RÓWNANIA RÓŻNICZKOWE WYKŁAD 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "RÓWNANIA RÓŻNICZKOWE WYKŁAD 1"

Transkrypt

1 RÓWNANIA RÓŻNICZKOWE WYKŁAD 1

2 Przedmiot realizowany w układzie wykład 2 godz. tygodniowo ćwiczenia 2 godz. tygodniowo Regulamin zaliczeń 2

3 Program zajęć Równania różniczkowe zwyczajne Szeregi liczbowe Ciągi i szeregi funkcyjne Szeregi potęgowe Szereg trygonometryczny Fouriera Elementy geometrii różniczkowej 3

4 Literatura Gewert M., Skoczylas Z., Równania różniczkowe zwyczajne. Teoria, przykłady, zadania, Oficyna Wydawnicza GiS, 2006 Krysicki W., Włodarski L., Analiza matematyczna w zadaniach cz.2, PWN, 2006 Leksiński W., Żakowski W., Matematyka cz. IV, WNT, 2002 Matwiejew N., Zadania z równań różniczkowych zwyczajnych, PWN, 1974 Muszyński J., Myszkis A., Równania różniczkowe zwyczajne, PWN, Otto E. (red.), Matematyka dla wydziałów budowlanych i mechanicznych, Tom 2, PWN,1980 Przeradzki B., Teoria i praktyka równań różniczkowych zwyczajnych, Wydawnictwo Uniwersytetu Łódzkiego, Stankiewicz W., Zadania z matematyki dla wyższych uczelni technicznych., PWN

5 Równania różniczkowe Równania różniczkowe są ważnym narzędziem wykorzystywanym przy tworzeniu modeli matematycznych w wielu dziedzinach nauki i techniki. Równania różniczkowe należą do kategorii równań funkcyjnych, czyli takich, w których niewiadomą jest funkcja. O ich specyfice decyduje to, że oprócz niewiadomej funkcji w równaniu występuje również pochodna (pochodne) tej funkcji. Niniejszy wykład zawiera definicje podstawowych pojęć oraz prezentację metod rozwiązywania wybranych typów równań różniczkowych zwyczajnych. 5

6 Równania różniczkowe Jeżeli w równaniu różniczkowym występuje tylko pochodna rzędu pierwszego, to równanie możemy symbolicznie zapisać w postaci F(x, y, y') = 0, gdzie F oznacza pewną funkcję trzech zmiennych, x jest zmienną niezależną, y poszukiwaną funkcją, zaś y' jej pochodną. Przykłady Jeżeli F(x, y, y') = (y') 2 - y' + y - x, to równanie ma postać (y') 2 - y' + y - x = 0. Jeżeli F(x, y, y') = tgy '- 2y' + y, to równanie ma postać tgy '-2y '+ y = 0. Jeżeli F(x, y, y') = y'- y- x, to równanie można zapisać w równoważnej postaci y' = y + x. W dwóch pierwszych przypadkach pochodna występuje w równaniach w sposób uwikłany, trzecie równanie jest rozwikływalne ze względu na pochodną. 6

7 Rozważmy szczegółowo przypadek równania rozwikływalnego ze względu na pochodną, w którym niewiadoma funkcja y nie występuje w sposób jawny. Można je wówczas zapisać w postaci lub prościej Równania różniczkowe y' f ( x), F ( x, y') 0 (lub dy dx f ( x)) Rozwiązanie takiego równania jest równoważne wyznaczeniu całki nieoznaczonej funkcji f. Dowolna funkcja pierwotna funkcji f (o ile istnieje) jest rozwiązaniem równania. Zbiór rozwiązań tworzy całkę nieoznaczoną funkcji f. Zatem każde rozwiązanie możemy zapisać w postaci y( x) Φ( x) C gdzie Φ oznacza dowolną funkcję pierwotną funkcji f, C jest stałą rzeczywistą. 7

8 Jeżeli zażądamy dodatkowo, by spełniony był warunek (zwany warunkiem początkowym) y(x 0 ) = y 0, to (jeśli jest on realizowalny) funkcja y będzie wyznaczona w sposób jednoznaczny przez dobór stałej C z równości y(x 0 ) = Φ(x 0 ) + C = y 0, czyli C 0 = y 0 - Φ(x 0 ). Wykorzystując pierwsze główne twierdzenie rachunku całkowego, funkcję y możemy zapisać w postaci Równania różniczkowe y( x) Φ( x) C0 Φ( x) y0 Φ( x0) y0 x x 0 f ( t) dt Jest to tzw. rozwiązanie szczególne równania, spełniające warunek początkowy y(x 0 ) = y 0. 8

9 Przykład Rozwiązaniem równania y' = e x jest każda funkcja o postaci y = e x + C. Dla różnych wartości stałej C, funkcje te określają całkę ogólną równania. Ich wykresy tworzą rodzinę krzywych różniących się przesunięciem wzdłuż osi Oy. Zadając warunek początkowy y(0) = 3 dostajemy e 0 + C = 3, czyli C = 2. Stąd rozwiązanie szczególne równania spełniające warunek początkowy ma postać y = e x + 2. Równania różniczkowe 9

10 Równania różniczkowe zwyczajne Uogólnieniem wprowadzonych pojęć są następujące definicje. Definicja Równaniem różniczkowym zwyczajnym nazywamy równanie F(x, y, y', y'',..., y (n) ) = 0, w którym niewiadomą jest funkcja y zmiennej x i w którym występują pochodne tej funkcji. Przymiotnik "zwyczajne" oznacza, że funkcja niewiadoma zależy od jednej zmiennej. Równania różniczkowe, w których występują funkcje wielu zmiennych, noszą nazwę równań różniczkowych cząstkowych. W niniejszym wykładzie zajmować się będziemy wyłącznie równaniami zwyczajnymi. 10

