2. Tensometria mechaniczna

Wielkość: px
Rozpocząć pokaz od strony:

Download "2. Tensometria mechaniczna"

Transkrypt

1 . Tensometri mechniczn Wstęp Tensometr jk wskzywłby jego nzw to urządzenie służące do pomiru nprężeń. Jk jednk widomo, nprężeni nie są wielkościmi mierzlnymi i stnowią jedynie brdzo wygodne pojęcie mechniki ośrodk ciągłego. Istnieje wiele rodzjów urządzeń służących do pomiru brdzo młych wrtości wydłużeni. Przy jego wyborze nleży się kierowć wielom przesłnkmi: czytelnością odczytu łtwością montżu/zstosowni czułością dokłdnością i precyzją pomirową potrzebą szkoleni obsługi technicznej powtrzlnością wyników zkresem pomirowym rozmirem urządzeni częstością odpowiedzi. Poz czysto mechnicznymi czujnikmi, wiele innych zjwisk fizycznych jest wykorzystywnych do zwielokrotnieni mierzonych wrtości wydłużeni. Njczęściej są to: zminy oporności, pol mgnetycznego, indukcji pol, pojemności, ciśnieni powietrz ukłdy optyczne fotoogniw potencjometry ogniw węglowe Czujniki mechniczne Są to urządzeni znne głównie jko ekstensometry, gdyż używne są do pomirów wydłużeni przy stłym lub wolno zmiennym obciążeniu. Czujniki zegrowe Rys.1 Czujnik zegrowy i jego schemt

2 Czujniki zegrowe używne są głównie jko ekstensometry i ugięciomierze, ich typowe przełożenie jest 100-krotne. Przesuw pionowy trzpieni czujnik przekzywny jest poprzez zębtkę n przekłdnię zębtą, skłdjącą się z 5 kółek. Pry współprcujących kółek zpewniją przełożeni po i = 4.6. Sprężyn przy wskzówce dję stłą siłę ncisku trzpieni n belkę. Proste czujniki wydłużeni Zsdniczym elementem prostych czujników wydłużeni są dw ostrz nożowe. Dociskne są do bdnej próbki w określonej odległości od siebie, zwnej bzą pomirową tensometru. Gdy próbk jest rozciągn, również odległość między ostrzmi zmieni się. T niewielk zmin odległości jest powiększn poprzez mechniczne dźwignie lbo różne ukłdy optyczne w wyniku czego otrzymuje się czytelną wrtość wydłużeni n odpowiednio sklibrownej skli. Njprostsze wzmocnienie uzyskuje się przez użycie dźwigni, jk to m miejsce w tensometrze Berry ego, rys.. Innym prostym tensometrem jest tensometr Mrtens-Kennedy ego, rys.3. Czujnik Tuckermn dził podobnie, gdzie zmist mechnicznego przełożeni użyt jest optyk, rys. 4. Rys. Tensometr Berry ego

3 Rys. 3 Tensometr Mrtens-Kennedy ego Rys. 4 Tensometr Tuckermn

4 Tensometr Huggenberger Jest to tensometr o krótkiej bzie pomirowej (od 10 do 0 milimetrów, któr może być powiększn z pomocą przedłużki do 100 mm) i złożonym ukłdzie dźwigni djącym 100-krotne przełożenie. Rys. 5 Tensometr Huggenberger Powiększenie może być określone n podstwie proporcji długości rmion: l1 l i = 1 minimln wrtość odksztłceni odczytywn ze wzoru: lt ε =, il g gdzie l t i l g są odpowiednio długością podziłki i bzą pomirową. Inne czujniki mechniczne Czujnik pneumtyczny, rys. 6, wzmcni sygnł wydłużeni poprzez zminę ciśnieni w knłch wypływu. Historycznie pierwszym czujnikiem wydłużeni był tensometr strunowy, w którym wykorzystuje się zjwisko zminy częstości drgń struny przy zminie siły jej nciągu (zminie odksztłceni). Zleżność pomiędzy różnicą kwdrtów częstości i odksztłceniem jest prwie liniow: ε C( f f1 ). Obecnie czujniki tkie używne są często w bdnich geotechnicznych, gdzie stosunkowo duż bz pomirow urządzeni jest zletą nie jego wdą.

5 Rys. 6 Czujnik pneumtyczny Ćwiczeni z użyciem tensometrii mechnicznej Pomir modułu Young tensometrem Huggenberger moment zginjący jest w przęśle stły sił poprzeczn jest równ zero - jest to więc proste zginnie = tensometr Huggenberger h σ = b W l l0 ε = l 0 σ l0 6l0 E = = = ε W l0 bh l0 Mierząc tensometrem przyrosty długości bzy pomirowej dl odpowidjących im przyrostów obciążeni, możemy z powyższego wzoru wyznczyć moduł Young. Położenie tensometru n przęśle belki jest dowolne - ni nprężeni ni odksztłceni skrjnych włókien nie zleżą od wyboru przekroju. Przeprowdzenie pomiru: pomir geometrii belki:, l, b, h, zmocownie tensometru i wyzerownie go, wykonnie odczytów dl rosnącego obciążeni (wg szlki 3 kg, przyrosty obciążeni kg), wykonnie obliczeń z uwzględnieniem rozrzutu sttystycznego. Tbelk obliczeń = kg = x9.81 N

6 l.p. odczyt Hugg. l 0, m Adm Pweł Zborski l 0 śr =K średni wrtość ( ) średni wrtość E E ( l ) ś r [ śr] = 0 odchylenie średnie l 0, S l0 =K odchylenie średnie E, S E l = 6 0 bh ( l ) 0 śr S l0 SE SE przedził ufności = t( n 1) α =. 365 = K n 8 gdzie współczynnik rozkłdu t-student.365 odpowid 8 różnicom pomierzonych wrtości dl poziomu ufności 95%. Ostteczny wynik: E = Eśr ± E, GP. l Pomir modułu Young ugięciomierzmi Dl zginni prostego zleżność między promieniem krzywizny (drugą pochodną ugięć) momentem zginjącym m postć: w''( x) = EJ y x Po scłkowniu, mmy: w( x) = + C1x + C. EJ Z wrunków kinemtycznych widomo, że w( 0) = w( l) = 0, skąd C Osttecznie: w( x) = EJ x ( x l ). y y l =, C = 0. EJ 1 y Jk widć, ugięci zleżą od zmiennej x, czyli od wyboru przekroju pomirowego. Obliczeni czujniki mocujemy w jednkowej odległości od podpór. Tbelk obliczeń powinn zwierć: odczyty obu zmontownych czujników zegrowych orz różnice między kolejnymi pomirmi n dnym czujniku. Oprcownie sttystyczne wyników przeprowdzmy dl końcowego wzoru: c( l c) E =, GP bh w podjąc wynik w postci: E = Eśr ± E. b h 3 1

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH Ćwiczenie Grżyn Nowick, Wldemr Nowicki BDNIE RÓWNOWG WSOWO-ZSDOWYC W ROZTWORC ELETROLITÓW MFOTERYCZNYC Zgdnieni: ktywność i współczynnik ktywności skłdnik roztworu. ktywność jonów i ktywność elektrolitu.

