Równania różniczkowe wyższych rzędów

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Równania różniczkowe wyższych rzędów"

Transkrypt

1 Równania różniczkowe wyższych rzędów Marcin Orchel Spis treści 1 Wstęp Istnienie rozwiązań Rozwiązanie ogólne Obniżanie rzędu równania Równania różniczkowe liniowe n-tego rzędu Obniżanie rzędu równania liniowego jednorodnego Rozwiązywanie równań niejednorodnych Metoda uzmienniania stałych Metoda Cauchy ego Zadania 16.1 Zadania na Zadania na Zadania na Wstęp 1.1 Istnienie rozwiązań Sprowadzenie do układu równań pierwszego rzędu. Każde jawne równanie różniczkowe rzędu n y n) = f x, y, y,..., y n 1)) 1) można przez wprowadzenie nowych zmiennych: y 1 = y ) y = y 3)... 4) y n 1 = y n 1) 5) przekształcić do układu n równań różniczkowych pierwszego rzędu: dy dx = y 1 6) 1

2 dy 1 dx = y 7)... 8) dy n 1 dx = f x, y, y 1,..., y n 1 ) 9) W porównaniu z powyższym bardziej ogólny układ n równań różniczkowych pierwszego rzędu: dy i dx = f i x, y 1, y,..., y n ) dla i = 1,,..., n 10) ma dokładnie jedno rozwiązanie ciągłe określone i ciągłe w przedziale i spełniające warunek początkowy: jeśli tylko funkcje y i = y i x) dla i = 1,,..., n 11) x 0 h x x 0 + h 1) y i x 0 ) = y i0 dla i = 1,,..., n 13) f i x, y 1, y,..., y n ) 14) są ciągłe względem wszystkich zmiennych i spełniają warunek Lipschitza. 1. Rozwiązanie ogólne Rozwiązanie ogólne równania różniczkowego zawiera n niezależnych stałych: y = y x, C 1, C,..., C n ) 15) Aby całka szczególna spełniała warunki początkowe, wartości C 1, C,..., C n muszą zostać wyznaczone z równań: y x 0, C 1,..., C n ) = y 0 16) [ ] d dx y x, C 1,..., C n ) = y 0 17) x=x ) [ ] d n 1 dx n 1 y x, C 1,..., C n ) = y n 1) 0 x=x 0 19) Rozwiązanie ogólne układu 10) również zawiera n stałych dowolnych. Rozwiązanie to możemy przedstawić na dwa sposoby, w postaci rozwiązanej albo względem niewiadomych funkcji: y 1 = F 1 x, C 1,..., C n ) 0)

3 albo względem stałych dowolnych: Dla drugiego przypadku, każdą relację postaci y = F x, C 1,..., C n ) 1)... ) y n = F n x, C 1,..., C n ) 3) φ 1 x, y 1, y,..., y n ) = C 1 4) φ x, y 1, y,..., y n ) = C 5)... 6) φ n x, y 1, y,..., y n ) = C n 7) φ i x, y 1, y,..., y n ) = C i 8) nazywamy całką pierwszą układu 10). Jeśli dana jest jakakolwiek całka szczególna powyższej postaci to funkcja φ i x, y 1, y,..., y n ) 9) musi spełniać następujące równanie różniczkowe cząstkowe: φ i x + f 1 x, y 1,..., y n ) φ i y f n x, y 1,..., y n ) φ i y n = 0 30) i odwrotnie, każde rozwiązanie φ i x, y 1,..., y n ) powyższego równania różniczkowego jest całką pierwszą układu 10). Rozwiązanie ogólne układu 10) można złożyć z n całek pierwszych tego układu, takich, że odpowiednie funkcje φ i x, y 1,..., y n ) pozostają liniowo niezależne. 1.3 Obniżanie rzędu równania Jedną z najważniejszych metod całkowania równań różniczkowych n-tego rzędu f x, y, y,..., y n)) = 0 31) jest podstawienie nowych zmiennych. Rozwiązywanie równań szczególnych typów: 1. f jest postaci: y n) = f x) 3) Rozwiązanie ogólne otrzymujemy przez n-krotne całkowanie: y = C 1 + C x + C 3 x C n x n 1 + ψ x) 33) gdzie ψ x) =... f x) dx) n = 1 x f t) x t) n 1 dt 34) n 1)! x 0 3

4 . Równanie bez jawnie występującego y: f x, y,..., y n)) = 0 35) Dokonujemy podstawienia: y = p. 36) Jeśli pierwszych k pochodnych nie występuje w równaniu wyjściowym, to stosujemy podstawienie postaci: y k+1) = p 37) Przykład 1. Po podstawieniu y = p: Otrzymujemy równanie pierwszego rzędu. Rozwiązanie: Po podstawieniu i scałkowaniu: Po ponownym całkowaniu: y xy + y 3 = 0 38) p x dp ) dp 3 dx + = 0 39) dx p = C 1 x C ) y = 1/C 1 x C 3 1x + C 41) y = 1/6C 1 x 3 C 3 1x / + C x + C 3 4) Równanie na wolframalpha.com, http: // www. wolframalpha. com/ input/?i= y% 7% 7-xy% 7% 7% 7% By% 7% 7% 7^3+ %3D Równanie bez jawnie występującego x: f y, y,..., y n)) = 0 43) Celem jest takie podstawienie aby otrzymać równanie różniczkowe rzędu n 1 z nową zmienną zależną p i zmienną niezależną y. Dokonujemy podstawienia: y = d p dx = dp dp dy dx y = p 44) y = dp dx = dy dp dx dy = pdp dy = dp dp dx dy + pddp dy dx = pdp dy i redukujemy równanie do równania rzędu n ) dp dy + p dy d dp dy dx dy = pdp dp dy dy + p d p dy 46)

5 Przykład. yy y = 0 47) yp dp dy p = 0 / : p p 0 48) y dp p = 0 / : py y 0 49) dy 1 p dp 1 dy = 0 50) y ln p ln y = lne C 51) p y = ec 5) p = C 1 y C ) dy dx = C 1y 54) ln y = C 1 x + C 55) ln y = lne C 1x + lne C 56) y = C 3 e C 1x C ) Gdy p = 0, to otrzymujemy funkcję stałą, która spełnia równanie, więc dołączamy C 1 = 0 i C 3 = 0. Gdy y = 0, jest to też stała, która już była rozpatrywana C 3 = 0). Więc ostatecznie y = C 3 e C 1x 58) Równanie na wolframalpha.com, http: // www. wolframalpha. com/ input/?i= yy% 7% 7-y% 7^+ %3D+ 0. Przykład 3. Po zamianie zmiennych otrzymujemy y y = 0 59) p dp dp dy dy + p d p dy p = 0 60) Możemy wyłączyć p przed nawias: ) dp dp p dy dy + p pd dy 1 = 0 61) Równanie jest spełnione gdy p = 0, czyli y = C oraz gdy spełnione jest drugie równanie. 5

