Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Wielkość: px
Rozpocząć pokaz od strony:

Download "Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka"

Transkrypt

1 Szeregi funkcyjne Szeregi potęgowe i trygonometryczne Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne str. 1/36

2 Szereg potęgowy Szeregiem potęgowym o środku w punkcie x 0 R nazywamy szereg postaci: c n (x x 0 ) n, gdzie x R oraz c n R dla n = 0, 1, 2,... Uwaga. Przyjmujemy, że 0 0 def = 1. Liczby c n nazywamy współczynnikami szeregu potęgowego. Szeregi funkcyjne str. 2/36

3 Promień zbieżności szeregu potęgowego Twierdzenie. Dla każdego szeregu c n (x x 0 ) n dokładnie jedna liczba R 0, + ) o własności: jeżeli x x 0 < R, to szereg bezwzględnie, jeżeli x x 0 > R, to szereg istnieje c n (x x 0 ) n jest zbieżny c n (x x 0 ) n jest rozbieżny. Liczbę R, której istnienie gwarantuje powyższe twierdzenie nazywamy promieniem zbieżności szeregu c n (x x 0 ) n. Szeregi funkcyjne str. 3/36

4 Promień zbieżności szeregu potęgowego Promień zbieżności szeregu potęgowego można wyznaczyć za pomocą wzoru: R = lim cn 1 n n lub R = lim n c n c, n+1 o ile granice w tych wzorach istnieją. n Gdy n lim cn =, to R = 0. n Gdy n lim cn = 0, to R =. Szeregi funkcyjne str. 4/36

5 Przykłady Szereg ( ) 5 n (x + 5) n jest szeregiem 3 potęgowym o środku w punkcie x 0 = 5 i promieniu R = 3 5. Szereg (6 3x) n jest szeregiem potęgowym 3 n + 2 n o środku w punkcie x 0 = 2 i promieniu R = 1. Szereg ( x) n jest szeregiem potęgowym o n! środku w punkcie x 0 = 0 i promieniu R =. Szeregi funkcyjne str. 5/36

6 Twierdzenie Cauchy ego-hadamarda Niech 0 < R < będzie promieniem zbieżności szeregu potęgowego c n (x x 0 ) n. Wtedy szereg ten jest: zbieżny bezwzględnie w każdym punkcie przedziału (x 0 R, x 0 + R), rozbieżny w każdym punkcie zbioru (, x 0 R) (x 0 + R, + ). Uwaga. W punktach x 0 R, x 0 + R szereg potęgowy może być zbieżny lub rozbieżny. Gdy R = 0, to szereg potęgowy jest zbieżny jedynie w punkcie x 0. Gdy R =, to szereg potęgowy jest zbieżny bezwzględnie na całej prostej. Szeregi funkcyjne str. 6/36

7 Przedział zbieżności szeregu potęgowego Zbiór tych x R, dla których szereg potęgowy c n (x x 0 ) n jest zbieżny nazywamy przedziałem zbieżności tego szeregu. Szeregi funkcyjne str. 7/36

8 Przedział zbieżności szeregu potęgowego Uwaga. Z twierdzenia Cauchy ego-hadamarda wynika, że przedział zbieżności szeregu potęgowego może mieć jedną z postaci: (x 0 R, x 0 + R) x 0 R, x 0 + R) x 0 R x 0 x 0 + R x 0 R x 0 x 0 + R (x 0 R, x 0 + R x 0 R, x 0 + R x 0 R x 0 x 0 + R x 0 R x 0 x 0 + R {x 0 } (, + ) R = 0 x 0 R = x 0 Szeregi funkcyjne str. 8/36

9 Przykłady Dla szeregu n=1 1 n (x 2)n mamy przedział zbieżności 1, 3). R = 1 i Dla szeregu n=2 ( 1) n przedział zbieżności 1, 1. Dla szeregu ( 1) n x2n n=2 x n n ln 2 n mamy R = 1 i (2n)! mamy R = i przedział zbieżności (, + ) = R. Szeregi funkcyjne str. 9/36

10 Szereg Taylora i Maclaurina Niech funkcja f ma w punkcie x 0 pochodne dowolnego rzędu. Szereg potęgowy f (n) (x 0 ) n! (x x 0 ) n =f(x 0 )+ f (x 0 ) 1! (x x 0 )+ f (x 0 ) (x x 0 ) ! nazywamy szeregiem Taylora funkcji f o środku w punkcie x 0. Jeżeli x 0 = 0, to szereg f (n) (0) n! szeregiem Maclaurina funkcji f. x n nazywamy Szeregi funkcyjne str. 10/36

11 Uwaga Ze zbieżności szeregu Maclaurina funkcji nie wynika, że jego suma jest równa funkcji f. Na przykład dla funkcji f(x) = e 1 x 2, x 0 0, x = 0 mamy f (n) (0) = 0, dla n = 0, 1, 2, 3,..., i f(x) f (n) (0) x n 0. n! Szeregi funkcyjne str. 11/36

12 Twierdzenie o rozwijaniu funkcji w szereg Taylora Jeżeli funkcja f ma na otoczeniu O punktu x 0 pochodne dowolnego rzędu, dla każdego x O spełniony jest warunek lim n R n (x) = 0, gdzie R n (x) = f (n+1) (ξ) (n + 1)! (x x 0) n+1 oznacza n-tą resztę we wzorze Taylora dla funkcji f przy czym ξ = x 0 + θ(x x 0 ), 0 < θ < 1, to f(x) = f (n) (x 0 ) n! (x x 0 ) n, dla każdego x O. Szeregi funkcyjne str. 12/36

13 Twierdzenie o jednoznaczności rozwinięcia funkcji w szereg potęgowy Jeżeli f(x) = c n (x x 0 ) n, dla każdego x z pewnego otoczenia punktu x 0, to c n = f (n) (x 0 ) n!, dla n = 0, 1, 2,... Szeregi funkcyjne str. 13/36

14 Przykład Dla funkcji f(x) = 1 x mamy f(1) = 1 oraz f (x) = 1 x 2 f (1) = 1 f (x) = 2 x 3 f (1) = 2 Wówczas f (x) = 6 x 4 f (1) = 3! f (4) (x) = 24 x 5 f (4) (1) = 4!. f (n) (x) = ( 1) n n! x f (n) (1) = ( 1) n n! n+1 1 x = ( 1) n (x 1) n = (1 x) n, dla 0 < x < 2. Szeregi funkcyjne str. 14/36

