5 Równania różniczkowe zwyczajne rzędu drugiego

Wielkość: px
Rozpocząć pokaz od strony:

Download "5 Równania różniczkowe zwyczajne rzędu drugiego"

Transkrypt

1 5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y = y(x) i w którym występuje pochodna pierwszego i drugiego rzędu tej funkcji, tzn. y = dy dx, y = d2 y dx Rozwiązanie lub całka równania różniczkowego różniczkowego drugiego rzędu Definicja 5.2. Rozwiązaniem lub całką równania różniczkowego F (x, y, y, y ) = 0 w przedziale (a, b) nazywamy każdą funkcję zmiennej x wyrażoną w postaci jawnej y = y(x) lub w postaci uwikłanej h(x, y) = 0, która ma pochodne do rzędu n włącznie i spełnia równanie F (x, y, y, y ) = 0 dla x (a, b). Definicja 5.3. Rozwiązaniem ogólnym lub całką ogólną równania F (x, y, y, y ) = 0 w obszarze istnienia i jednoznaczności rozwiązań nazywamy rozwiązanie równania F (x, y, y, y ) = 0 zależne od dwóch dowolnych stałych C 1, C 2 wyrażone w postaci jawnej y = y(x, C 1, C 2 ) lub w postaci uwikłanej h(x, y, C 1, C 2 ) = 0, i takie, że podstawiając dowolne wartości za C 1, C 2 otrzymamy wszystkie znajdujące się w tym obszarze krzywe całkowe i tylko te krzywe. Podstawiając za C 1, C 2 konkretne wartości otrzymamy tzw. równania F (x, y, y, y ) = 0. całkę szczególną lub rozwiązanie szczególne 5.2 Zagadnienie Cauchy ego (zagadnienie początkowe) Zagadnienie Cauchy ego dla równania F (x, y, y, y ) = 0 polega na znalezieniu całki szczególnej tego równania, spełniającej warunki początkowe: (W ) y(x 0 ) = y 0, y (x 0 ) = y 1 gdzie wartość początkowa x 0 (a, b), zaś wartości początkowe y 0 i y 1 są dowolnymi z góry wybranymi liczbami. 5.3 Równania różniczkowe rzędu drugiego sprowadzalne do równań różniczkowych rzędu pierwszego Równanie postaci F (x, y, y ) = 0 sprowadzamy do równania różniczkowego rzędu pierwszego przez podstawienie y = u Wówczas y = u i otrzymujemy równanie różniczkowe rzędu pierwszego postaci: F ( x, u, u ) = Opracowała: Małgorzata Wyrwas

2 Równanie postaci F (y, y, y ) = 0 sprowadzamy do równania różniczkowego rzędu pierwszego przez podstawienie Wówczas y = v(y) y = dy dx = dv dx = dv dy dy dx = v y = v v i otrzymujemy równanie różniczkowe rzędu pierwszego postaci: F (y, v, v v) = 0. Przykład 5.4. Rozważmy równanie y ( x ) = 2xy. Stosując podstawienie u = y, otrzymujemy u ( x ) = 2xu du u = 2x x dx du u = 2x x dx ( ) ( ) ln u = ln x ln C 1 u = C 1 x Ponieważ u = y, więc otrzymujemy ( ) y = C 1 x ( ) 1 y = C 1 3 x3 + x + C 2. Rozważmy zagadnienie Cauchy ego y ( x ) = 2xy, y(0) = 1, y (0) = 3, Wówczas C 2 = 1 i C 1 = 3. Zatem rozwiązaniem danego zagadnienia Cauchy ego jest całka y = x 3 + 3x + 1. Przykład 5.5. Rozważmy równanie y y = (y ) 2. Stosując podstawienie y = v(y) y = v v, otrzymujemy yv v = v 2 v = v y dv v = dy y dv v = dy y Ponieważ v = y, więc otrzymujemy ln v = ln y + ln C 1 v = C 1 y. y = C 1 y dy y = C 1 dx ln y = C 1 x + ln C 2 y = C 2 e C 1x. 13 Opracowała: Małgorzata Wyrwas

3 5.4 Równania różniczkowe liniowe rzędu drugiego Definicja 5.6. Równaniem różniczkowym liniowym rzędu drugiego nazywamy równanie postaci: gdzie a 1, a 2 i f są danymi funkcjami ciągłymi na (a, b). y + a 1 (x)y + a 2 (x)y = f(x), (13) Jeśli f 0, to równanie (13) nazywamy jednorodnym i oznaczamy RJ. Jeśli f 0, to to równanie (13) nazywamy niejednorodnym i oznaczamy RN. 5.5 Układ fundamentalny całek (rozwiązań) Definicja 5.7. Rozwiązania y 1, y 2 są liniowo niezależne na przedziale (a, b) dla każdego x (a, b) spełniony jest warunek y 1 (x) y 2 (x) y 1 (x) y 2 (x) 0 (14) Wyznacznik występujący w (14) nazywamy wyznacznikiem Wrońskiego (lub wrońskianem) i ozn. symbolem W [y 1, y 2 ](x). Definicja 5.8. Układem fundamentalnym całek (rozwiązań) nazywamy układ liniowo niezależnych rozwiązań. 5.6 Całka ogólna (rozwiązanie ogólne) liniowego równania niejednorodnego Niech całki y 1, y 2 będą fundamentalnym układem rozwiązań równania RJ y + a 1 (x)y + a 2 (x)y = 0, wówczas całka ogólna równania RJ jest kombinacją liniową tych rozwiązań, tzn. Twierdzenie 5.9. Niech y = C 1 y 1 + C 2 y 2. y 1, y 2,..., y n liniowo niezależne rozwiązania równania RJ na przedziale (a, b) R y s całka szczególna RN. Wtedy całka ogólna równania różniczkowego liniowego niejednorodnego ma postać y = C 1 y 1 + C 2 y 2 + y s, czyli CORN = CORJ + CSRN. 14 Opracowała: Małgorzata Wyrwas

