1 Równania różniczkowe drugiego rzędu

Wielkość: px
Rozpocząć pokaz od strony:

Download "1 Równania różniczkowe drugiego rzędu"

Transkrypt

1 Równania różniczkowe drugiego rzędu Najpierw zajmiemy się równaniami różniczkowymi rzędu drugiego, w których y nie występuje w sposób jawny, tzn. F (x, y, y ) = 0 (.) Równanie takie rozwiązujemy poprzez podstawienie y = p(x) (.) więc y = p (.3) stąd otrzymujemy równanie różniczkowe rzędu pierwszego Zadanie. Rozwiązać równanie różniczkowe drugie rzędu F (x, p, p ) = 0 (.4) y = y (.5) Robimy podstawienie y = p, co nam daje y = p, więc równanie przybiera formę rozdzielając zmienne i całkując p = p (.6) dp p = całkę po lewej stronie rozwiązujemy poprzez ułamki proste dx (.7) p = A p + B + p (.8) A B = 0 (.9) A + B = (.0) więc A = B = /, całka dp p = ( dp p + dp + p ) = p ln + p + C (.) więc p ln + p = x + C (.)

2 wyliczając p mamy wiedząc, że p + p = C e x p = C e x + pc e x p = C e x + C e x (.3) p = dy dx = C e x + C e x (.4) rozdzielamy zmienne i otrzymujemy dwie całki dx + C e x C e x dx + C e x (.5) druga z nich rozwiązywana jest przez podstawienie + C e x = t, więc C e x dx = dt natomiast pierwszą musimy trochę przekształcić dt t = ln + C e x + C (.6) + C e x = e x (e x C ) = e x (e x C (.7) teraz wykonujemy podstawienie t = e x C co nas sprowadza do całki postaci naszym rezultatem jest dx + C e = x Zadanie. Rozwiąż równanie różniczkowe dt t = ln e x + C + C 3 (.8) y = ln e x + C ln + C e x + C (.9) y = + x (.0) y = y + e x (.) y = x + sin x (.) xy + y = x + (.3) Pierwsze zadanie nie posiada w jawny sposób y i y, ale tak czy inaczej zamieniamy to równanie z drugiego rzędu na równanie pierwszego rzędu. y = p, więc y = p, stąd p = + x (.4)

3 rozdzielając zmienne otrzymujemy równanie całkowe pdp = dx + x (.5) p = arctan x + C, pamiętając, że p = y, to ydy = arctan xdx + C dx (.6) całkę z arctan x liśmy przez części, co nam dawało rozwiązaniem jest Zadanie (.) po podstawieniu p = y przechodzi w arctan xdx = x arctan x ln + x + C (.7) y = x(arctan x + C ) ln + x + C (.8) y = y + e x (.9) p = p + e x (.30) jest to równanie niejednorodne. Najpierw rozwiązujemy zagadnienie jednorodne postaci Równanie to sprowadza się do całki postaci teraz uzmienniamy stałą, dp p = i wstawiamy do równania (.30), p p = 0 p = p (.3) dx ln p = x + C p = C e x (.3) p = u(x)e x (.33) du dx ex = e x (.34) skracając przez e x mamy równanie całkowe du = dx u = x + C (.35) p = xe x + C e x (.36) 3

4 wiedząc, że p = y to dy dx = xex + C e x dy = xe x dx + C e x dx (.37) pierwszą całkę po lewej stronie rozwiązujemy przez części (kilkukrotnie mieliśmy z nią kontakt, więc nie będziemy w tym miejscu jej po raz kolejny rozwiązywać) Zadanie y = xe x e x + C e x + C (.38) y = x + sin x (.39) tutaj również nie posiadamy w jawny sposób y i y, nie mniej jednak y = p, p = x + sin x dp = xdx + sin xdx p = x cos x + C (.40) p = y = x cos x + C dy = x dx cos xdx + C dx (.4) więc rozwiązaniem równania jest Kolejny przykład przekształca się do równania y = 6 x3 sin x + C x + C (.4) xy + y = x + (.43) xp + p = x + (.44) jest to znowu równanie niejednorodne, najpierw radzimy sobie z zagadnieniem jednorodnym xp + p = 0 dp dx = p dp dx x p = x ln p = ln x + C (.45) uzmieniając stałą p = u(x) (.46) x i wstawiając do równania niejednorodnego otrzymujemy u = x + du = x dx + dx u = 3 x3 + x + C (.47) stąd wyliczamy y dy = p = 3 x + + C x (.48) pdx = 9 x3 + x + C ln x + C (.49) 4

5 Równania różniczkowe o współczynnikach stałych Równanie różniczkowe o współczynnikach stałych ma postać. Równania jednorodne gdy f(x) = 0, a d y dx + bdy + cy = f(x) (.) dx a d y dx + bdy + cy = 0 (.) dx zakładamy rozwiązanie postaci y = e rx, więc wstawiając do równania ogólnego mamy y = e rx (.3) y = re rx (.4) y = r e rx (.5) ar e rx + bre rx + ce rx = 0 (.6) dzieląc przez e rx dochodzimy do równania charakterystycznego postaci ar + br + c = 0 (.7) Liczymy teraz deltę i gdy > 0, równanie ma dwa pierwiastki, to rozwiązaniem naszego równania różniczkowego jest funkcja y = C e r x + C e r x (.8) gdzie r i r to pierwiastki równania (.7). Gdy = 0, r = r to równanie ma rozwiązanie postaci (C x + C )e r x (.9) Jeśli natomiast < 0, pierwiastki są zespolone r = α iβ (.0) r = α + iβ (.) gdzie to rozwiązanie jest postaci α = b a, β = a (.) y = e αx (C cos βx + C sin βx) (.3) 5