15 Szeregi Maclaurina niektórych funkcji elementarnych 1 1 x = x n = 1 + x + x 2 + x , dla x < 1. e x = x n n! = 1 + x + x2 2 + x3 3! +..., dla x R. sin x= ( 1) n (2n + 1)! x2n+1 =x x3 3! + x5 5! x7 7! +..., x R. cos x = ( 1) n (2n)! x2n = 1 x2 2 + x4 4! x6 6! +..., x R. Szeregi funkcyjne str. 15/36

16 Szeregi Maclaurina niektórych funkcji elementarnych ln(1 + x) = ( 1) n (n + 1) xn+1 = x x2 2 + x3 3 x , 1 < x 1. arc tg x = ( 1) n (2n + 1) x2n+1 = x x3 3 + x5 5 x , 1 < x 1. sinh x= x 2n+1 x3 =x + (2n + 1)! 3! + x5 5! + x7 7! +..., x R. cosh x = x 2n (2n)! = 1 + x2 2 + x4 4! + x6 6! +..., x R. Szeregi funkcyjne str. 16/36

17 Twierdzenie o różniczkowaniu szeregu potęgowego Niech 0 < R będzie promieniem zbieżności szeregu potęgowego c n (x x 0 ) n. Wtedy: c n (x x 0 ) n = n=1 nc n (x x 0 ) n 1 dla każdego x (x 0 R, x 0 + R). Szeregi funkcyjne str. 17/36

18 Twierdzenie o całkowaniu szeregu potęgowego Niech 0 < R będzie promieniem zbieżności szeregu potęgowego c n (x x 0 ) n. Wtedy: x x 0 c n (t x 0 ) n dt = c n n + 1 (x x 0) n+1 dla każdego x (x 0 R, x 0 + R). Szeregi funkcyjne str. 18/36

19 Sumy ważniejszych szeregów potęgowych x n = 1 1 x, dla x < 1. n=1 nx n = x, dla x < 1. (1 x) 2 n=1 n 2 x n 1 = 1 + x, dla x < 1. (1 x) 3 x n n = ln(1 x), dla 1 x < 1. Szeregi funkcyjne str. 19/36

20 Aproksymacja funkcji przez wielomian Wzór f(x) ==f(x 0 )+ f (x 0 ) (x x 0 ) f (n) (x 0 ) (x x 0 ) n + R n (x), 1! n! gdzie R n (x) = f (n+1) (ξ) (n + 1)! (x x 0) n+1 < n-ta reszta we wzorze Taylora dla funkcji f przy czym ξ = x 0 + θ(x x 0 ), 0 < θ < 1, pozwala przedstawić w sposób przybliżony (aproksymować) funkcję f za pomocą wielomianu (zwanego wielomianem Taylora) f(x) f(x 0 )+ f (x 0 ) 1! (x x 0 ) f (n) (x 0 ) n! (x x 0 ) n. Szeregi funkcyjne str. 20/36

21 Przykład Niech f(x) = e x. Wówczas e x 1 + x + x2 2 + x3 3! xn n!. n = 1 y y = e x y = 1 + x Szeregi funkcyjne str. 21/36 x

22 Przykład Niech f(x) = e x. Wówczas e x 1 + x + x2 2 + x3 3! xn n!. n = 2 y y = e x y = 1 + x + x2 2 Szeregi funkcyjne str. 21/36 x

23 Przykład Niech f(x) = e x. Wówczas e x 1 + x + x2 2 + x3 3! xn n!. n = 3 y y = e x y = 1 + x + x2 2 + x3 6 Szeregi funkcyjne str. 21/36 x

24 Szereg trygonometryczny Szeregiem trygonometrycznym na przedziale l, l nazywamy szereg postaci a n=1 ( a n cos nπx l + b n sin nπx ) l, gdzie a 0 R, a n, b n R dla n N, l jest pewną liczbą dodatnią. Szeregi funkcyjne str. 22/36

25 Szereg trygonometryczny Fouriera Niech funkcja f będzie całkowalna na przedziale l, l. Szeregiem trygonometrycznym Fouriera nazywamy szereg trygonometryczny a ( a n cos nπx + b n sin nπx ), gdzie l l n=1 oraz a n = 1 l b n = 1 l l l l l f(x) cos nπx l dx, n = 0, 1, 2,... f(x) sin nπx dx, n = 1, 2,... l Piszemy symbolicznie f(x) a n=1 ( a n cos nπx l + b n sin nπx ) l. Szeregi funkcyjne str. 23/36

26 Funkcję f, ograniczoną w przedziale (a, b), nazywamy przedziałami monotoniczna w tym przedziale, jeżeli przedział (a, b) można podzielić na skończoną liczbę podprzedziałów wewnątrz których funkcja f jest monotoniczna. Szeregi funkcyjne str. 24/36

27 Warunki Dirichleta Mówimy, że funkcja f spełnia na przedziale a, b warunki Dirichleta, jeżeli 1 f jest przedziałami monotoniczna w przedziale (a, b), 2 f jest ciągła w przedziale (a, b), z wyjątkiem co najwyżej skończonej liczby punktów nieciągłości x 0, takich że f(x 0 ) = 1 2 ( lim x x 0 f(x) + lim x x + 0 f(x) 3 w końcach przedziału (a, b) spełnione są równości f(a) = f(b) = 1 2 ( ) ) lim f(x) + lim f(x) x b x a + Powyższe warunki nazywamy odpowiednio: pierwszym, drugim i trzecim warunkiem Dirichleta. Szeregi funkcyjne str. 25/36

28 Twierdzenie Dirichleta Jeżeli funkcja f spełnia w przedziale l, l warunki Dirichleta, to jest rozwijalna w tym przedziale w szereg trygonometryczny Fouriera f(x) = a n=1 ( a n cos nπx l + b n sin nπx ) l, (1) dla każdego x l, l. Jeżeli ponadto funkcja f jest okresowa i ma okres 2l, to równość (1) jest prawdziwa dla każdego x z dziedziny tej funkcji. Szeregi funkcyjne str. 26/36

29 Twierdzenie Jeżeli funkcja f jest parzysta, to oraz a 0 = 2 l l 0 b n = 0, n = 1, 2,... f(x)dx i a n = 2 l Wówczas rozwinięcie (1) dla funkcji parzystej przyjmuje postać l 0 f(x) cos nπx dx, n = 1, 2,.. l f(x) = a n=1 a n cos nπx l. (2) Szeregi funkcyjne str. 27/36

30 Twierdzenie Jeżeli funkcja f jest nieparzysta, to oraz b n = 2 l l 0 a n = 0, n = 0, 1, 2,... f(x) sin nπx dx, n = 1, 2,... l Wówczas rozwinięcie (1) dla funkcji nieparzystej przyjmuje postać f(x) = n=1 b n sin nπx l. (3) Szeregi funkcyjne str. 28/36

