Matematyka 1. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski
|
|
- Wiktor Barański
- 7 lat temu
- Przeglądów:
Transkrypt
1 Mtemtyk 1 Šuksz Dwidowski Instytut Mtemtyki, Uniwersytet l ski
2 Cªk oznczon Niech P = [, b] R b dzie przedziªem. Podziªem przedziªu P b dziemy nzywli k»d sko«czon rodzin Π = {P 1, P 2,..., P m } tkich przedziªów,»e orz m P = i=1 P i int(p i ) int(p j ) =, dl i j, i, j {1,..., m} Oznczj c przez I dªugo± przedziªu I otrzymujemy P = m P i = b i=1 Przedziªy P i mo»emy zpis w postci [x i 1, x i ] dl i {1,..., m}, gdzie = x 0 < x 1 <... < x m 1 < x m = b. Wówczs P i = x i x i 1.
3 Cªk oznczon Podziª Σ = {K 1, K 2,..., K l } nzyw si podpodziªem podziªu Π, je±li i {1,...,l} j {1,...,m} K i P j Liczb δ(π) = mx( P 1, P 2,..., P m ) nzywmy ±rednic podziªu Π.
4 Cªk oznczon Niech f : P R b dzie dn funkcj ogrniczon. Wtedy niech M = sup f (P), M k = sup f (P k ) orz s(f, P, Π) = m = inf f (P), m k = inf f (P k ) m m k P k, S(f, P, Π) = k=1 m M k P k k=1 Liczby s(f, P, Π) orz S(f, P, Π) nzywmy summi proksymcyjnymi, odpowiednio doln i górn, funkcji f n przedzile P dl podziªu Π. Z denicji wynik bezpo±rednio,»e m P s(f, P, Π) S(f, P, Π) M P
5 Cªk oznczon Uwg: Je±li Σ = {K 1, K 2,... K l } jest podpodziªem podziªu Π = {P 1, P 2,..., P m }, to s(f, P, Π) s(f, P, Σ), orz S(f, P, Σ) S(f, P, Π) Uwg: Je±li Π 1 i Π 2 s dwom podziªmi przedziªu P, to m P s(f, P, Π 1 ) S(f, P, Π 2 ) M P.
6 Cªk oznczon Z powy»szej nierówno±ci wynik,»e istniej liczby rzeczywiste I (f, P) = sup s(f, P, Π), Π I (f, P) = inf Π S(f, P, Π) orz zchodzi nierówno± Oznczeni: I (f, P) cªk górn. I (f, P) cªk doln, I (f, P) (I (f, P). Mówimy,»e funkcj f jest cªkowln w przedzile P w sensie Riemnn, je±li cªk doln jest równ cªce górnej.
7 Cªk oznczon Wspóln wrto± tych cªek nzywmy cªk Riemnn funkcji f w przedzile P = [, b] i oznczmy f lub f lub f lub f (x)dx P [,b] Liczby i b nzywmy grnicmi cªkowni. odpowiednio doln i górn. Pondto przyjmujemy: f = 0 orz b f = f
8 Cªk oznczon Uwg: Nie k»d funkcj ogrniczon n przedzile domkni tym jest cªkowln w sensie Riemnn! Przykªd: Funkcj Dirichlet D(x) = { 1, dl x [0, 1] Q, 0, dl x [0, 1] \ Q, nie jest cªkowln w sensie Riemnn n przedzile [0, 1], le jest ogrniczon.
9 Cªk oznczon Lemt Funkcj ogrniczon f : [, b] R jest cªkowln wtedy i tylko wtedy, gdy dl k»dego ε > 0 istnieje podziª Π przedziªu [, b] tki,»e S(f, [, b], Π) s(f, [, b], Π) < ε. Twierdzenie Je±li funkcj f : [, b] R jest ci gª, to f jest cªkowln w [, b]. Twierdzenie Je±li funkcj f : [, b] R jest monotoniczn, to jest cªkowln.
10 Wªsno±ci cªki oznczonej Wªsno± 1 Je±li funkcj f : [, b] R jest cªkowln orz m = inf f ([, b]) M = sup f ([, b]) to zchodzi nst puj c nierówno± m(b ) f (x)dx M(b )
11 Wªsno±ci cªki oznczonej Wªsno± 2 Je±li funkcj f : [, b] R jest cªkowln i nieujemn, to f (x)dx 0 Wªsno± 3 Je±li funkcj jest cªkowln n przedzile [, b], to jest cªkowln n k»dym podprzedzile przedziªu [, b].
12 Wªsno±ci cªki oznczonej Wªsno± 4 Je±li funkcj f : [, b] R jest cªkowln, Π = {P 1, P 2,..., P m } jest podziªem przedziªu [, b], to funkcj f jest cªkowln n k»dym z przedziªów P 1, P 2,..., P m i zchodzi wzór f (x)dx = m f (x)dx. k=1p k
13 Wªsno±ci cªki oznczonej Wªsno± 5 Je±li funkcj f : [, b] R jest cªkowln i α R, to funkcj αf jest cªkowln w [, b] orz αf = α f. Wªsno± 6 Je±li funckje f 1, f 2 s cªkowlne w przedzile [, b], to funkcj f 1 + f 2 te» jest cªkowln w [, b] orz (f 1 + f 2 ) = f 1 + f 2.
14 Wªsno±ci cªki oznczonej Wªsno± 7 Je±li funkcje f, g : [, b] R s cªkowlne orz f (x) g(x), x [, b] to f (x)dx g(x)dx. Wªsno± 8 Niech f : [, b] R b dzie funkcj cªkowln orz niech g : [inf f ([, b]), sup f ([, b])] R b dzie funkcj ci gª. Funkcj g f : [, b] R jest wtedy cªkowln.
15 Wªsno±ci cªki oznczonej Wªsno± 9 Je±li funkcj f : [, b] R jest cªkowln, to funkcj f 2 równie» jest cªkowln w przedzile [, b]. Wªsno± 10 Je±li funkcje f, g : [, b] R s cªkowlne, to funkcj f g jest cªkowln w przedzile [, b]. Wªsno± 11 Je±li funkcj f : [, b] R jest cªkowln, to funkcj f jest cªkowln w przedzile [, b] orz f (x)dx f (x) dx.
