MODELOWANIE ROZMYTE W ANALIZIE JAKOŚCIOWEJ Z WYKORZYSTANIEM ŚRODOWISKA OLAP

Wielkość: px
Rozpocząć pokaz od strony:

Download "MODELOWANIE ROZMYTE W ANALIZIE JAKOŚCIOWEJ Z WYKORZYSTANIEM ŚRODOWISKA OLAP"

Transkrypt

1 ZESZYTY AUKOWE Adzej CHOJACKI MODELOWAIE ROZMYTE W AALIZIE JAKOŚCIOWEJ Z WYKORZYSTAIEM ŚRODOWISKA OLAP Steszczeie W efeacie pzedstawioo matematyczy detemiistyczy model stuktuy daych w śodowisku OLAP w postaci wielowymiaowej i wielopoziomowej kostki. Model został uogólioy a pzypadek daych o chaakteze ozmytym lub itepetowaych z wykozystaiem teoii zbioów ozmytych i logiki ozmytej. Wskazao a możliwości wykoywaia aaliz jakościowych baz i hutowi daych w opaciu o pzedstawioe modele. Abstact The aticle pesets mathematical detemiistic model of data stuctue applied i OLAP eviomets as multidimesioal ad multilevel cube. This model is geealized to the fuzzy data o data itepeted with fuzzy sets theoy ad fuzzy logic. Possibilities of quality aalysis of data bases ad data waehouses usig peseted models ae descibed. WPROWADZEIE Współczese hutowie daych wyposażoe są w owoczese azędzia aalitycze OLAP (O-Lie Aalitycal Pocessig) [2], któe umożliwiają wykoywaie aaliz wielowymiaowych []. Jest to możliwość kostuowaia i aalityczego pzetwazaia modelu wielowymiaowego daych, zoietowaego a pocesy bizesowe. Ekoomia i zaządzaie posługują się główie językiem atualym, okeśleiami ieostymi. Język te cechuje też kadę zaządzającą i decydetów w fimach. Modelowaie ieostości w OLAP pozwala uzyskać ozmytą epezetację daych, opatą a języku atualym, zozumiałym dla wszystkich. Moża to uzyskać dzięki zastosowaiu teoii zbioów ozmytych. D hab. iż. Adzej Chojacki jest pofesoem Waszawskiej Wyższej Szkoły Ifomatyki i Wojskowej Akademii Techiczej. 79

2 Adzej CHOJACKI Aaliza jakościowa opata a modelowaiu ozmytym umożliwia dokoaie oce i podsumowań w języku atualym, w fomie zozumiałej dla pzeciętego użytkowika [3]. Wykoaa w śodowisku OLAP staowi poste i taie ozwiązaie, umożliwiające podsumowaie dużych, tudo itepetowalych liczbowych zbioów daych w języku zgodym z pecepcją człowieka. 2 DETERMIISTYCZY MODEL OLAP Za pomocą techologii OLAP dae z hutowi pzekształca się do postaci wielowymiaowej, odmieej od tadycyjej, stosowaej w bazach daych, zomalizowaej stuktuy elacyjej, poieważ modele daych stosowae do pojektowaia systemów OLTP (O-Lie Tasactio Pocessig) ie adają się do modelowaia złożoych zapytań. Ta owoczesa techologia umożliwia modelowaie pozyskaych, wyczyszczoych i ujedolicoych daych do postaci zagegowaych, wielopoziomowych i wielowymiaowych stuktu zwaych potoczie kostkami, odzwieciedlających wielowymiaowy model działalości ogaizacj i [3]. astępie sewe OLAP udostępia wielowymiaowe dae aplikacjom użytkowików. Itepetuje i pzetwaza zapytaia klietów. Stuktuy wielowymiaowe mogą być posadowioe w dedykowaych, twałych bazach wielowymiaowych, w tymczasowych kostkach ezydujących w pamięci lub w bazach elacyjych. iech ozacza liczbę wymiaów występujących w systemie OLAP. Wymia -ty ( =, ) opisay jest paą k, D, gdzie k jest azwą wymiau, a D zbioem jego możliwych watości. azwa k = {d e }E jest zbioem azw de sematyczie powiązaych, pzy czym azwa d 0 jest ogólą azwą wymiau (p. lokalizacja), a- e=0 tomiast pozostałe azwy są jej koketyzacją (p. kaj, egio, województwo, miasto). Elemetami zbiou D są więc ciągi w = w 0, w, w2,...,we, w któych we De, E gdzie D e jest zbioem możliwych watości azwy de, czyli e D = D. Pzyjmuje się, że D 0 = {ALL}, czyli zawsze w0 powiązay zbió Q e Q = ALL. Dodatkowo z każdą azwą de może być atybutów tej azwy (p. dla azwy miasto wymiau lokalizacja zbió te może zawieać astępujące atybuty: liczba mieszkańców, powiezchia). Każdy atybut o azwie q ze zbiou Q azw wszystkich atybutów -tego wymiau uwzględiaych w systemie OLAP może pzyjmować watości ze zbiou V q. W zbioze k moża zdefiiować elację biaą w te sposób, że dwie óże azwy z tego zbiou są ze sobą w tej elacji wtedy i tylko wtedy, gdy duga z ich jest sematyczie węższa iż piewsza, czyli piewsza jest hipeoimem w stosuku do dugiej, i odwotie duga jest hipoimem w stosuku do piewszej. Oczywiście e= 80