31 Zagadnienie rozwijania funkcji w szereg trygonometryczny Fouriera sinusów lub kosinusów Rozważmy funkcję f, która jest określona i spełnia pierwszy i drugi warunek Dirichleta w przedziale otwartym (0, l). Funkcję tę można przedstawić w przedziale (0, l) w postaci szeregu trygonometrycznego Fouriera składającego się z samych sinusów (3), albo samych kosinusów (2). Szeregi funkcyjne str. 29/36

32 Zagadnienie rozwijania funkcji w szereg trygonometryczny Fouriera sinusów lub kosinusów Rozpatrzmy funkcję pomocniczą f, określoną na przedziale l, l nazywaną przedłużeniem funkcji f. Aby otrzymać rozwinięcie funkcji f w szereg sinusów (3) należy przedłużyć funkcję f w sposób nieparzysty. f (x) = 0, dla x = l f( x), dla l < x < 0 0, dla x = 0 f(x), dla 0 < x < l 0, dla x = l Szeregi funkcyjne str. 30/36

33 Zagadnienie rozwijania funkcji w szereg trygonometryczny Fouriera sinusów lub kosinusów Aby otrzymać rozwinięcie funkcji f w szereg kosinusów (3) należy przedłużyć funkcję f w sposób parzysty. f (x) = lim dla x = l x l f( x), dla l < x < 0 0, dla x = 0 f(x), dla 0 < x < l lim x l dla x = l Szeregi funkcyjne str. 31/36

34 Niech f(x) = Przykład 1, dla π < x < 0 0, dla x { π, 0, π}. Wówczas 1, dla 0 < x < π f(x) = n=1 2(1 ( 1) n ) πn sin nx. n = 1 y x Szeregi funkcyjne str. 32/36

35 Niech f(x) = Przykład 1, dla π < x < 0 0, dla x { π, 0, π}. Wówczas 1, dla 0 < x < π f(x) = n=1 2(1 ( 1) n ) πn sin nx. n = 3 y x Szeregi funkcyjne str. 32/36

36 Niech f(x) = Przykład 1, dla π < x < 0 0, dla x { π, 0, π}. Wówczas 1, dla 0 < x < π f(x) = n=1 2(1 ( 1) n ) πn sin nx. n = 5 y x Szeregi funkcyjne str. 32/36

37 Niech f(x) = Przykład 1, dla π < x < 0 0, dla x { π, 0, π}. Wówczas 1, dla 0 < x < π f(x) = n=1 2(1 ( 1) n ) πn sin nx. n = 7 y x Szeregi funkcyjne str. 32/36

38 Przykład Niech f(x) = x, dla x π, π. Wówczas f(x) = π 2 + n=1 2 ( 1)n 1 πn 2 cos nx. y y = x n = 1 Szeregi funkcyjne str. 33/36 x

39 Przykład Niech f(x) = x, dla x π, π. Wówczas f(x) = π 2 + n=1 2 ( 1)n 1 πn 2 cos nx. y y = x n = 3 Szeregi funkcyjne str. 33/36 x

40 Przykład Niech f(x) = x, dla x π, π. Wówczas f(x) = π 2 + n=1 2 ( 1)n 1 πn 2 cos nx. y y = x n = 5 Szeregi funkcyjne str. 33/36 x

41 Przykład Niech f(x) = x, dla x π, π. Wówczas f(x) = π 2 + n=1 2 ( 1)n 1 πn 2 cos nx. y y = x n = 7 Szeregi funkcyjne str. 33/36 x

42 Niech f(x) = Przykład π, dla π < x 0 π, dla x = ±π 2 π x, dla 0 < x < π. Wówczas f(x) = 3 4 π + n=1 ( 1 ( 1) n πn 2 cos nx + ( 1)n n y sin nx ). y = f(x) n = 1 Szeregi funkcyjne str. 34/36 x

43 Niech f(x) = Przykład π, dla π < x 0 π, dla x = ±π 2 π x, dla 0 < x < π. Wówczas f(x) = 3 4 π + n=1 ( 1 ( 1) n πn 2 cos nx + ( 1)n n y sin nx ). y = f(x) n = 2 Szeregi funkcyjne str. 34/36 x

44 Niech f(x) = Przykład π, dla π < x 0 π, dla x = ±π 2 π x, dla 0 < x < π. Wówczas f(x) = 3 4 π + n=1 ( 1 ( 1) n πn 2 cos nx + ( 1)n n y sin nx ). y = f(x) n = 3 Szeregi funkcyjne str. 34/36 x

45 Niech f(x) = Przykład π, dla π < x 0 π, dla x = ±π 2 π x, dla 0 < x < π. Wówczas f(x) = 3 4 π + n=1 ( 1 ( 1) n πn 2 cos nx + ( 1)n n y sin nx ). y = f(x) n = 4 Szeregi funkcyjne str. 34/36 x

46 Niech f(x) = Przykład π, dla π < x 0 π, dla x = ±π 2 π x, dla 0 < x < π. Wówczas f(x) = 3 4 π + n=1 ( 1 ( 1) n πn 2 cos nx + ( 1)n n y sin nx ). y = f(x) n = 5 Szeregi funkcyjne str. 34/36 x

47 Podsumowanie Szeregi potęgowe. Szereg Taylora. Szereg Fouriera. Szeregi funkcyjne str. 35/36

48 Dziękuję za uwagę Szeregi funkcyjne str. 36/36

1 Szeregi potęgowe. 1.1 Promień zbieżności szeregu potęgowego. Wydział Informatyki, KONWERSATORIUM Z MATEMATYKI, 2008/2009.

1 Szeregi potęgowe. 1.1 Promień zbieżności szeregu potęgowego. Wydział Informatyki, KONWERSATORIUM Z MATEMATYKI, 2008/2009. Szeregi potęgowe Definicja.. Szeregiem potęgowym o środku w punkcie R nazywamy szereg postaci: gdzie x R oraz c n R dla n = 0,, 2,... c n (x ) n, Przyjmujemy, że 0 0 def =. Liczby c n nazywamy współczynnikami

Bardziej szczegółowo

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji.

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Pochodna funkcji Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika

Bardziej szczegółowo

Analiza Matematyczna MAEW101

Analiza Matematyczna MAEW101 Analiza Matematyczna MAEW Wydział Elektroniki Listy zadań nr 8-4 (część II) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 5 M.Gewert, Z Skoczylas,

Bardziej szczegółowo

Temat: Ciągi i szeregi funkcyjne

Temat: Ciągi i szeregi funkcyjne Emilia Domińczyk Aleksandra Chrzuszcz Temat: Ciągi i szeregi unkcyjne 1.Co to jest ciąg unkcyjny? Co to jest szereg unkcyjny? Podać przykłady. Deinicja ciągu unkcyjnego Niech X c R, X Ø. Funkcję określoną

Bardziej szczegółowo

Rozdział 5. Szeregi liczbowe. 5.1 Szeregi liczbowe. Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy (a n ) n=1.