16 Wªsno±ci cªki oznczonej Wªsno± 12 Dl dowolnych funkcji f i g cªkowlnych w przedzile [, b] zchodzi nierówno±, schwrz: f g 2 f g. Wªsno± 13 Je±li funkcj f : [, b] R jest ci gª, to ξ [,b] 1 b f (x)dx = f (ξ). b
17 Interpretcj geometryczn cªki oznczonej Je±li funcj f : [, b] R jest nieujemn i cªkowln, to ustlj c podziª Π = {[, x 1 ], [x 1, x 2 ],..., [x m 1, b]} mo»emy interpretow skªdniki sum proksymcyjnych s(f, [, b], Π) orz S(f, [, b], Π) jko pol pewnych prostok tów, sme sumy jko pol pewnych wielok tów. Wtedy pole zwrte pomi dzy osi OX, wykresem funkcji f w przedzile [, b] jest cªk z funkcji f w tym przedzile. Oznczj c symbolem D ten obszr, jko D jego pole dostjemy D = f (x)dx.
18 Interpretcj geometryczn cªki oznczonej W szczególno±ci, je±li f 1, f 2 : [, b] R s funkcjmi cªkowlnymi orz f 1 f 2 w przedzile [, b], to pole D obszru D zwrtego pomi dzy wykresmi funkcji f 1 i f 2 w przedzile [, b] wyr» si wzorem D = (f 1 f 2 ).
19 Wªsno±ci cªki oznczonej Niech f : [, b] R b dzie funkcj cªkowln i niech F : [, b] R b dzie funkcj dn wzorem F (x) = x f (t)dt, x [, b]. (1) Funkcj F nzywmy funkcj górnej grnicy cªkowni. Podstwowe twierdzenie rchunku ró»niczkowego i cªkowego Funkcj F okre±lon wzorem (1) jest ci gª. Pondto, je±li funkcj f jest ci gª w punkcie x 0 [, b], to funkcj F jest ró»niczkowln w punkcie x 0 orz F (x 0 ) = f (x 0 ).
20 Wªsno±ci cªki oznczonej Wniosek K»d funkcj ci gª w przedzile [, b] m w przedzile [, b] funkcj pierwotn (z wi c i cªk nieoznczon ). Jedn z funkcji pierwotnych jest funkcj dn wzorem (1). Wzór NewtonLeibniz Je±li funkcj f : [, b] R jest ci gª, funkcj φ: [, b] R jest dowoln funkcj pierwotn funkcji f, to f (x)dx = φ(b) φ().
21 Wªsno±ci cªki oznczonej Twierdzenie o cªkowniu przez cz ±ci Zªó»my,»e funkcje f, g : [, b] R s klsy C 1. Wówczs f (x)g (x)dx = f (b)g(b) f ()g() f (x)g(x)dx. Twierdzenie o cªkowniu przez podstwienie Je±li funkcj f : [, b] R jest ci gª, funkcj ϕ: [α, β] [, b] jest klsy C 1 i = ϕ(α) orz b = ϕ(β), to f (x)dx = β α f (ϕ(t))ϕ (t)dt.
22 Cªk niewª±ciw Do tej pory rozw»li±my poj cie cªki funkcji okmre±lonej n przedzile domkni tym ( ztem te» ogrniczonym) i orgniczonej w tym przedzile. Chcieliby±my spróbow osªbi te zªo»eni. W tym celu zdeniujemy tzm. cªk niewª±ciw. Zªó»my,»e funkcj f : [, b) R, gdzie < < b, jest cªkowln w k»dym przedzile [c, d] [, b). Dl k»dego d (, b) istnieje cªk I (d) = d f (x)dx. Punkt b nzywmy punktem osobliwym funkcji f, je±li lbo b = +, lbo b R orz lim f (x) =. x b
23 Cªk niewª±ciw Je±li b jest punktem osobliwym funkcji f i istnieje sko«czon grnic lim d b I (d), to grnic t mzywmy cªk niewª±ciw funkcji f w przedzile [, b) i oznczmy f lub f (x)dx Ztem d f (x)dx = lim f (x)dx. d b Je±li powy»sz grnic nie istnieje, to mówimy,»e cªk niewª±ciw f (x)dx nie istnieje.
24 Cªk niewª±ciw Podobnie mówimy,»e, punkt jest punktem osobliwym funkcji f : (, b] R, gdzie < b <, je±li lbo =, lbo R orz lim f (x) =. x + Je±li f jest cªkowln w k»dym przedzile [c, d] (, b]. Dl k»dego c (, b) istnieje cªk c f (x)dx. to grnic t mzywmy cªk niewª±ciw funkcji f w przedzile (, b] i oznczmy f lub f (x)dx
25 Cªk niewª±ciw Ztem d f (x)dx = lim f (x)dx. c + Je±li powy»sz grnic nie istnieje, to mówimy,»e cªk niewª±ciw f (x)dx nie istnieje. Je±li istnieje f (x)dz to mówimy,»e cªk t jest zbie»n. Je»eli istnieje cªk f (x) dx to mówimy,»e jest on bezwzgl dnie zbie»n.
26 Cªk niewª±ciw Twierdzenie Zªó»my,»e b jest punktem osobliwym funkcji f, F : [, b) R orz Zªó»my,»e istnieje cªk Wówczs istnieje cªk f (x) F (x), x [, b). i jest bezwzgl dnie zbie»n. F (x)dx. f (x)dx
Całka Riemanna Dolna i górna suma całkowa Darboux
Doln i górn sum cłkow Drboux π = {x 0,..., x k }, x 0 =, x k = b - podził odcink [, b]; x i = x i x i 1, i = 1, 2,..., k; P = P[, b] - rodzin podziłów odcink [, b]. m i = m i (f, π) := inf x [xi 1,x i
Całka Riemanna. Analiza Matematyczna. Alexander Denisjuk
Anliz Mtemtyczn Cłk Riemnn Alexnder Denisjuk denisjuk@pjwstk.edu.pl Polsko-Jpońsk Wyższ Szkoł Technik Komputerowych zmiejscowy ośrodek dydktyczny w Gdńsku ul. Brzegi 55 80-045 Gdńsk Anliz Mtemtyczn p.