11 Równania różniczkowe zwyczajne Definicja Liczbę n 1 nazywamy rzędem równania różniczkowego, jeżeli w równaniu tym występuje pochodna rzędu n i nie występują pochodne rzędu wyższego niż n. Przykłady y' = y + x - rząd = 1, y'' + y' + y + x = 0 - rząd = 2, y''' = y 2 + x - rząd = 3. 11

12 Równania różniczkowe zwyczajne Definicja Rozwiązaniem szczególnym (całką szczególną) równania różniczkowego na przedziale (a, b) nazywamy funkcję spełniającą to równanie w każdym punkcie tego przedziału. Przykłady Funkcja y = xe x jest rozwiązaniem szczególnym równania y' - y = e x, na przedziale (-, ), ponieważ (xe x )' - xe x = e x, dla każdego x (-, ). Równie łatwo można sprawdzić, że funkcje y 1 (x) = x - 1 oraz y 2 (x) = e x + x - 1 są rozwiązaniami szczególnymi równania y' - y + x - 2 = 0. Definicja Krzywą całkową nazywamy wykres rozwiązania szczególnego równania różniczkowego. 12

13 Równania różniczkowe zwyczajne Definicja Zagadnieniem Cauchy'ego dla równania różniczkowego rzędu n nazywamy następujące zagadnienie: Znaleźć rozwiązanie szczególne tego równania spełniające warunki początkowe y(x 0 ) = y 0, y'(x 0 ) = y 1,..., y (n-1) (x 0 ) = y n-1 gdzie liczby x 0 oraz y 0, y 1,..., y n-1, zwane wartościami początkowymi są dane. W przypadku n = 1 warunek początkowy ma postać dla n = 2 y(x 0 ) = y 0, y(x 0 ) = y 0, y'(x 0 ) = y 1. Zagadnieniem Cauchy'ego bywa nazywane zagadnieniem początkowym. 13

14 Równania różniczkowe zwyczajne Przykład Rozwiążemy zagadnienie Cauchy'ego dla równania różniczkowego rzędu 2 y'' = 6x, z warunkami początkowymi y(0) = 0, y'(0) = 1. Dwukrotnie całkując otrzymujemy Z warunków początkowych dostajemy Stąd C 1 = 1, C 2 = 0 i rozwiązanie szczególne spełniające warunki początkowe ma postać y = x 3 + x. 14

15 Równania różniczkowe zwyczajne Definicja Jeżeli każdemu układowi n liczb (C 1, C 2,..., C n ) wybieranych dowolnie z pewnych przedziałów, jest przyporządkowana dokładnie jedna krzywa całkowa równania różniczkowego rzędu n, to mówimy, że jest określona rodzina krzywych całkowych tego równania zależna od n parametrów (C 1, C 2,...,C n ). Definicja Rozwiązaniem ogólnym (całką ogólną) równania różniczkowego rzędu n nazywamy rodzinę krzywych całkowych tego równania zależną od n parametrów (C 1, C 2,...,C n ), których wartości można tak dobrać, aby otrzymać krzywą całkową spełniającą warunki początkowe y(x 0 ) = y 0, y'(x 0 ) = y 1,..., y (n-1) (x 0 ) = y n-1 dla każdego układu wartości początkowych x 0, y 0, y 1,..., y n-1, dla których krzywa taka istnieje. 15

16 Równania różniczkowe zwyczajne W przypadku gdy każda krzywa całkowa jest wykresem tylko jednej całki szczególnej (a więc funkcji), sformułowanie "rodzina krzywych całkowych" jest równoważne sformułowaniu "rodzina funkcji spełniających równanie różniczkowe". Krzywa całkowa, może też być łącznym wykresem większej liczby całek szczególnych - nie będąc wykresem funkcji. Jak się przekonamy, rozwiązując zadania przykładowe, często otrzymujemy wyniki właśnie w postaci takich krzywych. W dalszej części wykładu, zgodnie z powszechnie stosowaną terminologią, polecenie "rozwiązać równanie" będzie oznaczać wyznaczenie całki ogólnej tego równania. Rozwiązanie zagadnienia Cauchy'ego uzyskamy wyznaczając całkę ogólną równania i dobierając występującą w nim stałą (stałe) tak, by spełniony był warunek początkowy (warunki początkowe). 16

17 Równania różniczkowe zwyczajne Uwagi Przyjęta definicja rozwiązania ogólnego nie wyklucza istnienia krzywych całkowych nie należących do niego. Istnieją równania różniczkowe, nie posiadające rozwiązań, np. równanie e y' = 0. Nie zawsze istnieje rozwiązanie szczególne równania spełniające konkretne warunki początkowe. Są natomiast równania mające wiele rozwiązań tego samego zagadnienia Cauchy'ego. 17

18 Równania różniczkowe zwyczajne Przykład Zagadnienie Cauchy'ego dla równania różniczkowego y = 2 y z warunkiem początkowym y(0) = 0, ma nieskończenie wiele rozwiązań. Łatwo sprawdzić, że dla każdego c 0 funkcja jest jego rozwiązaniem. y x = 0 dla (x c) 2 dla x c x > c 18

19 Równania różniczkowe zwyczajne y x = 0 dla (x c) 2 dla x c x > c 19

20 Równania rzędu pierwszego Definicja Zapis równania rzędu pierwszego F ( x, y, y') 0 nazywamy postacią ogólną (uwikłaną) równania. Jeżeli można tę postac rozwikłać, tzn. zapisać równanie w postaci y' f ( x, y) to postać tę nazywamy normalną. W notacji Leibniza równanie ma postać dy dx f ( x, y) 20

21 Równania rzędu pierwszego Warunek wystarczający istnienia rozwiązań Twierdzenie (Peano) Jeżeli prawa strona równania różniczkowego y' f ( x, y) jest funkcją ciągłą w obszarze D R 2, to przez każdy punkt tego obszaru przechodzi co najmniej jedna krzywa całkowa tego równania. (tzn. zagadnienie Cauchy'ego z warunkiem początkowym y(x 0 ) = y 0, gdzie (x 0, y 0 ) D posiada rozwiązanie). 21