Rozdział 5. Szeregi liczbowe. 5.1 Szeregi liczbowe. Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy (a n ) n=1. Rozdział 5 Szeregi liczbowe 5. Szeregi liczbowe Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy ( ). Ciąg (s n ) określony wzorem s n = n a j, n N, nazywamy ciągiem sum częściowych ciągu

Bardziej szczegółowo

SZEREGI LICZBOWE I FUNKCYJNE

SZEREGI LICZBOWE I FUNKCYJNE Mając dowolny ciąg można z niego utworzyć nowy ciąg sum częściowych: Ten nowy rodzaj ciągu nazywamy szeregiem liczbowym, a jeśli to mamy do czynienia z nieskończonym szeregiem liczbowym, który oznaczany

Bardziej szczegółowo

CAŁKI NIEOZNACZONE C R}.

CAŁKI NIEOZNACZONE C R}. CAŁKI NIEOZNACZONE Definicja 1 Funkcja F jest funkcją pierwotną funkcji f na przedziale I, jeżeli F (x) = f(x) dla każdego x I. Np. funkcjami pierwotnymi funkcji f(x) = sin x na R są cos x, cos x+1, cos

Bardziej szczegółowo

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki nieoznaczone

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki nieoznaczone Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Całki nieoznaczone 1. Definicja całki nieoznaczonej Definicja 1. Funkcja F jest funkcją pierwotną funkcji f na przedziale I, jeżeli F (x) =

Bardziej szczegółowo

a 1, a 2, a 3,..., a n,...

a 1, a 2, a 3,..., a n,... III. Ciągi liczbowe. 1. Definicja ciągu liczbowego. Definicja 1.1. Ciągiem liczbowym nazywamy funkcję a : N R odwzorowującą zbiór liczb naturalnych N w zbiór liczb rzeczywistych R i oznaczamy przez {a

Bardziej szczegółowo

n=0 W tym rozdziale, wyposażeni w wiedzę o zbieżności jednostajnej, omówimy ogólne własności funkcji, które można definiować wzorami typu (8.1).

n=0 W tym rozdziale, wyposażeni w wiedzę o zbieżności jednostajnej, omówimy ogólne własności funkcji, które można definiować wzorami typu (8.1). Rozdział 8 Szeregi potęgowe Szeregiem potęgowym o środku w punkcie z 0 C i współczynnikach a n C nazywamy szereg a n z z 0 ) n, 8.1) gdzie z C. Z szeregami tego typu mieliśmy już do czynienia, omawiając

Bardziej szczegółowo

Notatki z Analizy Matematycznej 3. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 3. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 3 Jacek M. Jędrzejewski ROZDZIAŁ 6 Różniczkowanie funkcji rzeczywistej 1. Pocodna funkcji W tym rozdziale rozważać będziemy funkcje rzeczywiste określone w pewnym przedziale

Bardziej szczegółowo

Rozdział 7. Różniczkowalność. 7.1 Pochodna funkcji w punkcie

Rozdział 7. Różniczkowalność. 7.1 Pochodna funkcji w punkcie Rozdział 7 Różniczkowalność Jedną z konsekwencji pojęcia granicy funkcji w punkcie jest pojęcie pochodnej funkcji. W rozdziale tym podamy podstawowe charakteryzacje funkcji związane z pojęciem pochodnej.

Bardziej szczegółowo

II. Funkcje. Pojęcia podstawowe. 1. Podstawowe definicje i fakty.

II. Funkcje. Pojęcia podstawowe. 1. Podstawowe definicje i fakty. II. Funkcje. Pojęcia podstawowe. 1. Podstawowe definicje i fakty. Definicja 1.1. Funkcją określoną na zbiorze X R o wartościach w zbiorze Y R nazywamy przyporządkowanie każdemu elementowi x X dokładnie

Bardziej szczegółowo

granicą ciągu funkcyjnego (f n ) n N W symbolicznym zapicie fakt, że f jest granicą ciągu funkcyjnego (f n ) n N możemy wyrazić następująco: ε>0 N N

granicą ciągu funkcyjnego (f n ) n N W symbolicznym zapicie fakt, że f jest granicą ciągu funkcyjnego (f n ) n N możemy wyrazić następująco: ε>0 N N 14. Określenie ciągu i szeregu funkcyjnego, zbieżność punktowa i jednostajna. Własności zbieżności jednostajnej. Kryterium zbieżności jednostajnej szeregu funkcyjnego. 1 Definicja Ciąg funkcyjny Niech

Bardziej szczegółowo

Szeregi liczbowe. Szeregi potęgowe i trygonometryczne.

Szeregi liczbowe. Szeregi potęgowe i trygonometryczne. Szeregi iczbowe. Szeregi potęgowe i trygoometrycze. wykład z MATEMATYKI Automatyka i Robotyka sem. I, rok ak. 2008/2009 Katedra Matematyki Wydział Iformatyki Poitechika Białostocka Szeregi iczbowe Defiicja..

Bardziej szczegółowo

Szeregi liczbowe. Szeregi liczbowe i ich kryteria zbieżności. Małgorzata Wyrwas. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Szeregi liczbowe. Szeregi liczbowe i ich kryteria zbieżności. Małgorzata Wyrwas. Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi liczbowe Szeregi liczbowe i ich kryteria zbieżności Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi liczbowe str. 1/25 Szereg liczbowy Niech(a n ) będzie

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

1. Definicja granicy właściwej i niewłaściwej funkcji.

1. Definicja granicy właściwej i niewłaściwej funkcji. V. Granica funkcji jednej zmiennej. 1. Definicja granicy właściwej i niewłaściwej funkcji. Definicja 1.1. (sąsiedztwa punktu i sąsiedztwa nieskończoności) Niech x 0 R, r > 0, a, b R. Definiujemy S(x 0,

Bardziej szczegółowo

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na

Bardziej szczegółowo

Rachunek różniczkowy i całkowy 2016/17

Rachunek różniczkowy i całkowy 2016/17 Rachunek różniczkowy i całkowy 26/7 Zadania domowe w pakietach tygodniowych Tydzień 3-7..26 Zadanie O. Czy dla wszelkich zbiorów A, B i C zachodzą następujące równości: (A B)\C = (A\C) (B\C), A\(B\C) =

Bardziej szczegółowo

Lista 1 - Kilka bardzo prostych funkcji. Logarytm i funkcja wykładnicza

Lista 1 - Kilka bardzo prostych funkcji. Logarytm i funkcja wykładnicza Lista - Kilka bardzo prostych funkcji Logarytm i funkcja wykładnicza Naszkicuj wykresy funkcji: y = sgn x oraz y = x sgn x; b) y = x oraz y = x ; c) y = x x Przedstaw w jednym układzie współrzędnych wykresy

Bardziej szczegółowo

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0.

