FUNKCJE ZESPOLONE Lista zadań 2005/2006

Wielkość: px
Rozpocząć pokaz od strony:

Download "FUNKCJE ZESPOLONE Lista zadań 2005/2006"

Transkrypt

1 FUNKJE ZESPOLONE Lista zadań 25/26 Opracowanie: dr Jolanta Długosz

2 Liczby zespolone. Obliczyć wartości podanych wyrażeń: (2 + ) ( ) 2 4 i (5 + i); b) (3 i)( 4 + 2i); c) 4 + i ; d) ( + i) 4 ; e) ( 2 + 3i) 3 ; f) 2 + 3i i ; g) ( + i) (2 i) ( i) 2..2 Niech z = x + iy, gdzie x, y R. Znaleźć podane wyrażenia: Re ( z 2) ; b) e z ; c) z 2 ; d) z n ; e) Im g) Im ( z 3) ; ( ) ( ) z ; h) Re z + z 2. f) Re ( zz 2) ;.3 Przedstawić na płaszczyźnie zespolonej liczbę e iϕ, gdzie ϕ R : π e πi 2 ; b) e i 3 ; c) e 2 πi ; d) e 2kπi dla k Z..4 Obliczyć podane pierwiastki. Wynik przedstawić w postaci wykładniczej i algebraicznej (jeśli jest w miarę prost. Podać interpretację geometryczną: 4 ; b) 9 8i; c) 3 27; d) 3 + i..5 Narysować na płaszczyźnie zespolonej zbiory określone podanymi warunkami: z < ; b) 2 < z + 2i < 3; c) z + i > 3; d) < i z 4; e) 2iz + 2; f) z i = Re z; g) π 4 < arg(z 3 + i) 2 π; h) z i = z ; i) Re (iz) <. 3.6 Rozwiązać podane równania: z 2 + 4z + 5 = ; b) z 2 + (2 4i)z + 2i = ; c) z 3 4z 2 + 6z 4 = ; d) z 3 8 =. 2

3 Funkcje zespolone zmiennej zespolonej 2. Obliczyć: sin( 2i); b) cos( + i); c) Log ( 4); ( ) ( ) d) log ( 4); e) Log 3 + i ; f) log 3 + i. 2.2 Dowieść, że: sin 2 z+cos 2 z = ; b) sin (z + z 2 ) = sin z cos z 2 + cos z sin z 2 ; c) e z +z 2 = e z e z 2 ; d) e z+2kπi = e z dla k Z; e) e z dla każdego z. 2.3 Wyznaczyć część rzeczywistą i część urojoną podanych funkcji: f(z) = z 2 ; b) f(z) = z ; c) f(z) = iz3 + z; d) f(z) = sin z; e) f(z) = ch z; f) f(z) = e. 2.4 Pokazać, że istnieją liczby zespolone z takie, że: sin z >, cos z >. 2.5 Rozwiązać podane równania: e z+i = 4; b) e z = e Re z ; c) cos z = 2; d) sin z = i. 2.6 Napisać wzór odwzorowania w = f(z), gdzie z, gdy f jest: translacją o wektor z ; b) obrotem o kąt ϕ (w szczególności dla ϕ = π/2) wokół punktu z = ; c) jednokładnością w stosunku k > o środku z = ; d) odbiciem symetrycznym względem osi Ox, Oy, prostej y = x. 2.7 Jakie jest równanie prostej prostopadłej do prostej z(t) = z +z 2 t, gdzie t R, i przechodzącej przez punkt z? Napisać równanie prostej prostopadłej do prostej z(t) = 2i + (i 2)t, gdzie t R, i przechodzącej przez punkt z = 2 + i. Wykonać rysunek. 2.8 Znaleźć obraz zbioru D przy odwzorowaniu w = f(z). Narysować zbiór D i jego obraz, jeśli: 3

4 { D = z : z + 2i } 5, f(z) = (2 + i)z + 3i; b) D = c) D = {z : arg z π 3, z 2 }, f(z) = z 2 ; { z : π 4 arg z π 2, z }, f(z) = ( 2 + 2i ) z; d*) D = {z : Re z, Im z }, f(z) = z Znaleźć obraz: i) okręgu z = ; ii) prostej y = x bez punktu (, ); przy odwzorowaniu w = z. b) i) okręgu z = bez punktu z = ; ii) prostej y = x; przy odwzorowaniu w = z. 2. Znaleźć obraz prostych x = x, y = y i obraz kwadratu D z Zadania 2.8 d*) przy odwzorowaniu w = e z. b) Odwzorować obszar D = {z : < z < e, π < arg z < π} za pomocą funkcji w = log z (logarytm główny). * 2. Znaleźć obraz zbioru D = {z : Re z, Im z } przy odwzorowaniu Wykonać rysunek. * 2.2 Zbadać ciągłość podanych funkcji: w = z i z + i. f(z) = Re z Re z dla z, ; b) f(z) = + z z dla z = ; Wskazówka. Przedstawić z 2 w postaci trygonometrycznej. Re z 2 c) f(z) = dla z, z dla z =. 2.3 Wykazać, że podane funkcje spełniają równania auchy ego-riemanna: f(z) = e z ; b) f(z) = cos z; c) f(z) = ; d) f(z) = log z. z 2.4 W jakich punktach podane funkcje mają pochodne, a w jakich są holomorficzne? Podać wartość pochodnej w punktach, w których istnieje: f(z) = z e z ; b) f(z) = z ( Re z)2 ; c) f(z) = ze z 2 ; d) f(z) = z 2 e Re z. 4

5 2.5 Znaleźć funkcję holomorficzną f(z) = u(x, y) + iv(x, y) wiedząc, że: u(x, y) = 2xy + y, f( 2) = i; b) v(x, y) = y x 2, f(2) = ; + y2 c) v(x, y) = e x sin y + 2y, f() = 5. ałki funkcji zespolonych 3. Napisać równania parametryczne podanych krzywych: prostej przechodzącej przez punkty z = 2i, z 2 = i; b) odcinka łączącego punkty z =, z 2 = 2i; c) odcinka łączącego punkty z = 2 + i, z 2 = ; d) okręgu o środku z = 2 i i promieniu r = 3; e) elipsy o środku z = i półosiach a, b; f) hiperboli y = x ; g) części paraboli y = x 2 zawartej między punktami z = + i, z 2 = 3 + 3i. * 3.2 Napisać równanie stycznej do krzywej z(t) = t 2 + i sin t, gdzie t R, w punkcie z odpowiadającym wartości parametru t = π 2. * 3.3 Znaleźć kąt nachylenia do osi Re z stycznej do krzywej z(t) = t 2 + it, gdzie t R, w punkcie z = i 3 2. * 3.4 Określić punkt i kąt przecięcia się krzywych o równaniach parametrycznych z(t) = t + 8 ti, gdzie t R oraz w(t) = t2 + i, gdzie t R? t 3.5 Obliczyć podane całki: c) π 2 π 2 (cos t + 2ti) dt; b) (cos 2t + i sin 2t) dt; d) 2 [ + ( + i)t 2] dt; ( ) e t i dt. 5