4 5.7 Równania różniczkowe liniowe rzędu drugiego o stałych współczynnikach Definicja Równaniem różniczkowym liniowym rzędu drugiego o stałych współczynnikach nazywamy równanie postaci: y + py + qy = f(x), (15) gdzie p, q R zaś f jest daną funkcją ciągłą na (a, b). Jeśli f 0, to równanie (15) nazywamy jednorodnym i oznaczamy RJ. Jeśli f 0, to to równanie (15) nazywamy niejednorodnym i oznaczamy RN. 5.8 Rozwiązanie równania różniczkowego liniowego II-ego rzędu o stałych współczynnikach Aby wyznaczyć rozwiązanie RN y + py + qy = f(x), szukamy najpierw rozwiązań odpowiadającego mu RJ: RJ y + py + qy = 0 Rozwiązania RJ poszukujemy w postaci wykładniczej: y = e rx Wtedy y = e rx y = re rx y = r 2 e rx i podstawiając funkcję y do RJ otrzymujemy równanie r 2 + pr + q = 0 zwane równaniem charakterystycznym. Wyznaczamy pierwiastki równania charakterystycznego r 2 + pr + q = 0 ( ) Pierwiastkom tym odpowiadają funkcje, które tworzą układ fundamentalny całek (rozwiązań). Pierwiastki ( ) Całki szczególne RJ Całka ogólna RJ > 0 r 1 r 2 y 1 = e r1x, y 2 = e r 2x y = C 1 e r1x + C 2 e r 2x = 0 r 0 y 1 = e r0x, y 2 = xe r 0x y = C 1 e r0x + C 2 xe r 0x < 0 r 1,2 = α ± βi y 1 = e αx sin βx y = C 1 e αx sin βx + C 2 e αx cos βx y 2 = e αx cos βx 15 Opracowała: Małgorzata Wyrwas

5 W celu znalezienia rozwiązania liniowego równania różniczkowego niejednorodnego rzędu drugiego postaci stosujemy na przykład y + py + qy = f(x), p, q R Metodę wpółczynników nieoznaczonych (metoda przewidywania) która polega na odgadnięciu CSRN, gdy dana jest CORJ, i wtedy na podstawie twierdzenia: Metodę stosujemy, gdy CORN = CORJ + CSRN. równanie różniczkowe jest równaniem o stałych współczynnikach (p, q R) wielomian stopnia n f(x) = a sin ωx + b cos ωx lub f(x) jest sumą lub iloczynem funkcji obok. ae λx, Przewidywane postacie całki szczególnej y s (x) równania RN y + py + qy = f(x),, p, q R Niech λ + ωi, λ, ω R, będzie k-krotnym pierwiastkiem równania charakterystycznego r 2 + pr + q = 0. Wówczas Postać f(x) Postać przewidywana y s (x) P n (x) = a n x n a 1 x + a 0 x k (A n x n A 1 x + A 0 ) a e λx Ax k e λx P n (x) e λx x k (A n x n A 0 )e λx a cos ωx + b sin ωx x k (A cos ωx + B sin ωx) P n (x) cos ωx + Q m (x) sin ωx, n m x k W n (x) cos ωx + x k M n (x) sin ωx P n (x)e λx cos ωx + Q m (x)e λx sin ωx, n m x k W n (x)e λx cos ωx + x k M n (x)e λx sin ωx gdzie W n (x) = A n x n A 0 i M n (x) = B n x n B 0 Przykład y 5 y + 6y = x = y s (x) = Ax 2 + Bx + C y 5 y + 6y = x e x = y s (x) = (Ax + B) e x y 5 y +6y = x e 3x = y s (x) = x (Ax + B) e 3x y 4 y + 4y = x e x = y s (x) = (Ax + B) e x y 4 y + 4y = x e 2x y s (x)=x 2 (Ax + B) e 2x y + 9y = sin 3x = y s (x) = Ax sin 3x + Bx cos 3x 16 Opracowała: Małgorzata Wyrwas

6 Innym sposobem wyznaczenia całki równania postaci jest y + py + qy = f(x), p, q R Metoda uzmienniania stałych Jeżeli funkcje y 1 (x), y 2 (x) tworzą układ fundamentalny równania RJ y + py + qy = 0, p, q R, to całka ogólna równania RN y + py + qy = f(x), p, q R, ma postać y(x) = C 1 (x)y 1 (x) + C 2 (x)y 2 (x), gdzie C 1 (x), C 2 (x) jest dowolnym rozwiązaniem układu [ ] y1 (x) y 2 (x) y 1 (x) y 2 (x) Przykład Rozważmy równanie y y = [ ] [ ] C 1 (x) 0 C 2 (x) =. (16) f(x) 8 e 2x + 1. Równanie jednorodne y y = 0 ma następujące równanie charakterystyczne r 2 1 = 0, którego pierwiastkami są r 1 = 1 i r 2 = 1. Zatem CORJ ma postać y = C 1 e x + C 2 e x, CORN znajdziemy metodą uzmienniania stałych, tzn. y = C 1 (x)e x + C 2 (x)e x, W celu wyznaczenia funkcji C 1 (x), C 2 (x) rozwiązujemy układ: e x C 1 (x) + e x C 2 (x) = 0 e x C 1 (x) e x C 2 (x) = 8 e 2x e x C 1 (x) = e 2x + 1 C 2 (x) = 4ex e 2x + 1 Wtedy C 1 (x) = 4e x 4 arc tg e x + C 1 C 2 (x) = 4 arc tg e x + C 2 y(x) = C 1 e x + C 2 e x 4 4e x arc tg e x 4e x arc tg e x 17 Opracowała: Małgorzata Wyrwas