Bardziej szczegółowo

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Ćwiczenie 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ 9.. Opis teoretyczny Soczewką seryczną nzywmy przezroczystą bryłę ogrniczoną dwom powierzchnimi serycznymi o promienich R i

Bardziej szczegółowo

BADANIE ZALEŻNOŚCI PRZENIKALNOŚCI MAGNETYCZNEJ

BADANIE ZALEŻNOŚCI PRZENIKALNOŚCI MAGNETYCZNEJ ADANIE ZAEŻNOŚCI PRZENIKANOŚCI MAGNETYCZNEJ FERRIMAGNETYKÓW OD TEMPERATURY 1. Teori Włściwości mgnetyczne sstncji chrkteryzje współczynnik przeniklności mgnetycznej. Dl próżni ten współczynnik jest równy

Bardziej szczegółowo

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych Zstosownie multimetrów cyfrowych do pomiru podstwowych wielkości elektrycznych Cel ćwiczeni Celem ćwiczeni jest zpoznnie się z możliwościmi pomirowymi współczesnych multimetrów cyfrowych orz sposobmi wykorzystni

Bardziej szczegółowo

Ćwiczenia laboratoryjne z przedmiotu : Napędy Hydrauliczne i Pneumatyczne

Ćwiczenia laboratoryjne z przedmiotu : Napędy Hydrauliczne i Pneumatyczne Lbortorium nr 11 Temt: Elementy elektropneumtycznych ukłdów sterowni 1. Cel ćwiczeni: Opnownie umiejętności identyfikcji elementów elektropneumtycznych n podstwie osprzętu FESTO Didctic. W dużej ilości

Bardziej szczegółowo

KSZTAŁTOWANIE ŁUKOWO-KOŁOWEJ LINII ZĘBÓW W UZĘBIENIU CZOŁOWYM NA FREZARCE CNC

KSZTAŁTOWANIE ŁUKOWO-KOŁOWEJ LINII ZĘBÓW W UZĘBIENIU CZOŁOWYM NA FREZARCE CNC KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU Vol. 8 nr Archiwum Technologii Mszyn i Automtyzcji 008 PIOTR FRĄCKOWIAK KSZTAŁTOWANIE ŁUKOWO-KOŁOWEJ LINII ZĘBÓW W UZĘBIENIU CZOŁOWYM NA FREZARCE CNC W rtykule

Bardziej szczegółowo

Ćwiczenie 42 Wyznaczanie ogniskowych soczewek

Ćwiczenie 42 Wyznaczanie ogniskowych soczewek Ćwiczenie 4 Wyzncznie ogniskowych soczewek Wstęp teoretyczny: Krzyszto Rębils. utorem ćwiczeni w Prcowni izycznej Zkłdu izyki Uniwersytetu Rolniczego w Krkowie jest Józe Zpłotny. ZJWISK ZŁMNI ŚWITŁ Świtło,

Bardziej szczegółowo

KOMPLEKSOWE POMIARY FREZÓW OBWIEDNIOWYCH

KOMPLEKSOWE POMIARY FREZÓW OBWIEDNIOWYCH KOMPLEKSOWE POMIARY FREZÓW OBWIEDNIOWYCH Michł PAWŁOWSKI 1 1. WSTĘP Corz większy rozwój przemysłu energetycznego, w tym siłowni witrowych stwi corz większe wymgni woec producentów przekłdni zętych jeśli

Bardziej szczegółowo

2. Ciągi liczbowe. Definicja 2.1 Funkcję a : N R nazywamy ciągiem liczbowym. Wartość funkcji a(n) oznaczamy symbolem a

2. Ciągi liczbowe. Definicja 2.1 Funkcję a : N R nazywamy ciągiem liczbowym. Wartość funkcji a(n) oznaczamy symbolem a Ciągi liczbowe Defiicj Fukcję : N R zywmy iem liczbowym Wrtość fukcji () ozczmy symbolem i zywmy -tym lub ogólym wyrzem u Ciąg Przykłdy Defiicj róŝic zpisujemy rówieŝ w postci { } + Ciąg liczbowy { } zywmy

Bardziej szczegółowo

2. PODSTAWY STATYKI NA PŁASZCZYŹNIE

2. PODSTAWY STATYKI NA PŁASZCZYŹNIE M. DSTY STTYKI N ŁSZZYŹNIE. DSTY STTYKI N ŁSZZYŹNIE.. Zsdy dynmiki Newton Siłą nzywmy wektorową wielkość, któr jest mirą mechnicznego oddziływni n ciło ze strony innych cił. dlszej części ędziemy rozptrywć

Bardziej szczegółowo

Wykład 6 Dyfrakcja Fresnela i Fraunhofera

Wykład 6 Dyfrakcja Fresnela i Fraunhofera Wykłd 6 Dyfrkcj Fresnel i Frunhofer Zjwisko dyfrkcji (ugięci) świtł odkrył Grimldi (XVII w). Poleg ono n uginniu się promieni świetlnych przechodzących w pobliżu przeszkody (np. brzeg szczeliny). Wyjśnienie

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

2. FUNKCJE WYMIERNE Poziom (K) lub (P)

2. FUNKCJE WYMIERNE Poziom (K) lub (P) Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa Mtemtyk finnsow 12.03.2012 r. Komisj Egzmincyjn dl Akturiuszy LIX Egzmin dl Akturiuszy z 12 mrc 2012 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 100 minut

Bardziej szczegółowo

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1 Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem

Bardziej szczegółowo

Integralność konstrukcji

Integralność konstrukcji 1 Integrlność konstrukcji Wykłd Nr 5 PROJEKTOWANIE W CELU UNIKNIĘCIA ZMĘCZENIOWEGO Wydził Inżynierii Mechnicznej i Robotyki Ktedr Wytrzymłości, Zmęczeni Mteriłów i Konstrukcji http://zwmik.imir.gh.edu.pl/dydktyk/imir/index.htm

Bardziej szczegółowo

Układ elektrohydrauliczny do badania siłowników teleskopowych i tłokowych

Układ elektrohydrauliczny do badania siłowników teleskopowych i tłokowych TDUSZ KRT TOMSZ PRZKŁD Ukłd elektrohydruliczny do bdni siłowników teleskopowych i tłokowych Wprowdzenie Polsk Norm PN-72/M-73202 Npędy i sterowni hydruliczne. Cylindry hydruliczne. Ogólne wymgni i bdni

Bardziej szczegółowo

Księga Identyfikacji Wizualnej. Polskie Sieci Elektroenergetyczne S.A.