6 3.6 Obliczyć podane całki po zadanych krzywych: e z z dz, odcinek o początku i i końcu ; b) (3z + )z dz, półokrąg {z : z =, Re z } o początku i i końcu i; c) e z dz, łamana o wierzchołkach kolejno, π 2, π ( i); 2 d) (z z) dz, łuk paraboli y = x 2 o początku + i i końcu ; e) z Re z 2 dz, końcu 2. ćwiartka okręgu {z : z = 2, Re z, Im z } o początku 2i i 3.7 Obliczyć podane całki po wskazanej krzywej regularnej o zadanym początku z i końcu z 2 : b) c) d) e iz dz, dowolna krzywa, z = i, z 2 = ; ( 2z cos iz 2) dz, dowolna krzywa, z = π 2, z 2 = π 2 i; z sin z dz, dowolna krzywa, z =, z 2 = π 2 i; z dz z 2 + 2, odcinek, z =, z 2 = + i. 3.8 Korzystając ze wzoru całkowego auchy ego lub jego uogólnień obliczyć podane całki: b) c) e z dz, okrąg z 3i = 2 zorientowany dodatnio; z(z 2i) ze 2πz dz z 2, łamana zamknięta o wierzchołkach, +2i, +2i zorientowana dodatnio; + dz (z 2 2, okrąg z 2i = 2 zorientowany dodatnio; + 9) 6

7 d) e) sin z dz (z 2 π 2 2, okrąg z 3 = zorientowany dodatnio; ) e z dz 3, okrąg z πi = zorientowany dodatnio. z (z πi) 3.9 Obliczyć całkę dz (z ) 3 (z + ) 3, gdzie jest dodatnio zorientowanym okręgiem o promieniu r i środku z, jeśli: r < 2, z = ; b) r < 2, z = ; c) r > 2, z = lub z =. Szeregi zespolone 4. Zbadać zbieżność i bezwzględną zbieżność podanych szeregów: (2 + i) n e in 3 n= n ; b) n n= 2 ; c) i n n ; n= n 2 + i d) in n= 4 + ; e) n= (n + i) n n n. 4.2 Znaleźć promienie i koła zbieżności podanych szeregów potęgowych: z n n n= 2 ; b) i n z n ; c) ( + i) n z n ; n! n= n= (z i) n d) n n= 2 ( + i) n ; e) n= ( 2i) n z 3n n( i) n f*) n= 2 n (n!) 2 z 2n ; (2n)! g*) n= n! z n (n + i) n. 4.3 Rozwinąć w szereg Taylora funkcję f(z) w otoczeniu punktu z i znaleźć koło zbieżności otrzymanego szeregu: f(z) = z sin z 2, z = ; b) f(z) = + z, z = i; c*) f(z) = sin z, z = πi; d) f(z) = cos z z dla z, f() =, z = ; e) f(z) = z2 z + 2, z = 2; f) f(z) = e z, z = πi. 7

8 4.4 Znaleźć wszystkie zera podanych funkcji i zbadać ich krotność: ( f(z) = z ) ( z 4 ; b) f(z) = z 2 e iz ); c) f(z) = sin z z ; d) f(z) = ez sin z ; sin z ( ) e) f(z) = e z ; f) f(z) = sin z e iz. Punkty osobliwe i residua 5. Znaleźć pierścień zbieżności i sumę szeregu Laurenta c n = { dla n, 2 n dla n < ; n dla n, 2n+ c*) c n = dla n = 2, dla n <, n 2. n= c n z n, jeżeli: n+ dla n, b) c n = (2i) i n+ dla n < ; 5.2 Znaleźć rozwinięcie funkcji f(z) w szereg Laurenta we wskazanym pierścieniu P : f(z) =, P = {z : < z < }; z( z) b) f(z) = c) f(z) = d) f(z) =, P = {z : < z < }; z( z) z, P = {z : 4 < z + 3 < }; (z )(z + 3) z 2, P = {z : 2 < z < 3}; (z + 2)(z + 3) i e) f(z) = (z 2 + 2z)e z, P = {z : < z < }; z f*) f(z) = ze, P = {z : < z < }. Wskazówka do f*). Wykorzystać równość z = (z ) Określić rodzaj punktów osobliwych odosobnionych podanych funkcji. W przypadku biegunów zbadać ich krotność: 8

9 f(z) = z2 sin z z z 2 ; b) f(z) = + z 2 ; c) f(z) = π2 sin z ; d) f(z) = z tg z; e) f(z) = z2 e z ; f) f(z) = z sin z ; g) f(z) = z(cos z ) ; e h) f(z) = e z ; i*) f(z) = ez. e z z z 5.4 Jak oblicza się residua w punkcie istotnie osobliwym? b) Dlaczego w przypadku punktu istotnie osobliwego próby stosowania wzorów służących do obliczania residuów w biegunach muszą zakończyć się fiaskiem? c) Podać przykład funkcji, dla której punkt z = jest istotnie osobliwy i res f(z) = a, gdzie a jest dowolną liczbą zespoloną. 5.5 Obliczyć residua funkcji f(z) w punktach osobliwych: f(z) = z + z 2 + ; b) f(z) = z 2 (z ) 2 ; c) f(z) = z 3 z 5 ; d) f(z) = z 2 cos z ; g) f(z) = w punkcie z = i. z8 ez e) f(z) = z ; f) f(z) = ze z ; 5.6 Korzystając z twierdzenia całkowego o residuach obliczyć podane całki: zdz z 2 + 2z + 2, okrąg z = 2 zorientowany dodatnio; b) c) d) e) dz (z ) 2 (z 2 + ), okrąg x2 + y 2 = 2x + 2y zorientowany dodatnio; e πz dz 2z 2 i, dz e 2z, (z + )e z dz, okrąg z = zorientowany dodatnio; okrąg z 2i = 3 zorientowany dodatnio; okrąg z = 3 zorientowany dodatnio. 5.7 Obliczyć podane całki niewłaściwe: x 2 + dx x 4 dx; b) + ( + x 2 ) 3 ; c) dx (x 2 + 2)(x 2 + 5). 9