Całka oznaczona. Matematyka. Aleksander Denisiuk. Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza Elblag.
Mtemtyk Cłk oznczon Aleksnder Denisiuk denisjuk@euh-e.edu.pl Elblsk Uczelni Humnistyczno-Ekonomiczn ul. Lotnicz 2 82-3 Elblg Mtemtyk p. 1 Cłk oznczon Njnowsz wersj tego dokumentu dostępn jest pod dresem
Notatki z Analizy Matematycznej 4. Jacek M. Jędrzejewski
Nottki z Anlizy Mtemtycznej 4 Jcek M. Jędrzejewski ROZDZIAŁ 7 Cłk Riemnn 1. Cłk nieoznczon Definicj 7.1. Niech f : (, b) R będzie dowolną funkcją. Jeżeli dl pewnej funkcji F : (, b) R spełnion jest równość
Analiza Matematyczna. Całka Riemanna
Anliz Mtemtyczn. Cłk Riemnn Aleksnder Denisiuk denisiuk@pjwstk.edu.pl Polsko-Jpońsk Wyższ Szkoł Technik Komputerowych Wydził Informtyki w Gdńsku ul. Brzegi 55 8-45 Gdńsk 29 kwietni 217 1 / 2 Cłk Riemnn
Analiza matematyczna i algebra liniowa Całka oznaczona
Anliz mtemtyczn i lgebr liniow Cłk oznczon Wojciech Kotłowski Instytut Informtyki Politechniki Poznńskiej emil: imię.nzwisko@cs.put.poznn.pl pok. 2 (CW) tel. (61)665-2936 konsultcje: piątek 15:10-16:40
f(g(x))g (x)dx = 6) x 2 1
Mtemtyk -. rok Trnsport, stcjonrne. stopie«przykªdowe zdni n kolokwium nr.cªki nieoznczone - cªkownie przez cz ±ci, cªkownie przez podstwienie Denicj F () = f(), f()d = F () + C Cªkownie przez cz ±ci:
Całki oznaczone. Funkcja górnej granicy całkowania. Zastosowania całek oznaczonych. Całki niewłaściwe. Małgorzata Wyrwas
Cłki oznczone Definicj, włsności i oblicznie cłek oznczonych. Wrtość średni funkcji. Funkcj górnej grnicy cłkowni. Zstosowni cłek oznczonych. Cłki niewłściwe. Młgorzt Wyrws Ktedr Mtemtyki Wydził Informtyki
Całki oznaczone. Funkcja górnej granicy całkowania. Zastosowania całek oznaczonych. Całki niewłaściwe. Małgorzata Wyrwas
Cłki oznczone Definicj, włsności i oblicznie cłek oznczonych. Wrtość średni funkcji. Funkcj górnej grnicy cłkowni. Zstosowni cłek oznczonych. Cłki niewłściwe. Młgorzt Wyrws Ktedr Mtemtyki Wydził Informtyki
Notatki do wykªadu z analizy matematycznej I. Piotr Bartªomiejczyk opracowali Krzysztof Woyke i Šukasz Zªotowski
Nottki do wykªdu z nlizy mtemtycznej I Piotr Brtªomiejczyk oprcowli Krzysztof Woyke i Šuksz ªotowski Instytut Mtemtyki Uniwersytet Gd«ski Przedmow Spis tre±ci Rozdziª 1. Grnice ci gów i funkcji 1 1. Grnice
Matematyka II dla studentów Technologii Chemicznej
Mtemtyk II dl studentów Technologii Chemicznej Ilon IglewskNowk 17 lutego 16 r. Cªki oznczone Denicj 1 Podziªem odcink [, b] n n cz ±ci, n N, nzywmy zbiór gdzie = x < x 1 < < x n = b. P = {x, x 1,...,
Analiza Matematyczna I.2
Anliz Mtemtyczn I. wiczeni, seri, P. Nyr, /3 Zdnie. Niech f, g : (, ) R b d jednostjne ci gªe. Czy fg te» jest jednostjnie ci gª? Co si stnie, je±li zbiór (, ) zst pimy zbiorem (, )? Zdnie. Funkcj f :
1 Definicja całki oznaczonej
Definicj cłki oznczonej Niech dn będzie funkcj y = g(x) ciągł w przedzile [, b]. Przedził [, b] podzielimy n n podprzedziłów punktmi = x < x < x
Ekoenergetyka Matematyka 1. Wykład 15. CAŁKI OZNACZONE. Egzaminy I termin poniedziałek :00 Aula B sala 12B Wydział Informatyki
Ekoenergetyk Mtemtyk 1. Wykłd 15. CAŁKI OZNACZONE Egzminy I termin poniedziłek 31.01 14:00 Aul B sl 12B Wydził Informtyki Definicj (podził odcink) II termin poprwkowy czwrtek 9.02 14:00 WE-030 Podziłem
nazywamy odpowiednio dolną oraz górną sumą Darboux funkcji f w przedziale [a, b] wyznaczoną przez podział P.
Rozdził 10 Cłk Drboux 10.1 Doln i górn sum Drboux Definicj podziłu. Niech, b R, < b. Kżdy skończony ciąg P postci (10.1) P = (x 0,..., x n ), gdzie n N, = x 0 < x 1
VI. Rachunek całkowy. 1. Całka nieoznaczona
VI. Rchunek cłkowy. Cłk nieoznczon Niech F : I R i f : I R będą funkcjmi określonymi n pewnym przedzile I R. Definicj. Funkcję F nzywmy funkcją pierwotną funkcji f n przedzile I, gdy F (x) = f(x) dl x
RACHUNEK CAŁKOWY. Funkcja F jest funkcją pierwotną funkcji f na przedziale I R, jeżeli. F (x) = f (x), dla każdego x I.
