maja 2012 Definicja Stabilność Niech = F (x, ) będzie równaniem różniczkowm. Rozwiązanie

Bardziej szczegółowo

Układy autonomiczne. Rozdział Stabilność w sensie Lapunowa. Przedmiotem analizy w tym rozdziale będą układy równań autonomicznych

Układy autonomiczne. Rozdział Stabilność w sensie Lapunowa. Przedmiotem analizy w tym rozdziale będą układy równań autonomicznych Rozdział 5 Układy autonomiczne 5.1 Stabilność w sensie Lapunowa Przedmiotem analizy w tym rozdziale będą układy równań autonomicznych ẋ = f(x), (5.1) z funkcją f : Q R m, gdzie Q jest otwartym zbiorem

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Marta Zelmańska

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Marta Zelmańska RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Marta Zelmańska Toruń 009 1 Rozdział 1 Wstęp Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie: F (t, x, x, x,..., x (n) ) = 0 (1.1) Rozwiązaniem równania

Bardziej szczegółowo

ϕ(t k ; p) dla pewnego cigu t k }.

ϕ(t k ; p) dla pewnego cigu t k }. VI. Trajektorie okresowe i zbiory graniczne. 1. Zbiory graniczne. Rozważamy równanie (1.1) x = f(x) z funkcją f : R n R n określoną na całej przestrzeni R n. Będziemy zakładać, że funkcja f spełnia założenia,

Bardziej szczegółowo

Zadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych

Zadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych Zadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych [ ] e Zadanie 1 Pokazać, że X(t) = 2t cos t sin t e 2t jest specjalną macierzą fundamentalną w sin t cos t [ 2 cos chwili τ = 0 układu

Bardziej szczegółowo

Równania różniczkowe liniowe wyższych rzędów o stałych współcz

Równania różniczkowe liniowe wyższych rzędów o stałych współcz Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym

Bardziej szczegółowo

Wykład 3 Równania rózniczkowe cd

Wykład 3 Równania rózniczkowe cd 7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy

Bardziej szczegółowo

Przestrzenie wektorowe

Przestrzenie wektorowe Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Baza w jądrze i baza obrazu ( )

Baza w jądrze i baza obrazu ( ) Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ... Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x

Bardziej szczegółowo

Zadania egzaminacyjne

Zadania egzaminacyjne Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie

Bardziej szczegółowo

Formy kwadratowe. Rozdział 10

Formy kwadratowe. Rozdział 10 Rozdział 10 Formy kwadratowe Rozważmy rzeczywistą macierz symetryczną A R n n Definicja 101 Funkcję h : R n R postaci h (x) = x T Ax (101) nazywamy formą kwadratową Macierz symetryczną A występującą w

Bardziej szczegółowo

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3 ZESTAW I 1. Rozwiązać równanie. Pierwiastki zaznaczyć w płaszczyźnie zespolonej. z 3 8(1 + i) 3 0, Sposób 1. Korzystamy ze wzoru a 3 b 3 (a b)(a 2 + ab + b 2 ), co daje: (z 2 2i)(z 2 + 2(1 + i)z + (1 +

Bardziej szczegółowo

5. Równania różniczkowe zwyczajne pierwszego rzędu

5. Równania różniczkowe zwyczajne pierwszego rzędu 5. Równania różniczkowe zwyczajne pierwszego rzędu 5.1. Wstęp. Definicja 5.1. Niech V R 3 będzie obszarem oraz F : V R. Równaniem różniczkowym zwyczajnym rzędu pierwszego nazywamy równanie postaci Równanie

Bardziej szczegółowo

Stabilność II Metody Lapunowa badania stabilności

Stabilność II Metody Lapunowa badania stabilności Metody Lapunowa badania stabilności Interesuje nas w sposób szczególny system: Wprowadzamy dla niego pojęcia: - stabilności wewnętrznej - odnosi się do zachowania się systemu przy zerowym wejściu, czyli