3 MODELOWAIE ROZMYTE W AALIZIE JAKOŚCIOWEJ Z WYKORZYSTAIEM... azwa d 0 jest hipeoimem w stosuku do każdej z pozostałych azw, a elacja jest pzeciwzwota, pzeciwsymetycza i pzechodia (tzw. elacja ostego poządku). Tę elację moża pzedstawić w postaci acykliczego, spójego gafu skieowaego H = k, T, gdzie T k k jest zbioem takich łuków d e, de, że azwa d e jest hipoimem w stosuku do azwy de. Każda doga w tym gafie ozpoczyająca się w wiezchołku d 0 azywaa jest hieachią -tego wymiau. Liczbę możliwych hieachii ozaczmy symbolem I. Jest oa ie większa od 2 E. iech h i = h 0, i h, i h2 i,...,hj i ozacza hieachię i -tego wymiau. Liczba J azywaa i i jest liczbą poziomów i tej hieachii - tego wymiau, a ajwiększą z tych liczb liczbą poziomów hieachii - tego wymiau. Hieachia h i = h 0 i, h i, h2 i,...,hj i i = d0, dei, dei 2,..., dei Ji w zbioze D geeuje ciąg o długości J i + podziałów tego zbiou a odziy L j = i {Lju } j i u U i podzbioów zbiou D, gdzie U j jest zbioem ideksów j-tego podziału zbiou D (j = 0,J ). Podzbioy i i L ju D zdefiiowae są astępująco: i L 0,= D, pzy czym U0 = {}; i i jeśli w = w 0, w, w 2,...,w E oaz w = w 0, w, w 2,...,w E, to w i w ależą do tego samego podzbiou L ju wtedy i tylko wtedy, gdy jedocześie ależą i do pewego podzbiou L j u i oaz w ei j = w ei j. Widać, że hieachia h i geeuje dedyt G i = L i, W i, któego wiezchołkami J = U u j= 0 U są wszystkie zbioy L ju, czyli i ju i i { i} L L, a L ju, L j+u W i i wtedy i tylko wtedy, gdy L j+u i Lju. Gafowi H obazującemu wszystkie możliwe hieachie i -tego wymiau odpowiada więc gaf G = L, W będący sumą dedytów G i dla i =,l. Zbioem L wiezchołków gafu G są wszystkie podzbioy L ju, czyli i L I = U L i, a łuki łączą te zbioy, z któych astępik jest podzbioem właściwym i= 0 popzedika i oba zbioy powstały z tej samej hieachii. Gafy H ( =,) umożliwiają pzepowadzeie agegacji wymiaów. iech H = k, T będzie gafem skieowaym, któego zbioem k wiezchołków jest podukt katezjański zbioów k, tz. k= = j i i k, a paa k, k Τ wtedy i tylko wtedy, gdy k k oaz dla każdego =, paa d, d jest łukiem w gafie H lub d = d. 8