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0. Matematyka ZLic - 3 Pochodne i różniczki funkcji jednej zmiennej Definicja Pochodną funkcji f w punkcie x, nazwiemy liczbę oznaczaną symbolem f x lub df x dx, równą granicy właściwej f x lim h - o ile

Bardziej szczegółowo

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji.

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. Twierdzenie 1.1. (Rolle a) Jeżeli funkcja f jest ciągła w przedziale domkniętym

Bardziej szczegółowo

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Leszek Skrzypczak 1. Niech E = {x [0, 1] : x = k 2 n k = 1, 2,... 2 n, n = 1, 2, 3,...} Wówczas: (a) Dla dowolnych liczb wymiernych p, q [0,

Bardziej szczegółowo

Szeregi liczbowe. Analiza Matematyczna. Alexander Denisjuk

Szeregi liczbowe. Analiza Matematyczna. Alexander Denisjuk Analiza Matematyczna Szeregi liczbowe Alexander Denisjuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych zamiejscowy ośrodek dydaktyczny w Gdańsku ul. Brzegi 55 80-045 Gdańsk

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5)

1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5) . Liczby zespolone Zadanie.. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone () i +i, () 3i, (3) ( + i 3) 6, (4) (5) ( +i ( i) 5, +i 3 i ) 4. Zadanie.. Znaleźć moduł i argument główny

Bardziej szczegółowo

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

jest ciągiem elementów z przestrzeni B(R, R)

jest ciągiem elementów z przestrzeni B(R, R) Wykład 2 1 Ciągi Definicja 1.1 (ciąg) Ciągiem w zbiorze X nazywamy odwzorowanie x: N X. Dla uproszczenia piszemy x n zamiast x(n). Przykład 1. x n = n jest ciągiem elementów z przestrzeni R 2. f n (x)

Bardziej szczegółowo

Analiza Matematyczna I

Analiza Matematyczna I Analiza Matematyczna I Informatyka, WPPT, Politechnika Wrocławska Wprowadzenie (2 godziny ćwiczeń) Pokaż, że dla dowolnych liczb rzeczywistych a i b zachodzą nierówności:. a b = a b, 2. a + b a + b, 3.

Bardziej szczegółowo

Funkcje analityczne. Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017)

Funkcje analityczne. Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017) Funkcje analityczne Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017) Paweł Mleczko Uniwersytet im. Adama Mickiewicza w Poznaniu 1. Sprawy organizacyjne

Bardziej szczegółowo

Ciągi. Granica ciągu i granica funkcji.

Ciągi. Granica ciągu i granica funkcji. Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Ciągi. Granica ciągu i granica funkcji.. Ciągi Ciąg jest to funkcja określona na zbiorze N lub jego podzbiorze. Z tego względu ciągi dziey na

Bardziej szczegółowo

7. Funkcje elementarne i ich własności.

7. Funkcje elementarne i ich własności. Misztal Aleksandra, Herman Monika 7. Funkcje elementarne i ich własności. Definicja funkcji elementarnej Podstawowymi funkcjami elementarnymi nazywamy funkcje: stałe potęgowe, np. wykładnicze logarytmiczne

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 Sylabus do programu kształcenia obowiązującego od roku akademickiego 201/15 (1) Nazwa Rachunek różniczkowy i całkowy I (2) Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot (3)

Bardziej szczegółowo

Analiza matematyczna. 1. Ciągi

Analiza matematyczna. 1. Ciągi Analiza matematyczna 1. Ciągi Definicja 1.1 Funkcję a: N R odwzorowującą zbiór liczb naturalnych w zbiór liczb rzeczywistych nazywamy ciągiem liczbowym. Wartość tego odwzorowania w punkcie n nazywamy n

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw 1 1. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y 1+x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

13 Równanie struny drgającej. Równanie przewodnictwa ciepła.

13 Równanie struny drgającej. Równanie przewodnictwa ciepła. Równanie struny drgającej. Równanie przewodnictwa ciepła 13 1 13 Równanie struny drgającej. Równanie przewodnictwa ciepła. 13.1 Równanie struny drgającej Równanie różniczkowe liniowe drugiego rzędu typu

Bardziej szczegółowo

KARTA PRZEDMIOTU. w języku polskim Analiza Matematyczna 3 w języku angielskim Mathematical Analysis 3 USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW

KARTA PRZEDMIOTU. w języku polskim Analiza Matematyczna 3 w języku angielskim Mathematical Analysis 3 USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW Kod przedmiotu Nazwa przedmiotu KARTA PRZEDMIOTU AM3_M w języku polskim Analiza Matematyczna 3 w języku angielskim Mathematical Analysis 3 USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW Kierunek studiów Forma

Bardziej szczegółowo

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

22 Pochodna funkcji definicja

22 Pochodna funkcji definicja 22 Pochodna funkcji definicja Rozważmy funkcję f : (a, b) R, punkt x 0 b = +. (a, b), dopuszczamy również a = lub Definicja 33 Mówimy, że funkcja f jest różniczkowalna w punkcie x 0, gdy istnieje granica

Bardziej szczegółowo

Rachunek całkowy funkcji wielu zmiennych

Rachunek całkowy funkcji wielu zmiennych Rachunek całkowy funkcji wielu zmiennych Całki potrójne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki olitechnika Białostocka 1

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

f(x + x) f(x) . x Pochodne ważniejszych funkcji elementarnych (c) = 0 (x α ) = αx α 1, gdzie α R \ Z (sin x) = cos x (cos x) = sin x

f(x + x) f(x) . x Pochodne ważniejszych funkcji elementarnych (c) = 0 (x α ) = αx α 1, gdzie α R \ Z (sin x) = cos x (cos x) = sin x Iloraz różnicowy Niech x 0 R i niech funkcja y = fx) będzie określona w pewnym otoczeniu punktu x 0. Niech x oznacza przyrost argumentu x może być ujemny!). Wtedy przyrost wartości funkcji wynosi: y =

Bardziej szczegółowo

1 Funkcje i ich granice

1 Funkcje i ich granice Funkcje i ich granice Było: Zbiór argumentów; zbiór wartości; monotoniczność; funkcja odwrotna; funkcja liniowa; kwadratowa; wielomiany; funkcje wymierne; funkcje trygonometryczne i ich odwrotności; funkcja

Bardziej szczegółowo

1 + iϕ n. = cos ϕ + i sin ϕ. e n z n n n. c M n z n, c n z Mn.

