Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Wielkość: px
Rozpocząć pokaz od strony:

Download "Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka"

Transkrypt

1 Szeregi funkcyjne Szeregi potęgowe i trygonometryczne Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne str. 1/36

2 Szereg potęgowy Szeregiem potęgowym o środku w punkcie x 0 R nazywamy szereg postaci: c n (x x 0 ) n, gdzie x R oraz c n R dla n = 0, 1, 2,... Uwaga. Przyjmujemy, że 0 0 def = 1. Liczby c n nazywamy współczynnikami szeregu potęgowego. Szeregi funkcyjne str. 2/36

3 Promień zbieżności szeregu potęgowego Twierdzenie. Dla każdego szeregu c n (x x 0 ) n dokładnie jedna liczba R 0, + ) o własności: jeżeli x x 0 < R, to szereg bezwzględnie, jeżeli x x 0 > R, to szereg istnieje c n (x x 0 ) n jest zbieżny c n (x x 0 ) n jest rozbieżny. Liczbę R, której istnienie gwarantuje powyższe twierdzenie nazywamy promieniem zbieżności szeregu c n (x x 0 ) n. Szeregi funkcyjne str. 3/36

4 Promień zbieżności szeregu potęgowego Promień zbieżności szeregu potęgowego można wyznaczyć za pomocą wzoru: R = lim cn 1 n n lub R = lim n c n c, n+1 o ile granice w tych wzorach istnieją. n Gdy n lim cn =, to R = 0. n Gdy n lim cn = 0, to R =. Szeregi funkcyjne str. 4/36

5 Przykłady Szereg ( ) 5 n (x + 5) n jest szeregiem 3 potęgowym o środku w punkcie x 0 = 5 i promieniu R = 3 5. Szereg (6 3x) n jest szeregiem potęgowym 3 n + 2 n o środku w punkcie x 0 = 2 i promieniu R = 1. Szereg ( x) n jest szeregiem potęgowym o n! środku w punkcie x 0 = 0 i promieniu R =. Szeregi funkcyjne str. 5/36

6 Twierdzenie Cauchy ego-hadamarda Niech 0 < R < będzie promieniem zbieżności szeregu potęgowego c n (x x 0 ) n. Wtedy szereg ten jest: zbieżny bezwzględnie w każdym punkcie przedziału (x 0 R, x 0 + R), rozbieżny w każdym punkcie zbioru (, x 0 R) (x 0 + R, + ). Uwaga. W punktach x 0 R, x 0 + R szereg potęgowy może być zbieżny lub rozbieżny. Gdy R = 0, to szereg potęgowy jest zbieżny jedynie w punkcie x 0. Gdy R =, to szereg potęgowy jest zbieżny bezwzględnie na całej prostej. Szeregi funkcyjne str. 6/36

7 Przedział zbieżności szeregu potęgowego Zbiór tych x R, dla których szereg potęgowy c n (x x 0 ) n jest zbieżny nazywamy przedziałem zbieżności tego szeregu. Szeregi funkcyjne str. 7/36

8 Przedział zbieżności szeregu potęgowego Uwaga. Z twierdzenia Cauchy ego-hadamarda wynika, że przedział zbieżności szeregu potęgowego może mieć jedną z postaci: (x 0 R, x 0 + R) x 0 R, x 0 + R) x 0 R x 0 x 0 + R x 0 R x 0 x 0 + R (x 0 R, x 0 + R x 0 R, x 0 + R x 0 R x 0 x 0 + R x 0 R x 0 x 0 + R {x 0 } (, + ) R = 0 x 0 R = x 0 Szeregi funkcyjne str. 8/36

9 Przykłady Dla szeregu n=1 1 n (x 2)n mamy przedział zbieżności 1, 3). R = 1 i Dla szeregu n=2 ( 1) n przedział zbieżności 1, 1. Dla szeregu ( 1) n x2n n=2 x n n ln 2 n mamy R = 1 i (2n)! mamy R = i przedział zbieżności (, + ) = R. Szeregi funkcyjne str. 9/36

10 Szereg Taylora i Maclaurina Niech funkcja f ma w punkcie x 0 pochodne dowolnego rzędu. Szereg potęgowy f (n) (x 0 ) n! (x x 0 ) n =f(x 0 )+ f (x 0 ) 1! (x x 0 )+ f (x 0 ) (x x 0 ) ! nazywamy szeregiem Taylora funkcji f o środku w punkcie x 0. Jeżeli x 0 = 0, to szereg f (n) (0) n! szeregiem Maclaurina funkcji f. x n nazywamy Szeregi funkcyjne str. 10/36

11 Uwaga Ze zbieżności szeregu Maclaurina funkcji nie wynika, że jego suma jest równa funkcji f. Na przykład dla funkcji f(x) = e 1 x 2, x 0 0, x = 0 mamy f (n) (0) = 0, dla n = 0, 1, 2, 3,..., i f(x) f (n) (0) x n 0. n! Szeregi funkcyjne str. 11/36

12 Twierdzenie o rozwijaniu funkcji w szereg Taylora Jeżeli funkcja f ma na otoczeniu O punktu x 0 pochodne dowolnego rzędu, dla każdego x O spełniony jest warunek lim n R n (x) = 0, gdzie R n (x) = f (n+1) (ξ) (n + 1)! (x x 0) n+1 oznacza n-tą resztę we wzorze Taylora dla funkcji f przy czym ξ = x 0 + θ(x x 0 ), 0 < θ < 1, to f(x) = f (n) (x 0 ) n! (x x 0 ) n, dla każdego x O. Szeregi funkcyjne str. 12/36

13 Twierdzenie o jednoznaczności rozwinięcia funkcji w szereg potęgowy Jeżeli f(x) = c n (x x 0 ) n, dla każdego x z pewnego otoczenia punktu x 0, to c n = f (n) (x 0 ) n!, dla n = 0, 1, 2,... Szeregi funkcyjne str. 13/36

14 Przykład Dla funkcji f(x) = 1 x mamy f(1) = 1 oraz f (x) = 1 x 2 f (1) = 1 f (x) = 2 x 3 f (1) = 2 Wówczas f (x) = 6 x 4 f (1) = 3! f (4) (x) = 24 x 5 f (4) (1) = 4!. f (n) (x) = ( 1) n n! x f (n) (1) = ( 1) n n! n+1 1 x = ( 1) n (x 1) n = (1 x) n, dla 0 < x < 2. Szeregi funkcyjne str. 14/36

15 Szeregi Maclaurina niektórych funkcji elementarnych 1 1 x = x n = 1 + x + x 2 + x , dla x < 1. e x = x n n! = 1 + x + x2 2 + x3 3! +..., dla x R. sin x= ( 1) n (2n + 1)! x2n+1 =x x3 3! + x5 5! x7 7! +..., x R. cos x = ( 1) n (2n)! x2n = 1 x2 2 + x4 4! x6 6! +..., x R. Szeregi funkcyjne str. 15/36