6 Następnie ponownie obniżamy rząd drugiego równania: gdzie t + pt dt dp 1 = 0 6) p = t 63) Jest to równanie różniczkowe o rozdzielonych zmiennych, także Bernoulliego, http: // www. wolframalpha. com/ input/?i= t^+ %B+ pt+ dt% Fdp %3D+ 0. Rozwiązanie c1 + p t p) = ± 64) p Następnie powracamy do zmiennej p podstawiając 63) p c1 + p = ± p 65) pp = ± c 1 + p 66) p p = c 1 + p 67) Równanie na wolframalpha.com http: // www. wolframalpha. com/ input/?i= p% 8y% 9^p% 7^+ %3D+ c1+ %B+ p^. Równanie to można rozwiązać za pomocą zmiennych rozdzielonych. Wynik p = ± ±c y + c c 1 + y 68) Następnie powracamy do zmiennej y podstawiając 44) y = ± ±c y + c c 1 + y 69) y = ±c y + c c 1 + y 70) Równanie http: // www. wolframalpha. com/ input/?i= y% 7% 8x% 9^+ %3D+ c_ y% 8x% 9+ %B+ c_ ^+ -+c_ 1+ %B+ y% 8x% 9^ oraz http: // www. wolframalpha. com/ input/?i= y% 7% 8x% 9^+ %3D+ -c_ y% 8x% 9+ %B+ c_ ^+ -+c_ 1+ %B+ y% 8x% 9^. Równanie to można rozwiązać za pomocą zmiennych rozdzielonych. Rozwiązania y = 1 ) c 1 e c3 x + e c3+x c 71) y = 1 c1 e x c 3 + e c3 x ) c y = 1 ) c 1 e c3 x + e c3+x + c y = 1 c1 e x c 3 + e c3 x ) + c 7) 73) 74) 6

7 Możemy te rozwiązania połączyć ze sobą: y = 1 ) c 1 e c3 x + e c3+x + c y = 1 c1 e x c 3 + e c3 x + c ) 75) 76) gdzie c = ±c. Równanie wyjściowe http: // www. wolframalpha. com/ input/?i= y% 7% 7% 7- y% 7% 3D0. 4. Funkcja f jest funkcją jednorodną zmiennych y, y,..., y n). Dokonujemy podstawienia: z = y y y 0 77) Przykład 4. Funkcja f jest jednorodna ponieważ: Po podstawieniu otrzymujemy: dz dx = y y y y 78) yy y = 0 79) λx 1 λx λ x 3 = λ x 1 x x 3 ) 80) y dz dx = 0 81) y = 0 z = C 8) y y = C 83) ln y = Cx + C 1 84) y = C e Cx C 0 85) Po połączeniu z drugim rozwiązaniem y = 0 otrzymujemy gdzie C 3 R. Alternatywnie można zauważyć ogólnie, że y = C 3 e Cx 86) y = e zdx 87) y = ze zdx 88) y = z e zdx + z e zdx 89) 7

8 oraz dodatkowo musimy sprawdzić rozwiązanie y = 0. Po podstawieniu w przykładzie otrzymujemy ) e zdx z e ) zdx + z e zdx z e zdx = 0 90) z = 0 91) z = C 9) i dalej podobnie. Równanie na wolframalpha.com, http: // www. wolframalpha. com/ input/?i= yy% 7% 7-y% 7^% 3D Równania różniczkowe liniowe n-tego rzędu Równanie różniczkowe postaci: y n) + a 1 x) y n 1) + a x) y n ) a n 1 x) y + a n x) y = F x) 93) nazywamy równaniem różniczkowym liniowym n-tego rzędu. Zakładamy, że funkcje F i a i zmiennej x są ciągłe w pewnym ustalonym przedziale. W przypadku, gdy a 1, a,..., a n są stałymi, równanie nazywamy równaniem różniczkowym o stałych współczynnikach, gdy F 0 równaniem różniczkowym jednorodnym nie mylić z funkcjami jednorodnymi) i dla F 0 równaniem różniczkowym niejednorodnym. Układ n rozwiązań y 1, y,..., y n pewnego liniowego równania różniczkowego określamy jako podstawowy fundamentalny), jeśli funkcje te w rozpatrywanym przedziale są liniowo niezależne, innymi słowy kombinacja liniowa: C 1 y 1 + C y C n y n 94) nie może znikać tożsamościowo dla jakichkolwiek wartości C 1, C,..., C n z wyjątkiem: C 1 = C =... = C n = 0 95) Rozwiązania jednorodnego liniowego równania różniczkowego y 1, y,..., y n tworzą układ podstawowy, wtedy i tylko wtedy, gdy ich wyznacznik Wrońskiego wrońskian) y 1 y... y n y 1 y... y n W x) = 96) y n 1) 1 y n 1)... y n n 1) jest różny od zera. Dla każdego układu rozwiązań rozważanego równania zachodzi wzór Liouville a: W x) = W x 0 ) e x a x 1 x)dx 0 97) Dla tego równania n rozwiązań y 1, y,..., y n są liniowo zależne wtw, gdy wrońskian przyjmuje wartość zero chociażby tylko w jednym punkcie x 0 rozpatrywanego przedziału. Jeśli natomiast rozwiązania y 1, y,..., y n tworzą układ podstawowy, to rozwiązanie ogólne równania różniczkowego liniowego jednorodnego możemy zapisać w postaci: y = C 1 y 1 + C y C n y n 98) 8

9 Przykład 5. y y = 0 99) Można łatwo sprawdzić, że powyższe równanie ma dwa rozwiązania szczególne: y 1 = e x 100) y = e x 101) Aby zbadać czy są one liniowo zależne, czy też niezależne, tworzymy wrońskian: e W [y 1, y ] = x e x = 0 10) e x e x Dlatego oba rozwiązania szczególne tworzą układ fundamentalny i rozwiązaniem ogólnym jest: y = C 1 e x + C e x 103) Równanie na wolframalpha.com, http: // www. wolframalpha. com/ input/?i= y% 7% 7-y% 3D0. Przykład 6. Znajdziemy rozwiązanie równania różniczkowego przy pomocy wzoru Liouville a. y + p 1 y + p y = 0 104) które ma rozwiązanie szczególne y 1. Ze wzoru Liouville a otrzymujemy: y 1 y y 1 y = Ce p 1 dx 105) Po przekształceniu: Po scałkowaniu: y 1 y y 1y = Ce p 1 dx / : y 1 y ) y = y 1 Ce p 1 dx dx + C 107) y Obniżanie rzędu równania liniowego jednorodnego Jeśli znamy pewne rozwiązanie szczególne y 1 równania jednorodnego, to pozostałe rozwiązania możemy wyznaczyć przez podstawienie: y = y 1 x) u x) 108) z otrzymanego w ten sposób liniowego równania jednorodnego rzędu n 1 na funkcję u x) podstawienie u x) = vx)). 9