10 Przekształcenie Laplace a 6. Narysować wykres funkcji f(t) i znaleźć jej transformatę Laplace a, jeżeli: dla t <, dla t (, ), f(t) = t dla t [, ], b) f(t) = dla t (, 2), dla t > ; poza tym. 6.2 Niech L {f(t)} = F (s). Udowodnić następujące własności przekształcenia Laplace a i przekształcenia odwrotnego: { } L e at f(t) = F (s, gdzie a ; b) L {f(at)} = a F ( s a c) L {F (cs)} = c f ( t c ), gdzie a > ; ), gdzie c >. 6.3 Korzystając z własności przekształcenia Laplace a wyznaczyć transformaty podanych funkcji: f(t) = sh ωt; b) f(t) = sin 2 ωt; c) f(t) = cos (ωt δ) (ωt δ); d) f(t) = e at sin 2 ωt; dla t <, dla t (, ), e) f(t) = t dla t [, ], f) f(t) = dla t (, 2), dla t > ; poza tym. 6.4 Korzystając z własności przekształcenia Laplace a wyznaczyć transformaty podanych funkcji: f(t) = (at t ) n ; b) f(t) = t sin ωt; c) f(t) = t 2 cos ωt; d) f(t) = 2 g*) f(t) = sin ωt (sin t + t cos t); e*) f(t) = ; f*) f(t) = t t sin τ τ dτ. cos ωt ; t 6.5 Naszkicować podane oryginały okresowe i znaleźć ich transformaty Laplace a: { dla 2n t < 2n +, f(t) = gdzie n =,, 2,... ; dla 2n + t < 2n + 2, b) f(t) = { t 2n dla 2n t < 2n +, t + 2n + 2 dla 2n + t < 2n + 2, gdzie n =,, 2,... ; c) f(t) = max {sin ωt, }.

11 6.6 Wykorzystując całkę Laplace a obliczyć podane całki niewłaściwe: e t cos πt dt; b) e t 2 ( ) t 4 2t dt; c) ( ) π e 2t sin 3 t dt; e t d*) te 2t dt. 6.7 Metodą rozkładu na ułamki proste znaleźć oryginał, gdy: F (s) = s3 3s 2 7s 8 (s + ) 2 (s 2 + 4) ; b) F (s) = 4s3 + 9s 2 + 8s + 2 s(s + 2)(s 2 + ) ; c) F (s) = 4s2 + 2s + 26 s(s 2 + 6s + 3) ; d) F (s) = 3s3 8s 2 + 2s 8 (s 2) 2 (s 2 + 2s + 5). 6.8 Metodą residuów wyznaczyć oryginały, których transformatami są podane funkcje: s F (s) = (s 2 + ) 2 ; b) F (s) = s2 4 (s 2 + 4) 2 ; c) F (s) = s s(s 2 + 2s + 2) Sprawdzić, czy podane funkcje są transformatami Laplace e oryginałów okresowych. Znaleźć te oryginały i naszkicować ich wykresy: F (s) = A s ( e s ) 2 e 2s ; b) F (s) = e 2s + e 3s s 2 e 3s ; c) F (s) = e 2πs + e πs s 2 + e 2πs. 6. Metodą operatorową rozwiązać podane zagadnienia początkowe dla równań różniczkowych: y + y = sin t, y() = ; b) y y 6y = 2, y() =, y () = ; c) y + 4y + 3y = 2e t, y() =, y () = ; d) y 2y + y =, y() =, y () =. 6. Metodą operatorową rozwiązać podane zagadnienia początkowe dla układów równań różniczkowych: { x = y, y x() = y() = ; = 2x + 2y, b) { x + 2y = 3t, y 2x = 4, x = y z, c) y = x + y, z = x + z, x() = 2, y() = 3; x() =, y() = 2, z() = 3.

12 6.2 Sprawdzić twierdzenie Borela dla podanych splotów funkcji: t sin t; b) t t 2 ; c) cos t e t. 6.3 Korzystając z twierdzenia Borela o splocie wyznaczyć oryginały, których transformatami są podane funkcje: 5s F (s) = (s 2 + ) (s ) ; b) F (s) = s 2 (s 2 + ) ; c) F (s) = s (s 2 + 4) 2. 2

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5)

1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5) . Liczby zespolone Zadanie.. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone () i +i, () 3i, (3) ( + i 3) 6, (4) (5) ( +i ( i) 5, +i 3 i ) 4. Zadanie.. Znaleźć moduł i argument główny

Bardziej szczegółowo

1 + iϕ n. = cos ϕ + i sin ϕ. e n z n n n. c M n z n, c n z Mn.

1 + iϕ n. = cos ϕ + i sin ϕ. e n z n n n. c M n z n, c n z Mn. WRAiT 2 #1 1. Dla jakich a C ciągi o wyrazach na n, a n 1 + a n, an /n, są zbieżne? 2. Wykaż zbieżność i znajdź granice ciągów n a k, a n 1 + a 2n ( a < 1), a n 1 + a 2n ( a > 1), 1 n 3. Dla danego ϕ R

Bardziej szczegółowo

ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE

ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE . Oblicyć: ZADANIA Z FUNKCJI ANALITYCZNYCH a) ( 7i) ( 9i); b) (5 i)( + i); c) 4+3i ; LICZBY ZESPOLONE d) 3i 3i ; e) pierwiastki kwadratowe 8 + i.. Narysować biór tych licb espolonych, które spełniają warunek:

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw 1 1. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y 1+x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

Funkcje analityczne. Wykład 12

Funkcje analityczne. Wykład 12 Funkcje analityczne. Wykład 2 Szeregi Laurenta. Osobliwości funkcji zespolonych. Twierdzenie o residuach Paweł Mleczko Funkcje analityczne (rok akademicki 206/207) Plan wykładu W czasie wykładu omawiać

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y +x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

Liczby zespolone i ich zastosowanie do wyprowadzania tożsamości trygonometrycznych.

Liczby zespolone i ich zastosowanie do wyprowadzania tożsamości trygonometrycznych. Jarosław Wróblewski Analiza Matematyczna, lato 016/17 Kolokwium nr 10: wtorek 6.06.017, godz. 1:15-1:45, materiał zad. 1 40. Liczby zespolone i ich zastosowanie do wyprowadzania tożsamości trygonometrycznych.