22 Równania różniczkowe zwyczajne Warunek wystarczający istnienia i jednoznaczności rozwiązań Definicja Funkcja f spełnia warunek Lipschitza w otoczeniu U punktu (x 0, y 0 ) ze względu na y L > 0 (x,y 1 ) U (x,y 2 ) U f(x,y 1 ) f(x,y 2 ) < L y 1 - y 2 Twierdzenie (Picarda) Jeżeli prawa strona równania różniczkowego y' f ( x, y) jest funkcją ciągłą w otoczeniu U punktu (x 0, y 0 ) i spełnia w nim warunek Lipschitza, to przez ten punkt przechodzi dokładnie jedna krzywa całkowa tego równania (tzn. zagadnienie Cauchy'ego z warunkiem początkowym y(x 0 ) = y 0, gdzie (x 0, y 0 ) D posiada lokalnie jednoznaczne rozwiązanie). Uwaga Jeżeli pochodna cząstkowa funkcji f względem y jest ciągła w otoczeniu U, to funkcja spełnia w U warunek Lipschitza ze względu na y. 22

23 Równania różniczkowe o zmiennych rozdzielonych Definicja Równaniem różniczkowym o zmiennych rozdzielonych nazywamy równanie, które można przedstawić w postaci y' f ( x) g( y) 23

24 Równania różniczkowe o zmiennych rozdzielonych Twierdzenie Jeżeli f jest funkcją ciągłą na przedziale (a, b), zaś g funkcją ciągłą i różną od zera na przedziale (c, d), to: 1. całka ogólna równania jest postaci G( y) F( x) C gdzie G jest funkcją pierwotną funkcji g na przedziale (c, d), zaś F funkcją pierwotną funkcji f na przedziale (a, b), 2. dla każdego x 0 (a, b) i y 0 (c, d) zagadnienie Cauchy'ego ma dokładnie jedno rozwiązanie. f ( x) y' g( y) y( x0) y Z punktu 1.) tezy twierdzenia wynika, że wyznaczenie rozwiązania ogólnego równania różniczkowego o zmiennych rozdzielonych wymaga znalezienia całek nieoznaczonych funkcji f, oraz g. 0 24

25 Równania różniczkowe o zmiennych rozdzielonych Procedura wyznaczania rozwiązania ogólnego równania o zmiennych rozdzielonych 1. Zapisujemy równanie w postaci dy dx f ( x) g( y) 2. Rozdzielamy zmienne (obustronnie mnożąc przez g(y)dx) g ( y) dy f ( x) dx 3. Obustronnie całkujemy równanie (lewą stronę po y, prawą po x) g ( y) dy f ( x) dx 4. Rozwiązanie ogólne równania ma postać G( y) F( x) C 5. gdzie G jest funkcją pierwotną funkcji g na przedziale (c, d), zaś F funkcją pierwotną funkcji f na przedziale (a, b). Ostatnia równość zazwyczaj określa funkcję y w sposób uwikłany. Często się zdarza, że związku tego nie udaje się rozwikłać. 25

26 Równania różniczkowe o zmiennych rozdzielonych Przykład Wyznaczyć całkę szczególną równania różniczkowego spełniającą warunek początkowy y(0) = 0. 26

27 Równania różniczkowe o zmiennych rozdzielonych Przykład Wyznaczyć całkę szczególną równania różniczkowego spełniającą warunek początkowy y(0) = 0. Rozdzielając zmienne i całkując obustronnie wyznaczamy całkę ogólną równania Zatem funkcję y dało się wyznaczyć w sposób jawny. Wyznaczamy całkę szczególną dla x = 0 i y = 0 Stąd C = 1 i całka szczególna spełniająca warunek początkowy y(0) = 0, 27

28 Równania różniczkowe o zmiennych rozdzielonych Przykład Rozwiązać zagadnienie Cauchy'ego 28

29 Równania różniczkowe o zmiennych rozdzielonych Przykład Rozwiązać zagadnienie Cauchy'ego Metodą rozdzielenia zmiennych całkujemy równanie różniczkowe 29

30 Równania różniczkowe o zmiennych rozdzielonych Przykład (c. d.) Otrzymaliśmy rozwiązanie ogólne równania różniczkowego, w którym poszukiwana funkcja y występuje w postaci uwikłanej (i związku tego nie da się rozwikłać). Z przytoczonego twierdzenia wynika istnienie i jednoznaczność rozwiązania zagadnienia Cauchy'ego. Zatem wstawiając x = 1 i y = 2 do rozwiązania równania dostajemy 4 + ln2 = 1 + C, czyli C = 3 + ln2. Rozwiązaniem zagadnienia Cauchy'ego jest więc funkcja spełniająca równanie 30

31 Równania różniczkowe o zmiennych rozdzielonych Przykład Wyznaczyć krzywą całkową równania różniczkowego przechodzącą przez punkt (1, 1). Metodą rozdzielenia zmiennych wyznaczamy całkę ogólną równania Rozdzielamy zmienne Całkujemy obustronnie Stąd 31

32 Równania różniczkowe o zmiennych rozdzielonych Przykład (c. d.) Całka ogólna jest jednoparametrową rodziną okręgów (a więc krzywych!) o równaniach (półokręgi: górne - dla y >0 i dolne - dla y <0, są wykresami funkcji spełniających równanie różniczkowe). Uwzględniając warunek początkowy y(1) = 1 dostajemy C = 2, zatem szukana krzywa całkowa jest opisywana równaniem 32

33 Jak to robią inni? Kurs e-learningowy- OCW Massachusetts Institute of Technology Wykład video Generowanie wykresu rozwiązania zagadnienia Cauchy ego

34 Dziękuję za uwagę 34

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Równania różniczkowe pierwszego rzędu Równaniem różniczkowym zwyczajnym pierwszego rzędu nazywamy równanie postaci (R) y = f(x, y). Najogólniejszą

Bardziej szczegółowo

6 Układy równań różniczkowych. Równania wyższych rzędów.

6 Układy równań różniczkowych. Równania wyższych rzędów. Układy równań. Równania wyższych rzędów. 6 1 6 Układy równań różniczkowych. Równania wyższych rzędów. 6.1 Podstawowe pojęcia dla układów równań różniczkowych zwyczajnych Definicja. Układem n równań różniczkowych

Bardziej szczegółowo

Równania różniczkowe zwyczajne pierwszego rzędu, cd

Równania różniczkowe zwyczajne pierwszego rzędu, cd Równania różniczkowe zwyczajne pierwszego rzędu, cd Marcin Orchel Spis treści 1 Wstęp 1 1.1 Równania różniczkowe zwyczajne w postaci uwikłanej........... 1 1.1.1 Rozwiązanie w postaci parametrycznej................