Księga Identyfikacji Wizualnej. Polskie Sieci Elektroenergetyczne S.A. Księg Identyfikcji Wizulnej Polskie Sieci Elektroenergetyczne S.A. 1. Elementy bzowe 1.1. KONSTRUKCJA OPIS ZNAKU PSE 3 1.2. WERSJA PODSTAWOWA ZNAKU 4 1.3. WERSJE UZUPEŁNIAJĄCE 5 1.4. OPIS KOLORYSTYKI ZNAKU

Bardziej szczegółowo

Modelowanie 3 D na podstawie fotografii amatorskich

Modelowanie 3 D na podstawie fotografii amatorskich Edwrd Nowk 1, Jonn Nowk Modelownie D n podstwie fotogrfii mtorskich 1. pecyfik fotogrmetrycznego oprcowni zdjęć mtorskich wynik z fktu, że n ogół dysponujemy smymi zdjęcimi - nierzdko są to zdjęci wykonne

Bardziej szczegółowo

Temat I. Warunku współpracy betonu i zbrojenia w konstrukcjach żelbetowych. Wymagania. Beton. Zbrojenie

Temat I. Warunku współpracy betonu i zbrojenia w konstrukcjach żelbetowych. Wymagania. Beton. Zbrojenie Dr inż. Zigniew PLEWAKO Ćwiczeni z konstrukcji żeletowych. Temt I Temt I. Wrunku współprcy etonu i zrojeni w konstrukcjch żeletowych. Wymgni. Beton Zdnie: Przeniesienie sił ściskjących, sclenie i zpewnienie

Bardziej szczegółowo

Algorytmy graficzne. Filtry wektorowe. Filtracja obrazów kolorowych

Algorytmy graficzne. Filtry wektorowe. Filtracja obrazów kolorowych Algorytmy grficzne Filtry wektorowe. Filtrcj orzów kolorowych Filtrcj orzów kolorowych Metody filtrcji orzów kolorowych możn podzielić n dwie podstwowe klsy: Metody komponentowe (component-wise). Cechą

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

5.4.1. Ruch unoszenia, względny i bezwzględny

5.4.1. Ruch unoszenia, względny i bezwzględny 5.4.1. Ruch unozeni, zględny i bezzględny Przy ominiu ruchu punktu lub bryły zkłdliśmy, że punkt lub brył poruzły ię zględem ukłdu odnieieni x, y, z użnego z nieruchomy. Możn rozptrzyć tki z przypdek,

Bardziej szczegółowo

Od lewej: piramida Chefrena, Wielki Sfinks, piramida Cheopsa.

Od lewej: piramida Chefrena, Wielki Sfinks, piramida Cheopsa. 1. Pirmidiotologi. W obfitej literturze przedmiotu podje się, że pirmid Ceops, lub też z ngielsk Wielk Pirmid (te Gret Pyrmid), zwier w swej konstrukcji pełną i szczegółową istorię rodzju ludzkiego od

Bardziej szczegółowo

Aparatura sterująca i sygnalizacyjna Czujniki indukcyjne zbliżeniowe LSI

Aparatura sterująca i sygnalizacyjna Czujniki indukcyjne zbliżeniowe LSI Aprtur sterując i sygnlizcyjn Czujniki indukcyjne zbliżeniowe LSI Czujnik indukcyjny zbliżeniowy prcuje n zsdzie tłumionego oscyltor LC: jeżeli w obszr dziłni dostnie się metl, to z ukłdu zostje pobrn

Bardziej szczegółowo

usuwa niewymierność z mianownika wyrażenia typu

usuwa niewymierność z mianownika wyrażenia typu Wymgni edukcyjne n poszczególne oceny z mtemtyki Kls pierwsz zkres podstwowy. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje

Bardziej szczegółowo

PROJEKT BUDOWLANY. Obiekt: Budynek istniejący C Na terenie kompleksu szpitalnego Przy ul. Staszica 16 73-110 Stargard Szczeciński

PROJEKT BUDOWLANY. Obiekt: Budynek istniejący C Na terenie kompleksu szpitalnego Przy ul. Staszica 16 73-110 Stargard Szczeciński PROJEKT BUDOWLANY Relizcj etpu przebudowy i modernizcji 3 piętr Oddziłu Rehbilitcyjnego polegjącego n budowie szybu windowego, montżu windy szpitlnej orz niezbędnej rozbudowie obiektu budynku C znjdującego

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby

Bardziej szczegółowo

mgh. Praca ta jest zmagazynowana w postaci energii potencjalnej,

mgh. Praca ta jest zmagazynowana w postaci energii potencjalnej, Wykłd z fizyki. Piot Posmykiewicz 49 6-4 Enegi potencjln Cłkowit pc wykonn nd punktem mteilnym jest ówn zminie jego enegii kinetycznej. Często jednk, jesteśmy zinteesowni znlezieniem pcy jką sił wykonł

Bardziej szczegółowo

ZASTOSOWANIE ANALIZY CZASOWO-CZĘSTOTLIWOŚCIOWEJ W DIAGNOZOWANIU LOKALNYCH USZKODZEŃ PRZEKŁADNI ZĘBATYCH

ZASTOSOWANIE ANALIZY CZASOWO-CZĘSTOTLIWOŚCIOWEJ W DIAGNOZOWANIU LOKALNYCH USZKODZEŃ PRZEKŁADNI ZĘBATYCH Szybkobieżne Pojzdy Gąsienicowe (14) nr 1, 2001 Andrzej WILK Henryk MADEJ Bogusłw ŁAZARZ ZASTOSOWANIE ANALIZY CZASOWO-CZĘSTOTLIWOŚCIOWEJ W DIAGNOZOWANIU LOKALNYCH USZKODZEŃ PRZEKŁADNI ZĘBATYCH Streszczenie:

Bardziej szczegółowo

Opis i analiza metod pomiaru prędkości kątowej. Prądnice tachometryczne.