Bardziej szczegółowo

jest rozwiązaniem równania jednorodnego oraz dla pewnego to jest toŝsamościowo równe zeru.

jest rozwiązaniem równania jednorodnego oraz dla pewnego to jest toŝsamościowo równe zeru. Układy liniowe Układ liniowy pierwszego rzędu, niejednorodny. gdzie Jeśli to układ nazywamy jednorodnym Pamiętamy, Ŝe kaŝde równanie liniowe rzędu m moŝe zostać sprowadzone do układu n równań liniowych

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki

Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Stabilność rozwiązań równań różniczkowych w ujęciu lokalnych układów dynamicznych. Adam Kanigowski Toruń 2010 1 Spis treści 1 Wprowadzenie

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e

Bardziej szczegółowo

Wykład 12 i 13 Macierz w postaci kanonicznej Jordana , 0 A 2

Wykład 12 i 13 Macierz w postaci kanonicznej Jordana , 0 A 2 Wykład 12 i 13 Macierz w postaci kanonicznej Jordana Niech A - macierz kwadratowa stopnia n Jak obliczyć np A 100? a 11 0 0 0 a 22 0 Jeśli A jest macierzą diagonalną tzn A =, to Ak = 0 0 a nn Niech B =

Bardziej szczegółowo

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2 Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,

Bardziej szczegółowo

Wektory i wartości własne

Wektory i wartości własne Treść wykładu Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń W V nazywamy niezmienniczą

Bardziej szczegółowo

Równania różniczkowe. Notatki z wykładu.

Równania różniczkowe. Notatki z wykładu. Równania różniczkowe Notatki z wykładu http://robert.brainusers.net 17.06.2009 Notatki własne z wykładu. Są niekompletne, bez bibliografii oraz mogą zawierać błędy i usterki. Z tego powodu niniejszy dokument

Bardziej szczegółowo

FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c

FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c FUNKCJA KWADRATOWA 1. Definicje i przydatne wzory DEFINICJA 1. Funkcja kwadratowa lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax + bx + c taką, że a, b, c R oraz a 0. Powyższe wyrażenie

Bardziej szczegółowo

Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem

Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem Rozdział 6 Równania liniowe 6 Przekształcenia liniowe Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem F Definicja 6 Funkcję f : X Y spełniającą warunki: a) dla dowolnych x,

Bardziej szczegółowo

Przekształcanie równań stanu do postaci kanonicznej diagonalnej

Przekształcanie równań stanu do postaci kanonicznej diagonalnej Przekształcanie równań stanu do postaci kanonicznej diagonalnej Przygotowanie: Dariusz Pazderski Liniowe przekształcenie równania stanu Rozważmy liniowe równanie stanu i równanie wyjścia układu niesingularnego

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

Twierdzenie 2: Własności pola wskazujące na istnienie orbit

Twierdzenie 2: Własności pola wskazujące na istnienie orbit Cykle graniczne Dotychczas zajmowaliśmy się głównie znajdowaniem i badaniem stabilności punktów stacjonarnych. Wiele ciekawych procesów ma naturę cykliczną. Umiemy już sobie poradzić z cyklicznością występującą

Bardziej szczegółowo

1 Podobieństwo macierzy

1 Podobieństwo macierzy GAL (Informatyka) Wykład - zagadnienie własne Wersja z dnia 6 lutego 2014 Paweł Bechler 1 Podobieństwo macierzy Definicja 1 Powiemy, że macierze A, B K n,n są podobne, jeżeli istnieje macierz nieosobliwa

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 9 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo

Własności wyznacznika

Własności wyznacznika Własności wyznacznika Rozwinięcie Laplace a względem i-tego wiersza: n det(a) = ( 1) i+j a ij M ij (A), j=1 gdzie M ij (A) to minor (i, j)-ty macierzy A, czyli wyznacznik macierzy uzyskanej z macierzy