6 Zadanie 3. Rozwiąż równanie różniczkowe y y = 0 (.4) Czyli równanie to sprowadza się do rozważenia równania charakterystycznego postaci x x = 0 x(x ) = 0 x = 0 x = (.5) ponieważ są dwa pierwiastki, więc rozwiązanie będzie postaci y = C e 0x + C e x = C + C e x (.6) sprawdźmy, czy nasze rozwiązanie spełnia wyjściowe równanie różniczkowe y = C () e x, y = C e x (.7) więc 4C e x C e x = 0 (.8) Zadanie 4. Rozwiąż równania różniczkowe y + y + 4 y = 0 (.9) y y y = 0 (.0) y y + y = 0 (.) y + y + 5y = 0 (.) (.3) Pierwsze zadanie sprowadza się do rozważenie równania charakterystycznego postaci x + x + 4 = 0 (x + ) = 0 (.4) są dwa pierwiastki równe sobie x =, więc rozwiązanie jest postaci (C x + C )e x (.5) Przykład y y y = 0 (.6) ma równanie charakterystyczne dane x x = 0 = + 8 = 9 (.7) 6

7 są dwa pierwiastki więc rozwiązanie jest postaci Zadanie x, = ± 3 jeden pierwiastek, więc rozwiązanie postaci Następny przykład to równanie charakterystyczne postaci = { (.8) y = C e x + C e x (.9) y y + y = 0 (x ) x = (.30) (C x + C )e x (.3) y + y + 5y = 0 (.3) x + x + 5 = 0 = 4 0 = 6 (.33) pierwiastki są zespolone. Współczynnik α = b a a rozwiązanie jest postaci =, e x (C cos x + C sin x) (.34). Równania niejedonorodne Tym razem f(x) 0, a d y dx + bdy + cy = f(x) (.35) dx Rozwiązaniem tego typu równania jest funkcja postaci y = y (x; C, C ) + y (x) (.36) gdzie y jest rozwiązaniem równania jednorodnego, a y jakimś szczególnym rozwiązaniem powyższego równania. Najczęściej znajdujemy y metodą przewidywania, lub poprzez uzmiennienie stałej. Zadanie 5. Rozwiązać równanie różniczkowe Najpierw rozwiązujemy równanie jednorodne postaci y 7y + y = x (.37) y 7y + y = 0 = = x, = 7 ± 7 = { 4 3 (.38)

8 Czyli rozwiązanie równania jednorodnego jest postaci y = C e 4x + C e 3x (.39) teraz przewidujemy rozwiązanie szczególne jako wielomian stopnia pierwszego, ponieważ funkcja f(x) jest wielomianem stopnia pierwszego, y = ax+b, stąd y = a, y = 0, wstawiając te wielkości do równania (.37) znajdujemy współczynniki a i b, więc a = a =, natomiast drugie równanie to 7a + ax + b = x (.40) 7 + b = 0 b = 7 44 (.4) ostatecznie mamy rozwiązanie postaci y = C e 4x + C e 3x + x (.4) Zadanie 6. Rozwiąż równanie Równanie jednorodne jest postaci y y = sin x (.43) y y = 0 (.44) więc równanie charakterystyczne x = 0 (x )(x + ) = 0 x = x = (.45) to rozwiązanie jest postaci y = C e x + C e x (.46) Równanie niejednorodne staramy się przewidzieć w postaci kombinacji funkcji trygonometrycznych y = a sin x + b cos x (.47) stąd podstawiając do naszego równania niejednorodnego otrzymamy y = a cos x b sin x (.48) y = a sin x b cos x (.49) a sin x = sin x a = (.50) 8

9 rozwiązaniem równania jest funkcja postaci y = C e x + C e x sin x (.5) Rozwiążmy to samo zadanie poprzez uzmiennienie stałej, dla przejrzystości nazwijmy C = A i C = B. Musi być spełniony warunek A ȳ + B ȳ = 0 (.5) A ȳ + B ȳ = fx (.53) a w naszym przypadku ȳ = e x oraz ȳ = e x równania te przybierają postać A e x + B e x = 0 (.54) A ( e x ) + B e x = sin x (.55) dodając stronami mamy B e x = sin x (.56) B = sin xe x dx (.57) Całkę powyższą rozwiązujemy przez części (dwukrotnie) i otrzymamy B = e x (sin x + cos x) + C (.58) ponieważ B = sin xe x to wstawiając to do pierwszego równania będziemy mogli wyliczyć A A e x + sin x = 0 A = sin xe x (.59) w analogiczny sposób rozwiązujemy to równanie (przez części) i otrzymujmy wstawiając do wyjściowego równania A = ex (sin x cos x) + C (.60) y = A(x)e x + B(x)e x = C e x + C e x sin x (.6) co jest zgodne z naszym wynikiem uzyskanym inna metodą. Zadanie 7. Rozwiąż równania y + y y = 4x (.6) y 3y + y = x (.63) y + y = e x (.64) y y + y = ex x 9 (.65)

10 We wszystkich przypadkach najpierw rozpoczynamy od równania jednorodnego, które dla pierwszego przypadku jest postaci y + y y = 0 (.66) równanie charakterystyczne x + x = 0 = + 8 = 9 x, = ± 3 więc rozwiązaniem tego zagadnienia jednorodnego jest funkcja = { (.67) y = C e x + C e x (.68) Rozwiązanie równania niejednorodnego zakładamy, że jest postaci wielomianu stopnia pierwszego, tzn. wstawiając to otrzymujemy związek stąd a = i b = więc rozwiązanie ostateczne jest postaci y = ax + b (.69) y = a (.70) y = 0 (.7) a ax b = 4x (.7) a = 4 (.73) a b = 0 (.74) y = C e x + C e x x (.75) Przykład y 3y + y = x (.76) ma równanie charakterystyczne dla problemu jednorodnego w formie x 3x + = 0 = 9 8 = x, = 3 ± = { (.77) y = C e x + C e x (.78) 0