Bardziej szczegółowo

20 zorganizowanych w Uczelni (ZZU) Liczba godzin całkowitego 150 nakładu pracy studenta (CNPS)

20 zorganizowanych w Uczelni (ZZU) Liczba godzin całkowitego 150 nakładu pracy studenta (CNPS) Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA.3 A Nazwa w języku angielskim Mathematical Analysis Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych. Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Analiza matematyczna I Mathematical analysis I Kierunek: Kod przedmiotu: Matematyka Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Poziom kwalifikacji:

Bardziej szczegółowo

KARTA KURSU. Mathematics

KARTA KURSU. Mathematics KARTA KURSU Nazwa Nazwa w j. ang. Matematyka Mathematics Kod Punktacja ECTS* 4 Koordynator Dr Maria Robaszewska Zespół dydaktyczny dr Maria Robaszewska Opis kursu (cele kształcenia) Celem kursu jest zapoznanie

Bardziej szczegółowo

WYDZIAŁ ELEKTRONIKI MIKROSYSTEMÓW I FOTONIKI

WYDZIAŁ ELEKTRONIKI MIKROSYSTEMÓW I FOTONIKI Zał. nr do ZW WYDZIAŁ ELEKTRONIKI MIKROSYSTEMÓW I FOTONIKI KARTA PRZEDMIOTU Nazwa w języku polskim: Matematyka (Zao EA EiT stopień) Nazwa w języku angielskim: Mathematics Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: Obowiązkowy w ramach treści wspólnych z kierunkiem Matematyka, moduł kierunku obowiązkowy Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

ZADANIA Z MATEMATYKI DLA STUDENTÓW KIERUNKÓW EKONOMICZNYCH

ZADANIA Z MATEMATYKI DLA STUDENTÓW KIERUNKÓW EKONOMICZNYCH P I O T R DUDZIŃSKI ZADANIA Z MATEMATYKI DLA STUDENTÓW KIERUNKÓW EKONOMICZNYCH GDYNIA 2003 Piotr Dudziński, Zadania z matematyki dla studentów kierunków ekonomicznych, Gdynia 2003, s. 84, bibliografia

Bardziej szczegółowo

Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I

Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I Sylabus modułu: Analiza matematyczna 1A (03-MO1S-12-AMa1A) 1. Informacje ogólne koordynator

Bardziej szczegółowo

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE PROGRAM ZAJĘĆ FAKULTATYWNYCH Z MATEMATYKI DLA STUDENTÓW I ROKU SYLABUS Nazwa uczelni: Wyższa Szkoła Przedsiębiorczości i Administracji w Lublinie ul. Bursaki 12, 20-150 Lublin Kierunek Rok studiów Informatyka

Bardziej szczegółowo

Matematyka II nazwa przedmiotu SYLABUS A. Informacje ogólne

Matematyka II nazwa przedmiotu SYLABUS A. Informacje ogólne Matematyka II nazwa przedmiotu SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod przedmiotu

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia I. Informacje ogólne Analiza matematyczna 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw 1 1. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y 1+x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 (1) Nazwa Rachunek różniczkowy i całkowy II (2) Nazwa jednostki prowadzącej Instytut Matematyki przedmiot (3) Kod (4) Studia

Bardziej szczegółowo

Zadanie 1.1 Sprawdzić, czy następujące wyrażenia są tautologiami: (1.5 pkt): a)p [( q q) (r p)], (1.5 pkt): b)[(p q)] [ p q].

Zadanie 1.1 Sprawdzić, czy następujące wyrażenia są tautologiami: (1.5 pkt): a)p [( q q) (r p)], (1.5 pkt): b)[(p q)] [ p q]. RACHUNEK RÓŻNICZKOY I CAŁKOY I KOLOKIUM Zadanie 1.1 Sprawdzić, czy następujące wyrażenia są tautologiami: (1.5 pkt): a)p [( q q) (r p)], (1.5 pkt): b)[(p q)] [ p q]. Symbol p oznacza zaprzeczenie zdaniap.

Bardziej szczegółowo

Matematyka I nazwa przedmiotu SYLABUS A. Informacje ogólne

Matematyka I nazwa przedmiotu SYLABUS A. Informacje ogólne Matematyka I nazwa przedmiotu SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod przedmiotu

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne liniowe pierwszego rzędu

1 Równania różniczkowe zwyczajne liniowe pierwszego rzędu Równania różniczkowe zwyczajne liniowe I-go rzędu 1 1 1 Równania różniczkowe zwyczajne liniowe pierwszego rzędu Równaniem różniczkowym zwyczajnym liniowym pierwszego rzędu nazywamy równanie postaci (RL1)

Bardziej szczegółowo

MATEMATYKA. audytoryjne),

MATEMATYKA. audytoryjne), Nazwa przedmiotu: MATEMATYKA 1. Wydział: InŜynierii Środowiska i Geodezji 2. Kierunek studiów: InŜynieria Środowiska 3. Rodzaj i stopień studiów: studia I stopnia, inŝynierskie, stacjonarne 4. Nazwa przedmiotu:

Bardziej szczegółowo

Wstęp do analizy matematycznej

Wstęp do analizy matematycznej Wstęp do analizy matematycznej Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań w