1 + iϕ n. = cos ϕ + i sin ϕ. e n z n n n. c M n z n, c n z Mn. WRAiT 2 #1 1. Dla jakich a C ciągi o wyrazach na n, a n 1 + a n, an /n, są zbieżne? 2. Wykaż zbieżność i znajdź granice ciągów n a k, a n 1 + a 2n ( a < 1), a n 1 + a 2n ( a > 1), 1 n 3. Dla danego ϕ R

Bardziej szczegółowo

1 Funkcja wykładnicza i logarytm

1 Funkcja wykładnicza i logarytm 1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres

Bardziej szczegółowo

1. Pochodna funkcji. Twierdzenie Rolle a i twierdzenie Lagrange a.

1. Pochodna funkcji. Twierdzenie Rolle a i twierdzenie Lagrange a. Ćwiczenia 3032010 - omówienie zadań 1-4 z egzaminu poprawkowego Konwersatorium 3032010 - omówienie zadań 5-8 z egzaminu poprawkowego Ćwiczenia 4032010 (zad 445-473) Kolokwium nr 1, 10032010 (do zad 473)

Bardziej szczegółowo

Zadanie 1.1 Sprawdzić, czy następujące wyrażenia są tautologiami: (1.5 pkt): a)p [( q q) (r p)], (1.5 pkt): b)[(p q)] [ p q].

Zadanie 1.1 Sprawdzić, czy następujące wyrażenia są tautologiami: (1.5 pkt): a)p [( q q) (r p)], (1.5 pkt): b)[(p q)] [ p q]. RACHUNEK RÓŻNICZKOY I CAŁKOY I KOLOKIUM Zadanie 1.1 Sprawdzić, czy następujące wyrażenia są tautologiami: (1.5 pkt): a)p [( q q) (r p)], (1.5 pkt): b)[(p q)] [ p q]. Symbol p oznacza zaprzeczenie zdaniap.

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne

1 Równania różniczkowe zwyczajne Równania różniczkowe zwyczajne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe Równaniem

Bardziej szczegółowo

Analiza matematyczna 1 zadania z odpowiedziami

Analiza matematyczna 1 zadania z odpowiedziami Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Elementy logiki, zbiory, funkcje Funkcje trygonometryczne 3 3 Ciągi 4 4 Granice funkcji, ciągłość 5 5 Rachunek różniczkowy

Bardziej szczegółowo

5 Równania różniczkowe zwyczajne rzędu drugiego

5 Równania różniczkowe zwyczajne rzędu drugiego 5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =

Bardziej szczegółowo

Dystrybucje, wiadomości wstępne (I)

Dystrybucje, wiadomości wstępne (I) Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów

Bardziej szczegółowo

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski

II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski 1 1 Różniczkowanie numeryczne Rozważmy funkcję f(x) określoną na sieci równoodległyc węzłów. Funkcja f(x) może być dana za pomocą wzoru analitycznego

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Funkcje zespolone Complex functions Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji: I stopnia Liczba

Bardziej szczegółowo

Krzysztof Rykaczewski. Szeregi

Krzysztof Rykaczewski. Szeregi Krzysztof Rykaczewski Spis treści 1 Definicja szeregu 2 Zbieżność szeregu 3 Kryteria zbieżności szeregów 4 Iloczyn Cauchy ego szeregów 5 Bibliografia 1 / 13 Definicja szeregu Niech dany będzie ciąg (a

Bardziej szczegółowo

Szeregi Fouriera. Grzegorz Lysik. 1. Motywacja szeregów Fouriera, równanie ciepła.

Szeregi Fouriera. Grzegorz Lysik. 1. Motywacja szeregów Fouriera, równanie ciepła. Szeregi Fouriera Grzegorz Lysik 1. Motywacja szeregów Fouriera, równanie ciepła. Rozważmy problem rozchodzenia się ciepła w pręcie o długości l. Temperatura pręta w punkcie x i w chwili t spełnia równanie

Bardziej szczegółowo

SZEREG TRYGONOMETRYCZNY FOURIERA

SZEREG TRYGONOMETRYCZNY FOURIERA SZEREG TRYGONOMETRYCZNY FOURIERA Rozważmy ciag funkcji: 1, cos πx πx 2πx, sin, cos, sin 2πx,..., cos nπx, sin nπx,...}, gdzie jest pewną iczbą dodatnią. Zauważmy, że na przedziae , da dowonych dwóch

Bardziej szczegółowo

Wprowadzenie do metod numerycznych Wykład 9 Różniczkowanie numeryczne

Wprowadzenie do metod numerycznych Wykład 9 Różniczkowanie numeryczne Wprowadzenie do metod numerycznych Wykład 9 Różniczkowanie numeryczne Polsko-Japońska Wyższa Szkoła Technik Komputerowych Katedra Informatyki Stosowanej Spis treści 1 Na czym polega różniczkowanie numeryczne

Bardziej szczegółowo

MATEMATYKA I SEMESTR WSPIZ (PwZ) 1. Ciągi liczbowe

MATEMATYKA I SEMESTR WSPIZ (PwZ) 1. Ciągi liczbowe MATEMATYKA I SEMESTR WSPIZ (PwZ). Ciągi liczbowe.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony) liczbom naturalnym.

Bardziej szczegółowo

Pochodne wyższych rzędów definicja i przykłady

Pochodne wyższych rzędów definicja i przykłady Pochodne wyższych rzędów definicja i przykłady Pochodne wyższych rzędów Drugą pochodną funkcji nazywamy pochodną pochodnej tej funkcji. Trzecia pochodna jest pochodną drugiej pochodnej; itd. Ogólnie, -ta

Bardziej szczegółowo

6. Granica funkcji. Funkcje ciągłe.

6. Granica funkcji. Funkcje ciągłe. 6. Granica funkcji. Funkcje ciągłe. 6.1. Sformułować definicję w sensie Heinego granicy (właściwej) funkcji w punkcie (właściwym). Podać ilustrację graficzną w różnych sytuacjach. Definicja Heinego granicy

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

EGZAMIN, ANALIZA 1A, , ROZWIĄZANIA

EGZAMIN, ANALIZA 1A, , ROZWIĄZANIA Zadanie 1. Podać kresy następujących zbiorów. Przy każdym z kresów napisać, czy kres należy do zbioru (TAK = należy, NIE = nie należy). infa = 0 NIE A = infb = 1 TAK { 1 i + 2 j +1 + 3 } k +2 : i,j,k N