Opis i analiza metod pomiaru prędkości kątowej. Prądnice tachometryczne. Opis i nliz metod pomiru prędkości kątowej. Prądnice tcometryczne. Prądnice tcometryczne są to młe prądnice elektryczne, któryc npięcie wyjściowe zwier informcję o prędkości obrotowej, w niektóryc przypdkc

Bardziej szczegółowo

Piłka nożna w badaniach statystycznych 1

Piłka nożna w badaniach statystycznych 1 Mterił n konferencję prsową w dniu 31 mj 212 r. GŁÓWNY URZĄD STATYSTYCZNY Deprtment Bdń Społecznych i Wrunków Życi Nottk informcyjn WYNIKI BADAŃ GUS Piłk nożn w bdnich sttystycznych 1 Bdni klubów sportowych

Bardziej szczegółowo

KSIĘGA ZNAKU. Znak posiada swój obszar ochronny i w jego obrębie nie mogą się znajdować żadne elementy, nie związane ze znakiem.

KSIĘGA ZNAKU. Znak posiada swój obszar ochronny i w jego obrębie nie mogą się znajdować żadne elementy, nie związane ze znakiem. KSIĘGA ZNAKU KSIĘGA ZNAKU Poniżej przedstwion jest chrkterystyk znku 7 lt Uniwersytetu Łódzkiego. Wszystkie proporcje i sposób rozmieszczeni poszczególnych elementów są ściśle określone. Wprowdznie jkichkolwiek

Bardziej szczegółowo

symbol dodatkowy element graficzny kolorystyka typografia

symbol dodatkowy element graficzny kolorystyka typografia Identyfikcj wizuln Fundcji n rzecz Nuki Polskiej 1/00 Elementy podstwowe symbol dodtkowy element grficzny kolorystyk typogrfi Identyfikcj wizuln Fundcji n rzecz Nuki Polskiej 1/01 Elementy podstwowe /

Bardziej szczegółowo

2. Funktory TTL cz.2

2. Funktory TTL cz.2 2. Funktory TTL z.2 1.2 Funktory z otwrtym kolektorem (O.. open olletor) ysunek poniżej przedstwi odnośny frgment płyty zołowej modelu. Shemt wewnętrzny pojedynzej rmki NAND z otwrtym kolektorem (O..)

Bardziej szczegółowo

Rekuperator to urządzenie

Rekuperator to urządzenie Rekupertor to urządzenie będące sercem cłego systemu wentylcji mechnicznej. Skłd się z zintegrownej obudowy, w której znjdują się dw wentyltory, w nszym przypdku energooszczędne. Jeden z nich służy do

Bardziej szczegółowo

Równania nieliniowe. x i 1

Równania nieliniowe. x i 1 MN 08 Równni nieliniowe Wprowdzenie Podstwowe pytni 1. Pytnie: Czy komputer umie rozwiązywć równni nieliniowe f(x) = 0? Odpowiedź (uczciw): nie. 2. P: To jk on to robi? O: Dokłdnie tk, jk przy cłkowniu

Bardziej szczegółowo

R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10

R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10 Zdnie. Zkłd ubezpieczeń n życie plnuje zbudownie portfel ubezpieczeniowego przy nstępujących złożenich: ozwiąznie. Przez P k będę oznczł wrtość portfel n koniec k-tego roku. Szukm P 0 tkie by spełnił:

Bardziej szczegółowo

Sumy algebraiczne i funkcje wymierne

Sumy algebraiczne i funkcje wymierne Sumy lgebriczne i funkcje wymierne Moduł - dził -temt Zkres treści Sumy lgebriczne 1 definicj jednominu, sumy lgebricznej, wyrzów podobnych pojęcie współczynnik jednominu Dodwnie i odejmownie sum lgebricznych

Bardziej szczegółowo

Zaokrąglanie i zapisywanie wyników obliczeń przybliżonych

Zaokrąglanie i zapisywanie wyników obliczeń przybliżonych Edwrd Musił Oddził Gdński SEP Zokrąglnie i zpisywnie wyników obliczeń przybliżonych Inżynier wykonuje nieml wyłącznie obliczeni przybliżone i powinien mieć nieustnnie n względzie dokłdność, jką chce uzyskć

Bardziej szczegółowo

Narożnik MIRAGE Mini. Wygląd mebla. Okucia i poduszki. Instrukcja montażu. Poduszka oparciowa 3szt. Poduszka ozdobna 2szt. ver.3/07.

Narożnik MIRAGE Mini. Wygląd mebla. Okucia i poduszki. Instrukcja montażu. Poduszka oparciowa 3szt. Poduszka ozdobna 2szt. ver.3/07. Instrukcj montżu Spółdzielni Melrsk RAMETA ZPCH 47-400 Rciórz, ul. Królewsk 50; Centrl:+48 (0) 3-453 9 50; Sprzedż:+48(0) 3-453 9 89; Serwis:+48(0) 3-453 9 80; www.rmet.com.pl Wygląd mel 4 5 3 Okuci i

Bardziej szczegółowo

MXZ INVERTER SERIA. Jedna jednostka zewnętrzna może obsługiwać do 8 pomieszczeń. Ograniczenie poboru prądu. Efektywność energetyczna: klasa A

MXZ INVERTER SERIA. Jedna jednostka zewnętrzna może obsługiwać do 8 pomieszczeń. Ograniczenie poboru prądu. Efektywność energetyczna: klasa A INVERTER SERIA MXZ Typoszereg MXZ gwrntuje cicy, wysokowydjny i elstyczny system, spełnijący wszystkie wymgni w zkresie klimtyzcji powietrz. 6 MXZ-2C30VA MXZ-2C40VA MXZ-2C52VA MXZ-3C54VA MXZ-3C68VA MXZ-4C71VA

Bardziej szczegółowo

Pomiary ciśnień i sprawdzanie manometrów

Pomiary ciśnień i sprawdzanie manometrów Poiry ciśnień i srwdznie noetrów Instrukcj do ćwiczeni nr 2 Miernictwo energetyczne - lbortoriu Orcowł: dr inŝ. ElŜbiet Wróblewsk Zkłd Miernictw i Ochrony Atosfery Wrocłw, grudzień 2008 r. I. WSTĘP Ciśnienie

Bardziej szczegółowo

Temat lekcji Zakres treści Osiągnięcia ucznia

Temat lekcji Zakres treści Osiągnięcia ucznia ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:

Bardziej szczegółowo

POMIAR OGNISKOWEJ SOCZEWEK METODĄ BESSELA

POMIAR OGNISKOWEJ SOCZEWEK METODĄ BESSELA Ćwiczenie 50 POMIAR OGNISKOWEJ SOCZEWEK METODĄ BESSELA 50.. Widomości ogólne Soczewką nzywmy ciło pzeźoczyste oczyste ogniczone dwiem powiezchnimi seycznymi. Post pzechodząc pzez śodki kzywizny ob powiezchni