7 6 Układy równań różniczkowych liniowych o stałych współczynnikach Definicja 6.1. Układ równań postaci y 1 = a 11(x)y 1 + a 12 (x)y 2 + h 1 (x) y 2 = a 21(x)y 1 + a 22 (x)y 2 + h 2 (x), (17) nazywamy układem dwóch równań różniczkowych liniowych rzędu pierwszego. Funkcje a ij, gdzie i, j = 1, 2 nazywamy współczynnikami, funkcje h 1 i h 2 wyrazami wolnymi tego układu. Jeśli h 1 0 i h 2 0, to układ (17) nazywamy jednorodnym i oznaczamy UJ. Jeśli h 1 0 i h 2 0, to to układ (17) nazywamy niejednorodnym i oznaczamy UN Jeżeli a ij (x) a ij = const, gdzie i, j = 1, 2, to układ (17) nazywamy układem równań różniczkowych liniowych rzędu pierwszego o stałych współczynnikach. Definicja 6.2. Rozwiązaniem układu równań różniczkowych liniowych rzędu pierwszego na przedziale (a, b) nazywamy funkcje y 1 (x), y 2 (x), które podstawione do układu (17) dają tożsamość dla wszystkich wartości x (a, b). Uwaga 4. W celu rozwiązania układu (17) można zastosować metodę eliminacji, która sprowadza układ (17) do równania różniczkowego liniowego drugiego rzędu z jedną tylko funkcją niewiadomą. Przykład 6.3. Dwa stulitrowe zbiorniki Y 1 i Y 2, z których pierwszy zawiera 10% wodny roztwór soli, a drugi czysta wodę, połączono dwiema rurkami umożliwiającymi przepływ cieczy między nimi. Przy czym pierwszą rurą roztwór przepływa w jedną stronę, a drugą odwrotnie. Przepływy te odbywają się z prędkością 2 litrów na minutę. Określić ilość soli y 1 (t) i y 2 (t) odpowiednio w zbiornikach Y 1 i Y 2. Przyjąć, że proces rozpuszczania soli w zbiornikach jest natychmiastowy. Y 1 Y 2 10% soli y 1 (t) - ilość soli w zbiorniku Y 1 w litrach w chwili t; y 2 (t) - ilość soli w zbiorniku Y 2 w litrach w chwili t. y 1 (t) - szybkość zmian ilość soli w zbiorniku Y 1; y 2 (t) - szybkość zmian ilość soli w zbiorniku Y 2. W chwili t do zbiornika Y 1 wpływa 0,02y 2 (t) l min oraz wypływa 0,02y 1(t) l min soli. Ponadto w chwili t do zbiornika Y 2 wpływa 0,02y 1 (t) l min oraz wypływa 0,02y 2(t) l min soli. Zatem przebieg procesu w danych zbiornikach można opisać: y 1 = 0,02y 1 + 0,02y 2 y 2 = 0,02y 1 0,02y 2 z warunkami początkowymi y 1 (0) = 10 i y 2 (0) = Opracowała: Małgorzata Wyrwas

1 Równania różniczkowe zwyczajne

1 Równania różniczkowe zwyczajne Równania różniczkowe zwyczajne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe Równaniem

Bardziej szczegółowo

Równania różniczkowe liniowe wyższych rzędów o stałych współcz

Równania różniczkowe liniowe wyższych rzędów o stałych współcz Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym

Bardziej szczegółowo

5. Równania różniczkowe zwyczajne pierwszego rzędu

5. Równania różniczkowe zwyczajne pierwszego rzędu 5. Równania różniczkowe zwyczajne pierwszego rzędu 5.1. Wstęp. Definicja 5.1. Niech V R 3 będzie obszarem oraz F : V R. Równaniem różniczkowym zwyczajnym rzędu pierwszego nazywamy równanie postaci Równanie

Bardziej szczegółowo

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Równania różniczkowe pierwszego rzędu Równaniem różniczkowym zwyczajnym pierwszego rzędu nazywamy równanie postaci (R) y = f(x, y). Najogólniejszą

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

1 Równania różniczkowe drugiego rzędu

1 Równania różniczkowe drugiego rzędu Równania różniczkowe drugiego rzędu Najpierw zajmiemy się równaniami różniczkowymi rzędu drugiego, w których y nie występuje w sposób jawny, tzn. F (x, y, y ) = 0 (.) Równanie takie rozwiązujemy poprzez

Bardziej szczegółowo

Równania różniczkowe liniowe rzędu pierwszego

Równania różniczkowe liniowe rzędu pierwszego Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej F (x, y(x), y (1) (x), y () (x),..., y (n) (x)) = 0, gdzie y (k) (x) to k ta

Bardziej szczegółowo

Równania różniczkowe wyższych rzędów

Równania różniczkowe wyższych rzędów Równania różniczkowe wyższych rzędów Marcin Orchel Spis treści 1 Wstęp 1 1.1 Istnienie rozwiązań............................... 1 1.2 Rozwiązanie ogólne............................... 2 1.3 Obniżanie rzędu

Bardziej szczegółowo

Analiza matematyczna dla informatyków 3 Zajęcia 14

Analiza matematyczna dla informatyków 3 Zajęcia 14 Analiza matematyczna dla informatyków 3 Zajęcia 14 Metoda rozwiązywania (Jednorodne równanie różniczkowe liniowe rzędu n o stałych współczynnikach). gdzie a 0,..., a n 1 C. Wielomian charakterystyczny:

Bardziej szczegółowo

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i

Bardziej szczegółowo

1 Równanie różniczkowe pierwszego rzędu

1 Równanie różniczkowe pierwszego rzędu 1 Równanie różniczkowe pierwszego rzędu Wiele zagadnień geometrycznych, fizycznych, ekonomicznych i innych prowadzi do zależności, w których pojawiają się pochodne. Przykład 1. Znaleźć krzywą dla której

Bardziej szczegółowo

Równania różniczkowe zwyczajne Zadania z odpowiedziami

Równania różniczkowe zwyczajne Zadania z odpowiedziami Równania różniczkowe zwyczajne Zadania z odpowiedziami Maciej Burnecki Spis treści strona główna I Równania pierwszego rzędu 2 1 o rozdzielonych zmiennych 2 2 jednorodne 4 3 liniowe 4 4 Bernoulliego 5

Bardziej szczegółowo

Równania różniczkowe zwyczajne zadania z odpowiedziami

Równania różniczkowe zwyczajne zadania z odpowiedziami Równania różniczkowe zwyczajne zadania z odpowiedziami Maciej Burnecki opracowanie Spis treści I Równania pierwszego rzędu 2 o rozdzielonych zmiennych 2 jednorodne 4 liniowe 4 Bernoulliego 5 Równania sprowadzalne

Bardziej szczegółowo

1. Równanie różniczkowe pierwszego rzędu

1. Równanie różniczkowe pierwszego rzędu 1. Równanie różniczkowe pierwszego rzędu Wiele zagadnień geometrycznych, fizycznych, ekonomicznych i innych prowadzi do zależności, w których pojawiają się pochodne. Przykład. Znaleźć krzywą dla której

Bardziej szczegółowo

26. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE DRUGIEGO RZĘDU

26. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE DRUGIEGO RZĘDU 6. RÓWNANIA RÓŻNIZKOWE ZWYZAJNE DRUGIEGO RZĘDU 6.. Własności ogólne Równaniem różniczkowym zwyczajnym rzęd drgiego nazywamy równanie, w którym niewiadomą jest fnkcja y jednej zmiennej i w którym występją

Bardziej szczegółowo

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki nieoznaczone

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki nieoznaczone Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Całki nieoznaczone 1. Definicja całki nieoznaczonej Definicja 1. Funkcja F jest funkcją pierwotną funkcji f na przedziale I, jeżeli F (x) =

Bardziej szczegółowo

ROZWIĄZANIA I ODPOWIEDZI

ROZWIĄZANIA I ODPOWIEDZI ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. =1+cos a) = =2cos( sin) = = sin2 = ln += =sin2 = ln 1+cos +. b) sin(+3)= =+3 = 3 =( 3) = sin= =( 6+9) sin= sin 6 sin+9sin. Obliczamy teraz pierwszą całkę: sin= ()=

Bardziej szczegółowo

Analiza Matematyczna część 5

Analiza Matematyczna część 5 [wersja z 14 V 6] Analiza Matematyczna część 5 Konspekt wykładu dla studentów fizyki/informatyki Akademia Świętokrzyska 5/6 Wojciech Broniowski 1 Równania różniczkowe Definicje, klasyfikacja Równanie różniczkowe

Bardziej szczegółowo

Równanie przewodnictwa cieplnego (I)

Równanie przewodnictwa cieplnego (I) Wykład 4 Równanie przewodnictwa cieplnego (I) 4.1 Zagadnienie Cauchy ego dla pręta nieograniczonego Rozkład temperatury w jednowymiarowym nieograniczonym pręcie opisuje funkcja u = u(x, t), spełniająca

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y +x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

CAŁKI NIEOZNACZONE C R}.

CAŁKI NIEOZNACZONE C R}. CAŁKI NIEOZNACZONE Definicja 1 Funkcja F jest funkcją pierwotną funkcji f na przedziale I, jeżeli F (x) = f(x) dla każdego x I. Np. funkcjami pierwotnymi funkcji f(x) = sin x na R są cos x, cos x+1, cos

Bardziej szczegółowo

Rachunek różniczkowy i całkowy 2016/17

Rachunek różniczkowy i całkowy 2016/17 Rachunek różniczkowy i całkowy 26/7 Zadania domowe w pakietach tygodniowych Tydzień 3-7..26 Zadanie O. Czy dla wszelkich zbiorów A, B i C zachodzą następujące równości: (A B)\C = (A\C) (B\C), A\(B\C) =

Bardziej szczegółowo

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych wyliczamy według wzoru (x, x 2,..., x n ) f(x, x 2,..., x n )

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 Obszar określoności równania Jeżeli występująca w równaniu y' f ( x, y) funkcja f jest ciągła, to równanie posiada rozwiązanie. Jeżeli f jest nieokreślona w punkcie (x 0,

Bardziej szczegółowo

Równania różniczkowe zwyczajne pierwszego rzędu, cd

Równania różniczkowe zwyczajne pierwszego rzędu, cd Równania różniczkowe zwyczajne pierwszego rzędu, cd Marcin Orchel Spis treści 1 Wstęp 1 1.1 Równania różniczkowe zwyczajne w postaci uwikłanej........... 1 1.1.1 Rozwiązanie w postaci parametrycznej................