10 Przykład 7. y + Rozwiązaniem szczególnym jest: ponieważ: x 1 x y 1 y = 0, x 1 109) 1 x e x + Postulujemy rozwiązanie postaci: Podstawiamy: Po podstawieniu otrzymujemy: e x u x) + e x u x) + e x u x) + Podstawiamy następnie φ 1 = e x 110) x 1 x ex 1 1 x ex = 0 111) 1 + x 1 x 1 1 x = 0 11) 1 1 x 1 1 x = 0 113) φ = e x u x) 114) y = e x u x) 115) y = e x u x) + e x u x) 116) y = e x u x) + e x u x) + e x u x) 117) u x) + u x) + u x) + x e x u x) + e x u x) ) 1 1 x 1 x ex u x)) = 0 118) xu x) 1 x + xu x) 1 x u x) 1 x = 0 119) u x) + u x) 1 x + u x) xu x) u x) 1 x 1 x = 0 10) u x) + u x) xu x) 1 x u x) + u x) x u x) + u x) x = 0 11) 1 x = 0 1) ) = 0 13) u x) = v x) 14) v x) + v x) ) = 0 1 x 15) 10

11 Rozwiązaniem tego równania jest: v x) = C 1 x) e x 16) Przyjmujemy C = 1. Skąd otrzymujemy: u x) = v x) dx = 1 x) e x dx = e x xe x dx + C = 17) = e x + xe x Wybieramy C = 0, i otrzymujemy: A więc rozwiązanie ogólne równania jednorodnego ma postać: e x dx + C = xe x + C 18) φ = e x u x) = x 19) y x) = C 1 e x + C x 130) Sprawdzić za pomocą Wrońskianu, że rozwiązania szczególne są liniowo niezależne. Równanie na wolframalpha.com, http: // www. wolframalpha. com/ input/?i= y% 7% 7+ %B+ x% F% 81-x% 9y% % F% 81-x% 9y% 3D Rozwiązywanie równań niejednorodnych Jeśli znaleziony został podstawowy układ rozwiązań równania jednorodnego, to możemy zastosować następujące dwie metody Metoda uzmienniania stałych Po angielsku variation of parameters. Poszukiwane rozwiązanie postulujemy w postaci: y = C 1 y 1 + C y C n y n 131) gdzie C 1, C,..., C n nie są w tym przypadku stałymi, ale funkcjami zmiennej x, a y i to rozwiązania szczególne równania różniczkowego jednorodnego niezależne od siebie. Żądamy przy tym, aby spełnione były poniższe równania: Możemy zapisać te równania jako C 1y 1 + C y C ny n = 0 13) C 1y 1 + C y C ny n = 0 133) ) C 1y n ) 1 + C y n ) C ny n ) n = 0 135) C iy j) i = 0 136) 11

12 dla j = 0, 1,..., n. Ostatnie równanie będzie następujące Zapisane inaczej C 1y n 1) 1 + C y n 1) C ny n 1) n = F 137) C iy n 1) i = F. 138) Z powyższych równań wyznaczamy C 1, C,..., C n, z których przez scałkowanie otrzymujemy funkcje C 1, C,..., C n. Dowód. Wyprowadzenie równania 138). Zauważmy, że różniczkując 131) otrzymujemy y = C 1y 1 + C 1 y 1 + C y + C y C ny n + C n y n 139) Możemy podstawić do powyższego 13) i otrzymamy Różniczkując kolejny raz powyższe otrzymujemy y = C 1 y 1 + C y C n y n 140) y = C 1y 1 + C 1 y 1 + C y + C y C ny n + C n y n 141) Po podstawieniu 133) otrzymujemy Ogólnie różniczkując j-krotnie otrzymujemy y = C 1 y 1 + C y C n y n 14) y j) = dla j = 0,..., n 1. A dla j = n otrzymujemy y n) = C iy n 1) i + C i y j) i 143) C i y n) i 144) ponieważ tego pierwszego składnika nie możemy już uprościć. Następnie podstawiamy wszystkie 143) oraz 144) do 93) i otrzymujemy: C iy n 1) i + C iy n 1) i + C i y n) i + a 1 x) C i y n 1) i a n x) C i y i = F x) 145) C i y n) i + a 1 x) y n 1) ) i a n x) y i = F x) 146) Ponieważ y i są rozwiązaniami równania jednorodnego, a więc drugi składnik sumy znika i otrzymujemy 138). 1

13 Równania od 1 do n 1 zostały dobrane w sposób arbitralny, aby były możliwie proste. A ostatnie równanie tak aby było spełnione równanie wyjściowe. Przykład 8. y + x 1 x y 1 1 x y = x 1 147) Najpierw rozwiązujemy równanie jednorodne: y + x 1 x y 1 1 x y = 0 148) Równanie to zostało już wcześniej rozwiązane, rozwiązanie ogólne równania jednorodnego ma postać: y x) = C 1 e x + C x 149) Uzmiennianie stałych daje: Rozwiązaniem jest: Po scałkowaniu: y x) = u 1 x) e x + u x) x 150) u 1 x) e x + u x) x = 0 151) u 1 x) e x + u x) = x 1 15) u 1 x) = xe x 153) u x) = 1 154) u 1 x) = 1 + x) e x + C 3 155) u x) = x + C 4 156) Rozwiązaniem ogólnym równania niejednorodnego jest więc: y x) = 1 + x) + C 3 e x x + C 4 x = 1 + x ) + C 3 e x + C 5 x. 157) Drugi sposób wykorzystuje następujące twierdzenie. Twierdzenie 1.1. Ogólne rozwiązanie równania różniczkowego liniowego niejednorodnego jest sumą rozwiązania ogólnego odpowiadającego równania jednorodnego i rozwiązania szczególnego równania niejednorodnego. Dla poprzedniego przykładu, bierzemy przykładowe u 1 x) i u x) po scałkowaniu, i konstruujemy rozwiązanie szczególne, przykładowo bierzemy u 1 x) = 1 + x)e x i u x) = x i rozwiązanie szczególne równania to po podstawieniu do 150) jest równe 1 + x) e x e x xx = 1 + x) x 158) Rozwiązanie ogólne konstruujemy jako sumę rozwiązania ogólnego równania jednorodnego i rozwiązania szczególnego równania niejednorodnego. Otrzymujemy C 1 e x + C x 1 x x = C 1 e x + C 3 x 1 x. 159) Równanie w wolframalpha.com, Bx%F%81-x%9y%7+-+1%F%81-x%9y+%3D+x-1. 13