Bardziej szczegółowo

Temat ćwiczenia. Pomiary kół zębatych

Temat ćwiczenia. Pomiary kół zębatych POLITECHNIKA ŚLĄSKA W YDZIAŁ TRANSPORTU Temt ćwiczeni Pomiy kół zębtych I. Cel ćwiczeni Zpoznnie studentów z metodmi pomiu uzębień wlcowych kół zębtych o zębch postych oz pktyczny pomi koł. II. Widomości

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Ktlog wymgń progrmowych n poszczególne stopnie szkolne Mtemtyk. Poznć, zrozumieć Ksztłcenie w zkresie podstwowym. Kls 2 Poniżej podjemy umiejętności, jkie powinien zdobyć uczeń z kżdego dziłu, by uzyskć

Bardziej szczegółowo

ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GRANULOMETRYCZNEJ SUROWCÓW I PRODUKTÓW

ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GRANULOMETRYCZNEJ SUROWCÓW I PRODUKTÓW 1 ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GANULOMETYCZNEJ SUOWCÓW I PODUKTÓW 1. Cel zkres ćwczen Celem ćwczen jest opnowne przez studentów metody oceny mterłu sypkego pod względem loścowej zwrtośc frkcj

Bardziej szczegółowo

Zastosowanie analizy widmowej sygnału ultradwikowego do okrelenia gruboci cienkich warstw

Zastosowanie analizy widmowej sygnału ultradwikowego do okrelenia gruboci cienkich warstw AMME 1 1th JUBILEE INTERNATIONAL SC IENTIFIC CONFERENCE Zstosownie nlizy widmowej sygnłu ultrdwikowego do okreleni gruboci cienkich wrstw A. Kruk Wydził Metlurgii i Inynierii Mteriłowej, Akdemi Górniczo-Hutnicz

Bardziej szczegółowo

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Akdemi órniczo-hutnicz im. Stnisłw Stszic w Krkowie Wydził Elektrotechniki, Automtyki, Informtyki i Inżynierii Biomedycznej Ktedr Elektrotechniki i Elektroenergetyki Rozprw Doktorsk Numeryczne lgorytmy

Bardziej szczegółowo

Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I

Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I Mtemtyk finnsow.03.2014 r. Komisj Egzmincyjn dl Akturiuszy LXVI Egzmin dl Akturiuszy z mrc 2014 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 0 minut 1 Mtemtyk

Bardziej szczegółowo

WENTYLACJA PRZESTRZENI POTENCJALNIE ZAGROŻONYCH WYBUCHEM MIESZANIN GAZOWYCH

WENTYLACJA PRZESTRZENI POTENCJALNIE ZAGROŻONYCH WYBUCHEM MIESZANIN GAZOWYCH Ochron przeciwwybuchow Michł Świerżewski WENTYLACJA PRZESTRZENI POTENCJALNIE ZAGROŻONYCH WYBUCHEM MIESZANIN GAZOWYCH 1. Widomości ogólne Zgodnie z postnowienimi rozporządzeni Ministr Sprw Wewnętrznych

Bardziej szczegółowo

Materiały diagnostyczne z matematyki poziom podstawowy

Materiały diagnostyczne z matematyki poziom podstawowy Mteriły dignostyczne z mtemtyki poziom podstwowy czerwiec 0 Klucz odpowiedzi do zdń zmkniętych orz schemt ocenini Mteriły dignostyczne przygotowł Agt Siwik we współprcy z nuczycielmi mtemtyki szkół pondgimnzjlnych:

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa Mtemtyk finnsow 15.0.010 r. Komisj Egzmincyjn dl Akturiuszy LII Egzmin dl Akturiuszy z 15 mrc 010 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoy egzminownej:... Czs egzminu: 100 minut 1

Bardziej szczegółowo

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań KONKURS MATEMATYCZNY dl uczniów gimnzjów w roku szkolnym 0/ II etp zwodów (rejonowy) 0 listopd 0 r. Propozycj punktowni rozwiązń zdń Uwg: Z kżde poprwne rozwiąznie inne niż przewidzine w propozycji punktowni

Bardziej szczegółowo

Wymagania kl. 2. Uczeń:

Wymagania kl. 2. Uczeń: Wymgni kl. 2 Zkres podstwowy Temt lekcji Zkres treści Osiągnięci uczni. SUMY ALGEBRAICZNE. Sumy lgebriczne definicj jednominu pojęcie współczynnik jednominu porządkuje jednominy pojęcie sumy lgebricznej

Bardziej szczegółowo

POWŁOKI ELEKTROISKROWE WC-CO MODYFIKOWANE WIĄZKĄ LASEROWĄ. 88 Powłoki elektroiskrowe WC-Co modyfikowane wiązką laserową. Wstęp

POWŁOKI ELEKTROISKROWE WC-CO MODYFIKOWANE WIĄZKĄ LASEROWĄ. 88 Powłoki elektroiskrowe WC-Co modyfikowane wiązką laserową. Wstęp Rdek N.,* Szlpko J.** *Ktedr Inżynierii Eksplotcji Politechnik Świętokrzysk, Kielce, Polsk **Khmelnitckij Uniwersytet Nrodowy, Khmelnitckij, Ukrin Wstęp 88 POWŁOKI ELEKTROISKROWE WC-CO MODYFIKOWANE WIĄZKĄ

Bardziej szczegółowo

PORÓWNANIE WYBRANYCH RÓWNAŃ KONSTYTUTYWNYCH STOPÓW Z PAMIĘCIĄ KSZTAŁTU

PORÓWNANIE WYBRANYCH RÓWNAŃ KONSTYTUTYWNYCH STOPÓW Z PAMIĘCIĄ KSZTAŁTU ODELOWNIE INŻYNIERKIE INN 1896-771X 3,. 37-44, Gliwice 6 PORÓWNNIE WYBRNYCH RÓWNŃ KONTYTUTYWNYCH TOPÓW Z PIĘCIĄ KZTŁTU KRZYZTOF BIEREG Ktedr Wyokich Npięć i prtów Elekt., Politechnik Gdńk trezczenie. W

Bardziej szczegółowo

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie

Bardziej szczegółowo

Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego

Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego Komputerowe wspomgnie decyzi 008/009 Liniowe zgdnieni decyzyne Nottki do temtu Metody poszukiwni rozwiązń ednokryterilnych problemów decyzynych metody dl zgdnień liniowego progrmowni mtemtycznego Liniowe

Bardziej szczegółowo

Jest błędem odwołanie się do zmiennej, której nie przypisano wcześniej żadnej wartości.