RACHUNEK CAŁKOWY Funkcj F jest funkcją pierwotną funkcji f n przedzile I R, jeżeli F (x) = f (x), dl kżdego x I. Przykłd. Niech f (x) = 2x dl x (, ). Wtedy funkcje F (x) = x 2 + 5, F (x) = x 2 + 5, F (x)
Analiza matematyczna v.1.6 egzamin mgr inf niestacj 1. x p. , przy założeniu, że istnieją lim
Anliz mtemtyczn v..6 egzmin mgr inf niestcj Oznczeni: f, g, h : J R funkcje rzeczywiste określone n J R J przedził, b),, b], [, b), [, b], półprost, b),, b],, ), [, ) lub prost R α, β [min{α, β}, m{α,
Wykªad 8. Pochodna kierunkowa.
Wykªd jest prowdzony w opriu o podr znik Anliz mtemtyzn 2. enije, twierdzeni, wzory M. Gewert i Z. Skozyls. Wykªd 8. ohodn kierunkow. enij Nieh funkj f b dzie okre±lon przynjmniej n otozeniu punktu (x
Wzory uproszczonego mno zenia: (a + b) 2 = a 2 + 2ab + b 2, (a b) 2 = a 2 2ab + b 2, a 2 b 2 = (a b) (a + b).
Wzory uproszczonego mno zeni: ( + b) = + b + b, ( b) = b + b, b = ( b) ( + b). Dzi ni n pot ¾egch: Dl ; y R orz ; b > 0 (dl pewnych wyk dników ; y z o zeni o ; b mog¾ być os bine w zle zności od sytucji)
Analiza Matematyczna (część II)
Anliz Mtemtyczn (część II) Krzysztof Trts Witold Bołt n podstwie wykłdów dr. Piotr Brtłomiejczyk 25 kwietni 24 roku 1 Rchunek cłkowy jednej zmiennej. 1.1 Cłk nieoznczon. Definicj 1.1.1 (funkcj pierwotn)
III. Rachunek całkowy funkcji jednej zmiennej.
III. Rchunek cłkowy funkcji jednej zmiennej. 1. Cłki nieoznczone. Niech f : I R, I R - przedził n prostej. Definicj 1.1. (funkcji pierwotnej) Funkcję F nzywmy funkcją pierwotną funkcji f n przedzile I,
Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa
Wykłd 2. Pojęcie cłki niewłściwej do rchunku prwdopodobieństw dr Mriusz Grządziel 4 mrc 24 Pole trpezu krzywoliniowego Przypomnienie: figurę ogrniczoną przez: wykres funkcji y = f(x), gdzie f jest funkcją
Matematyka dla biologów Zajęcia nr 7.
Mtemtyk dl biologów Zjęci nr 7. Driusz Wrzosek 21 listopd 2018 Mtemtyk dl biologów Zjęci 7. 21 listopd 2018 1 / 20 Przypomnienie: funkcj pierwotn Niech F : D, gdzie D to odcinek otwrty lub cł prost ).
Wykªad 1. Macierze i wyznaczniki Macierze podstawowe okre±lenia
Wykªd 1 Mcierze i wyznczniki 11 Mcierze podstwowe okre±leni Denicj 1 Mcierz (rzeczywist ) wymiru m n, gdzie m, n N, nzywmy prostok tn tblic zªo»on z m n liczb rzeczywistych ustwionych w m wierszch i n
Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna
1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,
Zastosowania całki oznaczonej
Przkłd 9 Nie kd funkcj okrelon i ogrniczon n [, b] jes cłkowln n [, b], np funkcj Dirichle nie jes cłkowln n przedzile [, ], gd f ( ), gd liczb wmiern odcink [,] liczb niewmiern odcink [,] Gdbm dl kdego
CAŁKA OZNACZONA JAKO SUMA SZEREGU
CAŁKA OZNACZONA JAKO SUMA SZEREGU Rozwżmy funkcję ciągłą x f(x) o wrtościch nieujemnych określoną n przedzile [, b]. Ustlmy [będzie to problem sttystyczny polegjący n dokłdnym sprecyzowniu informcji o
ANALIZA MATEMATYCZNA 1
ANALIZA MATEMATYCZNA Ciągi liczbowe Definicj. Rzeczywistym nieskończonym ciągiem liczbowym nzywmy funkcję określoną n zbiorze liczb nturlnych o wrtościch w zbiorze liczb rzeczywistych f : N R, n n. Ciąg
Analiza Matematyczna Wykªad
Aliz Mtemtycz Wykªd Spis tre±ci 1 Wst p 1 2 Ci gi liczbowe 2 3 Gric ci gu 4 4 Gric fukcji 6 5 Asymptoty fukcji 9 6 Ci gªo± fukcji 10 7 Pochod fukcji 11 8 Ekstrem fukcji 13 9 Cªk ieozczo 16 10 Cªk ozczo
M. Be±ka, Caªka Stochastyczna - zadania 1. Zadania z caªki stochastycznej
M. Be±k, Cªk Stochstyczn - zdni 1 Mt. Fin. Gd«sk, 23.2.217 Zdni z cªki stochstycznej We wszystkich zdnich dotycz cych procesów z czsem ci gªym w ktorych nic nie jest npisne o bzie stochstycznej zkªd si,»e
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki oznaczone. lim δ n = 0. σ n = f(ξ i ) x i. (1)
Mciej Grzesik Instytut Mtemtyki Politechniki Poznńskiej Cłki oznczone. Definicj cłki oznczonej Niech dn będzie funkcj f ciągł w przedzile [, b]. Przedził [, b] podziey n n podprzedziłów punktmi = x < x
PEWNIK DEDEKINDA i jego najprostsze konsekwencje
PEWNIK DEDEKINDA i jego njprostsze konsekwencje W rozdzile ósmym stwierdziliśmy, że z podnych tm pewników nie wynik istnienie pierwistków z liczb rzeczywistych. Uzupe lnimy terz liste pewników jeszcze
Matematyka 1. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski
Matematyka 1 Šukasz Dawidowski Instytut Matematyki, Uniwersytet l ski Pochodna funkcji Niech a, b R, a < b. Niech f : (a, b) R b dzie funkcj oraz x, x 0 (a, b) b d ró»nymi punktami przedziaªu (a, b). Wyra»enie