Bardziej szczegółowo

1 Zbiory i funkcje. Prolog-zależności funkcyjne w naukach przyrodniczych

1 Zbiory i funkcje. Prolog-zależności funkcyjne w naukach przyrodniczych 1 Zbiory i funkcje Prolog-zależności funkcyjne w naukach przyrodniczych Rozwój algebry i analiza matematycznej w 16 i 17 wieku: -opis zjawisk takich jak: ruch jednostajnie przyśpieszony; Droga s, jaką

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

Matematyka ETId I.Gorgol. Funkcja złożona i odwrotna. Funkcje

Matematyka ETId I.Gorgol. Funkcja złożona i odwrotna. Funkcje Funkcja złożona i odwrotna. Funkcje cyklometryczne. Definicja funkcji DEFINICJA Niech dane będa dwa zbiory D i P. Funkcja f : D P nazywamy przyporzadkowanie, które każdemu elementowi ze zbioru D przyporzadkowuje

Bardziej szczegółowo

Przekształcenia całkowe. Wykład 7

Przekształcenia całkowe. Wykład 7 Przekształcenia całkowe Wykład 7 Szeregi Fouriera Definicja: { } Mówimy, że ciąg funkcji X ( n x ) całkowalnych z kwadratem w przedziale jest ciągiem ortogonalnym, jeżeli [ a, b] b a X ( x) X ( x)dx n

Bardziej szczegółowo

Tydzień 2 - Kilka bardzo prostych funkcje. Logarytm i funkcja wykładnicza. ; e)

Tydzień 2 - Kilka bardzo prostych funkcje. Logarytm i funkcja wykładnicza. ; e) Tydzień - Logika. Każde z poniższych zdań wyraź w postaci p = q. Wskaż założenie i tezę twierdzenia. A. W trójkącie prostokątnym suma kwadratów przyprostokątnych jest równa kwadratowi przeciwprostokątnej.

Bardziej szczegółowo

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1 SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,

Bardziej szczegółowo

f(x) f(x 0 ) i f +(x 0 ) := lim = f(x 0 + x) f(x 0 ) wynika ci gªo± funkcji w punkcie x 0. W ka»dym przypadku zachodzi:

f(x) f(x 0 ) i f +(x 0 ) := lim = f(x 0 + x) f(x 0 ) wynika ci gªo± funkcji w punkcie x 0. W ka»dym przypadku zachodzi: Pochodna funkcji Def 1 Pochodn wªa±ciw funkcji f w punkcie x 0 nazywamy granic f (x 0 ) := lim o ile granica ta istnieje i jest wªa±ciwa Funkcj f nazywamy wtedy ró»niczkowaln Przy zaªo»eniu,»e f jest ci

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt

Bardziej szczegółowo

Równanie przewodnictwa cieplnego (I)

Równanie przewodnictwa cieplnego (I) Wykład 4 Równanie przewodnictwa cieplnego (I) 4.1 Zagadnienie Cauchy ego dla pręta nieograniczonego Rozkład temperatury w jednowymiarowym nieograniczonym pręcie opisuje funkcja u = u(x, t), spełniająca

Bardziej szczegółowo

Całki nieoznaczone. 1 Własności. 2 Wzory podstawowe. Adam Gregosiewicz 27 maja a) Jeżeli F (x) = f(x), to f(x)dx = F (x) + C,

Całki nieoznaczone. 1 Własności. 2 Wzory podstawowe. Adam Gregosiewicz 27 maja a) Jeżeli F (x) = f(x), to f(x)dx = F (x) + C, Całki nieoznaczone Adam Gregosiewicz 7 maja 00 Własności a) Jeżeli F () = f(), to f()d = F () + C, dla dowolnej stałej C R. b) Jeżeli a R, to af()d = a f()d. c) Jeżeli f i g są funkcjami całkowalnymi,

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw 1 1. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y 1+x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I

Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I Sylabus modułu: Analiza matematyczna 1A (03-MO1S-12-AMa1A) 1. Informacje ogólne koordynator

Bardziej szczegółowo

MATEMATYKA 1. OKNO - Ośrodek Kształcenia na Odległość Politechnika Warszawska. Krystyna Lipińska Dominik Jagiełło Rafał Maj

MATEMATYKA 1. OKNO - Ośrodek Kształcenia na Odległość Politechnika Warszawska. Krystyna Lipińska Dominik Jagiełło Rafał Maj MATEMATYKA 1 OKNO - Ośrodek Kształcenia na Odległość Politechnika Warszawska Krystyna Lipińska Dominik Jagiełło Rafał Maj 2010 Spis treści 1 Ciągi i szeregi liczbowe 9 1.1 Definicja i podstawowe własności........................

Bardziej szczegółowo

Analiza dla informatyków 2 DANI LI2 Pawe l Domański szkicowe notatki do wyk ladu

Analiza dla informatyków 2 DANI LI2 Pawe l Domański szkicowe notatki do wyk ladu Analiza dla informatyków 2 DANI LI2 Pawe l Domański szkicowe notatki do wyk ladu Wyk lad 5 1. Iloczyn ortogonalny funkcji Wróćmy na chwilȩ do dowodu wzorów Eulera-Fouriera. Kluczow a rolȩ odgrywa l wzór:

Bardziej szczegółowo

Określenie całki oznaczonej na półprostej

Określenie całki oznaczonej na półprostej Określenie całki oznaczonej na półprostej Definicja 1 Niech funkcja f : [a, ) R będzie całkowalna na przedziałach [a, T ] dla każdego T > a. Całkę niewłaściwą funkcji f na półprostej [a, ) określamy wzorem

Bardziej szczegółowo

Rozdział 9. Funkcja pierwotna. 9.1 Funkcja pierwotna

Rozdział 9. Funkcja pierwotna. 9.1 Funkcja pierwotna Rozdział 9 Funkcja pierwotna 9. Funkcja pierwotna Definicja funkcji pierwotnej. Niech f będzie funkcją określoną na przedziale P. Mówimy, że funkcja F : P R jest funkcją pierwotną funkcji f w przedziale

Bardziej szczegółowo

Kurs Start plus poziom zaawansowany, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1.