14 1.6. Metoda Cauchy ego Po angielsku method of undetermined coefficients. W rozwiązaniu ogólnym równania jednorodnego odpowiadającego równaniu 93) y = C 1 y 1 + C y C n y n 160) stałym przypisujemy takie wartości, aby dla dowolnego parametru α po podstawieniu x = α spełnione były równania: y α) = 0 161) y α) = 0 16) ) y n ) α) = 0 164) y n 1) α) = F α) 165) Jeśli otrzymane w ten sposób rozwiązanie szczególne równania jednorodnego oznaczymy przez φ x, α) to: y = x x 0 φ x, α) dα 166) jest rozwiązaniem szczególnym równania niejednorodnego, przy czym w punkcie x = x 0 funkcja ta wraz ze swoimi pochodnymi aż do rzędu n 1) włącznie przyjmuje wartość zero. Przykład 9. Dla poprzedniego przykładu mamy rozwiązanie równania jednorodnego: dostajemy równania: Z tego otrzymujemy: x y x) = C 1 e x + C x 167) y α) = C 1 e α + C α = 0 168) y α) = C 1 e α + C = α 1 169) C 1 = αe α 170) C = 1 171) φ x, α) = αe α e x x 17) y x) = αe α e x x ) dα = x 0 + 1) e x x 0 + x 0 1) x x 1 173) x 0 Jest to rozwiązanie szczególne, wybierzmy dowolne x 0, np. x 0 = 1, wtedy otrzymujemy y x) = x x 1 174) Rozwiązanie ogólne jest sumą rozwiązania równania jednorodnego i rozwiązania szczególnego, a więc y x) = C 1 e x + C x x x 1 = C 1 e x + C 3 x x 1 175) 14

15 Ponadto dla równań liniowych zachodzi prawo superpozycji. Twierdzenie 1.. Prawo superpozycji. Jeśli mamy dwa rozwiązania szczególne równania różniczkowego liniowego niejednorodnego y 1 i y dla prawych stron F 1 i F, wtedy suma tych rozwiązań y = y 1 +y jest rozwiązaniem szczególnym tego samego równania o prawej stronie F = F 1 + F. Przykład 10. Mamy równanie Możemy rozwiązać 3 równania niejednorodne y 4y = x 8x ) y 4y = x 177) Rozwiązaniem szczególnym jest Następne równanie Rozwiązaniem szczególnym jest Następne równanie Rozwiązaniem szczególnym jest y = x ) y 4y = 8x 179) y = x 180) y 4y = 3 181) y = ) A więc rozwiązaniem szczególnym równania niejednorodnego jest Rozwiązaniem równania jednorodnego jest A więc ostatecznym rozwiązaniem jest x x 3 4 = x + x 1 183) C 1 e x + C e x 184) C 1 e x + C e x x + x 1 185) Równanie na wolframalpha.com, http: // www. wolframalpha. com/ input/?i= y% 7% 7+ -4y+ %3D+ x^+ -+8x+ %B

16 Zadania.1 Zadania na 3.0 Wszystkie zadania proszę rozwiązać symbolicznie za pomocą wolframalpha.com oraz Matlaba. Wyświetlić pole kierunkowe do każdego równania. W rozwiązaniu powinien znaleźć się skrypt rozwiązujący dane równanie w Matlabie oraz wyświetlający pole kierunkowe wraz z przykładowymi rozwiązaniami, jak również link do strony wolframalpha.com z rozwiązaniem równania. Powinien również znaleźć się komentarz odnośnie zgodności rozwiązań z Matlaba, wolframalpha.com oraz poniższych odpowiedzi Odp.: Odp.: Odp.: y = y y y > 0 186) y = C e C 1x 187) y y = xy 188) y = C 1 x x C 1 ) + C, y = x3 3 + C 189) xy + y = 1 + x 190) y = x3 1 + x + C 1x ln x + C x + C 3 191) x yy = y xy ) 19) xy y = x 193). Zadania na 4.0 Wszystkie zadania proszę rozwiązać symbolicznie za pomocą wolframalpha.com oraz Matlaba. Wyświetlić pole kierunkowe do każdego równania. W rozwiązaniu powinien znaleźć się skrypt rozwiązujący dane równanie w Matlabie oraz wyświetlający pole kierunkowe wraz z przykładowymi rozwiązaniami, jak również link do strony wolframalpha.com z rozwiązaniem równania. Powinien również znaleźć się komentarz odnośnie zgodności rozwiązań z Matlaba, wolframalpha.com oraz poniższych odpowiedzi. 16

17 1. z wartościami początkowymi: d 3 y = ln x 194) dx3 Znaleźć całkę ogólną tego równania. Odpowiedź: x 0 = 1, y 0, y 0, y 0 dowolne 195) y = y 0 + x 1) y 0 + Rozwiązanie ogólne: x 1) y x3 ln x x3 + 1 x 1 4 x ) y = 1 6 x3 ln x x3 + C x + C 1 x + C 0 197).3 Zadania na 5.0 Wszystkie zadania proszę rozwiązać symbolicznie za pomocą wolframalpha.com oraz Matlaba. Wyświetlić pole kierunkowe do każdego równania. W rozwiązaniu powinien znaleźć się skrypt rozwiązujący dane równanie w Matlabie oraz wyświetlający pole kierunkowe wraz z przykładowymi rozwiązaniami, jak również link do strony wolframalpha.com z rozwiązaniem równania. Powinien również znaleźć się komentarz odnośnie zgodności rozwiązań z Matlaba, wolframalpha.com oraz poniższych odpowiedzi. 1. Linia pościgu. Po osi Ox porusza się w kierunku dodatnim ze stałą prędkością a punkt P. Po płaszczyźnie Oxy porusza się punkt M ze stałą prędkością v tak, że wektor prędkości jest w każdej chwili skierowany do punktu P. Znaleźć równanie różniczkowe. Znaleźć tor punktu M. Odpowiedź: Literatura y 0 x = 1 + a ) v ) y 1+ a v y 0 y0 1 a ) v y y 0 ) 1 a v 1 ) + C 1 198) [1] I. N. Bronsztejn, K. Siemiendiajew, G. Musiol, and H. Möhlig, Nowoczesne kompendium matematyki. Wydawnictwo naukowe PWN, 004. [] J. Niedoba and W. Niedoba, Równania różniczkowe zwyczajne i cząstkowe. Wydawnictwa AGH,