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 3

RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 Równania różniczkowe liniowe Metoda przewidwań Metoda przewidwań całkowania równania niejednorodnego ' p( x) opiera się na następującm twierdzeniu. Twierdzenie f ( x) Suma

Bardziej szczegółowo

1. Wielomiany Podstawowe definicje i twierdzenia

1. Wielomiany Podstawowe definicje i twierdzenia 1. Wielomiany Podstawowe definicje i twierdzenia Definicja wielomianu. Wielomianem stopnia n zmiennej rzeczywistej x nazywamy funkcję w określoną wzorem w(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, przy

Bardziej szczegółowo

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0.

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0. Matematyka ZLic - 3 Pochodne i różniczki funkcji jednej zmiennej Definicja Pochodną funkcji f w punkcie x, nazwiemy liczbę oznaczaną symbolem f x lub df x dx, równą granicy właściwej f x lim h - o ile

Bardziej szczegółowo

Całka nieoznaczona wykład 7 ( ) Motywacja

Całka nieoznaczona wykład 7 ( ) Motywacja Całka nieoznaczona wykład 7 (12.11.07) Motywacja Problem 1 Kropla wody o średnicy 0,07 mm porusza się z prędkościa v(t) = g c (1 e ct ), gdzie g oznacza przyśpieszenie ziemskie, a stałac c = 52,6 1 s została

Bardziej szczegółowo

Równania różnicowe. Dodatkowo umawiamy się, że powyższy iloczyn po pustym zbiorze indeksów, czyli na przykład 0

Równania różnicowe. Dodatkowo umawiamy się, że powyższy iloczyn po pustym zbiorze indeksów, czyli na przykład 0 Równania różnicowe 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp Zamiast tego pisać będziemy x (n), y (n) itp Ponadto

Bardziej szczegółowo

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych. Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

1 Szeregi potęgowe. 1.1 Promień zbieżności szeregu potęgowego. Wydział Informatyki, KONWERSATORIUM Z MATEMATYKI, 2008/2009.

1 Szeregi potęgowe. 1.1 Promień zbieżności szeregu potęgowego. Wydział Informatyki, KONWERSATORIUM Z MATEMATYKI, 2008/2009. Szeregi potęgowe Definicja.. Szeregiem potęgowym o środku w punkcie R nazywamy szereg postaci: gdzie x R oraz c n R dla n = 0,, 2,... c n (x ) n, Przyjmujemy, że 0 0 def =. Liczby c n nazywamy współczynnikami

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE A. RÓWNANIA RZĘDU PIERWSZEGO Uwagi ogólne Równanie różniczkowe zwyczajne rzędu pierwszego zawiera. Poza tym może zawierać oraz zmienną. Czyli ma postać ogólną Na przykład

Bardziej szczegółowo

PIERWSZEGO. METODA CZYNNIKA CAŁKUJĄCEGO. METODA ROZDZIELONYCH ZMIENNYCH.

PIERWSZEGO. METODA CZYNNIKA CAŁKUJĄCEGO. METODA ROZDZIELONYCH ZMIENNYCH. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE RZĘDU PIERWSZEGO. METODA CZYNNIKA CAŁKUJĄCEGO. METODA ROZDZIELONYCH ZMIENNYCH. Równaniem różniczkowym zwyczajnym nazywamy równanie zawierające pochodne funkcji y(x) względem

Bardziej szczegółowo

Całki nieoznaczone. 1 Własności. 2 Wzory podstawowe. Adam Gregosiewicz 27 maja a) Jeżeli F (x) = f(x), to f(x)dx = F (x) + C,

Całki nieoznaczone. 1 Własności. 2 Wzory podstawowe. Adam Gregosiewicz 27 maja a) Jeżeli F (x) = f(x), to f(x)dx = F (x) + C, Całki nieoznaczone Adam Gregosiewicz 7 maja 00 Własności a) Jeżeli F () = f(), to f()d = F () + C, dla dowolnej stałej C R. b) Jeżeli a R, to af()d = a f()d. c) Jeżeli f i g są funkcjami całkowalnymi,

Bardziej szczegółowo

11 Równania różniczkowe cząstkowe. Równania różniczkowe cząstkowe pierwszego rzędu.

11 Równania różniczkowe cząstkowe. Równania różniczkowe cząstkowe pierwszego rzędu. Równania różniczkowe cząstkowe pierwszego rzędu 11 1 11 Równania różniczkowe cząstkowe. Równania różniczkowe cząstkowe pierwszego rzędu. 11.1 Równania różniczkowe cząstkowe. Definicje i oznaczenia. Równaniem

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw 1 1. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y 1+x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na

Bardziej szczegółowo

1 Elementy logiki i teorii mnogości

1 Elementy logiki i teorii mnogości 1 Elementy logiki i teorii mnogości 11 Elementy logiki Notatki do wykładu Definicja Zdaniem logicznym nazywamy zdanie oznajmujące, któremu przysługuje jedna z dwu logicznych ocen prawda (1) albo fałsz

Bardziej szczegółowo

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx 5. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU 5.1. Pojęcia wstępne. Klasfikacja równań i rozwiązań Rozróżniam dwa zasadnicze tp równań różniczkowch: równania różniczkowe zwczajne i równania różniczkowe cząstkowe.

Bardziej szczegółowo

Funkcje dwóch zmiennych

Funkcje dwóch zmiennych Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Funkcje dwóch zmiennych 1. Funkcje dwóch zmiennych: pojęcia podstawowe Definicja 1. Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach

Bardziej szczegółowo

1 Całki funkcji wymiernych

1 Całki funkcji wymiernych Całki funkcji wymiernych Definicja. Funkcją wymierną nazywamy iloraz dwóch wielomianów. Całka funkcji wymiernej jest więc postaci: W (x) W (x) = an x n + a n x n +... + a x + a 0 b m x m + b m x m +...