Jest błędem odwołanie się do zmiennej, której nie przypisano wcześniej żadnej wartości. Zmienne: W progrmie operuje się n zmiennych. Ndwnie im wrtości odbyw się poprzez instrukcję podstwieni. Interpretcj tej instrukcji jest nstępując: zmiennej znjdującej się z lewej strony instrukcji podstwieni

Bardziej szczegółowo

Próba określenia czynników determinujących wyniki ocen wprowadzenia euro przez mieszkańców Unii Europejskiej

Próba określenia czynników determinujących wyniki ocen wprowadzenia euro przez mieszkańców Unii Europejskiej Mieczysłw Kowerski Wyższ Szkoł Zrządzni I Administrcji w Zmościu Ewelin Włodrczyk Wyższ Szkoł Zrządzni I Administrcji w Zmościu Prób określeni czynników determinujących wyniki ocen wprowdzeni euro przez

Bardziej szczegółowo

O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI

O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI ZESZYTY NAUKOWE 7-45 Zenon GNIAZDOWSKI O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI Streszczenie W prcy omówiono grupę permutcji osi krtezjńskiego ukłdu odniesieni reprezentowną przez mcierze permutcji,

Bardziej szczegółowo

Bowflag. Bowflag 100 Bowflag 200 Bowflag Premium

Bowflag. Bowflag 100 Bowflag 200 Bowflag Premium Bowflg Przenośny mszt typu żgiel do prezentcji wewnątrz i n zewnątrz pomieszczeń. Szerok gm stóp mocującyc. Duży wybór form i wymirów flg. Bowflg 00 Bowflg 00 Bowflg Premium Bowflg 00 Bowflg 00 - sprwdzone

Bardziej szczegółowo

system identyfikacji wizualnej forma podstawowa karta A03 część A znak marki

system identyfikacji wizualnej forma podstawowa karta A03 część A znak marki krt A03 część A znk mrki form podstwow Znk mrki Portu Lotniczego Olsztyn-Mzury stnowi połączenie znku grficznego (tzw. logo) z zpisem grficznym (tzw. logotypem). Służy do projektowni elementów symboliki

Bardziej szczegółowo

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe

Bardziej szczegółowo

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję: YZNACZNIKI Do opisu pewnh oiektów nie wstrz użć liz. ie n przkłd, że do opisni sił nleż użć wektor. Sił to przeież nie tlko wielkość le i jej punkt przłożeni, zwrot orz kierunek dziłni. Zte jedną lizą

Bardziej szczegółowo

Materiały szkoleniowe DRGANIA MECHANICZNE ZAGROŻENIA I PROFILAKTYKA. Serwis internetowy BEZPIECZNIEJ CIOP-PIB

Materiały szkoleniowe DRGANIA MECHANICZNE ZAGROŻENIA I PROFILAKTYKA. Serwis internetowy BEZPIECZNIEJ CIOP-PIB Mteriły szkoleniowe DRGANIA MECHANICZNE ZAGROŻENIA I PROFILAKTYKA Serwis internetowy BEZPIECZNIEJ CIOP-PIB 1. Wprowdzenie Drgnimi nzywne są procesy, w których chrkterystyczne dl nich wielkości fizyczne

Bardziej szczegółowo

smoleńska jako nierozwiązywalny konflikt?

smoleńska jako nierozwiązywalny konflikt? D y s k u s j smoleńsk jko nierozwiązywlny konflikt? Wiktor Sorl Michł Bilewicz Mikołj Winiewski Wrszw, 2014 1 Kto nprwdę stł z zmchmi n WTC lub z zbójstwem kżnej Diny? Dlczego epidemi AIDS rozpowszechnił

Bardziej szczegółowo

TEMAT: Próba statyczna rozciągania metali. Obowiązująca norma: PN-EN 10002-1:2002(U) Zalecana norma: PN-91/H-04310 lub PN-EN10002-1+AC1

TEMAT: Próba statyczna rozciągania metali. Obowiązująca norma: PN-EN 10002-1:2002(U) Zalecana norma: PN-91/H-04310 lub PN-EN10002-1+AC1 ĆWICZENIE NR 1 TEMAT: Próba statycna rociągania metali. Obowiąująca norma: PN-EN 10002-1:2002(U) Zalecana norma: PN-91/H-04310 lub PN-EN10002-1+AC1 Podać nacenie następujących symboli: d o -.....................................................................

Bardziej szczegółowo

PL-0710-139/1 1/1017 Pan Janusz Witkowski Prezes Głównego Urzędu Statystycznego

PL-0710-139/1 1/1017 Pan Janusz Witkowski Prezes Głównego Urzędu Statystycznego Wrszw,^/ czerwc 211 r. RZECZPOSPOLITA POLSKA GŁÓWNY GEOETA KRAJU Jolnt Orlińsk PL-71-139/1 1/117 Pn Jnusz Witkowski Prezes Głównego Urzędu Sttystycznego W odpowiedzi n pism z dni 1 czerwc 211 r. znle:

Bardziej szczegółowo

Ć W I C Z E N I E N R E-14

Ć W I C Z E N I E N R E-14 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA ELEKTRYCZNOŚCI I MAGNETYZMU Ć W I C Z E N I E N R E-14 WYZNACZANIE SZYBKOŚCI WYJŚCIOWEJ ELEKTRONÓW

Bardziej szczegółowo

Szkolnictwo zawodowe a rynek pracy sektora rolno-spożywczego w województwie łódzkim

Szkolnictwo zawodowe a rynek pracy sektora rolno-spożywczego w województwie łódzkim Szkolnictwo zwodowe dl sektor rolno-spożywczego w województwie łódzkim dignoz potrzeb edukcyjnych Szkolnictwo zwodowe rynek prcy sektor rolno-spożywczego w województwie łódzkim Prognozy oprcowne w rmch

Bardziej szczegółowo

DZIENNIK URZĘDOWY WOJEWÓDZTWA PODKARPACKIEGO. Póz. 2919 DECYZJA NR OKR-4210-38(14)/2014/404/XII/EŚ PREZESA URZĘDU REGULACJI ENERGETYKI

DZIENNIK URZĘDOWY WOJEWÓDZTWA PODKARPACKIEGO. Póz. 2919 DECYZJA NR OKR-4210-38(14)/2014/404/XII/EŚ PREZESA URZĘDU REGULACJI ENERGETYKI DZIENNIK URZĘDOWY WOJEWÓDZTWA PODKARPACKIEGO, dlll 10 listopd 2014 r. Elektronicznie podpisn Jnusz Włdysłw Olech Póz. 2919 Dt: 2014-11-10 14:08:59 DECYZJA NR OKR-4210-38(14)/2014/404/XII/EŚ PREZESA URZĘDU