11 rozwiązanie szczególne postulujemy w postaci wielomianu stopnia drugiego, ponieważ f(x) jest wielomianem stopnia drugiego y = ax + bx + c (.79) y = ax + b (.80) y = a (.8) wstawiając a 6ax 3b + ax + bx + c = x (.8) porównując współczynniki przy tych samych potęgach x otrzymujemy układ równań a =, b = 3 oraz c = 7, rozwiązanie to 4 a = (.83) (a + c) 3b = 0 (.84) 6a + b = 0 (.85) y = C e x + C e x + x + 3 x (.86) Przykład y + y = e x (.87) posiada równanie charakterystyczne x + x = 0 x(x + ) = 0 x = 0 x = (.88) y = C + C e x (.89) Rozwiążmy przez uzmiennianie stałych, y = A(x) + B(x)e x (.90) i musimy mieć spełnione warunki A + B e x = 0 (.9) B e x = e x (.9) z drugiego wyznaczamy B B = e x dx = ex + C (.93) oraz B = e x więc A e x = 0 A = e x + C (.94)

12 Łącząc wszystkie wyniki mamy y = C + C e x + ex (.95) Ostatni przykład y y + y = ex x To równanie charakterystyczne jest postaci (.96) x x + = 0 (x ) = 0 x = (.97) więc rozwiązanie jest postaci uzeminniając stałą, mamy warunki y = (C x + C )e x (.98) drugie równanie się upraszcza do postaci A (x)xe x + B (x)e x = 0 (.99) A (x)(e x + xe x ) + B (x)e x = ex x (.00) A ( + x) + B = x (.0) pierwsze natomiast do odejmując stronami mamy wstawiając ten wynik do drugiego A x + B = 0 (.0) A = x (.03) A = ln x + C (.04) rezultat to x + + B = x B = B = x + C (.05) y = (ln x xe x xe x ) + (C x + C )e x (.06)

5 Równania różniczkowe zwyczajne rzędu drugiego

5 Równania różniczkowe zwyczajne rzędu drugiego 5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne

1 Równania różniczkowe zwyczajne Równania różniczkowe zwyczajne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe Równaniem

Bardziej szczegółowo

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Równania różniczkowe pierwszego rzędu Równaniem różniczkowym zwyczajnym pierwszego rzędu nazywamy równanie postaci (R) y = f(x, y). Najogólniejszą

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej F (x, y(x), y (1) (x), y () (x),..., y (n) (x)) = 0, gdzie y (k) (x) to k ta

Bardziej szczegółowo

5. Równania różniczkowe zwyczajne pierwszego rzędu

5. Równania różniczkowe zwyczajne pierwszego rzędu 5. Równania różniczkowe zwyczajne pierwszego rzędu 5.1. Wstęp. Definicja 5.1. Niech V R 3 będzie obszarem oraz F : V R. Równaniem różniczkowym zwyczajnym rzędu pierwszego nazywamy równanie postaci Równanie

Bardziej szczegółowo

Równania różniczkowe liniowe wyższych rzędów o stałych współcz

Równania różniczkowe liniowe wyższych rzędów o stałych współcz Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

1 Całki funkcji wymiernych

1 Całki funkcji wymiernych Całki funkcji wymiernych Definicja. Funkcją wymierną nazywamy iloraz dwóch wielomianów. Całka funkcji wymiernej jest więc postaci: W (x) W (x) = an x n + a n x n +... + a x + a 0 b m x m + b m x m +...

Bardziej szczegółowo

1 Równanie różniczkowe pierwszego rzędu

1 Równanie różniczkowe pierwszego rzędu 1 Równanie różniczkowe pierwszego rzędu Wiele zagadnień geometrycznych, fizycznych, ekonomicznych i innych prowadzi do zależności, w których pojawiają się pochodne. Przykład 1. Znaleźć krzywą dla której

Bardziej szczegółowo

Analiza matematyczna dla informatyków 3 Zajęcia 14

Analiza matematyczna dla informatyków 3 Zajęcia 14 Analiza matematyczna dla informatyków 3 Zajęcia 14 Metoda rozwiązywania (Jednorodne równanie różniczkowe liniowe rzędu n o stałych współczynnikach). gdzie a 0,..., a n 1 C. Wielomian charakterystyczny:

Bardziej szczegółowo

1. Równanie różniczkowe pierwszego rzędu

1. Równanie różniczkowe pierwszego rzędu 1. Równanie różniczkowe pierwszego rzędu Wiele zagadnień geometrycznych, fizycznych, ekonomicznych i innych prowadzi do zależności, w których pojawiają się pochodne. Przykład. Znaleźć krzywą dla której

Bardziej szczegółowo

Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Licencjackie, WDAM, grupy I i II

Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Licencjackie, WDAM, grupy I i II Rozwiązania zadań z kolokwium w dniu 15.1.010r. Zarządzanie Licencjackie, WDAM, grupy I i II Zadanie 1. Wyznacz dziedzinę naturalną funkcji f x) = arc cos x x + x 5 ) ) log x + 5. Rozwiązanie. Wymagane

Bardziej szczegółowo

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i

Bardziej szczegółowo

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki nieoznaczone

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki nieoznaczone Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Całki nieoznaczone 1. Definicja całki nieoznaczonej Definicja 1. Funkcja F jest funkcją pierwotną funkcji f na przedziale I, jeżeli F (x) =

Bardziej szczegółowo

Równania różniczkowe wyższych rzędów

Równania różniczkowe wyższych rzędów Równania różniczkowe wyższych rzędów Marcin Orchel Spis treści 1 Wstęp 1 1.1 Istnienie rozwiązań............................... 1 1.2 Rozwiązanie ogólne............................... 2 1.3 Obniżanie rzędu

Bardziej szczegółowo

Całki nieoznaczone. 1 Własności. 2 Wzory podstawowe. Adam Gregosiewicz 27 maja a) Jeżeli F (x) = f(x), to f(x)dx = F (x) + C,

Całki nieoznaczone. 1 Własności. 2 Wzory podstawowe. Adam Gregosiewicz 27 maja a) Jeżeli F (x) = f(x), to f(x)dx = F (x) + C, Całki nieoznaczone Adam Gregosiewicz 7 maja 00 Własności a) Jeżeli F () = f(), to f()d = F () + C, dla dowolnej stałej C R. b) Jeżeli a R, to af()d = a f()d. c) Jeżeli f i g są funkcjami całkowalnymi,