4 Adzej CHOJACKI = iech D = D będzie zbioem wszystkich możliwych kotek watości wymiaów. Podobie jak powyżej w zbioze D moża pzepowadzić agegację gafów G w taki sposób, że otzymuje się gaf zagegoway G = L, W, któego zbió wiezchołków L= = L, atomiast łuk łączy dwa ciągi podzbioów zbiou D wtedy i tylko wtedy, gdy są to ciągi óże oaz każdy podzbió ciągu dugiego jest podzbioem (iekoieczie właściwym) odpowiadającego mu podzbiou ciągu piewszego, czyli paa takich podzbioów jest łukiem w odpowiadającym im gafie G. Chaakteystyczą cechą systemu OLAP są miay, któe pozwalają a wyzaczeie wskazaych watości a podstawie zajomości elemetów zbiou D. iech K ozacza liczbę tych mia. Watość każdej miay może być óża dla óżych watości atybutów ozpatywaych w systemie OLAP. iech Q = U Q będzie zbioem azw wszystkich atybutów, atomiast V = V q zbioem wszystkich możliwych q Q ciągów watości atybutów. iech poadto M k ozacza zbió watości k-tej miay (k =,K). Każda miaa opisaa jest tójką m k, M k, F k, gdzie m k jest azwą k-tej miay (p. sumaycza wielkość spzedaży), atomiast F k jest fukcją częściową, któej watością jest elemet zbiou M k, tz. F k : D V M k. Fukcja ta okeśloa jest dla takich ciągów:, dla któych v q jest watością co ajmiej jedego atybutu q Q e pewej azwy d e pzyjmującej watość we. iech F = F, F,...,F będzie fukcją wektoową 2 K opisującą wszystkie miay. Wtedy modelem systemu OLAP jest tzw. kostka OLAP zdefiiowaa astępująco: OLAP = D, H, {M k } K,F. k= Oczywiście koketa ealizacja kostki OLAP zawiea tylko takie kotki zbioów D oaz V, któe są elemetami zaego zbiou daych. Moża więc powiedzieć, że dla zaych zbioów daych D oaz V fizycza kostka OLAP jest kostką, w któej zbió D oaz fukcja F zostały obcięte do tych zbioów. Poadto pzyjmuje się często, że watości atybutów zmieych opisujących wymiay ie są bae pod uwagę pzy kostuowaiu mia. Wtedy ależy w powyższych ozważaiach pzyjąć, że fukcja F jest fukcją stałą za względu a elemety zbiou V. W paktyce zakłada się także, że ie muszą występować wszystkie elemety kostki OLAP p. hieachie. Wtedy pzedstawioy model upaszcza się i zawiea tylko fagmety obligatoyje. = 82

5 MODELOWAIE ROZMYTE W AALIZIE JAKOŚCIOWEJ Z WYKORZYSTAIEM... 3 ROZMYTY MODEL OLAP Współczese bazy daych, w tym też hutowie daych wyposażoe w OLAP, pzechowują ifomację pecyzyją. Badziej efektywa i siliejsza epezetacja wiedzy możliwa jest pzy użyciu teoii zbioów ozmytych. Iteligete poceduy pzetwazaia ifomacji w OLAP mogą wtedy polegać a kowetowaiu (etaslacji) daych umeyczych do postaci ligwistyczej, a astępie a geeowaiu aaliz ligwistyczych, zajdowaiu wcześiej iezaych zależości i schematów oaz wspieaiu pocesu podejmowaia decyzji w otoczeiu ozmyt ym [5]. Występujące w kostce OLAP azwy w zbioach Uk, Q oaz {m k } K mogą k= = być itepetowae jako symbole zmieych pzyjmujących watości odpowiedio ze zbioów E = e=0 e UUD, V oaz {M k } K k=. Mogą to być zmiee pzyjmujące watości detemiistycze p. liczbowe lub azwy włase, ale mogą to też być zmiee ligwistyc ze [7] tz. takie zmiee, któych watościami są okeśleia w języku atualym zwae temiami ligwistyczymi (p. dla zmieej ligwistyczej spzedaż mogą to być watości mała, duża, badzo duża). Pzyjmijmy, że R spośód wymieioych wyżej azw są to zmiee ligwistycze staowiące zbió Z = {Z } R, = a zmieej ligwistyczej Z odpowiada skończoy zbió temiów ligwistyczych E = {t s }S s= oaz zbió możliwych jej watości fizyczych, któy ozaczmy symbolem Z (p. dla zmieej spzedaż może to być zbió liczb zeczywistych ieujemych). Ozacza to, że jeśli w kostce OLAP zmiea ligwistycza Z jest azwą d e elemetu wymiau, to Z = D e, jeśli jest to azwa atybutu q, to Z = V, a jeśli q jest to azwa m k miay, to Z = M k. Jako zaczeie temiu ligwistyczego t s pzyjmuje się pewie zbió ozmyty E s. Wtedy Es = { t, μs (t) : t Z }, gdzie μs : Z [0;] jest fukcją pzyależości zbiou ozmytego E s. Uwzględieie ozmytości w mo- delu OLAP wymaga więc ozszezeia kostki OLAP o zbioy E dla wszystkich azw, któych ozmytości w modelu będą uwzględiae, to zaczy dla wszystkich azw będących zmieymi ligwistyczymi ze zbiou Z. Poadto kostka musi być ozbudowaa o zbioy ozmyte E s dla wszystkich temiów ligwistyczych ts tych zmieych ligwistyczych. Rozmyta kostka OLAP może być więc zdefiiowaa jako OLAP ozm. 83