16 Szeregi Maclaurina niektórych funkcji elementarnych ln(1 + x) = ( 1) n (n + 1) xn+1 = x x2 2 + x3 3 x , 1 < x 1. arc tg x = ( 1) n (2n + 1) x2n+1 = x x3 3 + x5 5 x , 1 < x 1. sinh x= x 2n+1 x3 =x + (2n + 1)! 3! + x5 5! + x7 7! +..., x R. cosh x = x 2n (2n)! = 1 + x2 2 + x4 4! + x6 6! +..., x R. Szeregi funkcyjne str. 16/36

17 Twierdzenie o różniczkowaniu szeregu potęgowego Niech 0 < R będzie promieniem zbieżności szeregu potęgowego c n (x x 0 ) n. Wtedy: c n (x x 0 ) n = n=1 nc n (x x 0 ) n 1 dla każdego x (x 0 R, x 0 + R). Szeregi funkcyjne str. 17/36

18 Twierdzenie o całkowaniu szeregu potęgowego Niech 0 < R będzie promieniem zbieżności szeregu potęgowego c n (x x 0 ) n. Wtedy: x x 0 c n (t x 0 ) n dt = c n n + 1 (x x 0) n+1 dla każdego x (x 0 R, x 0 + R). Szeregi funkcyjne str. 18/36

19 Sumy ważniejszych szeregów potęgowych x n = 1 1 x, dla x < 1. n=1 nx n = x, dla x < 1. (1 x) 2 n=1 n 2 x n 1 = 1 + x, dla x < 1. (1 x) 3 x n n = ln(1 x), dla 1 x < 1. Szeregi funkcyjne str. 19/36

20 Aproksymacja funkcji przez wielomian Wzór f(x) ==f(x 0 )+ f (x 0 ) (x x 0 ) f (n) (x 0 ) (x x 0 ) n + R n (x), 1! n! gdzie R n (x) = f (n+1) (ξ) (n + 1)! (x x 0) n+1 < n-ta reszta we wzorze Taylora dla funkcji f przy czym ξ = x 0 + θ(x x 0 ), 0 < θ < 1, pozwala przedstawić w sposób przybliżony (aproksymować) funkcję f za pomocą wielomianu (zwanego wielomianem Taylora) f(x) f(x 0 )+ f (x 0 ) 1! (x x 0 ) f (n) (x 0 ) n! (x x 0 ) n. Szeregi funkcyjne str. 20/36

21 Przykład Niech f(x) = e x. Wówczas e x 1 + x + x2 2 + x3 3! xn n!. n = 1 y y = e x y = 1 + x Szeregi funkcyjne str. 21/36 x

22 Przykład Niech f(x) = e x. Wówczas e x 1 + x + x2 2 + x3 3! xn n!. n = 2 y y = e x y = 1 + x + x2 2 Szeregi funkcyjne str. 21/36 x

23 Przykład Niech f(x) = e x. Wówczas e x 1 + x + x2 2 + x3 3! xn n!. n = 3 y y = e x y = 1 + x + x2 2 + x3 6 Szeregi funkcyjne str. 21/36 x

24 Szereg trygonometryczny Szeregiem trygonometrycznym na przedziale l, l nazywamy szereg postaci a n=1 ( a n cos nπx l + b n sin nπx ) l, gdzie a 0 R, a n, b n R dla n N, l jest pewną liczbą dodatnią. Szeregi funkcyjne str. 22/36

25 Szereg trygonometryczny Fouriera Niech funkcja f będzie całkowalna na przedziale l, l. Szeregiem trygonometrycznym Fouriera nazywamy szereg trygonometryczny a ( a n cos nπx + b n sin nπx ), gdzie l l n=1 oraz a n = 1 l b n = 1 l l l l l f(x) cos nπx l dx, n = 0, 1, 2,... f(x) sin nπx dx, n = 1, 2,... l Piszemy symbolicznie f(x) a n=1 ( a n cos nπx l + b n sin nπx ) l. Szeregi funkcyjne str. 23/36

26 Funkcję f, ograniczoną w przedziale (a, b), nazywamy przedziałami monotoniczna w tym przedziale, jeżeli przedział (a, b) można podzielić na skończoną liczbę podprzedziałów wewnątrz których funkcja f jest monotoniczna. Szeregi funkcyjne str. 24/36

27 Warunki Dirichleta Mówimy, że funkcja f spełnia na przedziale a, b warunki Dirichleta, jeżeli 1 f jest przedziałami monotoniczna w przedziale (a, b), 2 f jest ciągła w przedziale (a, b), z wyjątkiem co najwyżej skończonej liczby punktów nieciągłości x 0, takich że f(x 0 ) = 1 2 ( lim x x 0 f(x) + lim x x + 0 f(x) 3 w końcach przedziału (a, b) spełnione są równości f(a) = f(b) = 1 2 ( ) ) lim f(x) + lim f(x) x b x a + Powyższe warunki nazywamy odpowiednio: pierwszym, drugim i trzecim warunkiem Dirichleta. Szeregi funkcyjne str. 25/36

28 Twierdzenie Dirichleta Jeżeli funkcja f spełnia w przedziale l, l warunki Dirichleta, to jest rozwijalna w tym przedziale w szereg trygonometryczny Fouriera f(x) = a n=1 ( a n cos nπx l + b n sin nπx ) l, (1) dla każdego x l, l. Jeżeli ponadto funkcja f jest okresowa i ma okres 2l, to równość (1) jest prawdziwa dla każdego x z dziedziny tej funkcji. Szeregi funkcyjne str. 26/36

29 Twierdzenie Jeżeli funkcja f jest parzysta, to oraz a 0 = 2 l l 0 b n = 0, n = 1, 2,... f(x)dx i a n = 2 l Wówczas rozwinięcie (1) dla funkcji parzystej przyjmuje postać l 0 f(x) cos nπx dx, n = 1, 2,.. l f(x) = a n=1 a n cos nπx l. (2) Szeregi funkcyjne str. 27/36

30 Twierdzenie Jeżeli funkcja f jest nieparzysta, to oraz b n = 2 l l 0 a n = 0, n = 0, 1, 2,... f(x) sin nπx dx, n = 1, 2,... l Wówczas rozwinięcie (1) dla funkcji nieparzystej przyjmuje postać f(x) = n=1 b n sin nπx l. (3) Szeregi funkcyjne str. 28/36

31 Zagadnienie rozwijania funkcji w szereg trygonometryczny Fouriera sinusów lub kosinusów Rozważmy funkcję f, która jest określona i spełnia pierwszy i drugi warunek Dirichleta w przedziale otwartym (0, l). Funkcję tę można przedstawić w przedziale (0, l) w postaci szeregu trygonometrycznego Fouriera składającego się z samych sinusów (3), albo samych kosinusów (2). Szeregi funkcyjne str. 29/36

32 Zagadnienie rozwijania funkcji w szereg trygonometryczny Fouriera sinusów lub kosinusów Rozpatrzmy funkcję pomocniczą f, określoną na przedziale l, l nazywaną przedłużeniem funkcji f. Aby otrzymać rozwinięcie funkcji f w szereg sinusów (3) należy przedłużyć funkcję f w sposób nieparzysty. f (x) = 0, dla x = l f( x), dla l < x < 0 0, dla x = 0 f(x), dla 0 < x < l 0, dla x = l Szeregi funkcyjne str. 30/36