Bardziej szczegółowo

Funkcje Analityczne, ćwiczenia i prace domowe

Funkcje Analityczne, ćwiczenia i prace domowe Funkcje Analityczne, ćwiczenia i prace domowe P. Wojtaszczyk 29 maja 22 Ten plik będzie progresywnie modyfikowany. Będzie on zawierał. Zadanie omówione na ćwiczeniach 2. Zadania ćwiczebne do samodzielnego

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j),

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j), ELEKTROTECHNIKA Semestr Rok akad. / 5 ZADANIA Z MATEMATYKI Zestaw. Przedstaw w postaci algebraicznej liczby zespolone: (3 + j)(5 j) 3 j +j (5 + j) (3 + j) 3. Narysuj zbiory punktów na płaszczyźnie: +j

Bardziej szczegółowo

WYDZIAŁ MECHANICZNY PWR KARTA PRZEDMIOTU

WYDZIAŁ MECHANICZNY PWR KARTA PRZEDMIOTU WYDZIAŁ MECHANICZNY PWR KARTA PRZEDMIOTU Zał. nr 4 do ZW Nazwa w języku polskim: FUNKCJE ZESPOLONE Nazwa w języku angielskim: Complex functions Kierunek studiów (jeśli dotyczy): Automatyka i Robotyka Specjalność

Bardziej szczegółowo

Przekształcenia całkowe. Wykład 1

Przekształcenia całkowe. Wykład 1 Przekształcenia całkowe Wykład 1 Przekształcenia całkowe Tematyka wykładów: 1. Liczby zespolone -wprowadzenie, - funkcja zespolona zmiennej rzeczywistej, - funkcja zespolona zmiennej zespolonej. 2. Przekształcenie

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Rodzaj przedmiotu: przedmiot obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Analiza zespolona Complex Analysis Matematyka Poziom kwalifikacji: II stopnia

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

Liczby zespolone. x + 2 = 0.

Liczby zespolone. x + 2 = 0. Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą

Bardziej szczegółowo

1. Liczby zespolone i

1. Liczby zespolone i Zadania podstawowe Liczby zespolone Zadanie Podać część rzeczywistą i urojoną następujących liczb zespolonych: z = ( + 7i)( + i) + ( 5 i)( + 7i), z = + i, z = + i i, z 4 = i + i + i i Zadanie Dla jakich

Bardziej szczegółowo

z 1+z 2 4. Następujące liczby przedstawić w postaci wykładniczej oraz zaznaczyć na płaszczyźnie

z 1+z 2 4. Następujące liczby przedstawić w postaci wykładniczej oraz zaznaczyć na płaszczyźnie . Lista. Obliczyć wartości wyrażeń: (2+ 4 ) ( ) 2 i (5+i); (b)(3 i)( 4+2i); (c) 4 +i ; (+i) 4 ; (e)( 2+3i) 3 ; (f) 2+3i i ; (g)(+i)(2 i) ( i) 2. 2.Niechz=x+iy,gdziex,y R.Podanewyrażeniaprzedstawićzapomocąx,y:

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Funkcje zespolone Complex functions Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji: I stopnia Liczba

Bardziej szczegółowo

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019

WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019 WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019 Przedmiot Klasa Nauczyciele uczący Poziom matematyka 3e Łukasz Jurczak rozszerzony 6. Ułamki algebraiczne. Równania i nierówności wymierne. Funkcje wymierne.

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami Maciej Burnecki opracowanie strona główna Spis treści 1 Wyrażenia algebraiczne indukcja matematyczna 1 Geometria analityczna w R 3 3 Liczby zespolone

Bardziej szczegółowo

Funkcje analityczne. Wykład 3. Funkcje holomorficzne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) z = x + iy A

Funkcje analityczne. Wykład 3. Funkcje holomorficzne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) z = x + iy A Funkcje analityczne Wykład 3. Funkcje holomorficzne Paweł Mleczko Funkcje analityczne (rok akademicki 206/207) Funkcje zespolone zmiennej zespolonej Funkcje zespolone zmiennej zespolonej Niech A C. Funkcja

Bardziej szczegółowo

Zadania do samodzielnego rozwiązania zestaw 11

Zadania do samodzielnego rozwiązania zestaw 11 Zadania do samodzielnego rozwiązania zestaw 11 1 Podać definicję pochodnej funkcji w punkcie, a następnie korzystając z tej definicji obliczyć ( ) π (a) f, jeśli f(x) = cos x, (e) f (0), jeśli f(x) = 4

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ Maciej Burnecki opracowanie strona główna Spis treści I Zadania Wyrażenia algebraiczne indukcja matematyczna Geometria analityczna na płaszczyźnie Liczby zespolone 4 Wielomiany

Bardziej szczegółowo

WSTĘP DO ANALIZY I ALGEBRY, MAT1460

WSTĘP DO ANALIZY I ALGEBRY, MAT1460 WSTĘP DO ANALIZY I ALGEBRY, MAT460 Listy zadań Literatura polecana. M.Gewert, Z.Skoczylas Wstęp do analizy i algebry. Teoria,przykłady,zadania.,Oficyna Wydawnicza GiS, Wrocław 04.. D.Zakrzewska, M.Zakrzewski,

Bardziej szczegółowo

Rachunek różniczkowy i całkowy 2016/17

Rachunek różniczkowy i całkowy 2016/17 Rachunek różniczkowy i całkowy 26/7 Zadania domowe w pakietach tygodniowych Tydzień 3-7..26 Zadanie O. Czy dla wszelkich zbiorów A, B i C zachodzą następujące równości: (A B)\C = (A\C) (B\C), A\(B\C) =

Bardziej szczegółowo

Kurs Start plus poziom zaawansowany, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1.