Bardziej szczegółowo

ROLE OF CUSTOMER IN BALANCED DEVELOPMENT OF COMPANY

ROLE OF CUSTOMER IN BALANCED DEVELOPMENT OF COMPANY FOLIA UNIVERSITATIS AGRICULTURAE STETINENSIS Foli Univ. Agric. Stetin. 2007, Oeconomic 254 (47), 117 122 Jolnt KONDRATOWICZ-POZORSKA ROLA KLIENTA W ZRÓWNOWAŻONYM ROZWOJU FIRMY ROLE OF CUSTOMER IN BALANCED

Bardziej szczegółowo

KATEDRA ENERGOELEKTRONIKI I ELEKTROENERGETYKI LABORATORIUM ELEKTROENERGETYKI. Rys. 7.7.1. Pomiar impedancji pętli zwarcia dla obwodu L2

KATEDRA ENERGOELEKTRONIKI I ELEKTROENERGETYKI LABORATORIUM ELEKTROENERGETYKI. Rys. 7.7.1. Pomiar impedancji pętli zwarcia dla obwodu L2 6.7. ntrukcj zczegółow Grup:... 4.. 6.7. Cel ćwiczeni Celem ćwiczeni jet zpoznnie ię z metodmi pomirowymi i przepimi dotyczącymi ochrony przeciwporżeniowej w zczególności ochrony przed dotykiem pośrednim.

Bardziej szczegółowo

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Proponujemy, by omwijąc dne zgdnienie progrmowe lub rozwiązując zdnie, nuczyciel określł do jkiego zkresu

Bardziej szczegółowo

KRYTERIA OCENIANIA TECHNOLOGIA NAPRAW ZESPOŁÓW I PODZESPOŁÓW MECHANICZNYCH POJAZDÓW SAMOCHODOWYCH KLASA I TPS

KRYTERIA OCENIANIA TECHNOLOGIA NAPRAW ZESPOŁÓW I PODZESPOŁÓW MECHANICZNYCH POJAZDÓW SAMOCHODOWYCH KLASA I TPS KRYTRIA OCNIANIA TCHNOLOGIA NAPRAW ZSPOŁÓW I PODZSPOŁÓW MCHANICZNYCH POJAZDÓW SAMOCHODOWYCH KLASA I TPS Temt Klsyfikcj i identyfikcj pojzdów smochodowych Zgdnieni - Rodzje ukłdów, - Zdni i ogóln budow

Bardziej szczegółowo

Karta oceny merytorycznej wniosku o dofinansowanie projektu innowacyjnego testującego składanego w trybie konkursowym w ramach PO KL

Karta oceny merytorycznej wniosku o dofinansowanie projektu innowacyjnego testującego składanego w trybie konkursowym w ramach PO KL Złącznik nr 5 Krt oceny merytorycznej Krt oceny merytorycznej wniosku o dofinnsownie projektu innowcyjnego testującego skłdnego w trybie konkursowym w rmch PO KL NR WNIOSKU KSI: WND-POKL. INSTYTUCJA PRZYJMUJĄCA

Bardziej szczegółowo

10.3. Przekładnie pasowe

10.3. Przekładnie pasowe 0.0. Przekłdnie 0.3. Przekłdnie psowe Przekłdni psow przekłdni kołow ciern z elementmi pośrednimi w postci elstycznych cięgieł, njczęściej o konstrukcji wielodrożnej. Przekłdnie psowe Ps klinowy Ps płski

Bardziej szczegółowo

Rozwiązanie: Część teoretyczna

Rozwiązanie: Część teoretyczna Zgodnie z prawem Hooke a idealnie sprężysty pręt o długości L i polu przekroju poprzecznego S pod wpływem przyłożonej wzdłuż jego osi siły F zmienia swoją długość o L = L F/(S E), gdzie współczynnik E

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7)

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7) EGZAMIN MATURALNY OD ROKU SZKOLNEGO 01/015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A, A, A, A6, A7) GRUDZIEŃ 01 Klucz odpowiedzi do zdń zmkniętych Nr zdni 1 5 Odpowiedź

Bardziej szczegółowo

FORMULARZ CENOWY OPIS PRZEDMIOTU ZAMÓWIENIA

FORMULARZ CENOWY OPIS PRZEDMIOTU ZAMÓWIENIA 5 Wojskowy Szpitl Kliniczny z Polikliniką Smodzielny Publiczny Zkłd Opieki Zdrowotnej w Krkowie Sekcj Zmówień Publicznych (budynek nr 45) Tel. (012) 630 80 57, (012) 630 80 58, tel/fx (012) 630 80 59 Godziny

Bardziej szczegółowo

Prosta metoda sprawdzania fundamentów ze względu na przebicie

Prosta metoda sprawdzania fundamentów ze względu na przebicie Konstrkcje Elementy Mteriły Prost metod sprwdzni fndmentów ze względ n przebicie Prof dr b inż Micł Knff, Szkoł Główn Gospodrstw Wiejskiego w Wrszwie, dr inż Piotr Knyzik, Politecnik Wrszwsk 1 Wprowdzenie

Bardziej szczegółowo

UŻYWANIE SUBSTANCJI PSYCHOAKTYWNYCH PRZEZ MŁODZIEŻ 2005

UŻYWANIE SUBSTANCJI PSYCHOAKTYWNYCH PRZEZ MŁODZIEŻ 2005 Jnusz Sierosłwski, Piotr Jbłoński Instytut Psychitrii i Neurologii Krjowe Biuro s. Przeciwziłni Nrkomnii UŻYWANIE SUBSTANCJI PSYCHOAKTYWNYCH PRZEZ MŁODZIEŻ 25 BADANIA ANKIETOWE W SZKOŁACH NA TEMAT UŻYWANIA

Bardziej szczegółowo

Kotary grodzące, siatki ochronne Kotary wewnętrzne

Kotary grodzące, siatki ochronne Kotary wewnętrzne 60 Kotry grodzące, sitki ocronne Kotry wewnętrzne Wózek prowdzący Szyn jezdn Profil 55 x mm Ukłd jezdny kotry grodzącej z przesuwem ręcznym Wózki pośrednie Łącznik szyny do dźwigr Szyn jezdn System mocowni

Bardziej szczegółowo

KARTA WZORÓW MATEMATYCZNYCH. (a + b) c = a c + b c. p% liczby a = p a 100 Liczba x, której p% jest równe a 100 a p