Bardziej szczegółowo

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ FUNKCJE DWÓCH ZMIENNYCH RZECZYWISTYCH Definicja 1. Niech A będzie dowolnym niepustym zbiorem. Metryką w zbiorze A nazywamy funkcję rzeczywistą

Bardziej szczegółowo

Metoda rozdzielania zmiennych

Metoda rozdzielania zmiennych Rozdział 12 Metoda rozdzielania zmiennych W tym rozdziale zajmiemy się metodą rozdzielania zmiennych, którą można zastosować, aby wyrazić jawnymi wzorami rozwiązania pewnych konkretnych równań różniczkowych

Bardziej szczegółowo

1 Wartości własne oraz wektory własne macierzy

1 Wartości własne oraz wektory własne macierzy Rozwiązania zadania umieszczonego na końcu poniższych notatek proszę przynieść na kartkach Proszę o staranne i formalne uzasadnienie odpowiedzi Za zadanie można uzyskać do 6 punktów (jeżeli przyniesione

Bardziej szczegółowo

2. Kombinacja liniowa rozwiązań zeruje się w pewnym punkcie wtedy i tylko wtedy, gdy zeruje się w każdym punkcie.

2. Kombinacja liniowa rozwiązań zeruje się w pewnym punkcie wtedy i tylko wtedy, gdy zeruje się w każdym punkcie. Wniosek 1 Rozpatrzmy układ równań postaci: y 1 = a 11 (x)y 1 + + a 1n (x)y n y 2 = a 21 (x)y 1 + + a 2n (x)y n y n = a n1 (x)y 1 + + a nn (x)y n (1) o współczynnikach ciągłych w przedziale J 1 Rozwiązanie

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2018 Wstęp Stabilność O układzie możemy mówić, że jest stabilny jeżeli jego odpowiedź na wymuszenie (zakłócenie)

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność - definicja 1 O układzie możemy mówić, że jest stabilny gdy wytrącony ze stanu równowagi

Bardziej szczegółowo

Wektory i wartości własne

Wektory i wartości własne Treść wykładu Podprzestrzenie niezmiennicze Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki

Bardziej szczegółowo

Algebra liniowa II. Lista 1. 1 u w 0 1 v 0 0 1

Algebra liniowa II. Lista 1. 1 u w 0 1 v 0 0 1 Algebra liniowa II Lista Zadanie Udowodnić, że jeśli B b ij jest macierzą górnotrójkątną o rozmiarze m m, to jej wyznacznik jest równy iloczynowi elementów leżących na głównej przekątnej: det B b b b mm

Bardziej szczegółowo

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L Tydzień nr 9-10 (16 maja - 29 maja) Równania różniczkowe wartości własne funkcja wykładnicza od operatora - Matematyka II 2010/2011L Wszelkie pytania oraz uwagi o błędach proszę kierować na przemek.majewski@gmail.com

Bardziej szczegółowo

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Procesy wykładniczego wzrostu i spadku (np populacja bakterii, rozpad radioaktywny, wymiana ciepła) można modelować równaniem

Bardziej szczegółowo

Definicje i przykłady

Definicje i przykłady Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest

Bardziej szczegółowo

13 Układy równań liniowych

13 Układy równań liniowych 13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...

Bardziej szczegółowo

Matematyka 2. Równania różniczkowe zwyczajne rzędu drugiego

Matematyka 2. Równania różniczkowe zwyczajne rzędu drugiego Matematyka 2 Równania różniczkowe zwyczajne rzędu drugiego Równania różniczkowe liniowe rzędu II Równanie różniczkowe w postaci y + a 1 (x)y + a 0 (x)y = f(x) gdzie a 0 (x), a 1 (x) i f(x) są funkcjami

Bardziej szczegółowo

Macierze. Rozdział Działania na macierzach

Macierze. Rozdział Działania na macierzach Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy

Bardziej szczegółowo

Metoda eliminacji Gaussa. Autorzy: Michał Góra

Metoda eliminacji Gaussa. Autorzy: Michał Góra Metoda eliminacji Gaussa Autorzy: Michał Góra 9 Metoda eliminacji Gaussa Autor: Michał Góra Przedstawiony poniżej sposób rozwiązywania układów równań liniowych jest pewnym uproszczeniem algorytmu zwanego

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

Przestrzenie liniowe

Przestrzenie liniowe Rozdział 4 Przestrzenie liniowe 4.1. Działania zewnętrzne Niech X oraz F będą dwoma zbiorami niepustymi. Dowolną funkcję D : F X X nazywamy działaniem zewnętrznym w zbiorze X nad zbiorem F. Przykład 4.1.

Bardziej szczegółowo

3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B

3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B 1. Dla macierzy a) A = b) A = c) A = d) A = 3 1 + i 1 i i i 0 i i 0 1 + i 1 i 0 0 0 0 1 0 1 0 1 + i 1 i Wyznaczyć macierze spełniające własność komutacji: A, X = B. Obliczyć pierwiaski z macierzy: A =

Bardziej szczegółowo

2. Układy równań liniowych

2. Układy równań liniowych 2. Układy równań liniowych Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 2. Układy równań liniowych zima 2017/2018 1 /

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )

Bardziej szczegółowo

Wykład 14. Elementy algebry macierzy

Wykład 14. Elementy algebry macierzy Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,

Bardziej szczegółowo

Analiza matematyczna dla informatyków 3 Zajęcia 14

Analiza matematyczna dla informatyków 3 Zajęcia 14 Analiza matematyczna dla informatyków 3 Zajęcia 14 Metoda rozwiązywania (Jednorodne równanie różniczkowe liniowe rzędu n o stałych współczynnikach). gdzie a 0,..., a n 1 C. Wielomian charakterystyczny:

Bardziej szczegółowo

Postać Jordana macierzy

Postać Jordana macierzy Rozdział 8 Postać Jordana macierzy Niech F = R lub F = C Macierz J r λ) F r r postaci λ 1 0 0 0 λ 1 J r λ) = 0 λ 1 0 0 λ gdzie λ F nazywamy klatką Jordana stopnia r Oczywiście J 1 λ) = [λ Definicja 81

Bardziej szczegółowo

1 Macierz odwrotna metoda operacji elementarnych

1 Macierz odwrotna metoda operacji elementarnych W tej części skupimy się na macierzach kwadratowych. Zakładać będziemy, że A M(n, n) dla pewnego n N. Definicja 1. Niech A M(n, n). Wtedy macierzą odwrotną macierzy A (ozn. A 1 ) nazywamy taką macierz

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego. . Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21

Bardziej szczegółowo

Wykład 14 i 15. Równania różniczkowe. Równanie o zmiennych rozdzielonych. Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie

Wykład 14 i 15. Równania różniczkowe. Równanie o zmiennych rozdzielonych. Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie Wykład 14 i 15 Równania różniczkowe Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (x, y, y, y,..., y (n) ) = 0 (1) gdzie: y = y(x) niewiadoma funkcja zmiennej rzeczywistej

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy

Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy Justyna Winnicka Na podstawie podręcznika Matematyka. e-book M. Dędys, S. Dorosiewicza, M. Ekes, J. Kłopotowskiego. rok akademicki 217/218

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na

Bardziej szczegółowo

Lista nr 1 - Liczby zespolone

Lista nr 1 - Liczby zespolone Lista nr - Liczby zespolone Zadanie. Obliczyć: a) ( 3 i) 3 ( 6 i ) 8 c) (+ 3i) 8 (i ) 6 + 3 i + e) f*) g) ( 3 i ) 77 ( ( 3 i + ) 3i 3i h) ( + 3i) 5 ( i) 0 i) i ( 3 i ) 4 ) +... + ( 3 i ) 0 Zadanie. Przedstawić

Bardziej szczegółowo

Liczby zespolone. x + 2 = 0.