Kurs Start plus poziom zaawansowany, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1. Projekt Fizyka Plus nr POKL.04.0.0-00-034/ współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Kapitał Ludzki Kurs Start plus poziom zaawansowany,

Bardziej szczegółowo

Analiza Matematyczna MAEW101

Analiza Matematyczna MAEW101 Analiza Matematyczna MAEW Wydział Elektroniki Listy zadań nr 8-4 (część II) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 5 M.Gewert, Z Skoczylas,

Bardziej szczegółowo

Lista zadań nr 2 z Matematyki II

Lista zadań nr 2 z Matematyki II Lista zadań nr 2 z Matematyki II dla studentów wydziału Architektury, kierunku Gospodarka Przestrzenna. Wyznaczyć dziedzinę funkcji f(x, y) = ln(4 x 2 y 2 ), f(x, y) = x 2 + y 2, f(x, y) = ln(4 x 2 y 2

Bardziej szczegółowo

ALGEBRA z GEOMETRIA, ANALITYCZNA,

ALGEBRA z GEOMETRIA, ANALITYCZNA, ALGEBRA z GEOMETRIA, ANALITYCZNA, MAT00405 PRZEKSZTAL CANIE WYRAZ EN ALGEBRAICZNYCH, WZO R DWUMIANOWY NEWTONA Uprościć podane wyrażenia 7; (b) ( 6)( + ); (c) a 5 6 8a ; (d) ( 5 )( 5 + ); (e) ( 45x 4 y

Bardziej szczegółowo

Funkcje zespolone. 2 Elementarne funkcje zespolone zmiennej zespolonej

Funkcje zespolone. 2 Elementarne funkcje zespolone zmiennej zespolonej Wyiał Matematyki Stosowanej Zestaw adań nr 8 Akademia Górnico-Hutnica w Krakowie WFiIS, informatyka stosowana, II rok Elżbieta Adamus grudnia 206r. Funkcje espolone Ciągi i seregi licb espolonych Zadanie.

Bardziej szczegółowo

Spis treści. Spis treści 2

Spis treści. Spis treści 2 Spis treści Spis treści Algebra. Liczby zespolone.................................................. Liczby zespolone - odpowiedzi.......................................... 5. Macierze......................................................

Bardziej szczegółowo

1 Funkcja wykładnicza i logarytm

1 Funkcja wykładnicza i logarytm 1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2, lato 2016/17

Jarosław Wróblewski Analiza Matematyczna 2, lato 2016/17 41. Niech z = 5 + 4i. Dla podanych liczb m, n podać taką liczbę całkowitą k, aby 5 zachodziła równość z m z n =z k. Uwaga na sprzężenie w drugim czynniku po lewej stronie. a) m = 1, n = 1, k = 9 ; b) m

Bardziej szczegółowo

22. CAŁKA KRZYWOLINIOWA SKIEROWANA

22. CAŁKA KRZYWOLINIOWA SKIEROWANA CAŁA RZYWOLINIOWA SIEROWANA Niech łuk o równaniach parametrycznych: x x(t), y y(t), a < t < b, będzie łukiem regularnym skierowanym, tzn łukiem w którym przyjęto punkt A(x(a), y(a)) za początek łuku, zaś

Bardziej szczegółowo

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania. 10 1 Wykazać, że liczba 008 008 10 + + jest większa od Nie używając kalkulatora, porównać liczby a = log 5 log 0 + log oraz b = 6 5 Rozwiązać równanie x + 4y + x y + 1 = 4xy 4 W prostokątnym układzie współrzędnych

Bardziej szczegółowo

1. Funkcje zespolone zmiennej rzeczywistej. 2. Funkcje zespolone zmiennej zespolonej

1. Funkcje zespolone zmiennej rzeczywistej. 2. Funkcje zespolone zmiennej zespolonej . Funkcje zepolone zmiennej rzeczywitej Jeżeli każdej liczbie rzeczywitej t, t α, β] przyporządkujemy liczbę zepoloną z = z(t) = x(t) + iy(t) to otrzymujemy funkcję zepoloną zmiennej rzeczywitej. Ciągłość

Bardziej szczegółowo

Rozdział 2. Liczby zespolone

Rozdział 2. Liczby zespolone Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1, y 1 ) + x, y ) := x 1 + x, y 1 + y ), 1) x 1, y 1 ) x, y ) := x 1 x y 1 y, x 1 y + x y 1 ) ) jest ciałem zob rozdział

Bardziej szczegółowo

1 Funkcja wykładnicza i logarytm

1 Funkcja wykładnicza i logarytm 1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres

Bardziej szczegółowo

WYMAGANIA WSTĘPNE Z MATEMATYKI

WYMAGANIA WSTĘPNE Z MATEMATYKI WYMAGANIA WSTĘPNE Z MATEMATYKI Wydział Informatyki, Elektroniki i Telekomunikacji Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie I. ZBIORY I.1. Działania na zbiorach I.2. Relacje między

Bardziej szczegółowo

Zaliczenie na ocenę 1 0,5 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

Zaliczenie na ocenę 1 0,5 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI Zał. nr 4 do ZW WYDZIAŁ ****** KARTA PRZEDMIOTU Nazwa w języku polskim RÓWNANIA RÓŻNICZKOWE I FUNKCJE ZESPOLONE Nazwa w języku angielskim Differential equations and complex functions Kierunek studiów (jeśli

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

Funkcje Analityczne Grupa 3, jesień 2008

Funkcje Analityczne Grupa 3, jesień 2008 Funkcje Analityczne Grupa 3, jesień 2008 Czternasta porcja zadań. Uwaga: i) W każdym zadaniu można korzystać z poprzednich jego części i innych zadań, nawet, jeśli się ich nie rozwiązało. ii) Wcześniejsze

Bardziej szczegółowo

ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA. oprac. I. Gorgol

ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA. oprac. I. Gorgol ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA oprac. I. Gorgol Spis treści. Elementy logiki. Elementy rachunku zbiorów 4. Funkcje zdaniowe i kwantyfikatory. 4 4. Funkcja złożona i odwrotna 6 5. Granica ciągu liczbowego

Bardziej szczegółowo

Lista 1 - Funkcje elementarne

Lista 1 - Funkcje elementarne Lista - Funkcje elementarne Naszkicuj wykresy funkcji: a) y = sgn, y = sgn ; b) y = ; c) y = 2 Przedstaw w jednym układzie współrzędnych wykresy funkcji potęgowej y = α dla: a) α =, 2, 3, 4; b) α =,, 2;

Bardziej szczegółowo

Algebra z geometrią analityczną zadania z odpowiedziami

Algebra z geometrią analityczną zadania z odpowiedziami Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści strona główna 1 Wyrażenia algebraiczne, indukcja matematyczna 2 2 Geometria analityczna w R 2 Liczby zespolone 4 4 Wielomiany

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w

Bardziej szczegółowo

Algebra z geometrią analityczną zadania z odpowiedziami

Algebra z geometrią analityczną zadania z odpowiedziami Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki opracowanie Spis treści I Wyrażenia algebraiczne, indukcja matematyczna 2 II Geometria analityczna w R 2 4 III Liczby zespolone 5