KARTA WZORÓW MATEMATYCZNYCH. (a + b) c = a c + b c. p% liczby a = p a 100 Liczba x, której p% jest równe a 100 a p KRT WZORÓW MTEMTYZNY WŁSNOŚI DZIŁŃ Pwo pzemiennośi dodwni + = + Pwo łąznośi dodwni + + = ( + ) + = + ( + ) Pwo zemiennośi mnoŝeni = Pwo łąznośi mnoŝeni = ( ) = ( ) Pwo ozdzielnośi mnoŝeni względem dodwni

Bardziej szczegółowo

WYZNACZANIE STAŁEJ RÓWNOWAGI KWASOWO ZASADOWEJ W ROZTWORACH WODNYCH

WYZNACZANIE STAŁEJ RÓWNOWAGI KWASOWO ZASADOWEJ W ROZTWORACH WODNYCH Politehni Śląs WYDZIŁ CHEMICZNY KTEDR FIZYKOCHEMII I TECHNOLOGII POLIMERÓW WYZNCZNIE STŁEJ RÓWNOWGI KWSOWO ZSDOWEJ W ROZTWORCH WODNYCH Opieun: Miejse ćwizeni: Ktrzyn Kruiewiz Ktedr Fizyohemii i Tehnoii

Bardziej szczegółowo

Pakiet aplikacyjny. Niniejszy pakiet zawiera informacje, które musisz posiadać zgłaszając swoją kandydaturę. Zawiera on:

Pakiet aplikacyjny. Niniejszy pakiet zawiera informacje, które musisz posiadać zgłaszając swoją kandydaturę. Zawiera on: Pkiet plikcyjny Stnowisko: Nr referencyjny: Specjlist ds. interwencji ekologicznych CON/2011/01 Niniejszy pkiet zwier informcje, które musisz posidć zgłszjąc swoją kndydturę. Zwier on: List do kndydtów

Bardziej szczegółowo

BADANIE MOBILNOŚCI KOMUNIKACYJNEJ LUDNOŚCI

BADANIE MOBILNOŚCI KOMUNIKACYJNEJ LUDNOŚCI BADANIE MOBILNOŚCI KOMUNIKACYJNEJ LUDNOŚCI Kwestionriusz gospodrstw domowego Numer ewidencyjny: Dził 0. REALIZACJA WYWIADU. Łączn liczb wizyt nkieter w wylosownym mieszkniu. Wylosowne mieszknie Proszę

Bardziej szczegółowo

Decybel, bit, bajt i inne jednostki miar stosowane w telekomunikacji

Decybel, bit, bajt i inne jednostki miar stosowane w telekomunikacji Decyel, it, jt i inne jednostki mir stosowne w telekomunikcji Zdzisłw Kuśmirek rtykule przedstwiono wielkości, jednostki mir, ich nzwy, symole (oznczeni), przedrostki i definicje, stosowne w telekomunikcji,

Bardziej szczegółowo

Anna Malarska. statystyczna analiza danych. wspomagana programem SPSS

Anna Malarska. statystyczna analiza danych. wspomagana programem SPSS Ann Mlrsk sttystyczn nliz dnych wspomgn progrmem SPSS SPSS Polsk Krków 2005 Sttystyczn nliz dnych wspomgn progrmem SPSS 1.2 Grficzne formy prezentcji dnych 1.2.1 Wykres słupkowy, histogrm Częstości relizcji

Bardziej szczegółowo

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL 1

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL 1 Złącznik nr 3 Krt oceny merytorycznej wniosku o dofinnsownie projektu konkursowego PO KL Krt oceny merytorycznej wniosku o dofinnsownie projektu konkursowego PO KL 1 NR WNIOSKU KSI: POKL.05.02.01 00../..

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 424 PRACE INSTYTUTU KULTURY FIZYCZNEJ NR 22 2005

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 424 PRACE INSTYTUTU KULTURY FIZYCZNEJ NR 22 2005 ZEZYTY NAUKOWE UNIWERYTETU ZCZECIŃKIEGO NR 424 PRACE INTYTUTU KULTURY FIZYCZNEJ NR 22 2005 MARIA MAKRI PRAWNOŚĆ FIZYCZNA I AKTYWNOŚĆ RUCHOWA KOBIET W WIEKU 20 60 LAT 1. Wstęp Dobr sprwność fizyczn jest

Bardziej szczegółowo

ZESZYTY NAUKOWE NR 11(83) AKADEMII MORSKIEJ W SZCZECINIE. Fuzja danych nawigacyjnych w przestrzeni filtru Kalmana

ZESZYTY NAUKOWE NR 11(83) AKADEMII MORSKIEJ W SZCZECINIE. Fuzja danych nawigacyjnych w przestrzeni filtru Kalmana ISSN 733-867 ZESZ NAUKOWE NR (83) AKADEMII MORSKIEJ W SZCZECINIE IV MIĘDZNARODOWA KONFERENCJA NAUKOWO-ECHNICZNA E X L O - S H I 6 Andrzej Stteczny, Andrzej Lsj, Chfn Mohmmd Fzj dnych nwgcyjnych w przestrzen

Bardziej szczegółowo

ZADANIE I OPIS PRZEDMIOTU ZAMÓWENIA SPECYFIKACJA TECHNICZNA (OPIS) OFEROWANEGO SPRZĘTU

ZADANIE I OPIS PRZEDMIOTU ZAMÓWENIA SPECYFIKACJA TECHNICZNA (OPIS) OFEROWANEGO SPRZĘTU ZADANIE I OPIS PRZEDMIOTU ZAMÓWENIA SPECYFIKACJA TECHNICZNA (OPIS) OFEROWANEGO SPRZĘTU Nzw i rs Wykonwy:. I. Systm o ony i trningu koorynji nrwowo-mięśniowj i momntów sił mięśniowyh rozwijnyh w stwh końzyn

Bardziej szczegółowo

Rys. 1. Elementy zginane. KONSTRUKCJE BUDOWLANE PROJEKTOWANIE BELEK DREWNIANYCH 2013 2BA-DI s.1 WIADOMOŚCI OGÓLNE

Rys. 1. Elementy zginane. KONSTRUKCJE BUDOWLANE PROJEKTOWANIE BELEK DREWNIANYCH 2013 2BA-DI s.1 WIADOMOŚCI OGÓLNE WIADOMOŚCI OGÓLNE O zginaniu mówimy wówczas, gdy prosta początkowo oś pręta ulega pod wpływem obciążenia zakrzywieniu, przy czym włókna pręta od strony wypukłej ulegają wydłużeniu, a od strony wklęsłej

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci

Bardziej szczegółowo

Ć w i c z e n i e K 3

Ć w i c z e n i e K 3 Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa

Bardziej szczegółowo