33 Zagadnienie rozwijania funkcji w szereg trygonometryczny Fouriera sinusów lub kosinusów Aby otrzymać rozwinięcie funkcji f w szereg kosinusów (3) należy przedłużyć funkcję f w sposób parzysty. f (x) = lim dla x = l x l f( x), dla l < x < 0 0, dla x = 0 f(x), dla 0 < x < l lim x l dla x = l Szeregi funkcyjne str. 31/36

34 Niech f(x) = Przykład 1, dla π < x < 0 0, dla x { π, 0, π}. Wówczas 1, dla 0 < x < π f(x) = n=1 2(1 ( 1) n ) πn sin nx. n = 1 y x Szeregi funkcyjne str. 32/36

35 Niech f(x) = Przykład 1, dla π < x < 0 0, dla x { π, 0, π}. Wówczas 1, dla 0 < x < π f(x) = n=1 2(1 ( 1) n ) πn sin nx. n = 3 y x Szeregi funkcyjne str. 32/36

36 Niech f(x) = Przykład 1, dla π < x < 0 0, dla x { π, 0, π}. Wówczas 1, dla 0 < x < π f(x) = n=1 2(1 ( 1) n ) πn sin nx. n = 5 y x Szeregi funkcyjne str. 32/36

37 Niech f(x) = Przykład 1, dla π < x < 0 0, dla x { π, 0, π}. Wówczas 1, dla 0 < x < π f(x) = n=1 2(1 ( 1) n ) πn sin nx. n = 7 y x Szeregi funkcyjne str. 32/36

38 Przykład Niech f(x) = x, dla x π, π. Wówczas f(x) = π 2 + n=1 2 ( 1)n 1 πn 2 cos nx. y y = x n = 1 Szeregi funkcyjne str. 33/36 x

39 Przykład Niech f(x) = x, dla x π, π. Wówczas f(x) = π 2 + n=1 2 ( 1)n 1 πn 2 cos nx. y y = x n = 3 Szeregi funkcyjne str. 33/36 x

40 Przykład Niech f(x) = x, dla x π, π. Wówczas f(x) = π 2 + n=1 2 ( 1)n 1 πn 2 cos nx. y y = x n = 5 Szeregi funkcyjne str. 33/36 x

41 Przykład Niech f(x) = x, dla x π, π. Wówczas f(x) = π 2 + n=1 2 ( 1)n 1 πn 2 cos nx. y y = x n = 7 Szeregi funkcyjne str. 33/36 x

42 Niech f(x) = Przykład π, dla π < x 0 π, dla x = ±π 2 π x, dla 0 < x < π. Wówczas f(x) = 3 4 π + n=1 ( 1 ( 1) n πn 2 cos nx + ( 1)n n y sin nx ). y = f(x) n = 1 Szeregi funkcyjne str. 34/36 x

43 Niech f(x) = Przykład π, dla π < x 0 π, dla x = ±π 2 π x, dla 0 < x < π. Wówczas f(x) = 3 4 π + n=1 ( 1 ( 1) n πn 2 cos nx + ( 1)n n y sin nx ). y = f(x) n = 2 Szeregi funkcyjne str. 34/36 x

44 Niech f(x) = Przykład π, dla π < x 0 π, dla x = ±π 2 π x, dla 0 < x < π. Wówczas f(x) = 3 4 π + n=1 ( 1 ( 1) n πn 2 cos nx + ( 1)n n y sin nx ). y = f(x) n = 3 Szeregi funkcyjne str. 34/36 x

45 Niech f(x) = Przykład π, dla π < x 0 π, dla x = ±π 2 π x, dla 0 < x < π. Wówczas f(x) = 3 4 π + n=1 ( 1 ( 1) n πn 2 cos nx + ( 1)n n y sin nx ). y = f(x) n = 4 Szeregi funkcyjne str. 34/36 x

46 Niech f(x) = Przykład π, dla π < x 0 π, dla x = ±π 2 π x, dla 0 < x < π. Wówczas f(x) = 3 4 π + n=1 ( 1 ( 1) n πn 2 cos nx + ( 1)n n y sin nx ). y = f(x) n = 5 Szeregi funkcyjne str. 34/36 x

47 Podsumowanie Szeregi potęgowe. Szereg Taylora. Szereg Fouriera. Szeregi funkcyjne str. 35/36

48 Dziękuję za uwagę Szeregi funkcyjne str. 36/36

1 Szeregi potęgowe. 1.1 Promień zbieżności szeregu potęgowego. Wydział Informatyki, KONWERSATORIUM Z MATEMATYKI, 2008/2009.

1 Szeregi potęgowe. 1.1 Promień zbieżności szeregu potęgowego. Wydział Informatyki, KONWERSATORIUM Z MATEMATYKI, 2008/2009. Szeregi potęgowe Definicja.. Szeregiem potęgowym o środku w punkcie R nazywamy szereg postaci: gdzie x R oraz c n R dla n = 0,, 2,... c n (x ) n, Przyjmujemy, że 0 0 def =. Liczby c n nazywamy współczynnikami

Bardziej szczegółowo

Wykład 7: Szeregi liczbowe i potęgowe. S 1 = a 1 S 2 = a 1 + a 2 S 3 = a 1 + a 2 + a 3. a k

Wykład 7: Szeregi liczbowe i potęgowe. S 1 = a 1 S 2 = a 1 + a 2 S 3 = a 1 + a 2 + a 3. a k Wykład 7: Szeregi liczbowe i potęgowe. Definicja 1. Niech (a n ) - ustalony ciąg liczbowy. Określamy nowy ciąg: S 1 = a 1 S 2 = a 1 + a 2 S 3 = a 1 + a 2 + a 3. S n =. Ciąg sum częściowych (S n ) nazywamy

Bardziej szczegółowo

Wykład 2: Szeregi Fouriera

Wykład 2: Szeregi Fouriera Rachunek prawdopodobieństwa MAP64 Wydział Elektroniki, rok akad. 8/9, sem. letni Wykładowca: dr hab. A. Jurlewicz Wykład : Szeregi Fouriera Definicja. Niech f(t) będzie funkcją określoną na R, okresową

Bardziej szczegółowo

Wzór Maclaurina. Jeśli we wzorze Taylora przyjmiemy x 0 = 0 oraz h = x, to otrzymujemy tzw. wzór Maclaurina: f (x) = x k + f (n) (θx) x n.

Wzór Maclaurina. Jeśli we wzorze Taylora przyjmiemy x 0 = 0 oraz h = x, to otrzymujemy tzw. wzór Maclaurina: f (x) = x k + f (n) (θx) x n. Wzór Maclaurina Jeśli we wzorze Taylora przyjmiemy x 0 = 0 oraz h = x, to otrzymujemy tzw. wzór Maclaurina: f (x) = n 1 k=0 f (k) (0) k! x k + f (n) (θx) x n. n! Wzór Maclaurina Przykład. Niech f (x) =

Bardziej szczegółowo

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji.