Bardziej szczegółowo

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 6 Transformata Laplace a Funkcje specjalne Przekształcenia całkowe W wielu zastosowaniach dużą rolę odgrywają tzw. przekształcenia całkowe

Bardziej szczegółowo

Repetytorium z matematyki ćwiczenia

Repetytorium z matematyki ćwiczenia Spis treści 1 Liczby rzeczywiste 1 2 Geometria analityczna. Prosta w układzie kartezjańskim Oxy 4 3 Krzywe drugiego stopnia na płaszczyźnie kartezjańskiej 6 4 Dziedzina i wartości funkcji 8 5 Funkcja liniowa

Bardziej szczegółowo

1. Równania i nierówności liniowe

1. Równania i nierówności liniowe Równania i nierówności liniowe Wykonać działanie: Rozwiązać równanie: ( +x + ) x a) 5x 5x+ 5 = 50 x 0 b) 6(x + x + ) = (x + ) (x ) c) x 0x (0 x) 56 = 6x 5 5 ( x) Rozwiązać równanie: a) x + x = 4 b) x x

Bardziej szczegółowo

Analiza matematyczna 2 zadania z odpowiedziami

Analiza matematyczna 2 zadania z odpowiedziami Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści I Całki niewłaściwe pierwszego rodzaju II Całki niewłaściwe drugiego rodzaju 5 III Szeregi liczbowe 6 IV Szeregi potęgowe

Bardziej szczegółowo

Matematyka liczby zespolone. Wykład 1

Matematyka liczby zespolone. Wykład 1 Matematyka liczby zespolone Wykład 1 Siedlce 5.10.015 Liczby rzeczywiste Zbiór N ={0,1,,3,4,5, } nazywamy zbiorem Liczb naturalnych, a zbiór N + ={1,,3,4, } nazywamy zbiorem liczb naturalnych dodatnich.

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

6. Punkty osobliwe, residua i obliczanie całek

6. Punkty osobliwe, residua i obliczanie całek 6. Punkty osobliwe, residua i obliczanie całek Mówimy, że funkcja holomorficzna f ma w punkcie a zero krotności k, jeśli f(a) = f (a) = = f (k ) (a) = 0, f (k) (a) 0. Rozwijając f w szereg Taylora w otoczeniu

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami

ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami ANALIZA MATEMATYCZNA zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Całki niewłaściwe pierwszego rodzaju Całki niewłaściwe drugiego rodzaju Szeregi liczbowe 4 4 Szeregi potęgowe 5 5

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 2.2B (2017/18)

ANALIZA MATEMATYCZNA 2.2B (2017/18) ANALIZA MATEMATYCZNA.B (7/8) ANALIZA MATEMATYCZNA.A,.A LISTA. (na ćwiczenia) Całki niewłaściwe Część A. Zadania do samodzielnego rozwiązania, czyli to, co należy umieć z poprzedniego semestru... Podać

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna Zadanie. Zapisać, używając symboli i, następujące wyrażenia (a) n!; (b) sin() + sin() sin() +... + sin() sin()... sin(n); (c) ( + )( + /)( + / + /)... ( + / + / +... + /R). Zadanie.

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych Wykresy i warstwice funkcji wielu zmiennych. Granice i ciagłość funkcji wielu zmiennych. Pochodne czastkowe funkcji wielu zmiennych. Gradient. Pochodna kierunkowa. Różniczka zupełna.

Bardziej szczegółowo

1 Logika (3h) 1.1 Funkcje logiczne. 1.2 Kwantyfikatory. 1. Udowodnij prawa logiczne: 5. (p q) (p q) 6. ((p q) r) (p (q r)) 3.

1 Logika (3h) 1.1 Funkcje logiczne. 1.2 Kwantyfikatory. 1. Udowodnij prawa logiczne: 5. (p q) (p q) 6. ((p q) r) (p (q r)) 3. Logika (3h). Udowodnij prawa logiczne:. (p q) ( p q). (p q) ( p q) 3. (p q) ( q p) 4. (p q) ( p q) 5. (p q) (p q) 6. ((p q) r) (p (q r)) 7. (p q) r (p r) (q r) 8. (p q) (q r) (p r). Sprawdź, czy wyrażenia:.

Bardziej szczegółowo

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU Agata Boratyńska Zadania z matematyki Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU. Korzystając z definicji granicy ciągu udowodnić: a) n + n+ = 0 b) n + n n+ = c) n + n a =, gdzie a

Bardziej szczegółowo

Elementy logiki (4 godz.)

Elementy logiki (4 godz.) Elementy logiki (4 godz.) Spójniki zdaniotwórcze, prawa de Morgana. Wyrażenie implikacji za pomocą alternatywy i negacji, zaprzeczenie implikacji. Prawo kontrapozycji. Podstawowe prawa rachunku zdań. Uczestnik

Bardziej szczegółowo

SYLABUS PRZEDMIOTU MATEMATYKA W RAMACH ZAJ

SYLABUS PRZEDMIOTU MATEMATYKA W RAMACH ZAJ SYLABUS PRZEDMIOTU MATEMATYKA W RAMACH ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI DLA STUDENTÓW I ROKU BUDOWNICTWA WNT UWM W ROKU AKADEMICKIM 2012/2013 Nazwa przedmiotu: Zajęcia wyrównawcze z matematyki Rodzaj studiów:

Bardziej szczegółowo

Zestaw Obliczyć objętość równoległościanu zbudowanego na wektorach m, n, p jeśli wiadomo, że objętość równoległościanu zbudowanego na wektorach:

Zestaw Obliczyć objętość równoległościanu zbudowanego na wektorach m, n, p jeśli wiadomo, że objętość równoległościanu zbudowanego na wektorach: Zestaw 9. Wykazać, że objętość równoległościanu zbudowanego na przekątnych ścian danego równoległościanu jest dwa razy większa od objętości równoległościanu danego.. Obliczyć objętość równoległościanu

Bardziej szczegółowo

Matematyka. rok akademicki 2008/2009, semestr zimowy. Konwersatorium 1. Własności funkcji

Matematyka. rok akademicki 2008/2009, semestr zimowy. Konwersatorium 1. Własności funkcji . Własności funkcji () Wyznaczyć dziedzinę funkcji danej wzorem: y = 2 2 + 5 y = +4 y = 2 + (2) Podać zbiór wartości funkcji: y = 2 3, [2, 5) y = 2 +, [, 4] y =, [3, 6] (3) Stwierdzić, czy dana funkcja

Bardziej szczegółowo

Algebra z geometrią analityczną zadania z odpowiedziami

Algebra z geometrią analityczną zadania z odpowiedziami Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści 0 Wyrażenia algebraiczne, indukcja matematyczna 2 2 2 1 Geometria analityczna w R 2 3 3 3 2 Liczby zespolone 4 4 4 3

Bardziej szczegółowo

1 Logika. 1. Udowodnij prawa logiczne: 3. (p q) (p q) 2. (p q) ( q p) 2. Sprawdź, czy wyrażenie ((p q) r) (p (q r)) jest tautologią.