Bardziej szczegółowo

Równania różniczkowe liniowe rzędu pierwszego

Równania różniczkowe liniowe rzędu pierwszego Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to

Bardziej szczegółowo

Analiza Matematyczna część 5

Analiza Matematyczna część 5 [wersja z 14 V 6] Analiza Matematyczna część 5 Konspekt wykładu dla studentów fizyki/informatyki Akademia Świętokrzyska 5/6 Wojciech Broniowski 1 Równania różniczkowe Definicje, klasyfikacja Równanie różniczkowe

Bardziej szczegółowo

Równania różniczkowe zwyczajne pierwszego rzędu, cd

Równania różniczkowe zwyczajne pierwszego rzędu, cd Równania różniczkowe zwyczajne pierwszego rzędu, cd Marcin Orchel Spis treści 1 Wstęp 1 1.1 Równania różniczkowe zwyczajne w postaci uwikłanej........... 1 1.1.1 Rozwiązanie w postaci parametrycznej................

Bardziej szczegółowo

Rachunek różniczkowy i całkowy 2016/17

Rachunek różniczkowy i całkowy 2016/17 Rachunek różniczkowy i całkowy 26/7 Zadania domowe w pakietach tygodniowych Tydzień 3-7..26 Zadanie O. Czy dla wszelkich zbiorów A, B i C zachodzą następujące równości: (A B)\C = (A\C) (B\C), A\(B\C) =

Bardziej szczegółowo

Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Inżynierskie, WDAM, grupy I i II

Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Inżynierskie, WDAM, grupy I i II Rozwiązania zadań z kolokwium w dniu 10.1.010r. Zarządzanie Inżynierskie, WDAM, grupy I i II Zadanie 1. Wyznacz dziedzinę naturalną funkcji f (x) = x 4x + 3 x + x + log arc sin 1 x. Rozwiązanie. Wymagane

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE A. RÓWNANIA RZĘDU PIERWSZEGO Uwagi ogólne Równanie różniczkowe zwyczajne rzędu pierwszego zawiera. Poza tym może zawierać oraz zmienną. Czyli ma postać ogólną Na przykład

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y +x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

ROZWIĄZANIA I ODPOWIEDZI

ROZWIĄZANIA I ODPOWIEDZI ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. =1+cos a) = =2cos( sin) = = sin2 = ln += =sin2 = ln 1+cos +. b) sin(+3)= =+3 = 3 =( 3) = sin= =( 6+9) sin= sin 6 sin+9sin. Obliczamy teraz pierwszą całkę: sin= ()=

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 3

RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 Równania różniczkowe liniowe Metoda przewidwań Metoda przewidwań całkowania równania niejednorodnego ' p( x) opiera się na następującm twierdzeniu. Twierdzenie f ( x) Suma

Bardziej szczegółowo

CAŁKI NIEOZNACZONE C R}.

CAŁKI NIEOZNACZONE C R}. CAŁKI NIEOZNACZONE Definicja 1 Funkcja F jest funkcją pierwotną funkcji f na przedziale I, jeżeli F (x) = f(x) dla każdego x I. Np. funkcjami pierwotnymi funkcji f(x) = sin x na R są cos x, cos x+1, cos

Bardziej szczegółowo

Równania różnicowe. Dodatkowo umawiamy się, że powyższy iloczyn po pustym zbiorze indeksów, czyli na przykład 0

Równania różnicowe. Dodatkowo umawiamy się, że powyższy iloczyn po pustym zbiorze indeksów, czyli na przykład 0 Równania różnicowe 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp Zamiast tego pisać będziemy x (n), y (n) itp Ponadto

Bardziej szczegółowo

Rozdział 9. Funkcja pierwotna. 9.1 Funkcja pierwotna

Rozdział 9. Funkcja pierwotna. 9.1 Funkcja pierwotna Rozdział 9 Funkcja pierwotna 9. Funkcja pierwotna Definicja funkcji pierwotnej. Niech f będzie funkcją określoną na przedziale P. Mówimy, że funkcja F : P R jest funkcją pierwotną funkcji f w przedziale

Bardziej szczegółowo

26. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE DRUGIEGO RZĘDU

26. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE DRUGIEGO RZĘDU 6. RÓWNANIA RÓŻNIZKOWE ZWYZAJNE DRUGIEGO RZĘDU 6.. Własności ogólne Równaniem różniczkowym zwyczajnym rzęd drgiego nazywamy równanie, w którym niewiadomą jest fnkcja y jednej zmiennej i w którym występją

Bardziej szczegółowo

Równanie przewodnictwa cieplnego (I)

Równanie przewodnictwa cieplnego (I) Wykład 4 Równanie przewodnictwa cieplnego (I) 4.1 Zagadnienie Cauchy ego dla pręta nieograniczonego Rozkład temperatury w jednowymiarowym nieograniczonym pręcie opisuje funkcja u = u(x, t), spełniająca

Bardziej szczegółowo

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx 5. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU 5.1. Pojęcia wstępne. Klasfikacja równań i rozwiązań Rozróżniam dwa zasadnicze tp równań różniczkowch: równania różniczkowe zwczajne i równania różniczkowe cząstkowe.

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw 1 1. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y 1+x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

Matematyka licea ogólnokształcące, technika

Matematyka licea ogólnokształcące, technika Matematyka licea ogólnokształcące, technika Opracowano m.in. na podstawie podręcznika MATEMATYKA w otaczającym nas świecie zakres podstawowy i rozszerzony Funkcja liniowa Funkcję f: R R określoną wzorem

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych

Rozwiązywanie układów równań liniowych Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy

Bardziej szczegółowo

1 Funkcje elementarne

1 Funkcje elementarne 1 Funkcje elementarne Funkcje elementarne, które będziemy rozważać to: x a, a x, log a (x), sin(x), cos(x), tan(x), cot(x), arcsin(x), arccos(x), arctan(x), arc ctg(x). 1.1 Funkcje x a. a > 0, oraz a N