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Pochodna funkcji Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika

Bardziej szczegółowo

Temat: Ciągi i szeregi funkcyjne

Temat: Ciągi i szeregi funkcyjne Emilia Domińczyk Aleksandra Chrzuszcz Temat: Ciągi i szeregi unkcyjne 1.Co to jest ciąg unkcyjny? Co to jest szereg unkcyjny? Podać przykłady. Deinicja ciągu unkcyjnego Niech X c R, X Ø. Funkcję określoną

Bardziej szczegółowo

Analiza Matematyczna MAEW101

Analiza Matematyczna MAEW101 Analiza Matematyczna MAEW Wydział Elektroniki Listy zadań nr 8-4 (część II) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 5 M.Gewert, Z Skoczylas,

Bardziej szczegółowo

Granice funkcji. XX LO (wrzesień 2016) Matematyka elementarna Temat #8 1 / 21

Granice funkcji. XX LO (wrzesień 2016) Matematyka elementarna Temat #8 1 / 21 Granice funkcji XX LO (wrzesień 2016) Matematyka elementarna Temat #8 1 / 21 Granica funkcji Definicje Granica właściwa funkcji w punkcie wg Heinego Liczbę g nazywamy granicą właściwą funkcji f w punkcie

Bardziej szczegółowo

SZEREGI LICZBOWE I FUNKCYJNE

SZEREGI LICZBOWE I FUNKCYJNE Mając dowolny ciąg można z niego utworzyć nowy ciąg sum częściowych: Ten nowy rodzaj ciągu nazywamy szeregiem liczbowym, a jeśli to mamy do czynienia z nieskończonym szeregiem liczbowym, który oznaczany

Bardziej szczegółowo

Rozdział 5. Szeregi liczbowe. 5.1 Szeregi liczbowe. Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy (a n ) n=1.

Rozdział 5. Szeregi liczbowe. 5.1 Szeregi liczbowe. Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy (a n ) n=1. Rozdział 5 Szeregi liczbowe 5. Szeregi liczbowe Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy ( ). Ciąg (s n ) określony wzorem s n = n a j, n N, nazywamy ciągiem sum częściowych ciągu

Bardziej szczegółowo

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki WYKŁAD Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2006 Spis treści 1. CIĄGI LICZBOWE 2 1.1. Własności ciągów liczbowych o wyrazach

Bardziej szczegółowo

Notatki z Analizy Matematycznej 3. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 3. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 3 Jacek M. Jędrzejewski ROZDZIAŁ 6 Różniczkowanie funkcji rzeczywistej 1. Pocodna funkcji W tym rozdziale rozważać będziemy funkcje rzeczywiste określone w pewnym przedziale

Bardziej szczegółowo

Funkcje analityczne. Wykład 12

Funkcje analityczne. Wykład 12 Funkcje analityczne. Wykład 2 Szeregi Laurenta. Osobliwości funkcji zespolonych. Twierdzenie o residuach Paweł Mleczko Funkcje analityczne (rok akademicki 206/207) Plan wykładu W czasie wykładu omawiać

Bardziej szczegółowo

CAŁKI NIEOZNACZONE C R}.

CAŁKI NIEOZNACZONE C R}. CAŁKI NIEOZNACZONE Definicja 1 Funkcja F jest funkcją pierwotną funkcji f na przedziale I, jeżeli F (x) = f(x) dla każdego x I. Np. funkcjami pierwotnymi funkcji f(x) = sin x na R są cos x, cos x+1, cos

Bardziej szczegółowo

a 1, a 2, a 3,..., a n,...

a 1, a 2, a 3,..., a n,... III. Ciągi liczbowe. 1. Definicja ciągu liczbowego. Definicja 1.1. Ciągiem liczbowym nazywamy funkcję a : N R odwzorowującą zbiór liczb naturalnych N w zbiór liczb rzeczywistych R i oznaczamy przez {a

Bardziej szczegółowo

Informacja o przestrzeniach Hilberta

Informacja o przestrzeniach Hilberta Temat 10 Informacja o przestrzeniach Hilberta 10.1 Przestrzenie unitarne, iloczyn skalarny Niech dana będzie przestrzeń liniowa X. Załóżmy, że każdej parze elementów x, y X została przyporządkowana liczba

Bardziej szczegółowo

n=0 W tym rozdziale, wyposażeni w wiedzę o zbieżności jednostajnej, omówimy ogólne własności funkcji, które można definiować wzorami typu (8.1).

n=0 W tym rozdziale, wyposażeni w wiedzę o zbieżności jednostajnej, omówimy ogólne własności funkcji, które można definiować wzorami typu (8.1). Rozdział 8 Szeregi potęgowe Szeregiem potęgowym o środku w punkcie z 0 C i współczynnikach a n C nazywamy szereg a n z z 0 ) n, 8.1) gdzie z C. Z szeregami tego typu mieliśmy już do czynienia, omawiając

Bardziej szczegółowo

Analiza Matematyczna Ćwiczenia

Analiza Matematyczna Ćwiczenia Analiza Matematyczna Ćwiczenia Spis treści Ciągi i ich własności Granica ciągu Granica funkcji 4 4 Ciągłość funkcji 6 Szeregi 8 6 Pochodna funkcji 7 Zastosowania pochodnej funkcji 8 Badanie przebiegu zmienności

Bardziej szczegółowo

Wykład 11. Informatyka Stosowana. Magdalena Alama-Bućko. 18 grudnia Magdalena Alama-Bućko Wykład grudnia / 22

Wykład 11. Informatyka Stosowana. Magdalena Alama-Bućko. 18 grudnia Magdalena Alama-Bućko Wykład grudnia / 22 Wykład 11 Informatyka Stosowana Magdalena Alama-Bućko 18 grudnia 2017 Magdalena Alama-Bućko Wykład 11 18 grudnia 2017 1 / 22 Twierdzenie Granica lim f (x) x x 0 istnieje i wynosi a wtedy i tylko wtedy,

Bardziej szczegółowo

granicą ciągu funkcyjnego (f n ) n N W symbolicznym zapicie fakt, że f jest granicą ciągu funkcyjnego (f n ) n N możemy wyrazić następująco: ε>0 N N

granicą ciągu funkcyjnego (f n ) n N W symbolicznym zapicie fakt, że f jest granicą ciągu funkcyjnego (f n ) n N możemy wyrazić następująco: ε>0 N N 14. Określenie ciągu i szeregu funkcyjnego, zbieżność punktowa i jednostajna. Własności zbieżności jednostajnej. Kryterium zbieżności jednostajnej szeregu funkcyjnego. 1 Definicja Ciąg funkcyjny Niech

Bardziej szczegółowo

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki nieoznaczone

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki nieoznaczone Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Całki nieoznaczone 1. Definicja całki nieoznaczonej Definicja 1. Funkcja F jest funkcją pierwotną funkcji f na przedziale I, jeżeli F (x) =

Bardziej szczegółowo

Rozdział 7. Różniczkowalność. 7.1 Pochodna funkcji w punkcie

Rozdział 7. Różniczkowalność. 7.1 Pochodna funkcji w punkcie Rozdział 7 Różniczkowalność Jedną z konsekwencji pojęcia granicy funkcji w punkcie jest pojęcie pochodnej funkcji. W rozdziale tym podamy podstawowe charakteryzacje funkcji związane z pojęciem pochodnej.