CAŠKA NIEOZNACZONA. Politechnika Lubelska. Z.Šagodowski. 18 lutego 2016
WYKŠAD CAŠKA NIEOZNACZONA Z.Šagodowski Politechnika Lubelska 8 lutego 06 Denicja CAŠKA NIEOZNACZONA Funkcja F jest funkcja pierwotn funkcji f na przedziale A, je»eli Zauwa»my,ze F (x) = f (x), dla ka»dego
1 Rachunek zdań 3. 2 Funkcje liczbowe 6
Spis treści 1 Rchunek zdń 3 2 Funkcje liczbowe 6 3 Ciągi liczbowe 9 3.1 Grnic włściw ciągu 10 3.2 Grnic niewłściw ciągu 11 3.3 Grnice pewnych ciągów 12 4 Grnice funkcji 13 4.1 Podstwowe definicje 13 4.2
Całka oznaczona funkcji jednej zmiennej rzeczywistej. Autorzy: Witold Majdak
Cłk oznczon funkcji jednej zmiennej rzeczywistej Autorzy: Witold Mjdk 6 Spis treści Definicj cłki oznczonej Riemnn Włsności cłki Riemnn Twierdzenie o średniej cłkowej funkcji Pierwsze zsdnicze twierdzenie
1 Zbiory przeliczalne i nieprzeliczalne
1 Zbiory przelizlne i nieprzelizlne S ró»ne rodzje niesko«zono±i, mimo i» niesko«zono± oznz si jednym symbolem. Ale niesko«zono± niesko«zono±i nierówn. Uzsdnimy to zrz; le njsmpierw kilk deniji. ef. Mówimy,»e
Wykªad 4. Funkcje wielu zmiennych.
Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 4. Funkcje wielu zmiennych. Zbiory na pªaszczy¹nie i w przestrzeni.
Całki oznaczone. wykład z MATEMATYKI
Cłki oznzone wkłd z MATEMATYKI Budownitwo, studi niestjonrne sem. I, rok k. 28/29 Ktedr Mtemtki Wdził Informtki Politehnik Biłostok 1 Podstwowe pojęi 1.1 Podził P przedziłu, Nieh f ędzie funkją ogrnizoną
Wykład 3: Transformata Fouriera
Rchunek prwdopodobieństw MAP64 Wydził Elektroniki, rok kd. 28/9, sem. letni Wykłdowc: dr hb. A. Jurlewicz Wykłd 3: Trnsformt Fourier Złóżmy, że f(t) jest określon n R, ogrniczon, okresow o okresie 2T i
Analiza matematyczna dla informatyków Notatki z wykªadu. Maciej Paluszy«ski
Anliz mtemtyczn dl informtyków Nottki z wykªdu Mciej Pluszy«ski 5 styczni 9 Spis tre±ci Anliz mtemtyczn FAQ 3 Liczby rzeczywiste i zespolone 6 3 Funkcje 4 Ci gi 9 5 Szeregi 49 6 Grnic funkcji 63 7 Funkcje
Analiza matematyczna dla informatyków Notatki z wykªadu. Maciej Paluszy«ski
Anliz mtemtyczn dl informtyków Nottki z wykªdu Mciej Pluszy«ski p¹dziernik 0 Spis tre±ci Anliz mtemtyczn FAQ 3 Liczby rzeczywiste i zespolone 6 3 Funkcje 3 4 Ci gi 3 5 Szeregi 5 6 Grnic funkcji 65 7 Funkcje
Analiza matematyczna I
Anliz mtemtyczn I De nicje, twierdzeni 2 pździernik 202 Litertur K. Dobrowolsk, W. Dyczk, H. Jkuszenkow, Mtemtyk dl studentów studiów technicznych, cz., HELPMATH, ódź 2007 M. Gewert, Z. Skoczyls, Anliz
2. Analiza Funkcje niepustymi zbiorami. Funkcja
2. Anliz Kresy: infim i suprem Wprowdzmy oznczenie dl rozszerzonej prostej rzeczywistej: R = R {, + }, przy czym w zbiorze tym zchowujemy nturlny porzdek w R orz przyjmujemy, że < < dl R. Niech A R. Ogrniczeniem
Niewymierność i przestępność Materiały do warsztatów na WWW6
Niewymierność i przestępność Mteriły do wrszttów n WWW6 Piotr Achinger 23 sierpni 2010 1 Wstęp 1.1 Liczby wymierne i niewymierne Pytnie 1. Czy istnieją liczby niewymierne? Zdnie 1. Wykzć, że 1. 2 / Q,
f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2)
Cłk oznczon Cłkę oznczoną będziemy zpisywli jko f(x)dx (.) z fnkcji f(x), któr jest ogrniczon w przedzile domkniętym [, b]. Jk obliczyć cłkę oznczoną? Obliczmy njpierw cłkę nieoznczoną z fnkcji f(x), co
Wyk lad 1 Podstawowe wiadomości o macierzach
Wyk ld 1 Podstwowe widomości o mcierzch Oznczeni: N {1 2 3 } - zbiór liczb nturlnych N 0 {0 1 2 } R - ci lo liczb rzeczywistych n i 1 + 2 + + n i1 1 Określenie mcierzy Niech m i n bed dowolnymi liczbmi
MATEMATYKA 1 MACIERZE I WYZNACZNIKI
MATEMATYKA 1 MACIERZE I WYZNACZNIKI Definicj 1. Niech A i B będą dowolnymi zbiormi. Zbiór A B = {(, b) : A b B} wszystkich pr uporządkownych (, b) tkich, że A i b B nzywmy iloczynem krtezjńskim zbiorów
Analiza Matematyczna /19
Anliz Mtemtyczn 8/9 dr hb. Jn Iwniszewski AM-8/9 Wykªd (dl studentów I roku kierunków: Fizyk, Fizyk Techniczn, Astronomi, Automtyk i Robotyk, Informtyk Stosown) wprowdz podstwowe poj ci, opercje i metody
Całkowanie. dx d) x 3 x+ 4 x. + x4 big)dx g) e x 4 3 x +a x b x. dx k) 2x ; x 0. 2x 2 ; x 1. (x 2 +3) 6 j) 6x 2. x 3 +3 dx k) xe x2 dx l) 6 1 x dx
Wydził Mtemtyki Stosownej Zestw zdń nr 5 Akdemi Górniczo-Hutnicz w Krkowie WFiIS, informtyk stosown, I rok Elżbiet Admus 3 listopd 6r. Cłk nieoznczon Cłkownie. Podstwowe metody cłkowni Zdnie. Oblicz cłki:
Uniwersytet Mikołaja Kopernika w Toruniu
Uniwersytet Mikołj Kopernik w Toruniu Wydził Mtemtyki i Informtyki Krzysztof Frączek Anliz Mtemtyczn I Wykłd dl studentów I roku kierunku informtyk Toruń 206 Spis treści Liczby rzeczywiste 2 Ciągi liczbowe
XI. Rachunek całkowy funkcji wielu zmiennych. 1. Całka podwójna Całka podwójna po prostokącie. Oznaczenia:
XI. Rhunek łkowy funkji wielu zmiennyh. 1. Cłk podwójn. 1.1. Cłk podwójn po prostokąie. Oznzeni: P = {(x, y) R 2 : x b, y d} = [, b] [, d] - prostokąt n płszzyźnie, f(x, y) - funkj określon i ogrnizon
9. Całkowanie. I k. sup
9. Cłkownie Zcznijmy od podstwowego dl teorii cłki pojęci podziłu. Podziłem odcink [, b] R nzywmy kżdy skończony zbiór P [, b] zwierjący ob końce odcink. Niech będą punktmi podziłu P. Odcinki = x < x
Elementy geometrii w przestrzeni R 3
Elementy geometrii w przestrzeni R 3 Z.Šagodowski Politechnika Lubelska 29 maja 2016 Podstawowe denicje Wektorem nazywamy uporz dkowan par punktów (A,B) z których pierwszy nazywa si pocz tkiem a drugi
Całka oznaczona i całka niewłaściwa Zastosowania rachunku całkowego w geometrii
Wydził Mtemtyki Stosownej Zestw zdń nr 6 Akdemi Górniczo-Hutnicz w Krkowie WFiIS, informtyk stosown, I rok Elżbiet Admus 9 listopd 8r. Cłk oznczon i cłk niewłściw Zstosowni rchunku cłkowego w geometrii
Zadania z ekonomii matematycznej 3 Wybrane rozwi zania
Zdni z ekonomii mtemtycznej 3 Wybrne rozwi zni Michª Rmsz Wersj z dni 4 grudni 011 Zdnie 1 Dl funkcji f : R n R deniujemy zbiór epif = {x, y R n R : y fx} Pokz,»e dl funkcji wypukªej f zbiór epif jest
Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.
Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja
Pochodne i całki, macierze i wyznaczniki
Cłk oznczon Cłk niewłściw Wzór Tylor Mcierze Pochodne i cłki, mcierze i wyznczniki Stnisłw Jworski Ktedr Ekonometrii i Sttystyki Zkłd Sttystyki Stnisłw Jworski Pochodne i cłki, mcierze i wyznczniki Cłk
Całki niewłaściwe. Rozdział Wprowadzenie Całki niewłaściwe I rodzaju
Rozdził 3 Cłki niewłściwe 3. Wprowdzenie Omwine w poprzednim rozdzile cłki oznczone są cłkmi funkcji ciągłych n przedzile domkniętym, więc funkcji ogrniczonych n przedzile skończonym. Wiele zgdnień prktycznych
Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt:
Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt: zdzedzej@mif.pg.gda.pl www.mif.pg.gda.pl/homepages/zdzedzej () 5 pa¹dziernika 2016 1 / 1 Literatura podstawowa R. Rudnicki, Wykªady z analizy
Rachunek caªkowy funkcji wielu zmiennych
Rachunek caªkowy funkcji wielu zmiennych I. Malinowska, Z. Šagodowski Politechnika Lubelska 8 czerwca 2015 Caªka iterowana podwójna Denicja Je»eli funkcja f jest ci gªa na prostok cie P = {(x, y) : a x
Elementy geometrii analitycznej w przestrzeni
Wykªad 3 Elementy geometrii analitycznej w przestrzeni W wykªadzie tym wi kszy nacisk zostaª poªo»ony raczej na intuicyjne rozumienie deniowanych poj, ni» ±cisªe ich zdeniowanie. Dlatego niniejszy wykªad
Informacje pomocnicze:
dr Krzysztof yjewski Informatyka; S-I 0.in». 7 grudnia 06 Rachunek caªkowy funkcji jednej zmiennej. Caªka nieoznaczona. przydatne wzory: Informacje pomocnicze: Lp. Wzór Uwagi. dx = x c. adx = ax c 3. x
1 Poj cia pomocnicze. Przykªad 1. A A d
Poj cia pomocnicze Otoczeniem punktu x nazywamy dowolny zbiór otwarty zawieraj cy punkt x. Najcz ±ciej rozwa»amy otoczenia kuliste, tj. kule o danym promieniu ε i ±rodku x. S siedztwem punktu x nazywamy
Obliczanie caªek. Kwadratury
Rozdziª 6 Oblicznie cªek. Kwdrtury W tym rozdzile zjmiemy si zdniem obliczeni przybli»onego cªek postci: dl funkcji f, czy ogólniej: dl ρ dnej wgi. f(t) dt, f(t)ρ(t) dt, 6.1 Funkcj octve' qud() Do obliczni
Wariacje Funkcji, Ich Własności i Zastosowania
Środowiskowe Studi Doktornckie z Nuk Mtemtycznych Uniwersytet Mrii Curie-Skłodowskiej w Lublinie Józef Bnś Ktedr Mtemtyki Politechnik Rzeszowsk Wricje Funkcji, Ich Włsności i Zstosowni Lublin 2014 Spis
Wektory w przestrzeni
Wektory w przestrzeni Informacje pomocnicze Denicja 1. Wektorem nazywamy uporz dkowan par punktów. Pierwszy z tych punktów nazywamy pocz tkiem wektora albo punktem zaczepienia wektora, a drugi - ko«cem
Obliczenia naukowe Wykład nr 14
Obliczeni nuowe Wyłd nr 14 Pweł Zielińsi Ktedr Informtyi, Wydził Podstwowych Problemów Technii, Politechni Wrocłws Litertur Litertur podstwow [1] D. Kincid, W. Cheney, Anliz numeryczn, WNT, 2005. [2] A.