Bardziej szczegółowo

1. Wielomiany Podstawowe definicje i twierdzenia

1. Wielomiany Podstawowe definicje i twierdzenia 1. Wielomiany Podstawowe definicje i twierdzenia Definicja wielomianu. Wielomianem stopnia n zmiennej rzeczywistej x nazywamy funkcję w określoną wzorem w(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, przy

Bardziej szczegółowo

Całka nieoznaczona wykład 7 ( ) Motywacja

Całka nieoznaczona wykład 7 ( ) Motywacja Całka nieoznaczona wykład 7 (12.11.07) Motywacja Problem 1 Kropla wody o średnicy 0,07 mm porusza się z prędkościa v(t) = g c (1 e ct ), gdzie g oznacza przyśpieszenie ziemskie, a stałac c = 52,6 1 s została

Bardziej szczegółowo

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych wyliczamy według wzoru (x, x 2,..., x n ) f(x, x 2,..., x n )

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

22. CAŁKA KRZYWOLINIOWA SKIEROWANA

22. CAŁKA KRZYWOLINIOWA SKIEROWANA CAŁA RZYWOLINIOWA SIEROWANA Niech łuk o równaniach parametrycznych: x x(t), y y(t), a < t < b, będzie łukiem regularnym skierowanym, tzn łukiem w którym przyjęto punkt A(x(a), y(a)) za początek łuku, zaś

Bardziej szczegółowo

1 Całki nieoznaczone: całkowanie jako operacja (prawie) odwrotna do różniczkowania

1 Całki nieoznaczone: całkowanie jako operacja (prawie) odwrotna do różniczkowania 1 Całki nieoznaczone: całkowanie jako operacja (prawie) odwrotna do różniczkowania 1.1 Podstawowe definicje Def. Funkcję F nazywamy funkcją pierwotną funkcji f, określonej w przedziale otwartym P (skończonym

Bardziej szczegółowo

13 Równanie struny drgającej. Równanie przewodnictwa ciepła.

13 Równanie struny drgającej. Równanie przewodnictwa ciepła. Równanie struny drgającej. Równanie przewodnictwa ciepła 13 1 13 Równanie struny drgającej. Równanie przewodnictwa ciepła. 13.1 Równanie struny drgającej Równanie różniczkowe liniowe drugiego rzędu typu

Bardziej szczegółowo

Liczby zespolone. x + 2 = 0.

Liczby zespolone. x + 2 = 0. Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą

Bardziej szczegółowo

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k. Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1 SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,

Bardziej szczegółowo

1 Funkcja wykładnicza i logarytm

1 Funkcja wykładnicza i logarytm 1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres

Bardziej szczegółowo

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski Uniwersytet Śląski 23 marca 2012 Ciało liczb zespolonych Rozważmy zbiór C = R R, czyli C = {(x, y) : x, y R}. W zbiorze C definiujemy następujące działania: dodawanie: mnożenie: (a, b) + (c, d) = (a +

Bardziej szczegółowo

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS przykładowe zadania na. kolokwium czerwca 6r. Poniżej podany jest przykładowy zestaw zadań. Podczas kolokwium na ich rozwiązanie przeznaczone będzie ok. 85

Bardziej szczegółowo

Rozwiązania wybranych zadań z równań różniczkowych. mgr inż. Piotr Kowalski

Rozwiązania wybranych zadań z równań różniczkowych. mgr inż. Piotr Kowalski Rozwiązania wybranych zadań z równań różniczkowych mgr inż. Piotr Kowalski 9 grudnia 03 Wersje numer data autor opis 0. 3.03.03 Piotr Kowalski Rozwiązanie równania jednorodnego z zajęć (wykryty błąd na

Bardziej szczegółowo

Wstęp do analizy matematycznej

Wstęp do analizy matematycznej Wstęp do analizy matematycznej Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań w

Bardziej szczegółowo

Operatory samosprzężone

Operatory samosprzężone Operatory samosprzężone grudzień 2013 Operatory samosprzężone Operatory hermitowskie (3.29) (g, Lf) = (Lg, f) albo (3.30) g (x){l(x)f(x)}w(x)dx = {L(x)g(x)} f(x)w(x)dx. (Użyliśmy nawiasu klamrowego jako

Bardziej szczegółowo

%*$*+ RÓWNANIA RÓ NICZKOWE ZWYCZAJNE I CZ STKOWE ZADANIA Z MATEMATYKI SU 1578. Janina Niedoba Wies aw Niedoba

%*$*+ RÓWNANIA RÓ NICZKOWE ZWYCZAJNE I CZ STKOWE ZADANIA Z MATEMATYKI SU 1578. Janina Niedoba Wies aw Niedoba SU 578 AKADEMIA GÓRNICZO-HUTNICZA IM.STANIS AWA STASZICA W KRAKOWIE Janina Niedoba Wies aw Niedoba RÓWNANIA RÓ NICZKOWE ZWYCZAJNE I CZ STKOWE ZADANIA Z MATEMATYKI Pod redakcj Bogdana Choczewskiego Wydanie

Bardziej szczegółowo

przy warunkach początkowych: 0 = 0, 0 = 0

przy warunkach początkowych: 0 = 0, 0 = 0 MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych,

Bardziej szczegółowo

Rozwiązania zadań z listy T.Koźniewskiego

Rozwiązania zadań z listy T.Koźniewskiego Rozwiązania zadań z listy T.Koźniewskiego 1. Podstawiamy do równań. Tylko czwarty wektor spełnia wszystkie trzy równania.. U 1 : ( + 0x 9x 4, 7x + 8x 4, x, x 4 ), U : ( x 4, 4 x 4, + x 4, x 4 ), U : (x

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 Obszar określoności równania Jeżeli występująca w równaniu y' f ( x, y) funkcja f jest ciągła, to równanie posiada rozwiązanie. Jeżeli f jest nieokreślona w punkcie (x 0,

Bardziej szczegółowo

Ćwiczenia 4 / 5 rachunek różniczkowy

Ćwiczenia 4 / 5 rachunek różniczkowy Matematyka dla Ciekawych Świata, 2012/2013 13 listopada 2012 Ćwiczenia 4 / 5 rachunek różniczkowy 0. Kangur powraca Przypomnij sobie, że nasz kangur porusza się z prędkością 4 km/h. Zamodeluj ruch kangura