Bardziej szczegółowo

Analiza matematyczna 2 zadania z odpowiedziami

Analiza matematyczna 2 zadania z odpowiedziami Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści I Całki niewłaściwe pierwszego rodzaju II Całki niewłaściwe drugiego rodzaju 5 III Szeregi liczbowe 6 IV Szeregi potęgowe

Bardziej szczegółowo

Szeregi liczbowe. Szeregi liczbowe i ich kryteria zbieżności. Małgorzata Wyrwas. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Szeregi liczbowe. Szeregi liczbowe i ich kryteria zbieżności. Małgorzata Wyrwas. Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi liczbowe Szeregi liczbowe i ich kryteria zbieżności Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi liczbowe str. 1/25 Szereg liczbowy Niech(a n ) będzie

Bardziej szczegółowo

Analiza I.2*, lato 2018

Analiza I.2*, lato 2018 Analiza I.2*, lato 218 Marcin Kotowski 14 czerwca 218 Zadanie 1. Niech x (, 1) ma rozwinięcie binarne.x 1 x 2.... Niech dla x, 1: oraz f() = f(1) =. Pokaż, że f: f(x) = lim sup n (a) przyjmuje wszystkie

Bardziej szczegółowo

KURS SZEREGI. Lekcja 10 Szeregi Fouriera ZADANIE DOMOWE. Strona 1

KURS SZEREGI. Lekcja 10 Szeregi Fouriera ZADANIE DOMOWE.   Strona 1 KURS SZEREGI Lekcja 1 Szeregi Fouriera ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Zaznacz poprawną odpowiedź: a) Szereg Fouriera

Bardziej szczegółowo

II. Funkcje. Pojęcia podstawowe. 1. Podstawowe definicje i fakty.

II. Funkcje. Pojęcia podstawowe. 1. Podstawowe definicje i fakty. II. Funkcje. Pojęcia podstawowe. 1. Podstawowe definicje i fakty. Definicja 1.1. Funkcją określoną na zbiorze X R o wartościach w zbiorze Y R nazywamy przyporządkowanie każdemu elementowi x X dokładnie

Bardziej szczegółowo

III. Funkcje rzeczywiste

III. Funkcje rzeczywiste . Pojęcia podstawowe Załóżmy, że dane są dwa niepuste zbiory X i Y. Definicja. Jeżeli każdemu elementowi x X przyporządkujemy dokładnie jeden element y Y, to mówimy, że na zbiorze X została określona funkcja

Bardziej szczegółowo

Matematyka i Statystyka w Finansach. Rachunek Różniczkowy

Matematyka i Statystyka w Finansach. Rachunek Różniczkowy Rachunek Różniczkowy Ciąg liczbowy Link Ciągiem liczbowym nieskończonym nazywamy każdą funkcję a która odwzorowuje zbiór liczb naturalnych N w zbiór liczb rzeczywistych R a : N R. Tradycyjnie wartość a(n)

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji

Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji Zadania z analizy matematycznej - sem. I Pochodne funkcji przebieg zmienności funkcji Definicja 1. Niech f : (a b) R gdzie a < b oraz 0 (a b). Dla dowolnego (a b) wyrażenie f() f( 0 ) = f( 0 + ) f( 0 )

Bardziej szczegółowo

WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA1, lista zadań 1

WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA1, lista zadań 1 WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA, lista zadań. Dla podanych ciągów napisać wzory określające wskazane wyrazy tych ciągów: a) a n = n 3n +, a n+, b) b n = 3

Bardziej szczegółowo

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3

Bardziej szczegółowo

x 2 5x + 6 x 2 x 6 = 1 3, x 0sin 2x = 2, 9 + 2x 5 lim = 24 5, = e 4, (i) lim x 1 x 1 ( ), (f) lim (nie), (c) h(x) =

x 2 5x + 6 x 2 x 6 = 1 3, x 0sin 2x = 2, 9 + 2x 5 lim = 24 5, = e 4, (i) lim x 1 x 1 ( ), (f) lim (nie), (c) h(x) = Zadanie.. Obliczyć granice 2 + 2 (a) lim (d) lim 0 2 + 2 + 25 5 = 5,. Granica i ciągłość funkcji odpowiedzi = 4, (b) lim 2 5 + 6 2 6 =, 4 (e) lim 0sin 2 = 2, cos (g) lim 0 2 =, (h) lim 2 8 Zadanie.2. Obliczyć

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j),

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j), ELEKTROTECHNIKA Semestr Rok akad. / 5 ZADANIA Z MATEMATYKI Zestaw. Przedstaw w postaci algebraicznej liczby zespolone: (3 + j)(5 j) 3 j +j (5 + j) (3 + j) 3. Narysuj zbiory punktów na płaszczyźnie: +j

Bardziej szczegółowo

Szeregi liczbowe. Szeregi potęgowe i trygonometryczne.

Szeregi liczbowe. Szeregi potęgowe i trygonometryczne. Szeregi iczbowe. Szeregi potęgowe i trygoometrycze. wykład z MATEMATYKI Automatyka i Robotyka sem. I, rok ak. 2008/2009 Katedra Matematyki Wydział Iformatyki Poitechika Białostocka Szeregi iczbowe Defiicja..

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami

ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami ANALIZA MATEMATYCZNA zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Całki niewłaściwe pierwszego rodzaju Całki niewłaściwe drugiego rodzaju Szeregi liczbowe 4 4 Szeregi potęgowe 5 5

Bardziej szczegółowo

OPIS MODUŁ KSZTAŁCENIA (SYLABUS)

OPIS MODUŁ KSZTAŁCENIA (SYLABUS) OPIS MODUŁ KSZTAŁCENIA (SYLABUS) I. Informacje ogólne: 1 Nazwa modułu Matematyka 2 2 Kod modułu 04-A-MAT2-60-1L 3 Rodzaj modułu obowiązkowy 4 Kierunek studiów astronomia 5 Poziom studiów I stopień 6 Rok

Bardziej szczegółowo

Analiza matematyczna I. Pula jawnych zadań na kolokwia.