Liczby zespolone. x + 2 = 0. Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ Maciej Burnecki opracowanie strona główna Spis treści I Zadania Wyrażenia algebraiczne indukcja matematyczna Geometria analityczna na płaszczyźnie Liczby zespolone 4 Wielomiany

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych ozważmy układ n równań liniowych o współczynnikach a ij z n niewiadomymi i : a + a +... + an n d a a an d a + a +... + a n n d a a a n d an + an +... + ann n d n an an a nn n d

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami Maciej Burnecki opracowanie strona główna Spis treści 1 Wyrażenia algebraiczne indukcja matematyczna 1 Geometria analityczna w R 3 3 Liczby zespolone

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem

Bardziej szczegółowo

Równania różniczkowe liniowe II rzędu

Równania różniczkowe liniowe II rzędu Równania różniczkowe liniowe II rzędu Definicja równania różniczkowego liniowego II rzędu Warunki początkowe dla równania różniczkowego II rzędu Równania różniczkowe liniowe II rzędu jednorodne (krótko

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

Imię i nazwisko... Grupa...

Imię i nazwisko... Grupa... Algebra i teoria mnogości 2.09.2014 Za każde zadanie można otrzymać 0-3 pkt. W zadaniach 1-5 w puste pola należy wpisać TAK lub NIE. Każda odpowiedź oceniana jest osobno (1pkt za poprawną odpowiedź, 0.5pkt

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 1 Zadanie Definicja 1.1. (zadanie) Zadaniem nazywamy zagadnienie znalezienia rozwiązania x spełniającego równanie F (x, d) = 0, gdzie d jest zbiorem danych (od których zależy rozwiązanie x), a F

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} },

R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, nazywa- Definicja 1. Przestrzenią liniową R n my zbiór wektorów R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, z określonymi działaniami dodawania wektorów i mnożenia wektorów przez liczby rzeczywiste.

Bardziej szczegółowo

Funkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska

Funkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska Funkcje liniowe i wieloliniowe w praktyce szkolnej Opracowanie : mgr inż. Renata Rzepińska . Wprowadzenie pojęcia funkcji liniowej w nauczaniu matematyki w gimnazjum. W programie nauczania matematyki w

Bardziej szczegółowo

VI. Równania różniczkowe liniowe wyższych rzędów

VI. Równania różniczkowe liniowe wyższych rzędów VI. 1. Równanie różniczkowe liniowe n-tego rzędu o zmiennych współczynnikach Niech podobnie jak w poprzednim paragrafie K = C lub K = R. Podobnie jak w dziedzinie rzeczywistej wprowadzamy pochodne wyższych

Bardziej szczegółowo

Układy równań liniowych i metody ich rozwiązywania

Układy równań liniowych i metody ich rozwiązywania Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +

Bardziej szczegółowo

wszystkich kombinacji liniowych wektorów układu, nazywa się powłoką liniową uk ładu wektorów

wszystkich kombinacji liniowych wektorów układu, nazywa się powłoką liniową uk ładu wektorów KOINACJA LINIOWA UKŁADU WEKTORÓW Definicja 1 Niech będzie przestrzenią liniową (wektorową) nad,,,, układem wektorów z przestrzeni, a,, współczynnikami ze zbioru (skalarami). Wektor, nazywamy kombinacją

Bardziej szczegółowo

Rozdział 2. Krzywe stożkowe. 2.1 Elipsa. Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie

Rozdział 2. Krzywe stożkowe. 2.1 Elipsa. Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie Rozdział Krzywe stożkowe Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie x + By + Cxy + Dx + Ey + F = 0. (.) W zależności od relacji pomiędzy współczynnikami otrzymujemy elipsę,