Bardziej szczegółowo

Zadania z analizy i algebry. (wykład prof.prof. J. Wojtkiewicza i K. Napiórkowskiego) ALGEBRA, przestrzenie wektorowe

Zadania z analizy i algebry. (wykład prof.prof. J. Wojtkiewicza i K. Napiórkowskiego) ALGEBRA, przestrzenie wektorowe Zadania z analizy i algebry. (wykład prof.prof. J. Wojtkiewicza i K. Napiórkowskiego) ALGEBRA, przestrzenie wektorowe Zadanie Zbadać czy wektor v mażna przedstawić jako kombinację liniową wektorów e i

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

Równania i nierówności trygonometryczne

Równania i nierówności trygonometryczne Równania i nierówności trygonometryczne Piotr Rzonsowski Zadanie 1. Obliczyć równania: Zadania obowiązkowe a) cos x = 1, b) tg x =, c) cos( x + π ) =, d) sin x = 1. Wskazówka: (a) Oblicz cos y = 1 a następnie

Bardziej szczegółowo

Równania różniczkowe zwyczajne Zadania z odpowiedziami

Równania różniczkowe zwyczajne Zadania z odpowiedziami Równania różniczkowe zwyczajne Zadania z odpowiedziami Maciej Burnecki Spis treści strona główna I Równania pierwszego rzędu 2 1 o rozdzielonych zmiennych 2 2 jednorodne 4 3 liniowe 4 4 Bernoulliego 5

Bardziej szczegółowo

Analiza matematyczna w zadaniach, t. 1, W. Krysicki, L. Włodarski - rozwiązania

Analiza matematyczna w zadaniach, t. 1, W. Krysicki, L. Włodarski - rozwiązania http://www./86.htm Analiza matematyczna w zadaniach, t., W. Krysicki, L. Włodarski - rozwiązania Całki nieoznaczone. Całkowanie przez podstawienie i całkowanie przez części. 5. 5. 5. 5.5 5.6 5.7 5.8 5.9

Bardziej szczegółowo

WIELOMIANY. ZADANIE 1 (5 PKT) Reszta z dzielenia wielomianu x 3 + px 2 x + q przez trójmian (x + 2) 2 wynosi 1 x. Wyznacz pierwiastki tego wielomianu.

WIELOMIANY. ZADANIE 1 (5 PKT) Reszta z dzielenia wielomianu x 3 + px 2 x + q przez trójmian (x + 2) 2 wynosi 1 x. Wyznacz pierwiastki tego wielomianu. IMIE I NAZWISKO WIELOMIANY SUMA PUNKTÓW: 125 ZADANIE 1 (5 PKT) Reszta z dzielenia wielomianu x 3 + px 2 x + q przez trójmian (x + 2) 2 wynosi 1 x. Wyznacz pierwiastki tego wielomianu. ZADANIE 2 (5 PKT)

Bardziej szczegółowo

Wielomiany podstawowe wiadomości

Wielomiany podstawowe wiadomości Rozdział Wielomiany podstawowe wiadomości Funkcję postaci f s = a n s n + a n s n + + a s + a 0, gdzie n N, a i R i = 0,, n, a n 0 nazywamy wielomianem rzeczywistym stopnia n; jeżeli współczynniki a i

Bardziej szczegółowo

Wykład z analizy. Tydzień 10 i 11. Różniczkowanie funkcji wielu zmiennych

Wykład z analizy. Tydzień 10 i 11. Różniczkowanie funkcji wielu zmiennych Wykład z analizy Tydzień 1 i 11. Różniczkowanie funkcji wielu zmiennych 1.1 Niech f(x, y) będzie funkcją dwóch zmiennych, i niech druga współrzędna będzie ustalona y = y. Rozważana funkcja zależy tylko

Bardziej szczegółowo

Wykłady z matematyki Liczby zespolone

Wykłady z matematyki Liczby zespolone Wykłady z matematyki Liczby zespolone Rok akademicki 015/16 UTP Bydgoszcz Liczby zespolone Wstęp Formalnie rzecz biorąc liczby zespolone to punkty na płaszczyźnie z działaniami zdefiniowanymi następująco:

Bardziej szczegółowo

Wstęp do równań różniczkowych, studia I stopnia. 1. Znaleźć (i narysować przykładowe) rozwiązania ogólne równania y = 2x.

Wstęp do równań różniczkowych, studia I stopnia. 1. Znaleźć (i narysować przykładowe) rozwiązania ogólne równania y = 2x. Wstęp do równań różniczkowych, studia I stopnia 1. Znaleźć (i narysować przykładowe) rozwiązania ogólne równania y = 2x. 2. Znaleźć wszystkie (i narysować przykładowe) rozwiązania równania y + 3 3 y 2

Bardziej szczegółowo

Marek Zakrzewski Wydział Matematyki Politechnika Wrocławska. Lekarstwo na kłopoty z Cardanem: Róbta co Vieta.

Marek Zakrzewski Wydział Matematyki Politechnika Wrocławska. Lekarstwo na kłopoty z Cardanem: Róbta co Vieta. Marek Zakrzewski Wydział Matematyki Politechnika Wrocławska Lekarstwo na kłopoty z Cardanem: Róbta co Vieta. Rozwiązywanie równań sześciennych - wzory Cardana Każde równanie sześcienne można sprowadzić

Bardziej szczegółowo

Wielomiany. dr Tadeusz Werbiński. Teoria

Wielomiany. dr Tadeusz Werbiński. Teoria Wielomiany dr Tadeusz Werbiński Teoria Na początku przypomnimy kilka szkolnych definicji i twierdzeń dotyczących wielomianów. Autorzy podręczników szkolnych podają różne definicje wielomianu - dla jednych

Bardziej szczegółowo

1 Wiadomości wstępne z równań różniczkowych Podstawowe definicje Interpretacja geometryczna równania rzędu pierwszego...

1 Wiadomości wstępne z równań różniczkowych Podstawowe definicje Interpretacja geometryczna równania rzędu pierwszego... Skrypt powstał na bazie wykładów z przedmiotu Równania różniczkowe, które prowadzę dla studentów drugiego semestru kierunku Automatyka i Robotyka na Wydziale Elektrotechniki i Automatyki Politechniki Gdańskiej.