Analiza matematyczna I. Pula jawnych zadań na kolokwia. Analiza matematyczna I. Pula jawnych zadań na kolokwia. Wydział MIiM UW, 2/ 24 października 22 ostatnie poprawki: 9 czerwca 23 Szanowni Państwo, zgodnie z zapowiedzią, na każdym kolokwium w pierwszym semestrze

Bardziej szczegółowo

Blok V: Ciągi. Różniczkowanie i całkowanie. c) c n = 1 ( 1)n n. d) a n = 1 3, a n+1 = 3 n a n. e) a 1 = 1, a n+1 = a n + ( 1) n

Blok V: Ciągi. Różniczkowanie i całkowanie. c) c n = 1 ( 1)n n. d) a n = 1 3, a n+1 = 3 n a n. e) a 1 = 1, a n+1 = a n + ( 1) n V. Napisz 4 początkowe wyrazy ciągu: Blok V: Ciągi. Różniczkowanie i całkowanie a) a n = n b) a n = n + 3 n! c) a n = n! n(n + ) V. Oblicz (lub zapisz) c, c 3, c k, c n k dla: a) c n = 3 n b) c n = 3n

Bardziej szczegółowo

Metoda rozdzielania zmiennych

Metoda rozdzielania zmiennych Rozdział 12 Metoda rozdzielania zmiennych W tym rozdziale zajmiemy się metodą rozdzielania zmiennych, którą można zastosować, aby wyrazić jawnymi wzorami rozwiązania pewnych konkretnych równań różniczkowych

Bardziej szczegółowo

Ciągłość funkcji f : R R

Ciągłość funkcji f : R R Ciągłość funkcji f : R R Definicja 1. Otoczeniem o promieniu δ > 0 punktu x 0 R nazywamy zbiór O(x 0, δ) := (x 0 δ, x 0 + δ). Otoczeniem prawostronnym o promieniu δ > 0 punktu x 0 R nazywamy zbiór O +

Bardziej szczegółowo

AM1.2 zadania 14. Zadania z numerami opatrzonymi gwiazdka

AM1.2 zadania 14. Zadania z numerami opatrzonymi gwiazdka AM.2 zadania 4 Tekst poprawiony 24 kwietnia 206 r. Zadania 26, 28, 29, 3, 33, 34, 35, 36, 40, 42, 62 i inne z wykrzyknikiem obok numeru sa obowiazkowe! Zadania z numerami opatrzonymi gwiazdka można napisać

Bardziej szczegółowo

1. Definicja granicy właściwej i niewłaściwej funkcji.

1. Definicja granicy właściwej i niewłaściwej funkcji. V. Granica funkcji jednej zmiennej. 1. Definicja granicy właściwej i niewłaściwej funkcji. Definicja 1.1. (sąsiedztwa punktu i sąsiedztwa nieskończoności) Niech x 0 R, r > 0, a, b R. Definiujemy S(x 0,

Bardziej szczegółowo

1 Wyrażenia potęgowe i logarytmiczne.

1 Wyrażenia potęgowe i logarytmiczne. Wyrażenia potęgowe i logarytmiczne. I. Wyrażenia potęgowe (wykładnik całkowity). Dla a R, n N mamy a = a, a n = a n a. Zatem a n = } a a {{... a}. n razy Przyjmujemy ponadto, że a =, a. Dla a R \{}, n

Bardziej szczegółowo

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji.

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. Twierdzenie 1.1. (Rolle a) Jeżeli funkcja f jest ciągła w przedziale domkniętym

Bardziej szczegółowo

Lista 1 - Funkcje elementarne

Lista 1 - Funkcje elementarne Lista - Funkcje elementarne Naszkicuj wykresy funkcji: a) y = sgn, y = sgn ; b) y = ; c) y = 2 Przedstaw w jednym układzie współrzędnych wykresy funkcji potęgowej y = α dla: a) α =, 2, 3, 4; b) α =,, 2;

Bardziej szczegółowo

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0.

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0. Matematyka ZLic - 3 Pochodne i różniczki funkcji jednej zmiennej Definicja Pochodną funkcji f w punkcie x, nazwiemy liczbę oznaczaną symbolem f x lub df x dx, równą granicy właściwej f x lim h - o ile

Bardziej szczegółowo

Rachunek różniczkowy i całkowy 2016/17

Rachunek różniczkowy i całkowy 2016/17 Rachunek różniczkowy i całkowy 26/7 Zadania domowe w pakietach tygodniowych Tydzień 3-7..26 Zadanie O. Czy dla wszelkich zbiorów A, B i C zachodzą następujące równości: (A B)\C = (A\C) (B\C), A\(B\C) =

Bardziej szczegółowo

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Leszek Skrzypczak 1. Niech E = {x [0, 1] : x = k 2 n k = 1, 2,... 2 n, n = 1, 2, 3,...} Wówczas: (a) Dla dowolnych liczb wymiernych p, q [0,

Bardziej szczegółowo

Szeregi liczbowe. Analiza Matematyczna. Alexander Denisjuk

Szeregi liczbowe. Analiza Matematyczna. Alexander Denisjuk Analiza Matematyczna Szeregi liczbowe Alexander Denisjuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych zamiejscowy ośrodek dydaktyczny w Gdańsku ul. Brzegi 55 80-045 Gdańsk

Bardziej szczegółowo

Pochodna funkcji jednej zmiennej

Pochodna funkcji jednej zmiennej Pochodna funkcji jednej zmiennej Def:(pochodnej funkcji w punkcie) Jeśli funkcja f : D R, D R określona jest w pewnym otoczeniu punktu 0 D i istnieje skończona granica ilorazu różniczkowego: f f( ( 0 )

Bardziej szczegółowo

Funkcje. Część druga. Zbigniew Koza. Wydział Fizyki i Astronomii

Funkcje. Część druga. Zbigniew Koza. Wydział Fizyki i Astronomii Funkcje Część druga Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2015 GRANICA I CIĄGŁOŚĆ FUNKCJI Granica funkcji Funkcja f: R A R ma w punkcie x 0 granicę g wtedy i tylko wtedy gdy dla każdego ciągu

Bardziej szczegółowo

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na

Bardziej szczegółowo

Roksana Gałecka Okreslenie pochodnej funkcji, podstawowe własnosci funkcji różniczkowalnych

Roksana Gałecka Okreslenie pochodnej funkcji, podstawowe własnosci funkcji różniczkowalnych Temat. Okreslenie pochodnej funkcji, podstawowe własnosci funkcji różniczkowalnych.twierdzenia o wartosci sredniej w rachunku różniczkowalnym i ich zastosowania. Roksana Gałecka 20..204 Spis treści Okreslenie

Bardziej szczegółowo

Wykład 5. Zagadnienia omawiane na wykładzie w dniu r

Wykład 5. Zagadnienia omawiane na wykładzie w dniu r Wykład 5. Zagadnienia omawiane na wykładzie w dniu 14.11.2018r Definicja (iloraz różnicowy) Niech x 0 R oraz niech funkcja f będzie określona przynajmnniej na otoczeniu O(x 0 ). Ilorazem różnicowym funkcji

Bardziej szczegółowo

Lista 1 - Kilka bardzo prostych funkcji. Logarytm i funkcja wykładnicza

Lista 1 - Kilka bardzo prostych funkcji. Logarytm i funkcja wykładnicza Lista - Kilka bardzo prostych funkcji Logarytm i funkcja wykładnicza Naszkicuj wykresy funkcji: y = sgn x oraz y = x sgn x; b) y = x oraz y = x ; c) y = x x Przedstaw w jednym układzie współrzędnych wykresy

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

Pochodne funkcji wraz z zastosowaniami - teoria

Pochodne funkcji wraz z zastosowaniami - teoria Pochodne funkcji wraz z zastosowaniami - teoria Pochodne Definicja 2.38. Niech f : O(x 0 ) R. Jeżeli istnieje skończona granica f(x 0 + h) f(x 0 ) h 0 h to granicę tę nazywamy pochodną funkcji w punkcie

Bardziej szczegółowo

1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5)

1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5) . Liczby zespolone Zadanie.. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone () i +i, () 3i, (3) ( + i 3) 6, (4) (5) ( +i ( i) 5, +i 3 i ) 4. Zadanie.. Znaleźć moduł i argument główny