Zbiory wyznaczone przez funkcje zdaniowe
pojęci zbioru i elementu RCHUNEK ZIORÓW zbiór zwier element element nleży do zbioru jest elementem zbioru ( X zbiór wszystkich przedmiotów indywidulnych, których dotyczy dn nuk zbiór pełny (uniwerslny
CAŁKOWANIE NUMERYCZNE
Wprowdzenie Kwdrtury węzły równoodległe Kwdrtury Guss Wzory sumcyjne Trnsport, studi niestcjonrne I stopni, semestr I Instytut L-5, Wydził Inżynierii Lądowej, Politechnik Krkowsk Ew Pbisek Adm Wostko Wprowdzenie
Matematyka dla biologów wykład 10.
Mtemtyk dl biologów wykłd 10. Driusz Wrzosek 13 grudni 2016 Cłki i krzywe Cłki przypomnienie Cłki zstosowni Zstosowni cłek: obliczni pól i objętości figur, długości krzywych; rozwizywnie równń różniczkowych
N(0, 1) ) = φ( 0, 3) = 1 φ(0, 3) = 1 0, 6179 = 0, 3821 < t α 1 e t dt α > 0. f g = fg. f = e t f = e t. U nas: g = t α 1 g = (α 1)t α 2
Zdnie X,..., X 5 N(6, 5 ) Y,..., Y 6 N(7, 5 ) X N(6, 5 6 ) Ȳ N(7, 5 6 ) Przy złożeniu niezleżności zmiennych mmy: X Ȳ N(, ) po stndryzcji otrzymmy: Ȳ X N(, ) Pr(Ȳ X < ) = Pr(Ȳ X < ) = φ(, 3) = φ(, 3) =,
Liczby zespolone Pochodna Caªka nieoznaczona i oznaczona Podstawowe wielko±ci zyczne. Repetytorium z matematyki
Repetytorium z matematyki Denicja liczb zespolonych Wyra»enie a + bi, gdzie a i b s liczbami rzeczywistymi a i speªnia zale»no± i 2 = 1, nazywamy liczb zespolon. Liczb i nazywamy jednostk urojon, a iloczyn
< f g = fg. f = e t f = e t. U nas: e t (α 1)t α 2 dt = 0 + (α 1)Γ(α 1)
Zdnie X,..., X 5 N(6, 5 ) Y,..., Y 6 N(7, 5 ) X N(6, 5 6 ) Ȳ N(7, 5 6 ) Przy złożeniu niezleżności zmiennych mmy: X Ȳ N(, ) po stndryzcji otrzymmy: Ȳ X N(, ) Pr(Ȳ X < ) = Pr(Ȳ X < ) = φ(, 3) = φ(, 3) =,
Matematyka I. De nicje, twierdzenia. 13 października 2012
Mtemtyk I De nicje, twierdzeni 3 pździernik 202 Litertur K. Dobrowolsk, W. Dyczk, H. Jkuszenkow, Mtemtyk dl studentów studiów technicznych, cz.,2, HELPMATH, ódź 2007 M. Gewert, Z. Skoczyls, Anliz mtemtyczn
O SZEREGACH FOURIERA. T (x) = c k e ikx
O SZEREGACH FOURIERA Funkcję postci. Wielominy i szeregi trygonometryczne. T x = N k= N c k e ikx nzywmy wielominem trygonometrycznym. Jk widć, wielomin trygonometryczny jest funkcją okresową o podstwowym
Indeksowane rodziny zbiorów
Logika i teoria mnogo±ci, konspekt wykªad 7 Indeksowane rodziny zbiorów Niech X b dzie przestrzeni zbiorem, którego podzbiorami b d wszystkie rozpatrywane zbiory, R rodzin wszystkich podzbiorów X za± T
2 Liczby rzeczywiste - cz. 2
2 Liczby rzeczywiste - cz. 2 W tej lekcji omówimy pozostaªe tematy zwi zane z liczbami rzeczywistymi. 2. Przedziaªy liczbowe Wyró»niamy nast puj ce rodzaje przedziaªów liczbowych: (a) przedziaªy ograniczone:
Analiza numeryczna. Stanisław Lewanowicz. Całkowanie numeryczne. Definicje, twierdzenia, algorytmy
http://wwwiiuniwrocpl/ sle/teching/n-wdrpdf Anliz numeryczn Stnisłw Lewnowicz Styczeń 008 r Cłownie numeryczne Definicje, twierdzeni, lgorytmy 1 Pojęci wstępne Niech IF IF [, b] ozncz zbiór wszystich funcji
Analiza Matematyczna
Aliz Mtemtycz Przykłdy: Cłki ozczoe. Oprcowie: dr hb. iż. Agieszk Jurlewicz, prof. PWr Przykłd 9. : Korzystjąc z defiicji cłki ozczoej orz fktu, że fukcj ciągł jest cłkowl, oblicz e x dx przyjmując podził
Funkcje wielu zmiennych
Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x, y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0, y 0 ) Pochodn cz stkow pierwszego rz du funkcji dwóch zmiennych wzgl
Funkcje, wielomiany. Informacje pomocnicze
Funkcje, wielomiany Informacje pomocnicze Przydatne wzory: (a + b) 2 = a 2 + 2ab + b 2 (a b) 2 = a 2 2ab + b 2 (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 (a b) 3 = a 3 3a 2 b + 3ab 2 b 3 a 2 b 2 = (a + b)(a
Statystyka matematyczna - ZSTA LMO
Statystyka matematyczna - ZSTA LMO Šukasz Smaga Wydziaª Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza w Poznaniu Wykªad 1 Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 1 1 / 28 Kontakt Dr Šukasz
CAŁKOWANIE NUMERYCZNE