Bardziej szczegółowo

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

2 Równania różniczkowe zwyczajne o rozdzielonych zmiennych

2 Równania różniczkowe zwyczajne o rozdzielonych zmiennych 2. Równania o rozdzielonych zmiennych 2 1 2 Równania różniczkowe zwyczajne o rozdzielonych zmiennych Równaniem różniczkowym zwyczajnym pierwszego rzędu o rozdzielonych zmiennych nazywamy równanie różniczkowe

Bardziej szczegółowo

Ćwiczenia 4 / 5 rachunek różniczkowy

Ćwiczenia 4 / 5 rachunek różniczkowy Matematyka dla Ciekawych Świata, 2012/2013 13 listopada 2012 Ćwiczenia 4 / 5 rachunek różniczkowy 0. Kangur powraca Przypomnij sobie, że nasz kangur porusza się z prędkością 4 km/h. Zamodeluj ruch kangura

Bardziej szczegółowo

22 Pochodna funkcji definicja

22 Pochodna funkcji definicja 22 Pochodna funkcji definicja Rozważmy funkcję f : (a, b) R, punkt x 0 b = +. (a, b), dopuszczamy również a = lub Definicja 33 Mówimy, że funkcja f jest różniczkowalna w punkcie x 0, gdy istnieje granica

Bardziej szczegółowo

Literatura podstawowa

Literatura podstawowa 1 Wstęp Literatura podstawowa 1. Grażyna Kwiecińska: Matematyka : kurs akademicki dla studentów nauk stosowanych. Cz. 1, Wybrane zagadnienia algebry liniowej, Wydaw. Uniwersytetu Gdańskiego, Gdańsk, 2003.

Bardziej szczegółowo

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne Szeregi potęgowe i trygonometryczne Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne str. 1/36 Szereg potęgowy Szeregiem potęgowym o

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

przy warunkach początkowych: 0 = 0, 0 = 0

przy warunkach początkowych: 0 = 0, 0 = 0 MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych,

Bardziej szczegółowo

Wstęp do analizy matematycznej

Wstęp do analizy matematycznej Wstęp do analizy matematycznej Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań w

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

13 Równanie struny drgającej. Równanie przewodnictwa ciepła.

13 Równanie struny drgającej. Równanie przewodnictwa ciepła. Równanie struny drgającej. Równanie przewodnictwa ciepła 13 1 13 Równanie struny drgającej. Równanie przewodnictwa ciepła. 13.1 Równanie struny drgającej Równanie różniczkowe liniowe drugiego rzędu typu

Bardziej szczegółowo

1 + iϕ n. = cos ϕ + i sin ϕ. e n z n n n. c M n z n, c n z Mn.

1 + iϕ n. = cos ϕ + i sin ϕ. e n z n n n. c M n z n, c n z Mn. WRAiT 2 #1 1. Dla jakich a C ciągi o wyrazach na n, a n 1 + a n, an /n, są zbieżne? 2. Wykaż zbieżność i znajdź granice ciągów n a k, a n 1 + a 2n ( a < 1), a n 1 + a 2n ( a > 1), 1 n 3. Dla danego ϕ R

Bardziej szczegółowo

Elementy równań różniczkowych cząstkowych

Elementy równań różniczkowych cząstkowych Elementy równań różniczkowych cząstkowych Magdalena Jakubek kwiecień 2016 1 Równania różniczkowe cząstkowe Problem brzegowy i problem początkowy Klasyfikacja równań Rodzaje warunków brzegowych Najważniejsze

Bardziej szczegółowo

Zadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych

Zadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych Zadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych [ ] e Zadanie 1 Pokazać, że X(t) = 2t cos t sin t e 2t jest specjalną macierzą fundamentalną w sin t cos t [ 2 cos chwili τ = 0 układu

Bardziej szczegółowo

Funkcje analityczne. Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017)

Funkcje analityczne. Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017) Funkcje analityczne Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017) Paweł Mleczko Uniwersytet im. Adama Mickiewicza w Poznaniu 1. Sprawy organizacyjne

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

Matematyka licea ogólnokształcące, technika

Matematyka licea ogólnokształcące, technika Matematyka licea ogólnokształcące, technika Opracowano m.in. na podstawie podręcznika MATEMATYKA w otaczającym nas świecie zakres podstawowy i rozszerzony Funkcja liniowa Funkcję f: R R określoną wzorem

Bardziej szczegółowo

ZAKRESY NATERIAŁU Z-1:

ZAKRESY NATERIAŁU Z-1: Załącznik nr 2 do SIWZ Nr postępowania: ZP/47/055/U/13 ZAKRESY NATERIAŁU Z-1: 1) Funkcja rzeczywista jednej zmiennej: ciąg dalszy a) Definicja granicy funkcji, b) Twierdzenie o trzech funkcjach, o granicy

Bardziej szczegółowo

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego. . Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21

Bardziej szczegółowo

KIERUNEK STUDIÓW: ELEKTROTECHNIKA

KIERUNEK STUDIÓW: ELEKTROTECHNIKA 1. PROGRAM NAUCZANIA KIERUNEK STUDIÓW: ELEKTROTECHNIKA PRZEDMIOT: MATEMATYKA (Stacjonarne: 105 h wykład, 120 h ćwiczenia rachunkowe) S t u d i a I s t o p n i a semestr: W Ć L P S I 2 E 2 II 3 E 4 III

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

Kubatury Gaussa (całka podwójna po trójkącie)

Kubatury Gaussa (całka podwójna po trójkącie) Kubatury Gaussa (całka podwójna po trójkącie) Całka podwójna po trójkącie Dana jest funkcja dwóch zmiennych f (x, y) ciągła i ograniczona w obszarze trójkątnym D. Wierzchołki trójkąta wyznaczają punkty