Równania różniczkowe wyższych rzędów

Równania różniczkowe wyższych rzędów Równania różniczkowe wyższych rzędów Marcin Orchel Spis treści 1 Wstęp 1 1.1 Istnienie rozwiązań............................... 1 1.2 Rozwiązanie ogólne............................... 2 1.3 Obniżanie rzędu

Bardziej szczegółowo

Równania różniczkowe zwyczajne pierwszego rzędu, cd

Równania różniczkowe zwyczajne pierwszego rzędu, cd Równania różniczkowe zwyczajne pierwszego rzędu, cd Marcin Orchel Spis treści 1 Wstęp 1 1.1 Równania różniczkowe zwyczajne w postaci uwikłanej........... 1 1.1.1 Rozwiązanie w postaci parametrycznej................

Bardziej szczegółowo

5 Równania różniczkowe zwyczajne rzędu drugiego

5 Równania różniczkowe zwyczajne rzędu drugiego 5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =

Bardziej szczegółowo

Wykład 3 Równania rózniczkowe cd

Wykład 3 Równania rózniczkowe cd 7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy

Bardziej szczegółowo

Równania różniczkowe cząstkowe drugiego rzędu

Równania różniczkowe cząstkowe drugiego rzędu Równania różniczkowe cząstkowe drugiego rzędu Marcin Orchel Spis treści 1 Wstęp 1 1.1 Metoda faktoryzacji (rozdzielania zmiennych)................ 5 1.2 Metoda funkcji Greena.............................

Bardziej szczegółowo

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne

1 Równania różniczkowe zwyczajne Równania różniczkowe zwyczajne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe Równaniem

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na

Bardziej szczegółowo

Równania różniczkowe liniowe rzędu pierwszego

Równania różniczkowe liniowe rzędu pierwszego Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to

Bardziej szczegółowo

Równania różniczkowe liniowe wyższych rzędów o stałych współcz

Równania różniczkowe liniowe wyższych rzędów o stałych współcz Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 1

RÓWNANIA RÓŻNICZKOWE WYKŁAD 1 RÓWNANIA RÓŻNICZKOWE WYKŁAD 1 Przedmiot realizowany w układzie wykład 2 godz. tygodniowo ćwiczenia 2 godz. tygodniowo Regulamin zaliczeń www.mini.pw.edu.pl/~figurny 2 Program zajęć Równania różniczkowe

Bardziej szczegółowo

Równania różniczkowe. Notatki z wykładu.

Równania różniczkowe. Notatki z wykładu. Równania różniczkowe Notatki z wykładu http://robert.brainusers.net 17.06.2009 Notatki własne z wykładu. Są niekompletne, bez bibliografii oraz mogą zawierać błędy i usterki. Z tego powodu niniejszy dokument

Bardziej szczegółowo

5. Równania różniczkowe zwyczajne pierwszego rzędu

5. Równania różniczkowe zwyczajne pierwszego rzędu 5. Równania różniczkowe zwyczajne pierwszego rzędu 5.1. Wstęp. Definicja 5.1. Niech V R 3 będzie obszarem oraz F : V R. Równaniem różniczkowym zwyczajnym rzędu pierwszego nazywamy równanie postaci Równanie

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE A. RÓWNANIA RZĘDU PIERWSZEGO Uwagi ogólne Równanie różniczkowe zwyczajne rzędu pierwszego zawiera. Poza tym może zawierać oraz zmienną. Czyli ma postać ogólną Na przykład

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych

1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych Równania różniczkowe zwyczajne o rozdzielonych zmiennych Definicja. Równaniem różniczkowym o rozdzielonych zmiennych nazywamy równanie postaci p(y) = q() (.) rozwiązanie równania sprowadza się do postaci

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej F (x, y(x), y (1) (x), y () (x),..., y (n) (x)) = 0, gdzie y (k) (x) to k ta

Bardziej szczegółowo

1 Równania różniczkowe drugiego rzędu

1 Równania różniczkowe drugiego rzędu Równania różniczkowe drugiego rzędu Najpierw zajmiemy się równaniami różniczkowymi rzędu drugiego, w których y nie występuje w sposób jawny, tzn. F (x, y, y ) = 0 (.) Równanie takie rozwiązujemy poprzez

Bardziej szczegółowo

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Równania różniczkowe pierwszego rzędu Równaniem różniczkowym zwyczajnym pierwszego rzędu nazywamy równanie postaci (R) y = f(x, y). Najogólniejszą

Bardziej szczegółowo

Równanie przewodnictwa cieplnego (I)

Równanie przewodnictwa cieplnego (I) Wykład 4 Równanie przewodnictwa cieplnego (I) 4.1 Zagadnienie Cauchy ego dla pręta nieograniczonego Rozkład temperatury w jednowymiarowym nieograniczonym pręcie opisuje funkcja u = u(x, t), spełniająca

Bardziej szczegółowo

Równania różniczkowe. Analiza Matematyczna. Aleksander Denisiuk

Równania różniczkowe. Analiza Matematyczna. Aleksander Denisiuk Analiza Matematyczna Równania różniczkowe Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Analiza

Bardziej szczegółowo

Równania różniczkowe. Równania różniczkowe zwyczajne rzędun,n 2. Małgorzata Wyrwas. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Równania różniczkowe. Równania różniczkowe zwyczajne rzędun,n 2. Małgorzata Wyrwas. Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe Równania różniczkowe zwyczajne rzędun,n 2 Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe str. 1/38 Równania różniczkowe zwyczajne

Bardziej szczegółowo

ROZWIĄZANIA I ODPOWIEDZI

ROZWIĄZANIA I ODPOWIEDZI ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. =1+cos a) = =2cos( sin) = = sin2 = ln += =sin2 = ln 1+cos +. b) sin(+3)= =+3 = 3 =( 3) = sin= =( 6+9) sin= sin 6 sin+9sin. Obliczamy teraz pierwszą całkę: sin= ()=

Bardziej szczegółowo

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx 5. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU 5.1. Pojęcia wstępne. Klasfikacja równań i rozwiązań Rozróżniam dwa zasadnicze tp równań różniczkowch: równania różniczkowe zwczajne i równania różniczkowe cząstkowe.