1 Logika. 1. Udowodnij prawa logiczne: 3. (p q) (p q) 2. (p q) ( q p) 2. Sprawdź, czy wyrażenie ((p q) r) (p (q r)) jest tautologią. Logika. Udowodnij prawa logiczne:. (p q) ( p q). (p q) ( q p) 3. (p q) (p q). Sprawdź czy wyrażenie ((p q) r) (p (q r)) jest tautologią. 3. Zad 3. Sprawdź czy zdanie: Jeżeli liczba a dzieli się przez i

Bardziej szczegółowo

Kurs Start plus - matematyka poziom podstawowy, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1.

Kurs Start plus - matematyka poziom podstawowy, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1. Projekt Fizyka Plus nr POKL.04.0.0-00-034/ współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Kapitał Ludzki Kurs Start plus - matematyka

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności

Bardziej szczegółowo

Równania prostych i krzywych; współrzędne punktu

Równania prostych i krzywych; współrzędne punktu Równania prostych i krzywych; współrzędne punktu Zad 1: Na paraboli o równaniu y = 1 x znajdź punkt P leŝący najbliŝej prostej o równaniu x + y = 0 Napisz równanie stycznej do tej paraboli, poprowadzonej

Bardziej szczegółowo

1 Układy równań liniowych

1 Układy równań liniowych 1 Układy równań liniowych 1. Rozwiązać układy równań liniowych metodą eliminacji Gaussa x + 2y z = 4 y 2z = 4x y + z = 0 x y + z = 0 2y + 5z = 1 6x 4y z = 1 x + y t = 1 x + y z = 0 y + z + t = 1 x + +

Bardziej szczegółowo

TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH )

TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH ) Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH ) PAKIET ZADAŃ (zadania wybrano ze zbiorów autorów i wydawnictw: Kiełbasa, Res Polona,

Bardziej szczegółowo

Funkcje analityczne. Wykład 2. Płaszczyzna zespolona. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018)

Funkcje analityczne. Wykład 2. Płaszczyzna zespolona. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018) Funkcje analityczne Wykład 2. Płaszczyzna zespolona Paweł Mleczko Funkcje analityczne (rok akademicki 2017/2018) Plan wykładu W czasie wykładu omawiać będziemy różne reprezentacje płaszczyzny zespolonej

Bardziej szczegółowo

Funkcje analityczne. Wykład 4. Odwzorowania wiernokątne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018)

Funkcje analityczne. Wykład 4. Odwzorowania wiernokątne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018) Funkcje analityczne Wykład 4. Odwzorowania wiernokątne Paweł Mleczko Funkcje analityczne (rok akademicki 2017/2018) 1. Przekształcenia płaszczyzny Płaszczyzna jako przestrzeń liniowa, odwzorowania liniowe

Bardziej szczegółowo

Rozdział 2. Liczby zespolone

Rozdział 2. Liczby zespolone Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1,y 1 +x,y := x 1 +x,y 1 +y, 1 x 1,y 1 x,y := x 1 x y 1 y,x 1 y +x y 1 jest ciałem zob przykład 16, str 7; jest to tzw

Bardziej szczegółowo

Projekt Informatyka przepustką do kariery współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Informatyka przepustką do kariery współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia 1 Pewne funkcje - funkcja liniowa dla gdzie -funkcja kwadratowa dla gdzie postać kanoniczna postać iloczynowa gdzie równanie kwadratowe pierwiastki równania kwadratowego: dla dla wzory Viete a

Bardziej szczegółowo

postaci kanonicznej i iloczynowej trójmiany: y = 0,5x 2. Podaj określenie ciągu arytmetycznego. Dany jest ciąg a n

postaci kanonicznej i iloczynowej trójmiany: y = 0,5x 2. Podaj określenie ciągu arytmetycznego. Dany jest ciąg a n Propozycje pytań na maturę ustną ( profil podstawowy ) Elżbieta Kujawińska ZESTAW Podaj wzory na postać kanoniczną i iloczynową funkcji kwadratowej Sprowadź do postaci kanonicznej i iloczynowej trójmiany:

Bardziej szczegółowo

Funkcje analityczne. Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017)

Funkcje analityczne. Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017) Funkcje analityczne Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017) Paweł Mleczko Uniwersytet im. Adama Mickiewicza w Poznaniu 1. Sprawy organizacyjne

Bardziej szczegółowo

MATEMATYKA Z SENSEM. Ryszard Kalina Tadeusz Szymański Marek Lewicki. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych.

MATEMATYKA Z SENSEM. Ryszard Kalina Tadeusz Szymański Marek Lewicki. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. MATEMATYKA Z SENSEM Ryszard Kalina Tadeusz Szymański Marek Lewicki Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Klasa I Zakres podstawowy i rozszerzony Wymagania konieczne (K)

Bardziej szczegółowo

Weronika Siwek, Układ biegunowy, płaszczyzna Gaussa i nie tylko... 1

Weronika Siwek, Układ biegunowy, płaszczyzna Gaussa i nie tylko... 1 Weronika Siwek, Układ biegunowy, płaszczyzna Gaussa i nie tylko... Spis treści. Badanie przebiegu zmienności funkcji.................. Co i jak, czyli trochę teorii........................ Przykłady................................

Bardziej szczegółowo

FUNKCJA LINIOWA, OKRĘGI

FUNKCJA LINIOWA, OKRĘGI FUNKCJA LINIOWA, OKRĘGI. Napisz równanie prostej przechodzącej przez początek układu i prostopadłej do prostej 3x-y+=0.. Oblicz pole trójkąta ograniczonego osiami układy i prostą x+y-6=0. 3. Odcinek o

Bardziej szczegółowo

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2). 1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego

Bardziej szczegółowo

Przykładowe zestawy pytań maturalnych z matematyki na egzamin ustny.