Bardziej szczegółowo

1 Relacje i odwzorowania

1 Relacje i odwzorowania Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA realizacja w roku akademickim 2016/2017

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA realizacja w roku akademickim 2016/2017 Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016-2018 realizacja w roku akademickim 2016/2017 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu

Bardziej szczegółowo

Rachunek różniczkowy funkcji f : R R

Rachunek różniczkowy funkcji f : R R Racunek różniczkowy funkcji f : R R Załóżmy, że funkcja f jest określona na pewnym otoczeniu punktu x 0 (tj. istnieje takie δ > 0, że (x 0 δ, x 0 + δ) D f - dziedzina funkcji f). Definicja 1. Ilorazem

Bardziej szczegółowo

Wykład 5. Informatyka Stosowana. 7 listopada Informatyka Stosowana Wykład 5 7 listopada / 28

Wykład 5. Informatyka Stosowana. 7 listopada Informatyka Stosowana Wykład 5 7 listopada / 28 Wykład 5 Informatyka Stosowana 7 listopada 2016 Informatyka Stosowana Wykład 5 7 listopada 2016 1 / 28 Definicja (Złożenie funkcji) Niech X, Y, Z, W - podzbiory R. Niech f : X Y, g : Z W, Y Z. Złożeniem

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

Analiza Matematyczna I

Analiza Matematyczna I Analiza Matematyczna I Informatyka, WPPT, Politechnika Wrocławska Wprowadzenie (2 godziny ćwiczeń) Pokaż, że dla dowolnych liczb rzeczywistych a i b zachodzą nierówności:. a b = a b, 2. a + b a + b, 3.

Bardziej szczegółowo

7. Funkcje elementarne i ich własności.

7. Funkcje elementarne i ich własności. Misztal Aleksandra, Herman Monika 7. Funkcje elementarne i ich własności. Definicja funkcji elementarnej Podstawowymi funkcjami elementarnymi nazywamy funkcje: stałe potęgowe, np. wykładnicze logarytmiczne

Bardziej szczegółowo

Funkcje analityczne. Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017)

Funkcje analityczne. Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017) Funkcje analityczne Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017) Paweł Mleczko Uniwersytet im. Adama Mickiewicza w Poznaniu 1. Sprawy organizacyjne

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 Sylabus do programu kształcenia obowiązującego od roku akademickiego 201/15 (1) Nazwa Rachunek różniczkowy i całkowy I (2) Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot (3)

Bardziej szczegółowo

ANALIZA MATEMATYCZNA

ANALIZA MATEMATYCZNA ANALIZA MATEMATYCZNA TABLICE Spis treści: 1.) Pochodne wzory 2 2.) Całki wzory 3 3.) Kryteria zbieżności szeregów 4 4.) Przybliżona wartość wyrażenia 5 5.) Równanie płaszczyzny stycznej i prostej normalnej

Bardziej szczegółowo

Zbiory liczbowe i funkcje wykład 1

Zbiory liczbowe i funkcje wykład 1 Zbiory liczbowe i funkcje wykład 1 dr Mariusz Grządziel 6 października 2008 1 Matematyka w naukach przyrodniczych Zależności funkcyjne w naukach przyrodniczych Rozwój algebry i analiza matematycznej w

Bardziej szczegółowo

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12 Matematyka I Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12 Egzamin Termin: 28.01, godz. 10.15-11.45, sala 309 3 pytania teoretyczne 2 zadania wybór pytań i wybór zadań

Bardziej szczegółowo

Rozdział 6. Ciągłość. 6.1 Granica funkcji

Rozdział 6. Ciągłość. 6.1 Granica funkcji Rozdział 6 Ciągłość 6.1 Granica funkcji Podamy najpierw dwie definicje granicy funkcji w punkcie i pokażemy ich równoważność. Definicja Cauchy ego granicy funkcji w punkcie. Niech f : X R, gdzie X R oraz

Bardziej szczegółowo

Rozdział 3. Granica i ciągłość funkcji jednej zmiennej

Rozdział 3. Granica i ciągłość funkcji jednej zmiennej Rozdział Granica i ciągłość funkcji jednej zmiennej Definicja i własności granicy funkcji W rozdziale omówiono granicę ciągu liczbowego przy n, natomiast w rozdziale opisano funkcje elementarne i ich własności

Bardziej szczegółowo

Wykład 2. Transformata Fouriera

Wykład 2. Transformata Fouriera Wykład 2. Transformata Fouriera Transformata Fouriera jest podstawowym narzędziem analizy harmonicznej i teorii analizy i przetwarzania sygnału. Z punktu widzenia teorii matematycznej transformata Fouriera

Bardziej szczegółowo

Rachunek różniczkowy funkcji jednej zmiennej. 1 Obliczanie pochodnej i jej interpretacja geometryczna

Rachunek różniczkowy funkcji jednej zmiennej. 1 Obliczanie pochodnej i jej interpretacja geometryczna Wydział Matematyki Stosowanej Zestaw zadań nr 4 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 4 grudnia 08r. Rachunek różniczkowy funkcji jednej zmiennej Obliczanie pochodnej

Bardziej szczegółowo

13 Równanie struny drgającej. Równanie przewodnictwa ciepła.

13 Równanie struny drgającej. Równanie przewodnictwa ciepła. Równanie struny drgającej. Równanie przewodnictwa ciepła 13 1 13 Równanie struny drgającej. Równanie przewodnictwa ciepła. 13.1 Równanie struny drgającej Równanie różniczkowe liniowe drugiego rzędu typu

Bardziej szczegółowo

jest ciągiem elementów z przestrzeni B(R, R)

jest ciągiem elementów z przestrzeni B(R, R) Wykład 2 1 Ciągi Definicja 1.1 (ciąg) Ciągiem w zbiorze X nazywamy odwzorowanie x: N X. Dla uproszczenia piszemy x n zamiast x(n). Przykład 1. x n = n jest ciągiem elementów z przestrzeni R 2. f n (x)

Bardziej szczegółowo

1 Funkcja wykładnicza i logarytm

1 Funkcja wykładnicza i logarytm 1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres

Bardziej szczegółowo

KARTA PRZEDMIOTU. w języku polskim Analiza Matematyczna 3 w języku angielskim Mathematical Analysis 3 USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW

KARTA PRZEDMIOTU. w języku polskim Analiza Matematyczna 3 w języku angielskim Mathematical Analysis 3 USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW Kod przedmiotu Nazwa przedmiotu KARTA PRZEDMIOTU AM3_M w języku polskim Analiza Matematyczna 3 w języku angielskim Mathematical Analysis 3 USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW Kierunek studiów Forma

Bardziej szczegółowo

Funkcje: wielomianowa, wykładnicza, logarytmiczna wykład 3

Funkcje: wielomianowa, wykładnicza, logarytmiczna wykład 3 Funkcje: wielomianowa, wykładnicza, logarytmiczna wykład 3 dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu semestr zimowy 2016/2017 Potęgowanie Dla dowolnej liczby dodatniej

Bardziej szczegółowo

Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 2. CAŁKA PODWÓJNA Całka podwójna po prostokącie

Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 2. CAŁKA PODWÓJNA Całka podwójna po prostokącie Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem..1. Całka podwójna po prostokącie.. CAŁKA POWÓJNA.. Całka podwójna po obszarach normalnych..3. Całka podwójna po obszarach regularnych..4.