Bardziej szczegółowo

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje

Bardziej szczegółowo

Dariusz Jakóbczak Podstawy analizy matematycznej

Dariusz Jakóbczak Podstawy analizy matematycznej Dariusz Jakóbczak Podstawy analizy matematycznej skrypt Wydziału Elektroniki i Informatyki Politechniki Koszalińskiej Wydawnictwo Uczelniane Politechniki Koszalińskiej Koszalin 2007 1 Spis treści Literatura...3

Bardziej szczegółowo

0 2 odpowiadająca zajęciom o charakterze praktycznym (P) w tym liczba punktów ECTS

0 2 odpowiadająca zajęciom o charakterze praktycznym (P) w tym liczba punktów ECTS Zał. nr 4 do ZW WYDZIAŁ ** KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ A Nazwa w języku angielskim Algebra and Analytic Geometry Kierunek studiów (jeśli dotyczy): Specjalność

Bardziej szczegółowo

MATEMATYKA - CYKL 5 GODZINNY. DATA : 8 czerwca 2009

MATEMATYKA - CYKL 5 GODZINNY. DATA : 8 czerwca 2009 MATURA EUROPEJSKA 2009 MATEMATYKA - CYKL 5 GODZINNY DATA : 8 czerwca 2009 CZAS TRWANIA EGZAMINU: 4 godziny (240 minut) DOZWOLONE POMOCE : Europejski zestaw wzorów Kalkulator (bez grafiki, bez możliwości

Bardziej szczegółowo

Zajęcia fakultatywne z matematyki (Wyspa inżynierów) Dodatkowe w ramach projektu UE

Zajęcia fakultatywne z matematyki (Wyspa inżynierów) Dodatkowe w ramach projektu UE PROGRAM ZAJĘĆ FAKULTATYWNYCH Z MATEMATYKI DLA STUDENTÓW I ROKU SYLABUS Nazwa uczelni: Wyższa Szkoła Przedsiębiorczości i Administracji w Lublinie ul. Bursaki 12, 20-150 Lublin Kierunek Rok studiów Architektura

Bardziej szczegółowo

M10. Własności funkcji liniowej

M10. Własności funkcji liniowej M10. Własności funkcji liniowej dr Artur Gola e-mail: a.gola@ajd.czest.pl pokój 3010 Definicja Funkcję określoną wzorem y = ax + b, dla x R, gdzie a i b są stałymi nazywamy funkcją liniową. Wykresem funkcji

Bardziej szczegółowo

Spis treści 1. Liczby zespolone 2 2. Macierze, wyznaczniki, równania liniowe 4 3. Geometria analityczna 9 4. Granice, pochodne funkcji i ich

Spis treści 1. Liczby zespolone 2 2. Macierze, wyznaczniki, równania liniowe 4 3. Geometria analityczna 9 4. Granice, pochodne funkcji i ich Spis treści Liczby zespolone Macierze wyznaczniki równania liniowe 4 Geometria analityczna 9 4 Granice pochodne funkcji i ich zastosowania 5 Całki nieoznaczone 8 6 Zastosowania geometryczne całek 0 7 Pochodne

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Liczby i funkcje

Zadania z analizy matematycznej - sem. I Liczby i funkcje Zadania z analizy matematycznej - sem. I Liczby i funkcje Definicja 1. Mówimy że: liczba m Z jest dzielnikiem liczby n Z gdy istnieje l Z takie że n = l m. Zapisujemy to symbolem m n; liczba m Z jest wspólnym

Bardziej szczegółowo

Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej

Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej Definicja całki podwójnej Katedra Matematyki i Ekonomii Matematycznej 25 maja 2016 Definicja całki podwójnej Załóżmy, że f : K R, gdzie K = a, b c, d R 2, jest funkcją ograniczoną. Niech x 0, x 1,...,

Bardziej szczegółowo

SYLABUS. 4.Studia Kierunek studiów/specjalność Poziom kształcenia Forma studiów Ekonomia Studia pierwszego stopnia Studia stacjonarne i niestacjonarne

SYLABUS. 4.Studia Kierunek studiów/specjalność Poziom kształcenia Forma studiów Ekonomia Studia pierwszego stopnia Studia stacjonarne i niestacjonarne SYLABUS 1.Nazwa Matematyka 2.Nazwa jednostki prowadzącej Katedra Metod Ilościowych i Informatyki przedmiot Gospodarczej 3.Kod E/I/A.3 4.Studia Kierunek studiów/specjalność Poziom Forma studiów Ekonomia

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 45 45

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 45 45 Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: ANALIZA MATEMATYCZNA M3 Nazwa w języku angielskim: MATHEMATICAL ANALYSIS M3 Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

SYLABUS. Cele zajęć z przedmiotu

SYLABUS. Cele zajęć z przedmiotu Załącznik nr 1 do Zarządzenia Rektora UR Nr 4/2012 z dnia 20.01.2012r. SYLABUS Nazwa przedmiotu Nazwa jednostki prowadzącej przedmiot Analiza matematyczna Wydział Matematyczno-Przyrodniczy, Instytut Fizyki

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

ANALIZA SYLABUS. A. Informacje ogólne

ANALIZA SYLABUS. A. Informacje ogólne ANALIZA SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Rok studiów

Bardziej szczegółowo

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: wiadomości i umiejętności z zakresu matematyki ze szkoły średniej

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: wiadomości i umiejętności z zakresu matematyki ze szkoły średniej KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Matematyka 2. KIERUNEK: Mechanika i budowa maszyn 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/1 5. LICZBA PUNKTÓW ECTS: 4 6. LICZBA GODZIN: 30 WY + 30

Bardziej szczegółowo

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0.