6 Adzej CHOJACKI Oczywiście ozpatywae w kostce OLAP ozm zbioy ozmyte E s są ze sobą powiązae zależościami zdefiiowaymi w kostce. Powiązaia takie wyikają w szcze- gólości z: gafów {H } = powiązań azw wymiaów, zbioów {Q } = azw atybutów powiązaych z azwami wymiaów, fukcji F opisującej miay i okeśloej a zbioach odpowiadających wymiaom i atybutom. W ezultacie tylko iektóe fukcje μ s pzyależości zbioów ozmytych muszą być defiiowae pzy kostuowaiu kostki OLAP. Pozostałe są odpowiedimi złożeiami tych zbioów lub też defiiowae mogą być iymi metodami pośedimi p. popzez zastosowaia kwatyfikatoów ligwistyczych. Otzymujemy w te sposób możliwość itepetacji watości detemiistyczych w kategoiach iepecyzyjego języka atualego. 4 PODSUMOWAIE Rozmyty model OLAP, opaty a zmieych ligwistyczych, umożliwia wykoaie aaliz jakościowych w zakesie:. Rozszezeia klasyczego fomułowaia wauków zapytań popzez stosowaie języka atualego. Użytkowik ma możliwość kostuowaia tzw. zapytań iepecyzyj ych [8], czyli zapytań do bazy daych OLAP z użyciem temiów ligwistyczych. Uzyska w te sposób wiedzę a temat stopia dopasowaia daych do zapytaia za pomocą stopi pzyależości daych do zbiou ozmytego, w szczególości stopień spełieia wauków zapytaia iepecyzyjego dla óżych temiów ligwistyczych. 2. Ligwistyczego podsumowaia d aych [8] opisu zawatości daych w kostce OLAP za pomocą zwięzłych zdań wyażoych w języku atualym a óżych poziomach agegacji daych. p. W stycziu wystąpiła wysoka spzedaż lodówek, W odotowaliśmy iską spzedaż dla klietów z województwa lubelskiego. Dla tak wyażoych sfomułowań oblicza się stopień pawdy czyli watość fukcji pzyależości. 3. Eksploacji daych odkywaia ligwistyczych eguł asocjacyjych opisujących związki pomiędzy wybaymi watościami poszczególych zmieych ligwisty czych [5]. 84

7 MODELOWAIE ROZMYTE W AALIZIE JAKOŚCIOWEJ Z WYKORZYSTAIEM... Liteatua. Agawal R., Gupta A., Saawagi S.: Modelig Multidemsioal Databases. I It. Cof. O Dta Egieeig. IEEE Blaschka M., Sapia C., Höffig G.: Fi dig You Way though Multidemsioal Data Models. [w:] Poceedigs It. Wokshop o Data Waehouse Desig ad OLAP T echology, Viea, August Chaudhuai S., Dayal U.: A Oveview of Data Waehousig ad OLAP Techologies. ACM SIGMOD Rekod 26 (), Mac Chojacki A., Bozęcka H.: Assesmet o f Ecoomic Activity of the Compay o the Base of Fuzzy Ifeece Rules. [w:] Studia Ifomatica (2)2009, PL ISS: Chojacki A., Bozęcka H.: Fuzzy Modelig fo OLAP Quality Aalysis. [w:] Poceedigs of Atificial Itelligece Studies, Vol.6 (29)/2009, Publishig House of Uivesity of Podlasie, ISB , Poceedigs o Iteatioal Cofeece o Atificial Itelligece AI Kacpzyk J., Zadoży S.: Data Miig via Liguistic Summaies of Databasees: aiiteactive Appoach. Dig L. (ed.): A ew Paadigm of Kowledge Egie eig by Soft Computig, ss Sigapoe: Wold Scietific, Zadeh L. A.: The Cocept of a Liguistic Vaiable ad Its Applicatio to Appoximate Reasoig. Pat I-III. Ifomatio Scieces, 8,9:99-249,30-357,43-80, Zadoży S.: Zapytaia iepecyzyje i ligwistycze podsumowaia baz daych. Akademicka Oficya Wydawicza EXIT, Waszawa

8 86

Graf skierowany. Graf zależności dla struktur drzewiastych rozgrywających parametrycznie