Wprowdzenie Kwdrtury węzły równoodległe Kwdrtury Guss Wzory sumcyjne Trnsport, studi niestcjonrne I stopni, semestr I rok kdemicki 01/013 Instytut L-5, Wydził Inżynierii Lądowej, Politechnik Krkowsk Ew
Zadania. 4 grudnia k=1
Zadania 4 grudnia 205 Zadanie. Poka»,»e dla dowolnych liczb zespolonych z,..., z n istnieje zbiór B {,..., n}, taki,»e n z k π z k. k B Zadanie 2. Jakie warunki musz speªnia ci gi a n i b n, aby istniaªy
Zbiory ograniczone i kresy zbiorów
Zbiory ograniczone i kresy zbiorów Def.. Liczb m nazywamy ograniczeniem dolnym a liczb M ograniczeniem górnym zbioru X R gdy (i) x m; (ii) x M. Mówimy,»e zbiór X jest ograniczony z doªu (odp. z góry) gdy
Schematy i reguªy wnioskowania w logice rozmytej
Wybrane schematy i reguªy wnioskowania w logice rozmytej Uniwersytet l ski Letnia Szkoªa Instytutu Matematyki, Brenna, 24-28 wrze±nia 2018 w logice klasycznej Sylogizm hipotetyczny (A B) (B C) A C w logice
Wykªad 12. Transformata Laplace'a i metoda operatorowa
Wykªad 2. Tranformata Laplace'a i metoda operatorowa Tranformata Laplace'a Dla odpowiednio okre±lonej klay funkcji zdeniujemy operator L, nazywany tranformat Laplace'a, okre±lony wzorem L[ f ]() = f(t)e
Zbiory i odwzorowania
Zbiory i odwzorowania 1 Sposoby okre±lania zbiorów 1) Zbiór wszystkich elementów postaci f(t), gdzie t przebiega zbiór T : {f(t); t T }. 2) Zbiór wszystkich elementów x zbioru X speªniaj cych warunek ϕ(x):
Równania róniczkowe liniowe. = 2. dx x. dy dy. dx y. y dx. dy y. dy 2
Równni róniczkow liniow Równni róniczkow, kór mon zpis w posci + p( q(, gdzi p ( i q ( s funkcjmi cigłmi, nzwm równnim liniowm pirwszgo rzdu Jli q (, o równni nzwm liniowm nijdnorodnm W przciwnm przpdku
Spis treści. 1 Wprowadzenie 2
Spis treści 1 Wprowdzenie 2 2 Podstwowe przestrzenie funkcyjne 14 2.1 Przestrzenie L p (, b) i L (, b)......................... 14 2.2 Przestrzenie L p (, b) L p (, b) i L (, b) L (, b)............. 27
Zadania z analizy matematycznej - sem. II Rachunek ró»niczkowy funkcji wielu zmiennych
Zadania z analizy matematycznej - sem II Rachunek ró»niczkowy funkcji wielu zmiennych Denicja (Pochodne cz stkowe dla funkcji trzech zmiennych) Niech D R 3 b dzie obszarem oraz f : D R f = f y z) P 0 =
Czy funkcja zadana wzorem f(x) = ex e x. 1 + e. = lim. e x + e x lim. lim. 2 dla x = 1 f(x) dla x (0, 1) e e 1 dla x = 1
II KOLOKWIUM Z AM M1 - GRUPA A - 170101r Ka»de zadanie jest po 5 punktów Ostatnie zadanie jest nieobowi zkowe, ale mo»e dostarczy dodatkowe 5 punktów pod warunkiem rozwi zania pozostaªych zada«zadanie
Funkcje wielu zmiennych
dr Krzysztof yjewski Informatyka I rok I 0 in» 12 stycznia 2016 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0 y 0 )
A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy.
Logika i teoria mnogo±ci, konspekt wykªad 12 Teoria mocy, cz ± II Def. 12.1 Ka»demu zbiorowi X przyporz dkowujemy oznaczany symbolem X obiekt zwany liczb kardynaln (lub moc zbioru X) w taki sposób,»e ta
Funkcje wielu zmiennych
dr Krzysztof yjewski Analiza matematyczna 2; MatematykaS-I 0 lic 21 maja 2018 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(, y b dzie okre±lona przynajmniej na otoczeniu punktu
ELEMENTARNA TEORIA LICZB. 1. Podzielno±
ELEMENTARNA TEORIA LICZB IZABELA AGATA MALINOWSKA N = {1, 2,...} 1. Podzielno± Denicja 1.1. Niepusty podzbiór A zbioru liczb naturalnych jest ograniczony, je»eli istnieje taka liczba naturalna n 0,»e m
Funkcje jednej zmiennej. Granica, ci gªo±. (szkic wykªadu)
Funkcje jednej zmiennej Granica, ci gªo± (szkic wykªadu) opracowaªa Gra»yna Ciecierska 1 Granica funkcji Denicja Niech 0 R, r > 0 Otoczeniem punktu 0 o promieniu r nazywamy przedziaª ( 0 r, 0 +r) Otoczeniem
AM II /2019 (gr. 2 i 3) zadania przygotowawcze do I kolokwium
AM II.1 2018/2019 (gr. 2 i 3) zadania przygotowawcze do I kolokwium Normy w R n, iloczyn skalarny sprawd¹ czy dana funkcja jest norm sprawd¹, czy dany zbiór jest kul w jakiej± normie i oblicz norm wybranego