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0. Matematyka ZLic - 3 Pochodne i różniczki funkcji jednej zmiennej Definicja Pochodną funkcji f w punkcie x, nazwiemy liczbę oznaczaną symbolem f x lub df x dx, równą granicy właściwej f x lim h - o ile

Bardziej szczegółowo

Równania różniczkowe liniowe rzędu pierwszego

Równania różniczkowe liniowe rzędu pierwszego Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to

Bardziej szczegółowo

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu:

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu: Funkcja jednej zmiennej - przykładowe rozwiązania Zadanie 4 c) Badając przebieg zmienności funkcji postępujemy według poniższego schematu:. Analiza funkcji: (a) Wyznaczenie dziedziny funkcji (b) Obliczenie

Bardziej szczegółowo

Rachunek całkowy funkcji wielu zmiennych

Rachunek całkowy funkcji wielu zmiennych Rachunek całkowy funkcji wielu zmiennych Całki potrójne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki olitechnika Białostocka 1

Bardziej szczegółowo

Kierunek i poziom studiów: Informatyka, pierwszy Sylabus modułu: Analiza Matematyczna Nazwa wariantu modułu (opcjonalnie):

Kierunek i poziom studiów: Informatyka, pierwszy Sylabus modułu: Analiza Matematyczna Nazwa wariantu modułu (opcjonalnie): Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Informatyka, pierwszy Sylabus modułu: Analiza Matematyczna Nazwa wariantu modułu (opcjonalnie): 1. Informacje ogólne koordynator modułu

Bardziej szczegółowo

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24) Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 (1) Nazwa Równania różniczkowe zwyczajne i cząstkowe (2) Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot

Bardziej szczegółowo

PIERWSZEGO. METODA CZYNNIKA CAŁKUJĄCEGO. METODA ROZDZIELONYCH ZMIENNYCH.

PIERWSZEGO. METODA CZYNNIKA CAŁKUJĄCEGO. METODA ROZDZIELONYCH ZMIENNYCH. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE RZĘDU PIERWSZEGO. METODA CZYNNIKA CAŁKUJĄCEGO. METODA ROZDZIELONYCH ZMIENNYCH. Równaniem różniczkowym zwyczajnym nazywamy równanie zawierające pochodne funkcji y(x) względem

Bardziej szczegółowo

ANALIZA MATEMATYCZNA DLA FIZYKÓW

ANALIZA MATEMATYCZNA DLA FIZYKÓW Lech Górniewicz Roman Stanisław Ingarden ANALIZA MATEMATYCZNA DLA FIZYKÓW Wydanie piąte Toruń 2012 SPIS TREŚCI WSPOMNIENIE O PROFESORZE ROMANIE STANISŁAWIE INGARDENIE (Miłosz Michalski)... ix PRZEDMOWA

Bardziej szczegółowo

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 Zadanie IV. Dany jest prostokątny arkusz kartony o długości 80 cm i szerokości 50 cm. W czterech rogach tego arkusza wycięto kwadratowe

Bardziej szczegółowo

Marek Zakrzewski Wydział Matematyki Politechnika Wrocławska. Lekarstwo na kłopoty z Cardanem: Róbta co Vieta.

Marek Zakrzewski Wydział Matematyki Politechnika Wrocławska. Lekarstwo na kłopoty z Cardanem: Róbta co Vieta. Marek Zakrzewski Wydział Matematyki Politechnika Wrocławska Lekarstwo na kłopoty z Cardanem: Róbta co Vieta. Rozwiązywanie równań sześciennych - wzory Cardana Każde równanie sześcienne można sprowadzić

Bardziej szczegółowo

Data wydruku: Dla rocznika: 2015/2016. Opis przedmiotu

Data wydruku: Dla rocznika: 2015/2016. Opis przedmiotu Sylabus przedmiotu: Specjalność: Matematyka I Wszystkie specjalności Data wydruku: 21.01.2016 Dla rocznika: 2015/2016 Kierunek: Wydział: Zarządzanie i inżynieria produkcji Inżynieryjno-Ekonomiczny Dane

Bardziej szczegółowo

Wielomiany. dr Tadeusz Werbiński. Teoria

Wielomiany. dr Tadeusz Werbiński. Teoria Wielomiany dr Tadeusz Werbiński Teoria Na początku przypomnimy kilka szkolnych definicji i twierdzeń dotyczących wielomianów. Autorzy podręczników szkolnych podają różne definicje wielomianu - dla jednych

Bardziej szczegółowo

3.2. RÓWNANIA I NIERÓWNOŚCI LINIOWE.

3.2. RÓWNANIA I NIERÓWNOŚCI LINIOWE. .. RÓWNANIA I NIERÓWNOŚCI LINIOWE. m równania (pierwiastkiem równania) z jedną niewiadomą nazywamy liczbę, która spełnia dane równanie, tzn. jeśli w miejsce niewiadomej podstawimy tę liczbę, to otrzymamy

Bardziej szczegółowo

PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION

PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION Mirosław GUZIK Grzegorz KOSZŁKA PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION W artykule przedstawiono niektóre

Bardziej szczegółowo

Obliczenia naukowe Wykład nr 6

Obliczenia naukowe Wykład nr 6 Obliczenia naukowe Wykład nr 6 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [1] D. Kincaid, W. Cheney, Analiza

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU

WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU Karolina Kalińska MATEMATYKA: PRZYKŁADY I ZADANIA Włocławek 2011 REDAKCJA WYDAWNICTWA PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU Matematyka:

Bardziej szczegółowo

PRÓBNA MATURA ZADANIA PRZYKŁADOWE

PRÓBNA MATURA ZADANIA PRZYKŁADOWE ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA 3, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0,3 C. 30. D. 0 5% 6 II sposób: x nieznana liczba

Bardziej szczegółowo

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej. Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami

Bardziej szczegółowo

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ

Bardziej szczegółowo

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą

Bardziej szczegółowo

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS PRZEDMIOTU. Obowiązuje od roku akademickiego: 2010/2011

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS PRZEDMIOTU. Obowiązuje od roku akademickiego: 2010/2011 PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS Obowiązuje od roku akademickiego: 2010/2011 Instytut Ekonomiczny Kierunek studiów: Ekonomia Kod kierunku: 04.9 Specjalność: brak 1. PRZEDMIOT NAZWA