Bardziej szczegółowo

Rozdział 2. Liczby zespolone

Rozdział 2. Liczby zespolone Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1, y 1 ) + x, y ) := x 1 + x, y 1 + y ), 1) x 1, y 1 ) x, y ) := x 1 x y 1 y, x 1 y + x y 1 ) ) jest ciałem zob rozdział

Bardziej szczegółowo

Stochastyczne równania różniczkowe, studia II stopnia

Stochastyczne równania różniczkowe, studia II stopnia Stochastyczne równania różniczkowe, studia II stopnia Niech W t (ewentualnie W, W (t)), t oznacza proces Wienera oraz niech W = Niech W = (W, W 2,, W n ) oznacza n-wymiarowy proces Wienera Pokazać, że

Bardziej szczegółowo

5 Reprezentacje połozeniowa i pedowa

5 Reprezentacje połozeniowa i pedowa 5 Reprezentacje połozeniowa i pedowa 5.1 Reprezentacja położeniowa W poprzednim rozdziale znaleźliśmy jawną postać operatora Ĥ w przedstawieniu położeniowym. Co to znaczy? W przedstawieniu położeniwym

Bardziej szczegółowo

Obliczenia Symboliczne

Obliczenia Symboliczne Lekcja Strona z Obliczenia Symboliczne MathCad pozwala na prowadzenie obliczeń zarówno numerycznych, dających w efekcie rozwiązania w postaci liczbowej, jak też obliczeń symbolicznych przeprowadzanych

Bardziej szczegółowo

Analiza kongruencji. Kongruencje Wykład 3. Analiza kongruencji

Analiza kongruencji. Kongruencje Wykład 3. Analiza kongruencji Kongruencje Wykład 3 Kongruencje algebraiczne Kongruencje jak już podkreślaliśmy mają własności analogiczne do równań algebraicznych. Zajmijmy się więc problemem znajdowania pierwiastka równania algebraicznego

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Przykłady i zadania. Andrzej Palczewski

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Przykłady i zadania. Andrzej Palczewski RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Przykłady i zadania Andrzej Palczewski Spis treści Przedmowa 5 1 Podstawowe pojęcia 7 2 Równania skalarne 13 2.1 Równania o zmiennych rozdzielonych................... 13

Bardziej szczegółowo

f x f x(x, y) (1.1) f(x, y, z) = xyz (1.5)

f x f x(x, y) (1.1) f(x, y, z) = xyz (1.5) 1 Pochodne cząstkowo Pochodną cząstkową funkcji dwóch zmiennych z = f(x, y) względem zmiennej x oznaczamy i definiujemy jako granicę f(x + h, y) f(x, y) lim h 0 h natomiast pochodną cząstkową względem

Bardziej szczegółowo

RÓWNAŃ RÓŻNICZKOWYCH LINIOWYCH

RÓWNAŃ RÓŻNICZKOWYCH LINIOWYCH A. J. S t o d ó l k ie w ic z. 0 KILKU KLASACH RÓWNAŃ RÓŻNICZKOWYCH LINIOWYCH R Z Ę D U n-go. KRAKÓW. NAKŁADEM AKADEMII UMIEJĘTNOŚCI. SKŁAD GŁÓW NY W KSIĘGARNI SPÓ ŁK I W YDAW NICZEJ PO LSK IEJ. A. J.

Bardziej szczegółowo

Baza w jądrze i baza obrazu ( )

Baza w jądrze i baza obrazu ( ) Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem

Bardziej szczegółowo

( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x

( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x Arkusz I Zadanie. Wartość bezwzględna Rozwiąż równanie x + 3 x 4 x 7. Naszkicujmy wykresy funkcji f ( x) x + 3 oraz g ( x) x 4 uwzględniając tylko ich miejsca zerowe i monotoniczność w ten sposób znajdziemy

Bardziej szczegółowo

CAŠKA NIEOZNACZONA. Politechnika Lubelska. Z.Šagodowski. 18 lutego 2016

CAŠKA NIEOZNACZONA. Politechnika Lubelska. Z.Šagodowski. 18 lutego 2016 WYKŠAD CAŠKA NIEOZNACZONA Z.Šagodowski Politechnika Lubelska 8 lutego 06 Denicja CAŠKA NIEOZNACZONA Funkcja F jest funkcja pierwotn funkcji f na przedziale A, je»eli Zauwa»my,ze F (x) = f (x), dla ka»dego

Bardziej szczegółowo

Równania różniczkowe zwyczajne zadania z odpowiedziami

Równania różniczkowe zwyczajne zadania z odpowiedziami Równania różniczkowe zwyczajne zadania z odpowiedziami Maciej Burnecki opracowanie Spis treści I Równania pierwszego rzędu 2 o rozdzielonych zmiennych 2 jednorodne 4 liniowe 4 Bernoulliego 5 Równania sprowadzalne

Bardziej szczegółowo

MATEMATYKA 2. OKNO - Ośrodek Kształcenia na Odległość Politechnika Warszawska. Krystyna Lipińska Dominik Jagiełło Rafał Maj

MATEMATYKA 2. OKNO - Ośrodek Kształcenia na Odległość Politechnika Warszawska. Krystyna Lipińska Dominik Jagiełło Rafał Maj MATEMATYKA 2 OKNO - Ośrodek Kształcenia na Odległość Politechnika Warszawska Krystyna Lipińska Dominik Jagiełło Rafał Maj 2010 Spis treści 1 Całka krzywoliniowa nieskierowana 9 1.1 Całka krzywoliniowa