Bardziej szczegółowo

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1 SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,

Bardziej szczegółowo

Rozdział 9. Funkcja pierwotna. 9.1 Funkcja pierwotna

Rozdział 9. Funkcja pierwotna. 9.1 Funkcja pierwotna Rozdział 9 Funkcja pierwotna 9. Funkcja pierwotna Definicja funkcji pierwotnej. Niech f będzie funkcją określoną na przedziale P. Mówimy, że funkcja F : P R jest funkcją pierwotną funkcji f w przedziale

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

1 Wiadomości wstępne z równań różniczkowych Podstawowe definicje Interpretacja geometryczna równania rzędu pierwszego...

1 Wiadomości wstępne z równań różniczkowych Podstawowe definicje Interpretacja geometryczna równania rzędu pierwszego... Skrypt powstał na bazie wykładów z przedmiotu Równania różniczkowe, które prowadzę dla studentów drugiego semestru kierunku Automatyka i Robotyka na Wydziale Elektrotechniki i Automatyki Politechniki Gdańskiej.

Bardziej szczegółowo

Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Inżynierskie, WDAM, grupy I i II

Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Inżynierskie, WDAM, grupy I i II Rozwiązania zadań z kolokwium w dniu 10.1.010r. Zarządzanie Inżynierskie, WDAM, grupy I i II Zadanie 1. Wyznacz dziedzinę naturalną funkcji f (x) = x 4x + 3 x + x + log arc sin 1 x. Rozwiązanie. Wymagane

Bardziej szczegółowo

Pochodne. Zbigniew Koza. Wydział Fizyki i Astronomii

Pochodne. Zbigniew Koza. Wydział Fizyki i Astronomii Pochodne Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2015 MOTYWACJA Rozpatrzmy gładką funkcję np. y x = x 2 w okolicach punktu (1,1) x 0 = 1, y 0 = f x 0 = 1 powiększmy wykres wokół (x 0, f(x 0

Bardziej szczegółowo

Układy równań liniowych i metody ich rozwiązywania

Układy równań liniowych i metody ich rozwiązywania Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +

Bardziej szczegółowo

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

Analiza Matematyczna MAEW101

Analiza Matematyczna MAEW101 Analiza Matematyczna MAEW Wydział Elektroniki Listy zadań nr 8-4 (część II) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 5 M.Gewert, Z Skoczylas,

Bardziej szczegółowo

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji.

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Pochodna funkcji Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne liniowe pierwszego rzędu

1 Równania różniczkowe zwyczajne liniowe pierwszego rzędu Równania różniczkowe zwyczajne liniowe I-go rzędu 1 1 1 Równania różniczkowe zwyczajne liniowe pierwszego rzędu Równaniem różniczkowym zwyczajnym liniowym pierwszego rzędu nazywamy równanie postaci (RL1)

Bardziej szczegółowo

ZAGADNIENIA DO EGZAMINU MAGISTERSKIEGO

ZAGADNIENIA DO EGZAMINU MAGISTERSKIEGO ZAGADNIENIA DO EGZAMINU MAGISTERSKIEGO Na egzaminie magisterskim student powinien: 1) omówić wyniki zawarte w pracy magisterskiej posługując się swobodnie pojęciami i twierdzeniami zamieszczonymi w pracy

Bardziej szczegółowo

Rachunek całkowy funkcji wielu zmiennych

Rachunek całkowy funkcji wielu zmiennych Rachunek całkowy funkcji wielu zmiennych Całki potrójne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki olitechnika Białostocka 1

Bardziej szczegółowo

Analiza Matematyczna MAEW101

Analiza Matematyczna MAEW101 Analiza Matematyczna MAEW0 Wydział Elektroniki Listy zadań nr -7 (część I) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 005 M.Gewert, Z Skoczylas,

Bardziej szczegółowo

1 Całki nieoznaczone: całkowanie jako operacja (prawie) odwrotna do różniczkowania

1 Całki nieoznaczone: całkowanie jako operacja (prawie) odwrotna do różniczkowania 1 Całki nieoznaczone: całkowanie jako operacja (prawie) odwrotna do różniczkowania 1.1 Podstawowe definicje Def. Funkcję F nazywamy funkcją pierwotną funkcji f, określonej w przedziale otwartym P (skończonym

Bardziej szczegółowo

Wstęp do równań różniczkowych, studia I stopnia. 1. Znaleźć (i narysować przykładowe) rozwiązania ogólne równania y = 2x.

Wstęp do równań różniczkowych, studia I stopnia. 1. Znaleźć (i narysować przykładowe) rozwiązania ogólne równania y = 2x. Wstęp do równań różniczkowych, studia I stopnia 1. Znaleźć (i narysować przykładowe) rozwiązania ogólne równania y = 2x. 2. Znaleźć wszystkie (i narysować przykładowe) rozwiązania równania y + 3 3 y 2

Bardziej szczegółowo

Rachunek całkowy - całka oznaczona

Rachunek całkowy - całka oznaczona SPIS TREŚCI. 2. CAŁKA OZNACZONA: a. Związek między całką oznaczoną a nieoznaczoną. b. Definicja całki oznaczonej. c. Własności całek oznaczonych. d. Zastosowanie całek oznaczonych. e. Zamiana zmiennej

Bardziej szczegółowo

Matematyka Lista 1 1. Matematyka. Lista Obliczyć lub uprościć zapis (zapisać jako potęgę):