Bardziej szczegółowo

Wyk lad 11 1 Wektory i wartości w lasne

Wyk lad 11 1 Wektory i wartości w lasne Wyk lad 11 Wektory i wartości w lasne 1 Wektory i wartości w lasne Niech V bedzie przestrzenia liniowa nad cia lem K Każde przekszta lcenie liniowe f : V V nazywamy endomorfizmem liniowym przestrzeni V

Bardziej szczegółowo

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski Uniwersytet Śląski 23 marca 2012 Ciało liczb zespolonych Rozważmy zbiór C = R R, czyli C = {(x, y) : x, y R}. W zbiorze C definiujemy następujące działania: dodawanie: mnożenie: (a, b) + (c, d) = (a +

Bardziej szczegółowo

III. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE

III. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE III. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE 1. Pojęcia wstępne Przykład 1.1. (Rozpad substancji promieniotwórczej ) Z doświadczeń wiadomo, że prędkość rozpa pierwiastka promieniotwórczego jest ujemna i proporcjonalna

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

Wykład 5. Ker(f) = {v V ; f(v) = 0}

Wykład 5. Ker(f) = {v V ; f(v) = 0} Wykład 5 Niech f : V W będzie przekształceniem liniowym przestrzeni wektorowych Wtedy jądrem przekształcenia nazywamy zbiór tych elementów z V, których obrazem jest wektor zerowy w przestrzeni W Jądro

Bardziej szczegółowo

Wielomiany podstawowe wiadomości

Wielomiany podstawowe wiadomości Rozdział Wielomiany podstawowe wiadomości Funkcję postaci f s = a n s n + a n s n + + a s + a 0, gdzie n N, a i R i = 0,, n, a n 0 nazywamy wielomianem rzeczywistym stopnia n; jeżeli współczynniki a i

Bardziej szczegółowo

Równania różniczkowe cząstkowe drugiego rzędu

Równania różniczkowe cząstkowe drugiego rzędu Równania różniczkowe cząstkowe drugiego rzędu Marcin Orchel Spis treści 1 Wstęp 1 1.1 Metoda faktoryzacji (rozdzielania zmiennych)................ 5 1.2 Metoda funkcji Greena.............................

Bardziej szczegółowo

Algebra liniowa. Macierze i układy równań liniowych

Algebra liniowa. Macierze i układy równań liniowych Algebra liniowa Macierze i układy równań liniowych Własności wyznaczników det I = 1, det(ab) = det A det B, det(a T ) = det A. Macierz nieosobliwa Niech A będzie macierzą kwadratową wymiaru n n. Mówimy,

Bardziej szczegółowo

Programowanie dynamiczne i modele rekurencyjne w ekonomii Wykład 2

Programowanie dynamiczne i modele rekurencyjne w ekonomii Wykład 2 Programowanie dynamiczne i modele rekurencyjne w ekonomii Wykład Michał Ramsza października Streszczenie Wykład drugi bazuje głównie na [, roz 6 5, [, roz oraz [ Materiał obejmuje zagadnienie zwiazane

Bardziej szczegółowo

1 Układy równań liniowych

1 Układy równań liniowych II Metoda Gaussa-Jordana Na wykładzie zajmujemy się układami równań liniowych, pojawi się też po raz pierwszy macierz Formalną (i porządną) teorią macierzy zajmiemy się na kolejnych wykładach Na razie

Bardziej szczegółowo

Lokalna odwracalność odwzorowań, odwzorowania uwikłane

Lokalna odwracalność odwzorowań, odwzorowania uwikłane Lokalna odwracalność odwzorowań, odwzorowania uwikłane Katedra Matematyki i Ekonomii Matematycznej Szkoła Główna Handlowa 17 maja 2012 Definicja Mówimy, że odwzorowanie F : X R n, gdzie X R n, jest lokalnie

Bardziej szczegółowo