Bardziej szczegółowo

6 Układy równań różniczkowych. Równania wyższych rzędów.

6 Układy równań różniczkowych. Równania wyższych rzędów. Układy równań. Równania wyższych rzędów. 6 1 6 Układy równań różniczkowych. Równania wyższych rzędów. 6.1 Podstawowe pojęcia dla układów równań różniczkowych zwyczajnych Definicja. Układem n równań różniczkowych

Bardziej szczegółowo

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH PROPORCJONALNOŚĆ PROSTA Proporcjonalnością prostą nazywamy zależność między dwoma wielkościami zmiennymi x i y, określoną wzorem: y = a x Gdzie a jest

Bardziej szczegółowo

11 Równania różniczkowe cząstkowe. Równania różniczkowe cząstkowe pierwszego rzędu.

11 Równania różniczkowe cząstkowe. Równania różniczkowe cząstkowe pierwszego rzędu. Równania różniczkowe cząstkowe pierwszego rzędu 11 1 11 Równania różniczkowe cząstkowe. Równania różniczkowe cząstkowe pierwszego rzędu. 11.1 Równania różniczkowe cząstkowe. Definicje i oznaczenia. Równaniem

Bardziej szczegółowo

Matematyka rozszerzona matura 2017

Matematyka rozszerzona matura 2017 Matematyka rozszerzona matura 017 Zadanie 1 Liczba ( 3 + 3) jest równa A. B. 4 C. 3 D. 3 ( 3 + 3) = 3 ( 3)( + 3) + + 3 = A. 3 4 3 + + 3 = 4 1 = 4 = Zadanie. Nieskończony ciąg liczbowy jest określony wzorem

Bardziej szczegółowo

FUNKCJE ZESPOLONE Lista zadań 2005/2006

FUNKCJE ZESPOLONE Lista zadań 2005/2006 FUNKJE ZESPOLONE Lista zadań 25/26 Opracowanie: dr Jolanta Długosz Liczby zespolone. Obliczyć wartości podanych wyrażeń: (2 + ) ( ) 2 4 i (5 + i); b) (3 i)( 4 + 2i); c) 4 + i ; d) ( + i) 4 ; e) ( 2 + 3i)

Bardziej szczegółowo

zestaw DO ĆWICZEŃ z matematyki

zestaw DO ĆWICZEŃ z matematyki zestaw DO ĆWICZEŃ z matematyki poziom podstawowy rozumowanie i argumentacja karty pracy ZESTAW II Zadanie. Wiadomo, że,7 jest przybliżeniem liczby 0,5 z zaokrągleniem do miejsc po przecinku. Wyznacz przybliżenie

Bardziej szczegółowo

Przekształcenia całkowe. Wykład 1

Przekształcenia całkowe. Wykład 1 Przekształcenia całkowe Wykład 1 Przekształcenia całkowe Tematyka wykładów: 1. Liczby zespolone -wprowadzenie, - funkcja zespolona zmiennej rzeczywistej, - funkcja zespolona zmiennej zespolonej. 2. Przekształcenie

Bardziej szczegółowo

x y = 2z, + 2y f(x, y) = ln(x3y ) y x

x y = 2z, + 2y f(x, y) = ln(x3y ) y x . Funkcje wielu zmiennych i funkcje uwikłane Zad.. Obliczyć przybliżoną wartość wyrażenia (, 4) (,), Zad.. Obliczyć przybliżoną wartość wyrażenia, 8, 5, Zad. 3. Wykazać, że każda funkcja z(x, y) = x f

Bardziej szczegółowo

2 Równania różniczkowe zwyczajne o rozdzielonych zmiennych

2 Równania różniczkowe zwyczajne o rozdzielonych zmiennych 2. Równania o rozdzielonych zmiennych 2 1 2 Równania różniczkowe zwyczajne o rozdzielonych zmiennych Równaniem różniczkowym zwyczajnym pierwszego rzędu o rozdzielonych zmiennych nazywamy równanie różniczkowe

Bardziej szczegółowo

Całki niewłaściwe. Całki w granicach nieskończonych

Całki niewłaściwe. Całki w granicach nieskończonych Całki niewłaściwe Całki w granicach nieskończonych Wiemy, co to jest w przypadku skończonego przedziału i funkcji ograniczonej. Okazuje się potrzebne uogólnienie tego pojęcia w różnych kierunkach (przedział

Bardziej szczegółowo

Funkcje hiperboliczne

Funkcje hiperboliczne Funkcje hiperboliczne Mateusz Goślinowski grudnia 06 Geometria hiperboli Zastanówmy się nad następującym faktem. Zauważmy, jak podobne są równania okręgu jednostkowego i hiperboli jednostkowej: x + y x

Bardziej szczegółowo

Matematyka Lista 1 1. Matematyka. Lista Obliczyć lub uprościć zapis (zapisać jako potęgę):

Matematyka Lista 1 1. Matematyka. Lista Obliczyć lub uprościć zapis (zapisać jako potęgę): Matematyka Lista 1 1 Matematyka Lista 1 1. Obliczyć lub uprościć zapis (zapisać jako potęgę): 3 3 3 ( ) 1 4 2 5 8 3 100 3 2 4 1 3 4 2 4 9 1 3 3 9 3. 5 2. Rozwiązać równania i nierówności: 4 2x+1 = 8 5x

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie

Bardziej szczegółowo

Funkcje Analityczne, ćwiczenia i prace domowe

Funkcje Analityczne, ćwiczenia i prace domowe Funkcje Analityczne, ćwiczenia i prace domowe P. Wojtaszczyk 29 maja 22 Ten plik będzie progresywnie modyfikowany. Będzie on zawierał. Zadanie omówione na ćwiczeniach 2. Zadania ćwiczebne do samodzielnego

Bardziej szczegółowo

Jak Arabowie rozwiązywali równania?

Jak Arabowie rozwiązywali równania? Jak Arabowie rozwiązywali równania? Agnieszka Niemczynowicz Katedra Fizyki Relatywistycznej Uniwersytet Warmińsko-Mazurski w Olsztynie Niezwykła Matematyka 2016 Co to jest równanie? Kilka dygresji z logiki.

Bardziej szczegółowo