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 Obszar określoności równania Jeżeli występująca w równaniu y' f ( x, y) funkcja f jest ciągła, to równanie posiada rozwiązanie. Jeżeli f jest nieokreślona w punkcie (x 0,

Bardziej szczegółowo

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L Tydzień nr 9-10 (16 maja - 29 maja) Równania różniczkowe wartości własne funkcja wykładnicza od operatora - Matematyka II 2010/2011L Wszelkie pytania oraz uwagi o błędach proszę kierować na przemek.majewski@gmail.com

Bardziej szczegółowo

Analiza matematyczna dla informatyków 3 Zajęcia 14

Analiza matematyczna dla informatyków 3 Zajęcia 14 Analiza matematyczna dla informatyków 3 Zajęcia 14 Metoda rozwiązywania (Jednorodne równanie różniczkowe liniowe rzędu n o stałych współczynnikach). gdzie a 0,..., a n 1 C. Wielomian charakterystyczny:

Bardziej szczegółowo

Rachunek różniczkowy i całkowy 2016/17

Rachunek różniczkowy i całkowy 2016/17 Rachunek różniczkowy i całkowy 26/7 Zadania domowe w pakietach tygodniowych Tydzień 3-7..26 Zadanie O. Czy dla wszelkich zbiorów A, B i C zachodzą następujące równości: (A B)\C = (A\C) (B\C), A\(B\C) =

Bardziej szczegółowo

2 Równania różniczkowe zwyczajne o rozdzielonych zmiennych

2 Równania różniczkowe zwyczajne o rozdzielonych zmiennych 2. Równania o rozdzielonych zmiennych 2 1 2 Równania różniczkowe zwyczajne o rozdzielonych zmiennych Równaniem różniczkowym zwyczajnym pierwszego rzędu o rozdzielonych zmiennych nazywamy równanie różniczkowe

Bardziej szczegółowo

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych. Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać

Bardziej szczegółowo

Wykład z równań różnicowych

Wykład z równań różnicowych Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y +x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5 Dystrybucje Marcin Orchel Spis treści 1 Wstęp 1 1.1 Dystrybucje................................... 1 1.2 Pochodna dystrybucyjna............................ 3 1.3 Przestrzenie...................................

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K

Bardziej szczegółowo

11 Równania różniczkowe cząstkowe. Równania różniczkowe cząstkowe pierwszego rzędu.

11 Równania różniczkowe cząstkowe. Równania różniczkowe cząstkowe pierwszego rzędu. Równania różniczkowe cząstkowe pierwszego rzędu 11 1 11 Równania różniczkowe cząstkowe. Równania różniczkowe cząstkowe pierwszego rzędu. 11.1 Równania różniczkowe cząstkowe. Definicje i oznaczenia. Równaniem

Bardziej szczegółowo

26. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE DRUGIEGO RZĘDU

26. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE DRUGIEGO RZĘDU 6. RÓWNANIA RÓŻNIZKOWE ZWYZAJNE DRUGIEGO RZĘDU 6.. Własności ogólne Równaniem różniczkowym zwyczajnym rzęd drgiego nazywamy równanie, w którym niewiadomą jest fnkcja y jednej zmiennej i w którym występją

Bardziej szczegółowo

Równania różniczkowe. Równania różniczkowe zwyczajne rzędu pierwszego. Małgorzata Wyrwas

Równania różniczkowe. Równania różniczkowe zwyczajne rzędu pierwszego. Małgorzata Wyrwas Równania różniczkowe Równania różniczkowe zwyczajne rzędu pierwszego Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe str. 1/49 Równania różniczkowe

Bardziej szczegółowo

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k. Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

13 Równanie struny drgającej. Równanie przewodnictwa ciepła.

13 Równanie struny drgającej. Równanie przewodnictwa ciepła. Równanie struny drgającej. Równanie przewodnictwa ciepła 13 1 13 Równanie struny drgającej. Równanie przewodnictwa ciepła. 13.1 Równanie struny drgającej Równanie różniczkowe liniowe drugiego rzędu typu

Bardziej szczegółowo

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH PROPORCJONALNOŚĆ PROSTA Proporcjonalnością prostą nazywamy zależność między dwoma wielkościami zmiennymi x i y, określoną wzorem: y = a x Gdzie a jest

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw 1 1. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y 1+x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

Komputerowa analiza zagadnień różniczkowych 1. Równania różniczkowe zwyczajne podstawy teoretyczne. P. F. Góra

Komputerowa analiza zagadnień różniczkowych 1. Równania różniczkowe zwyczajne podstawy teoretyczne. P. F. Góra Komputerowa analiza zagadnień różniczkowych 1. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Zasady zaliczenie ćwiczeń egzamin ustny; na egzaminie

Bardziej szczegółowo

Równania i nierówności wykładnicze i logarytmiczne

Równania i nierówności wykładnicze i logarytmiczne Równania i nierówności wykładnicze i logarytmiczne Paweł Foralewski Teoria Ponieważ funkcje wykładnicza i logarytmiczna zostały wprowadzone wcześniej, tutaj przypomnimy tylko definicję logarytmu i jego

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne liniowe pierwszego rzędu

1 Równania różniczkowe zwyczajne liniowe pierwszego rzędu Równania różniczkowe zwyczajne liniowe I-go rzędu 1 1 1 Równania różniczkowe zwyczajne liniowe pierwszego rzędu Równaniem różniczkowym zwyczajnym liniowym pierwszego rzędu nazywamy równanie postaci (RL1)

Bardziej szczegółowo

1 Funkcje dwóch zmiennych podstawowe pojęcia

1 Funkcje dwóch zmiennych podstawowe pojęcia 1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej

Bardziej szczegółowo

Całki nieoznaczone. 1 Własności. 2 Wzory podstawowe. Adam Gregosiewicz 27 maja a) Jeżeli F (x) = f(x), to f(x)dx = F (x) + C,

Całki nieoznaczone. 1 Własności. 2 Wzory podstawowe. Adam Gregosiewicz 27 maja a) Jeżeli F (x) = f(x), to f(x)dx = F (x) + C, Całki nieoznaczone Adam Gregosiewicz 7 maja 00 Własności a) Jeżeli F () = f(), to f()d = F () + C, dla dowolnej stałej C R. b) Jeżeli a R, to af()d = a f()d. c) Jeżeli f i g są funkcjami całkowalnymi,

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Wstęp

Bardziej szczegółowo

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego. . Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21