Bardziej szczegółowo

1 + iϕ n. = cos ϕ + i sin ϕ. e n z n n n. c M n z n, c n z Mn.

1 + iϕ n. = cos ϕ + i sin ϕ. e n z n n n. c M n z n, c n z Mn. WRAiT 2 #1 1. Dla jakich a C ciągi o wyrazach na n, a n 1 + a n, an /n, są zbieżne? 2. Wykaż zbieżność i znajdź granice ciągów n a k, a n 1 + a 2n ( a < 1), a n 1 + a 2n ( a > 1), 1 n 3. Dla danego ϕ R

Bardziej szczegółowo

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Funkcje zespolone Complex functions Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji: I stopnia Liczba

Bardziej szczegółowo

Analiza matematyczna. 1. Ciągi

Analiza matematyczna. 1. Ciągi Analiza matematyczna 1. Ciągi Definicja 1.1 Funkcję a: N R odwzorowującą zbiór liczb naturalnych w zbiór liczb rzeczywistych nazywamy ciągiem liczbowym. Wartość tego odwzorowania w punkcie n nazywamy n

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych Wykresy i warstwice funkcji wielu zmiennych. Granice i ciagłość funkcji wielu zmiennych. Pochodne czastkowe funkcji wielu zmiennych. Gradient. Pochodna kierunkowa. Różniczka zupełna.

Bardziej szczegółowo

Ciągi. Granica ciągu i granica funkcji.

Ciągi. Granica ciągu i granica funkcji. Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Ciągi. Granica ciągu i granica funkcji.. Ciągi Ciąg jest to funkcja określona na zbiorze N lub jego podzbiorze. Z tego względu ciągi dziey na

Bardziej szczegółowo

II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski

II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski 1 1 Różniczkowanie numeryczne Rozważmy funkcję f(x) określoną na sieci równoodległyc węzłów. Funkcja f(x) może być dana za pomocą wzoru analitycznego

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna Zadanie. Zapisać, używając symboli i, następujące wyrażenia (a) n!; (b) sin() + sin() sin() +... + sin() sin()... sin(n); (c) ( + )( + /)( + / + /)... ( + / + / +... + /R). Zadanie.

Bardziej szczegółowo

Funkcje elementarne. Matematyka 1

Funkcje elementarne. Matematyka 1 Funkcje elementarne Matematyka 1 Katarzyna Trąbka-Więcław Funkcjami elementarnymi nazywamy: funkcje wymierne (w tym: wielomiany), wykładnicze, trygonometryczne, odwrotne do wymienionych (w tym: funkcje

Bardziej szczegółowo

1. Pochodna funkcji. Twierdzenie Rolle a i twierdzenie Lagrange a.

1. Pochodna funkcji. Twierdzenie Rolle a i twierdzenie Lagrange a. Ćwiczenia 3032010 - omówienie zadań 1-4 z egzaminu poprawkowego Konwersatorium 3032010 - omówienie zadań 5-8 z egzaminu poprawkowego Ćwiczenia 4032010 (zad 445-473) Kolokwium nr 1, 10032010 (do zad 473)

Bardziej szczegółowo

Funkcje analityczne. Wykład 2. Płaszczyzna zespolona. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018)

Funkcje analityczne. Wykład 2. Płaszczyzna zespolona. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018) Funkcje analityczne Wykład 2. Płaszczyzna zespolona Paweł Mleczko Funkcje analityczne (rok akademicki 2017/2018) Plan wykładu W czasie wykładu omawiać będziemy różne reprezentacje płaszczyzny zespolonej

Bardziej szczegółowo

DEFINICJA. E-podręcznik pod redakcją: Vsevolod Vladimirov Autor: Tomasz Zabawa

DEFINICJA. E-podręcznik pod redakcją: Vsevolod Vladimirov Autor: Tomasz Zabawa Pochodna funkcji jednej zmiennej rzeczywistej E-podręcznik pod redakcją: Vsevolod Vladimirov Autor: Tomasz Zabawa 2015 Spis treści Pochodna funkcji w punkcie. Pochodna jednostronna, niewłaściwa i funkcji

Bardziej szczegółowo

Elementy metod numerycznych

Elementy metod numerycznych Wykład nr 5 i jej modyfikacje. i zera wielomianów Założenia metody Newtona Niech będzie dane równanie f (x) = 0 oraz przedział a, b taki, że w jego wnętrzu znajduje się dokładnie jeden pierwiastek α badanego

Bardziej szczegółowo

ANALIZA MATEMATYCZNA I

ANALIZA MATEMATYCZNA I ANALIZA MATEMATYCZNA I Lista zadań dla kursów mających ćwiczenia co tydzień Choć zadania po symbolu potrójne karo nie są typowe, warto też poświęcić im nieco uwagi Lista nie zawiera odpowiedzi, ale poprawność

Bardziej szczegółowo

Funkcje dwóch i trzech zmiennych

Funkcje dwóch i trzech zmiennych Funkcje dwóch i trzech zmiennych Niech R 2 = {(x, y) : x, y R} oznacza płaszczyznę, R 3 = {(x, y, z) : x, y, z R} przestrzeń. Odległość punktów będziemy określali następująco: P 1 P 0 = P 1 P 0 = (x 1

Bardziej szczegółowo

22 Pochodna funkcji definicja

22 Pochodna funkcji definicja 22 Pochodna funkcji definicja Rozważmy funkcję f : (a, b) R, punkt x 0 b = +. (a, b), dopuszczamy również a = lub Definicja 33 Mówimy, że funkcja f jest różniczkowalna w punkcie x 0, gdy istnieje granica

Bardziej szczegółowo

Zadanie 1.1 Sprawdzić, czy następujące wyrażenia są tautologiami: (1.5 pkt): a)p [( q q) (r p)], (1.5 pkt): b)[(p q)] [ p q].

Zadanie 1.1 Sprawdzić, czy następujące wyrażenia są tautologiami: (1.5 pkt): a)p [( q q) (r p)], (1.5 pkt): b)[(p q)] [ p q]. RACHUNEK RÓŻNICZKOY I CAŁKOY I KOLOKIUM Zadanie 1.1 Sprawdzić, czy następujące wyrażenia są tautologiami: (1.5 pkt): a)p [( q q) (r p)], (1.5 pkt): b)[(p q)] [ p q]. Symbol p oznacza zaprzeczenie zdaniap.

Bardziej szczegółowo

Lista zadań nr 2 z Matematyki II

Lista zadań nr 2 z Matematyki II Lista zadań nr 2 z Matematyki II dla studentów wydziału Architektury, kierunku Gospodarka Przestrzenna. Wyznaczyć dziedzinę funkcji f(x, y) = ln(4 x 2 y 2 ), f(x, y) = x 2 + y 2, f(x, y) = ln(4 x 2 y 2

Bardziej szczegółowo