Bardziej szczegółowo

Wykład I. Literatura. Oznaczenia. ot(x 0 ) zbiór wszystkich otoczeń punktu x 0

Wykład I. Literatura. Oznaczenia. ot(x 0 ) zbiór wszystkich otoczeń punktu x 0 Wykład I Literatura Podręczniki 1. G. M. Fitherholz Rachunek różniczkowy i całkowy 2. W. Żakowski Matematyka tom I Zbiory zadań 1. W. Krysicki, L. Włodarski Analiza matematyczna w zadaniach tom I i II

Bardziej szczegółowo

Rozdział 9. Funkcja pierwotna. 9.1 Funkcja pierwotna

Rozdział 9. Funkcja pierwotna. 9.1 Funkcja pierwotna Rozdział 9 Funkcja pierwotna 9. Funkcja pierwotna Definicja funkcji pierwotnej. Niech f będzie funkcją określoną na przedziale P. Mówimy, że funkcja F : P R jest funkcją pierwotną funkcji f w przedziale

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

BLOK I. , x = 2 2. 3. Korzystając z definicji pochodnej w punkcie, obliczyć pochodne podanych funkcji we wskazanych punktach:

BLOK I. , x = 2 2. 3. Korzystając z definicji pochodnej w punkcie, obliczyć pochodne podanych funkcji we wskazanych punktach: BLOK I. Rachunek różniczkowy i całkowy. Znaleźć przyrost funkcji f(x) = 3x 3 przy x = zakładając, że przyrost x zmiennej niezależnej jest równy: a), ; b), ;, 5.. Znaleźć iloraz różnicowy funkcji y = f(x)

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Obliczenia symboliczne Symbolic computations Kierunek: Rodzaj przedmiotu: obowiązkowy w ramach treści wspólnych z kierunkiem Informatyka Rodzaj zajęć: wykład,

Bardziej szczegółowo

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. podstawowym dla uczniów technikum. część II

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. podstawowym dla uczniów technikum. część II Wymagania edukacyjne, kontrola i ocena w nauczaniu matematyki w zakresie podstawowym dla uczniów technikum część II Figury na płaszczyźnie kartezjańskiej L.p. Temat lekcji Uczeń demonstruje opanowanie

Bardziej szczegółowo

Zastosowanie Excela w obliczeniach inżynierskich.

Zastosowanie Excela w obliczeniach inżynierskich. Zastosowanie Excela w obliczeniach inżynierskich. Część I Różniczkowanie numeryczne. Cel ćwiczenia: Zapoznanie się z ilorazami różnicowymi do obliczania wartości pochodnych. Pochodna jest miarą szybkości

Bardziej szczegółowo

Wprowadzenie do Techniki. Materiały pomocnicze do projektowania z przedmiotu: Ćwiczenie nr 2 Przykład obliczenia

Wprowadzenie do Techniki. Materiały pomocnicze do projektowania z przedmiotu: Ćwiczenie nr 2 Przykład obliczenia Materiały pomocnicze do projektowania z przedmiotu: Wprowadzenie do Techniki Ćwiczenie nr 2 Przykład obliczenia Opracował: dr inż. Andrzej J. Zmysłowski Katedra Podstaw Systemów Technicznych Wydział Organizacji

Bardziej szczegółowo

Rozdział 2. Liczby zespolone

Rozdział 2. Liczby zespolone Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1, y 1 ) + x, y ) := x 1 + x, y 1 + y ), 1) x 1, y 1 ) x, y ) := x 1 x y 1 y, x 1 y + x y 1 ) ) jest ciałem zob rozdział

Bardziej szczegółowo

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Klasa pierwsza Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe

Bardziej szczegółowo

III. STRUKTURA I FORMA EGZAMINU

III. STRUKTURA I FORMA EGZAMINU III. STRUKTURA I FORMA EGZAMINU Egzamin maturalny z matematyki jest egzaminem pisemnym sprawdzającym wiadomości i umiejętności określone w Standardach wymagań egzaminacyjnych i polega na rozwiązaniu zadań

Bardziej szczegółowo

x y = 2z, + 2y f(x, y) = ln(x3y ) y x

x y = 2z, + 2y f(x, y) = ln(x3y ) y x . Funkcje wielu zmiennych i funkcje uwikłane Zad.. Obliczyć przybliżoną wartość wyrażenia (, 4) (,), Zad.. Obliczyć przybliżoną wartość wyrażenia, 8, 5, Zad. 3. Wykazać, że każda funkcja z(x, y) = x f

Bardziej szczegółowo

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel

Bardziej szczegółowo

Rozdział 8. Analiza fourierowska. 8.1 Rozwinięcie w szereg Fouriera

Rozdział 8. Analiza fourierowska. 8.1 Rozwinięcie w szereg Fouriera Rozdział 8 Analiza fourierowska 8.1 Rozwinięcie w szereg Fouriera Rozważmy funkcję rzeczywistą f określoną na okręgu o promieniu jednostkowym. Parametryzując okrąg przy pomocy kąta φ [, π] otrzymujemy

Bardziej szczegółowo

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt

Bardziej szczegółowo

Ćwiczenie 4. Matlab - funkcje, wielomiany, obliczenia symboliczne

Ćwiczenie 4. Matlab - funkcje, wielomiany, obliczenia symboliczne Ćwiczenie 4. Matlab - funkcje, wielomiany, obliczenia symboliczne Obliczenia z wykorzystaniem tzw. funkcji anonimowej Składnia funkcji anonimowej: nazwa_funkcji=@(lista_argumentów)(wyrażenie) gdzie: -

Bardziej szczegółowo

METODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03

METODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03 METODY OBLICZENIOWE Projekt nr 3.4 Dariusz Ostrowski, Wojciech Muła 2FD/L03 Zadanie Nasze zadanie składało się z dwóch części: 1. Sformułowanie, przy użyciu metody Lagrange a II rodzaju, równania różniczkowego