Kurs Start plus poziom zaawansowany, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1. Projekt Fizyka Plus nr POKL.04.0.0-00-034/ współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Kapitał Ludzki Kurs Start plus poziom zaawansowany,

Bardziej szczegółowo

Analiza Matematyczna MAEW101

Analiza Matematyczna MAEW101 Analiza Matematyczna MAEW0 Wydział Elektroniki Listy zadań nr -7 (część I) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 005 M.Gewert, Z Skoczylas,

Bardziej szczegółowo

Nr postępowania: ZP/366/055/U/13 ZAKRESY NATERIAŁU

Nr postępowania: ZP/366/055/U/13 ZAKRESY NATERIAŁU Załącznik nr 2 do SIWZ Nr postępowania: ZP/366/055/U/13 ZAKRESY NATERIAŁU Zakres materiału Z-1; sem. 1 1. Funkcje jednej zmiennej i ich własności: a) Wartość bezwzględna definicja, rozwiązywanie równań

Bardziej szczegółowo

1 Funkcje elementarne

1 Funkcje elementarne 1 Funkcje elementarne Funkcje elementarne, które będziemy rozważać to: x a, a x, log a (x), sin(x), cos(x), tan(x), cot(x), arcsin(x), arccos(x), arctan(x), arc ctg(x). 1.1 Funkcje x a. a > 0, oraz a N

Bardziej szczegółowo

O funkcjach : mówimy również, że są określone na zbiorze o wartościach w zbiorze.

O funkcjach : mówimy również, że są określone na zbiorze o wartościach w zbiorze. 1. Definicja funkcji f:x->y. Definicja dziedziny, przeciwdziedziny, zbioru wartości. Przykłady. I definicja: Funkcją nazywamy relację, jeśli spełnia następujące warunki: 1) 2) 1,2 [(1 2)=> 1=2] Inaczej

Bardziej szczegółowo

PORADNIKI. Ciekawe Tablice Matematyczne

PORADNIKI. Ciekawe Tablice Matematyczne PORADNIKI Ciekawe Tablice Matematyczne Hierarchia Liczb 0 (zero) 1 (jeden) 2 (dwa) 3 (trzy) 4 (cztery) 5 (pięć) 6 (sześć) 7 (siedem) 8 (osiem) 9 (dziewięć) 10^1 (dziesięć) 10^2 (sto) 10^3 (tysiąc) nazwa

Bardziej szczegółowo

Analiza matematyczna

Analiza matematyczna Analiza matematyczna Stanisław Jaworski Katedra Ekonometrii i Statystyki Zakład Statystyki Funkcje Podstawowe pojęcia Funkcje Definicja (Funkcja) Funkcją określoną na zbiorze X R o wartościach w zbiorze

Bardziej szczegółowo

Matematyka rozszerzona matura 2017

Matematyka rozszerzona matura 2017 Matematyka rozszerzona matura 017 Zadanie 1 Liczba ( 3 + 3) jest równa A. B. 4 C. 3 D. 3 ( 3 + 3) = 3 ( 3)( + 3) + + 3 = A. 3 4 3 + + 3 = 4 1 = 4 = Zadanie. Nieskończony ciąg liczbowy jest określony wzorem

Bardziej szczegółowo

Całka nieoznaczona wykład 7 ( ) Motywacja

Całka nieoznaczona wykład 7 ( ) Motywacja Całka nieoznaczona wykład 7 (12.11.07) Motywacja Problem 1 Kropla wody o średnicy 0,07 mm porusza się z prędkościa v(t) = g c (1 e ct ), gdzie g oznacza przyśpieszenie ziemskie, a stałac c = 52,6 1 s została

Bardziej szczegółowo

20 zorganizowanych w Uczelni (ZZU) Liczba godzin całkowitego 150 nakładu pracy studenta (CNPS)

20 zorganizowanych w Uczelni (ZZU) Liczba godzin całkowitego 150 nakładu pracy studenta (CNPS) Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA.3 A Nazwa w języku angielskim Mathematical Analysis Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1 Sprawdź, czy arkusz egzaminacyjny zawiera 15

Bardziej szczegółowo

W. Krysicki, L. Włodarski Analiza matematyczna w zadaniach, część I i II

W. Krysicki, L. Włodarski Analiza matematyczna w zadaniach, część I i II Zalecane podręczniki W. Krysicki, L. Włodarski naliza matematyczna w zadaniach, część I i II c Ł. Pawelec G. M. Fichtenholz Rachunek różniczkowy i całkowy, tom I i II S. Dorosiewicz, J. Kłopotowski, D.

Bardziej szczegółowo

Liczby pierwsze rozmieszczenie. Liczby pierwsze rozmieszczenie

Liczby pierwsze rozmieszczenie. Liczby pierwsze rozmieszczenie Rozmieszczenie liczb pierwszych Wprowadzamy funkcję π(x) def = p x 1, liczbę liczb pierwszych nie przekraczających x. Łatwo sprawdzić: π(12) = 5 (2, 3, 5, 7, 11); π(17) = 7 (2, 3, 5, 7, 11, 13, 17). Jeszcze

Bardziej szczegółowo

W przestrzeni liniowej funkcji ciągłych na przedziale [a, b] można określić iloczyn skalarny jako następującą całkę:

W przestrzeni liniowej funkcji ciągłych na przedziale [a, b] można określić iloczyn skalarny jako następującą całkę: Układy funkcji ortogonanych Ioczyn skaarny w przestrzeniach funkcji ciągłych W przestrzeni iniowej funkcji ciągłych na przedziae [a, b] można okreśić ioczyn skaarny jako następującą całkę: f, g = b a f(x)g(x)w(x)

Bardziej szczegółowo

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5 Dystrybucje Marcin Orchel Spis treści 1 Wstęp 1 1.1 Dystrybucje................................... 1 1.2 Pochodna dystrybucyjna............................ 3 1.3 Przestrzenie...................................

Bardziej szczegółowo

Zbieżność ciągów i szeregów funkcji

Zbieżność ciągów i szeregów funkcji VI Zbieżność ciągów i szeregów funkcji [około 2 wykładu]. O różnych pojęciach zbieżności ciągu funkcji W II i III rozdziale zajmowaliśmy się zbieżnością ciągów i szeregów liczbowych. Ale czy można mówić

Bardziej szczegółowo

Zbieżność jednostajna

Zbieżność jednostajna Rozdział 7 Zbieżność jednostajna Kilkakrotnie mieliśmy już do czynienia z granicami ciągów, zależnych od dodatkowego parametru, który mógł być liczbą rzeczywistą lub zespoloną. Przyjęliśmy np. definicję

Bardziej szczegółowo

Przekształcenie całkowe Fouriera

Przekształcenie całkowe Fouriera Przekształcenie całkowe Fouriera Postać zespolona szeregu Fouriera Niech ana bęzie funkcja f spełniająca w przeziale [, ] warunki Dirichleta. Wtey szereg Fouriera tej funkcji jest o niej zbieżny, tj. przy

Bardziej szczegółowo