Bardziej szczegółowo

Całka nieoznaczona, podstawowe wiadomości

Całka nieoznaczona, podstawowe wiadomości Całka nieoznaczona, podstawowe wiadomości Funkcją pierwotną funkcji w przedziale nazywamy funkcję taką, że dla każdego punktu z tego przedziału zachodzi Różnica dwóch funkcji pierwotnych w przedziale danej

Bardziej szczegółowo

22. CAŁKA KRZYWOLINIOWA SKIEROWANA

22. CAŁKA KRZYWOLINIOWA SKIEROWANA CAŁA RZYWOLINIOWA SIEROWANA Niech łuk o równaniach parametrycznych: x x(t), y y(t), a < t < b, będzie łukiem regularnym skierowanym, tzn łukiem w którym przyjęto punkt A(x(a), y(a)) za początek łuku, zaś

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 5

RÓWNANIA RÓŻNICZKOWE WYKŁAD 5 RÓWNANIA RÓŻNICZKOWE WYKŁAD 5 Równania różniczkowe rzędu drugiego Równania rzędu drugiego sprowadzalne do równań rzędu pierwszego Równanie różniczkowe rzędu drugiego postaci F ( x, ', ") 0 ( nie wstępuje

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ... Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x

Bardziej szczegółowo

1 Równanie różniczkowe pierwszego rzędu

1 Równanie różniczkowe pierwszego rzędu 1 Równanie różniczkowe pierwszego rzędu Wiele zagadnień geometrycznych, fizycznych, ekonomicznych i innych prowadzi do zależności, w których pojawiają się pochodne. Przykład 1. Znaleźć krzywą dla której

Bardziej szczegółowo

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki nieoznaczone

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki nieoznaczone Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Całki nieoznaczone 1. Definicja całki nieoznaczonej Definicja 1. Funkcja F jest funkcją pierwotną funkcji f na przedziale I, jeżeli F (x) =

Bardziej szczegółowo

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (postać kierunkowa) Funkcja liniowa to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości liczbowe Szczególnie ważny w postaci

Bardziej szczegółowo

Równania różniczkowe zwyczajne zadania z odpowiedziami

Równania różniczkowe zwyczajne zadania z odpowiedziami Równania różniczkowe zwyczajne zadania z odpowiedziami Maciej Burnecki opracowanie Spis treści I Równania pierwszego rzędu 2 o rozdzielonych zmiennych 2 jednorodne 4 liniowe 4 Bernoulliego 5 Równania sprowadzalne

Bardziej szczegółowo

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )

Bardziej szczegółowo

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych wyliczamy według wzoru (x, x 2,..., x n ) f(x, x 2,..., x n )

Bardziej szczegółowo

Matematyka licea ogólnokształcące, technika

Matematyka licea ogólnokształcące, technika Matematyka licea ogólnokształcące, technika Opracowano m.in. na podstawie podręcznika MATEMATYKA w otaczającym nas świecie zakres podstawowy i rozszerzony Funkcja liniowa Funkcję f: R R określoną wzorem

Bardziej szczegółowo

Równania różniczkowe

Równania różniczkowe Równania różniczkowe I rzędu Andrzej Musielak Równania różniczkowe Równania różniczkowe I rzędu Równanie różniczkowe pierwszego rzędu to równanie w którm pojawia się zmienna x, funkcja tej zmiennej oraz

Bardziej szczegółowo

ZASTOSOWANIE RACHUNKU OPERATORÓW MIKUS- IŃSKIEGO W PEWNYCH ZAGADNIENIACH DYNAMIKI KONSTRUKCJI

ZASTOSOWANIE RACHUNKU OPERATORÓW MIKUS- IŃSKIEGO W PEWNYCH ZAGADNIENIACH DYNAMIKI KONSTRUKCJI Budownictwo 18 Mariusz Poński ZASTOSOWANIE RACHUNKU OPERATORÓW MIKUS- IŃSKIEGO W PEWNYCH ZAGADNIENIACH DYNAMIKI KONSTRUKCJI 1. Metody transformacji całkowych Najczęściej spotykaną metodą rozwiązywania

Bardziej szczegółowo

Numeryczne rozwiązywanie równań różniczkowych ( )

Numeryczne rozwiązywanie równań różniczkowych ( ) Numeryczne rozwiązywanie równań różniczkowych Równanie różniczkowe jest to równanie, w którym występuje pochodna (czyli różniczka). Przykładem najprostszego równania różniczkowego może być: y ' = 2x które

Bardziej szczegółowo

przy warunkach początkowych: 0 = 0, 0 = 0

przy warunkach początkowych: 0 = 0, 0 = 0 MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych,

Bardziej szczegółowo

Interpolacja. Marcin Orchel. Drugi przypadek szczególny to interpolacja trygonometryczna

Interpolacja. Marcin Orchel. Drugi przypadek szczególny to interpolacja trygonometryczna Interpolacja Marcin Orchel 1 Wstęp Mamy daną funkcję φ (x; a 0,..., a n ) zależną od n + 1 parametrów a 0,..., a n. Zadanie interpolacji funkcji φ polega na określeniu parametrów a i tak aby dla n + 1

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44

Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44 Księgarnia PWN: Ryszard Rudnicki, Wykłady z analizy matematycznej Spis treści Rozdział I. Wstęp do matematyki... 13 1.1. Elementy logiki i teorii zbiorów... 13 1.1.1. Rachunek zdań... 13 1.1.2. Reguły

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych

Rozwiązywanie układów równań liniowych Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j),

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j), ELEKTROTECHNIKA Semestr Rok akad. / 5 ZADANIA Z MATEMATYKI Zestaw. Przedstaw w postaci algebraicznej liczby zespolone: (3 + j)(5 j) 3 j +j (5 + j) (3 + j) 3. Narysuj zbiory punktów na płaszczyźnie: +j

Bardziej szczegółowo

Elementy równań różniczkowych cząstkowych

Elementy równań różniczkowych cząstkowych Elementy równań różniczkowych cząstkowych Magdalena Jakubek kwiecień 2016 1 Równania różniczkowe cząstkowe Problem brzegowy i problem początkowy Klasyfikacja równań Rodzaje warunków brzegowych Najważniejsze

Bardziej szczegółowo

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: Ciągi rekurencyjne Zadanie 1 Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: w dwóch przypadkach: dla i, oraz dla i. Wskazówka Należy poszukiwać rozwiązania w postaci, gdzie

Bardziej szczegółowo

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe. Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie

Bardziej szczegółowo

Dystrybucje, wiadomości wstępne (I)

Dystrybucje, wiadomości wstępne (I) Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