Bardziej szczegółowo

istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy

istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy MODEL REGRESJI LINIOWEJ. METODA NAJMNIEJSZYCH KWADRATÓW Analiza regresji zajmuje się badaniem zależności pomiędzy interesującymi nas wielkościami (zmiennymi), mające na celu konstrukcję modelu, który dobrze

Bardziej szczegółowo

ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA

ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA DYNAMICZNYCH LOKAT KAPITAŁOWYCH Krzysztof Gąsior Uniwersytet Rzeszowski Streszczenie Celem referatu jest zaprezentowanie praktycznego zastosowania

Bardziej szczegółowo

Matura próbna 2014 z matematyki-poziom podstawowy

Matura próbna 2014 z matematyki-poziom podstawowy Matura próbna 2014 z matematyki-poziom podstawowy Klucz odpowiedzi do zadań zamkniętych zad 1 2 3 4 5 6 7 8 9 10 11 12 odp A C C C A A B B C B D A 13 14 15 16 17 18 19 20 21 22 23 24 25 C C A B A D C B

Bardziej szczegółowo

V. WYMAGANIA EGZAMINACYJNE

V. WYMAGANIA EGZAMINACYJNE V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny

Bardziej szczegółowo

Ekonomia matematyczna - 1.2

Ekonomia matematyczna - 1.2 Ekonomia matematyczna - 1.2 6. Popyt Marshalla, a popyt Hicksa. Poruszać się będziemy w tzw. standardowym polu preferencji X,, gdzie X R n i jest relacją preferencji, która jest: a) rosnąca (tzn. x y x

Bardziej szczegółowo

Propozycje rozwiązań zadań z matematyki - matura rozszerzona

Propozycje rozwiązań zadań z matematyki - matura rozszerzona Jacek Kredenc Propozycje rozwiązań zadań z matematyki - matura rozszerzona Zadanie 1 Zastosujmy trójkąt Paskala 1 1 1 1 2 1 1 3 3 1 Przy iloczynie będzie stał współczynnik 3. Zatem Odpowiedź : C Zadanie

Bardziej szczegółowo

Obwody elektryczne prądu stałego

Obwody elektryczne prądu stałego Obwody elektryczne prądu stałego Dr inż. Andrzej Skiba Katedra Elektrotechniki Teoretycznej i Informatyki Politechniki Gdańskiej Gdańsk 12 grudnia 2015 Plan wykładu: 1. Rozwiązanie zadania z poprzedniego

Bardziej szczegółowo

, h(x) = sin(2x) w przedziale [ 2π, 2π].

, h(x) = sin(2x) w przedziale [ 2π, 2π]. Informatyczne podstawy projektowania, IŚ, / Maima, część II. Rysowanie wykresów w dwu i trzech wymiarach (zob. 5). a. Otwórz panel okna Wykres D i zapoznaj się z nim. Wyrażenie(a) - tutaj wpisujemy funkcję

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek: 10-11, środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd

Bardziej szczegółowo

Matura z matematyki na poziomie rozszerzonym

Matura z matematyki na poziomie rozszerzonym Tadeusz Socha Matura z matematyki na poziomie rozszerzonym tom V uzupełnienie do matury od 2015 roku o treści zwiększające wymagania maturalne Copyright by Socha Tadeusz, 2013 ISBN 978-83-936602-9-2 www.maturzysta.info

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1. Matematyka poziom podstawowy Wyznaczanie wartości funkcji dla danych argumentów i jej miejsca zerowego. Zdający

Bardziej szczegółowo

PORTFOLIO Próbki tekstu składanego systemem L A TEX

PORTFOLIO Próbki tekstu składanego systemem L A TEX PORTFOLIO Próbki tekstu składanego systemem L A TEX Autor: Spis treści Wstęp. Wprowadzenie...................................... Warunki korzystania z usługi............................ Przykładowe próbki

Bardziej szczegółowo

Zamiana zmiennych w wyrażeniach różniczkowych

Zamiana zmiennych w wyrażeniach różniczkowych Zamiana zmiennych w wyrażeniach różniczkowych Poniższy tekst stanowi treść jednego z moich wykładów dla studentów mechaniki. Postanowiłem go udostępnić szerszemu gronu, dotychczas korzystali z niego wyłącznie

Bardziej szczegółowo

CHARAKTERYSTYKA TESTU SPRAWDZAJĄCEGO STOPIEŃ OPANOWANIA WIADOMOŚCI O RÓWNANIACH I-GO STOPNIA ZJEDNĄ NIEWIADOMĄ.

CHARAKTERYSTYKA TESTU SPRAWDZAJĄCEGO STOPIEŃ OPANOWANIA WIADOMOŚCI O RÓWNANIACH I-GO STOPNIA ZJEDNĄ NIEWIADOMĄ. CHARAKTERYSTYKA TESTU SPRAWDZAJĄCEGO STOPIEŃ OPANOWANIA WIADOMOŚCI O RÓWNANIACH I-GO STOPNIA ZJEDNĄ NIEWIADOMĄ. Jest to test warstwowo liniowy, przeznaczony do badań programowych w obrębie jednego działu

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 24 lutego 2015 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod

Bardziej szczegółowo

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: Wiadomości i umiejętności z zakresu matematyki ze szkoły średniej.

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: Wiadomości i umiejętności z zakresu matematyki ze szkoły średniej. KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Analiza matematyczna I (ANA011) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/1 5. LICZBA PUNKTÓW ECTS: 11 6. LICZBA GODZIN: 60 /

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-R_P-08 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 008 Czas pracy 80 minut Instrukcja

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

SYLABUS PRZEDMIOTU MATEMATYKA W RAMACH ZAJ

SYLABUS PRZEDMIOTU MATEMATYKA W RAMACH ZAJ SYLABUS PRZEDMIOTU MATEMATYKA W RAMACH ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI DLA STUDENTÓW I ROKU BUDOWNICTWA WNT UWM W ROKU AKADEMICKIM 2012/2013 Nazwa przedmiotu: Zajęcia wyrównawcze z matematyki Rodzaj studiów:

Bardziej szczegółowo