Matematyka Lista 1 1. Matematyka. Lista Obliczyć lub uprościć zapis (zapisać jako potęgę): Matematyka Lista 1 1 Matematyka Lista 1 1. Obliczyć lub uprościć zapis (zapisać jako potęgę): 3 3 3 ( ) 1 4 2 5 8 3 100 3 2 4 1 3 4 2 4 9 1 3 3 9 3. 5 2. Rozwiązać równania i nierówności: 4 2x+1 = 8 5x

Bardziej szczegółowo

Pierścień wielomianów jednej zmiennej

Pierścień wielomianów jednej zmiennej Rozdział 1 Pierścień wielomianów jednej zmiennej 1.1 Definicja pierścienia wielomianów jednej zmiennej Definicja 1.1 Niech P będzie dowolnym pierścieniem. Ciąg nieskończony (a 0, a 1,..., a n,...) elementów

Bardziej szczegółowo

Zestaw nr 6 Pochodna funkcji jednej zmiennej. Styczna do krzywej. Elastyczność funkcji. Regu la de l Hospitala

Zestaw nr 6 Pochodna funkcji jednej zmiennej. Styczna do krzywej. Elastyczność funkcji. Regu la de l Hospitala Zestaw nr 6 Pochodna funkcji jednej zmiennej. Styczna do krzywej. Elastyczność funkcji. Regu la de l Hospitala November 12, 2009 Przyk ladowe zadania z rozwi azaniami Zadanie 1. Oblicz pochodne nastȩpuj

Bardziej szczegółowo

Pochodna funkcji c.d.-wykład 5 ( ) Funkcja logistyczna

Pochodna funkcji c.d.-wykład 5 ( ) Funkcja logistyczna Pochodna funkcji c.d.-wykład 5 (5.11.07) Funkcja logistyczna Rozważmy funkcję logistyczną y = f 0 (t) = 40 1+5e 0,5t Funkcja f może być wykorzystana np. do modelowania wzrostu masy ziaren kukurydzy (zmienna

Bardziej szczegółowo

Baza w jądrze i baza obrazu ( )

Baza w jądrze i baza obrazu ( ) Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem

Bardziej szczegółowo

Matematyka dla DSFRiU zbiór zadań

Matematyka dla DSFRiU zbiór zadań I Matematyka dla DSFRiU zbiór zadań do użytku wewnętrznego Sumowanie skończone W zadaniach -4 obliczyć podaną sumę. dr Leszek Rudak Uniwersytet Warszawski Wydział Zarządzania. 5 i. i= 4 i. i= 5 ( ) i i=

Bardziej szczegółowo

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA 1 3. 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA Analizując płaski stan naprężenia posługujemy się składowymi tensora naprężenia w postaci wektora {,,y } (3.1) Za dodatnie

Bardziej szczegółowo

f(x + x) f(x) . x Pochodne ważniejszych funkcji elementarnych (c) = 0 (x α ) = αx α 1, gdzie α R \ Z (sin x) = cos x (cos x) = sin x

f(x + x) f(x) . x Pochodne ważniejszych funkcji elementarnych (c) = 0 (x α ) = αx α 1, gdzie α R \ Z (sin x) = cos x (cos x) = sin x Iloraz różnicowy Niech x 0 R i niech funkcja y = fx) będzie określona w pewnym otoczeniu punktu x 0. Niech x oznacza przyrost argumentu x może być ujemny!). Wtedy przyrost wartości funkcji wynosi: y =

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem

Bardziej szczegółowo

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH PROPORCJONALNOŚĆ PROSTA Proporcjonalnością prostą nazywamy zależność między dwoma wielkościami zmiennymi x i y, określoną wzorem: y = a x Gdzie a jest

Bardziej szczegółowo

Metoda mnożników Lagrange a i jej zastosowania w ekonomii

Metoda mnożników Lagrange a i jej zastosowania w ekonomii Maciej Grzesiak Metoda mnożników Lagrange a i jej zastosowania w ekonomii 1 Metoda mnożników Lagrange a znajdowania ekstremum warunkowego Pochodna kierunkowa i gradient Dla prostoty ograniczymy się do

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej

Bardziej szczegółowo

Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Licencjackie, WDAM, grupy I i II

Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Licencjackie, WDAM, grupy I i II Rozwiązania zadań z kolokwium w dniu 15.1.010r. Zarządzanie Licencjackie, WDAM, grupy I i II Zadanie 1. Wyznacz dziedzinę naturalną funkcji f x) = arc cos x x + x 5 ) ) log x + 5. Rozwiązanie. Wymagane

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Przykłady i zadania. Andrzej Palczewski

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Przykłady i zadania. Andrzej Palczewski RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Przykłady i zadania Andrzej Palczewski Spis treści Przedmowa 5 1 Podstawowe pojęcia 7 2 Równania skalarne 13 2.1 Równania o zmiennych rozdzielonych................... 13

Bardziej szczegółowo

WIELOMIANY. ZADANIE 1 (5 PKT) Reszta z dzielenia wielomianu x 3 + px 2 x + q przez trójmian (x + 2) 2 wynosi 1 x. Wyznacz pierwiastki tego wielomianu.

WIELOMIANY. ZADANIE 1 (5 PKT) Reszta z dzielenia wielomianu x 3 + px 2 x + q przez trójmian (x + 2) 2 wynosi 1 x. Wyznacz pierwiastki tego wielomianu. IMIE I NAZWISKO WIELOMIANY SUMA PUNKTÓW: 125 ZADANIE 1 (5 PKT) Reszta z dzielenia wielomianu x 3 + px 2 x + q przez trójmian (x + 2) 2 wynosi 1 x. Wyznacz pierwiastki tego wielomianu. ZADANIE 2 (5 PKT)

Bardziej szczegółowo