Matematyka dyskretna dla informatyków

Matematyka dyskretna dla informatyków Matematyka dyskretna dla informatyków Część I: Elementy kombinatoryki Jerzy Jaworski Zbigniew Palka Jerzy Szymański Uniwersytet im. Adama Mickiewicza Poznań 2007 4 Zależności rekurencyjne Wiele zależności

Bardziej szczegółowo

Geometria analityczna

Geometria analityczna Geometria analityczna Paweł Mleczko Teoria Informacja (o prostej). postać ogólna prostej: Ax + By + C = 0, A + B 0, postać kanoniczna (kierunkowa) prostej: y = ax + b. Współczynnik a nazywamy współczynnikiem

Bardziej szczegółowo

Równanie przewodnictwa cieplnego (II)

Równanie przewodnictwa cieplnego (II) Wykład 5 Równanie przewodnictwa cieplnego (II) 5.1 Metoda Fouriera dla pręta ograniczonego 5.1.1 Pierwsze zagadnienie brzegowe dla pręta ograniczonego Poszukujemy rozwiązania równania przewodnictwa spełniającego

Bardziej szczegółowo

Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań.

Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań. Zestaw zadań : Sumy i sumy proste podprzestrzeni Baza i wymiar Rzędy macierzy Struktura zbioru rozwiązań układu równań () Pokazać, że jeśli U = lin(α, α,, α k ), U = lin(β, β,, β l ), to U + U = lin(α,

Bardziej szczegółowo

Równania różnicowe. Dodatkowo umawiamy się, że powyższy iloczyn po pustym zbiorze indeksów, czyli na przykład 0

Równania różnicowe. Dodatkowo umawiamy się, że powyższy iloczyn po pustym zbiorze indeksów, czyli na przykład 0 Równania różnicowe 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp Zamiast tego pisać będziemy x (n), y (n) itp Ponadto

Bardziej szczegółowo

3. FUNKCJA LINIOWA. gdzie ; ół,.

3. FUNKCJA LINIOWA. gdzie ; ół,. 1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

1. Równanie różniczkowe pierwszego rzędu

1. Równanie różniczkowe pierwszego rzędu 1. Równanie różniczkowe pierwszego rzędu Wiele zagadnień geometrycznych, fizycznych, ekonomicznych i innych prowadzi do zależności, w których pojawiają się pochodne. Przykład. Znaleźć krzywą dla której

Bardziej szczegółowo

Kinematyka płynów - zadania

Kinematyka płynów - zadania Zadanie 1 Zadane jest prawo ruchu w zmiennych Lagrange a x = Xe y = Ye t 0 gdzie, X, Y oznaczają współrzędne materialne dla t = 0. Wyznaczyć opis ruchu w zmiennych Eulera. Znaleźć linię prądu. Pokazać,

Bardziej szczegółowo

Metody numeryczne w przykładach

Metody numeryczne w przykładach Metody numeryczne w przykładach Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Regionalne Koło Matematyczne 8 kwietnia 2010 r. Bartosz Ziemkiewicz (WMiI UMK) Metody numeryczne w przykładach

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 3

RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 Równania różniczkowe liniowe Metoda przewidwań Metoda przewidwań całkowania równania niejednorodnego ' p( x) opiera się na następującm twierdzeniu. Twierdzenie f ( x) Suma

Bardziej szczegółowo

Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/

Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/ Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a, bud. Agro

Bardziej szczegółowo

Analiza Matematyczna część 5

Analiza Matematyczna część 5 [wersja z 14 V 6] Analiza Matematyczna część 5 Konspekt wykładu dla studentów fizyki/informatyki Akademia Świętokrzyska 5/6 Wojciech Broniowski 1 Równania różniczkowe Definicje, klasyfikacja Równanie różniczkowe

Bardziej szczegółowo

Rozdział 1 PROGRAMOWANIE LINIOWE

Rozdział 1 PROGRAMOWANIE LINIOWE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.2 Ćwiczenia komputerowe Ćwiczenie 1.1 Wykorzystując

Bardziej szczegółowo

Metody przybliżonego rozwiązywania równań różniczkowych zwyczajnych

Metody przybliżonego rozwiązywania równań różniczkowych zwyczajnych Metody przybliżonego rozwiązywania równań różniczkowych zwyczajnych Rozwiązywanie równań różniczkowych zwyczajnych za pomocą szeregów metody dyskretne Metoda współczynników nieoznaczonych Metoda kolejnego

Bardziej szczegółowo

Wyprowadzenie wzoru na krzywą łańcuchową

Wyprowadzenie wzoru na krzywą łańcuchową Wyprowadzenie wzoru na krzywą łańcuchową Daniel Pęcak 16 sierpnia 9 1 Wstęp Być może zastanawiałeś się kiedyś drogi czytelniku nad kształtem, jaki kształt przyjmuje zwisający swobodnie łańcuch lub sznur

Bardziej szczegółowo

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU Agata Boratyńska Zadania z matematyki Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU. Korzystając z definicji granicy ciągu udowodnić: a) n + n+ = 0 b) n + n n+ = c) n + n a =, gdzie a

Bardziej szczegółowo

6 Układy równań różniczkowych. Równania wyższych rzędów.

6 Układy równań różniczkowych. Równania wyższych rzędów. Układy równań. Równania wyższych rzędów. 6 1 6 Układy równań różniczkowych. Równania wyższych rzędów. 6.1 Podstawowe pojęcia dla układów równań różniczkowych zwyczajnych Definicja. Układem n równań różniczkowych

Bardziej szczegółowo

1 Wiadomości wstępne z równań różniczkowych Podstawowe definicje Interpretacja geometryczna równania rzędu pierwszego...

1 Wiadomości wstępne z równań różniczkowych Podstawowe definicje Interpretacja geometryczna równania rzędu pierwszego... Skrypt powstał na bazie wykładów z przedmiotu Równania różniczkowe, które prowadzę dla studentów drugiego semestru kierunku Automatyka i Robotyka na Wydziale Elektrotechniki i Automatyki Politechniki Gdańskiej.

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c

FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c FUNKCJA KWADRATOWA 1. Definicje i przydatne wzory DEFINICJA 1. Funkcja kwadratowa lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax + bx + c taką, że a, b, c R oraz a 0. Powyższe wyrażenie

Bardziej szczegółowo

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie

Bardziej szczegółowo

Formy kwadratowe. Rozdział 10

Formy kwadratowe. Rozdział 10 Rozdział 10 Formy kwadratowe Rozważmy rzeczywistą macierz symetryczną A R n n Definicja 101 Funkcję h : R n R postaci h (x) = x T Ax (101) nazywamy formą kwadratową Macierz symetryczną A występującą w

Bardziej szczegółowo