Przykładowe zestawy pytań maturalnych z matematyki na egzamin ustny. Przykładowe zestawy pytań maturalnych z matematyki na egzamin ustny Zestaw I 1) Przedstaw i omów postać kanoniczną i iloczynową funkcjikwadratowej Daną funkcję przedstaw w postaci kanonicznej: y = ( )(

Bardziej szczegółowo

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.)

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.) PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY I. Proste na płaszczyźnie (15 godz.) Równanie prostej w postaci ogólnej Wzajemne połoŝenie dwóch prostych Nierówność liniowa z dwiema niewiadomymi

Bardziej szczegółowo

Tematy: zadania tematyczne

Tematy: zadania tematyczne Tematy: zadania tematyczne 1. Ciągi liczbowe zadania typu udowodnij 1) Udowodnij, Ŝe jeŝeli liczby,, tworzą ciąg arytmetyczny ), to liczby,, takŝe tworzą ciąg arytmetyczny. 2) Ciąg jest ciągiem geometrycznym.

Bardziej szczegółowo

MATEMATYKA 2. OKNO - Ośrodek Kształcenia na Odległość Politechnika Warszawska. Krystyna Lipińska Dominik Jagiełło Rafał Maj

MATEMATYKA 2. OKNO - Ośrodek Kształcenia na Odległość Politechnika Warszawska. Krystyna Lipińska Dominik Jagiełło Rafał Maj MATEMATYKA 2 OKNO - Ośrodek Kształcenia na Odległość Politechnika Warszawska Krystyna Lipińska Dominik Jagiełło Rafał Maj 2010 Spis treści 1 Całka krzywoliniowa nieskierowana 9 1.1 Całka krzywoliniowa

Bardziej szczegółowo

x y = 2z, + 2y f(x, y) = ln(x3y ) y x

x y = 2z, + 2y f(x, y) = ln(x3y ) y x . Funkcje wielu zmiennych i funkcje uwikłane Zad.. Obliczyć przybliżoną wartość wyrażenia (, 4) (,), Zad.. Obliczyć przybliżoną wartość wyrażenia, 8, 5, Zad. 3. Wykazać, że każda funkcja z(x, y) = x f

Bardziej szczegółowo

y(t) = y 0 + R sin t, t R. z(t) = h 2π t

y(t) = y 0 + R sin t, t R. z(t) = h 2π t SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,

Bardziej szczegółowo

5. wykładu.) x 2 +2x+5dx. (Wskazówka: wykorzystać to, że sin = Im(exp) na osi rzeczywistej; użyć lematu Jordana.) 3. Obliczyć

5. wykładu.) x 2 +2x+5dx. (Wskazówka: wykorzystać to, że sin = Im(exp) na osi rzeczywistej; użyć lematu Jordana.) 3. Obliczyć FAN: wybór zadań przygotowawczych do egzaminu. styczeń 2014r. Egzamin będzie z całości materiału również i tej jego części, która objęta była poprzednimi zadaniami przygotowawczymi i samym kolokwium. Poniższy

Bardziej szczegółowo

Praca domowa - seria 2

Praca domowa - seria 2 Praca domowa - seria 0 listopada 01 Zadanie 1. Zaznacz na płaszczyźnie zespolonej zbiór liczb spełniających nierówność: A = {z C : i z < Im(z)}. Rozwiązanie 1 Niech z = a + ib, gdzie a, b R. Wtedy z =

Bardziej szczegółowo

Wykład 5. Zagadnienia omawiane na wykładzie w dniu r

Wykład 5. Zagadnienia omawiane na wykładzie w dniu r Wykład 5. Zagadnienia omawiane na wykładzie w dniu 14.11.2018r Definicja (iloraz różnicowy) Niech x 0 R oraz niech funkcja f będzie określona przynajmnniej na otoczeniu O(x 0 ). Ilorazem różnicowym funkcji

Bardziej szczegółowo

KORESPONDENCYJNY KURS Z MATEMATYKI. PRACA KONTROLNA nr 1

KORESPONDENCYJNY KURS Z MATEMATYKI. PRACA KONTROLNA nr 1 KORESPONDENCYJNY KURS Z MATEMATYKI PRACA KONTROLNA nr 1 październik 000r 1. Suma wszystkich wyrazów nieskończonego ciągu geometrycznego wynosi 040. Jeśli pierwszy wyraz tego ciągu zmniejszymy o 17, a jego

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44

Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44 Księgarnia PWN: Ryszard Rudnicki, Wykłady z analizy matematycznej Spis treści Rozdział I. Wstęp do matematyki... 13 1.1. Elementy logiki i teorii zbiorów... 13 1.1.1. Rachunek zdań... 13 1.1.2. Reguły

Bardziej szczegółowo

Geometria analityczna

Geometria analityczna Geometria analityczna Paweł Mleczko Teoria Informacja (o prostej). postać ogólna prostej: Ax + By + C = 0, A + B 0, postać kanoniczna (kierunkowa) prostej: y = ax + b. Współczynnik a nazywamy współczynnikiem

Bardziej szczegółowo

I. Funkcja kwadratowa

I. Funkcja kwadratowa Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas III w roku szkolnym 2017/2018 w Zespole Szkół Ekonomicznych w Zielonej Górze Dla każdej klasy 3 obowiązuje taka ilość poniższego

Bardziej szczegółowo

Jolanta Pająk Wymagania edukacyjne matematyka w zakresie rozszerzonym w klasie 2f 2018/2019r.

Jolanta Pająk Wymagania edukacyjne matematyka w zakresie rozszerzonym w klasie 2f 2018/2019r. Jolanta Pająk Wymagania edukacyjne matematyka w zakresie rozszerzonym w klasie 2f 2018/2019r. Ocena dopuszczająca: Temat lekcji Stopień i współczynniki wielomianu Dodawanie i odejmowanie wielomianów Mnożenie

Bardziej szczegółowo

Spis treści. Księgarnia PWN: Andrzej Ganczar - Analiza zespolona w zadaniach. Wstęp... Oznaczenia... Zadania. 1. Liczby zespolone...

Spis treści. Księgarnia PWN: Andrzej Ganczar - Analiza zespolona w zadaniach. Wstęp... Oznaczenia... Zadania. 1. Liczby zespolone... Księgarnia PWN: Andrzej Ganczar - Analiza zespolona w zadaniach Wstęp... Oznaczenia... XI XIII Zadania 1. Liczby zespolone... 3 1.1. Własności liczb zespolonych... 3 1.1.A. Zadania łatwe... 4 1.1.B. Zadania

Bardziej szczegółowo