Graf skierowany. Graf zależności dla struktur drzewiastych rozgrywających parametrycznie Gaf skieowany Gaf skieowany definiuje się jako upoządkowaną paę zbioów. Piewszy z nich zawiea wiezchołki gafu, a dugi składa się z kawędzi gafu, czyli upoządkowanych pa wiezchołków. Ruch po gafie możliwy

Bardziej szczegółowo

WARTOŚĆ PIENIĄDZA W CZASIE

WARTOŚĆ PIENIĄDZA W CZASIE WARTOŚĆ PIENIĄDZA W CZASIE Czyiki wpływające a zmiaę watości pieiądza w czasie:. Spadek siły abywczej. 2. Możliwość iwestowaia. 3. Występowaie yzyka. 4. Pefeowaie bieżącej kosumpcji pzez człowieka. Watość

Bardziej szczegółowo

PROJEKT: GNIAZDO POTOKOWE

PROJEKT: GNIAZDO POTOKOWE POLITEHNIK POZNŃSK WYZIŁ UOWY MSZYN I ZZĄZNI ZZĄZNIE POUKJĄ GUP ZIM-Z3 POJEKT: GNIZO POTOKOWE WYKONWY: 1. TOMSZ PZYMUSIK 2. TOMSZ UTOWSKI POWZĄY: Mg iż. Maiola Ozechowska SPIS TEŚI OZZIŁ 1. Wpowadzeie.

Bardziej szczegółowo

Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych

Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych Wokół testu Studeta Wprowadzeie Rozkłady prawdopodobieństwa występujące w testowaiu hipotez dotyczących rozkładów ormalych Rozkład ormaly N(µ, σ, µ R, σ > 0 gęstość: f(x σ (x µ π e σ Niech a R \ {0}, b

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu. Rachuek prawdopodobieństwa i statystyka W12: Statystycza aaliza daych jakościowych Dr Aa ADRIAN Paw B5, pok 407 ada@agh.edu.pl Wprowadzeie Rozróżia się dwa typy daych jakościowych: Nomiale jeśli opisują

Bardziej szczegółowo

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów

Bardziej szczegółowo

UWAGI O WZORZE NA MOMENTY ROZKŁADU PRAWDOPODOBIEŃSTWA PÓLYI. Tadeusz Gerstenkorn. 1. Wstęp. 2. Rozkład G. Pólyi

UWAGI O WZORZE NA MOMENTY ROZKŁADU PRAWDOPODOBIEŃSTWA PÓLYI. Tadeusz Gerstenkorn. 1. Wstęp. 2. Rozkład G. Pólyi UWAGI O WZORZE NA MOMENTY ROZKŁADU PRAWDOPODOBIEŃSTWA PÓLYI Tadeusz Gesteko Emeytoway pofeso Uiwesytetu Łódzkiego ISSN 1644-6739 e-issn 2449-9765 DOI: 10.15611/sps.2015.13.09 Steszczeie: Rozkład pawdopodobieństwa

Bardziej szczegółowo

O liczbach naturalnych, których suma równa się iloczynowi

O liczbach naturalnych, których suma równa się iloczynowi O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą

Bardziej szczegółowo

Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja

Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja Charakterystyki liczbowe zmieych losowych: wartość oczekiwaa i wariacja dr Mariusz Grządziel Wykłady 3 i 4;,8 marca 24 Wartość oczekiwaa zmieej losowej dyskretej Defiicja. Dla zmieej losowej dyskretej

Bardziej szczegółowo

Trójparametrowe formowanie charakterystyk promieniowania anten inteligentnych w systemach komórkowych trzeciej i czwartej generacji

Trójparametrowe formowanie charakterystyk promieniowania anten inteligentnych w systemach komórkowych trzeciej i czwartej generacji Zakład Zastosowań Techik Łączości lektoiczej (Z ) Tójpaametowe fomowaie chaakteystyk pomieiowaia ate iteligetych w systemach komókowych tzeciej i czwatej geeacji Paca : 35 Waszawa, gudzień 5 Tójpaametowe

Bardziej szczegółowo

Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny

Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny TEMATYKA: Regresja liiowa dla prostej i płaszczyzy Ćwiczeia r 5 DEFINICJE: Regresja: metoda statystycza pozwalająca a badaie związku pomiędzy wielkościami daych i przewidywaie a tej podstawie iezaych wartości

Bardziej szczegółowo

Dobór zmiennych objaśniających do liniowego modelu ekonometrycznego

Dobór zmiennych objaśniających do liniowego modelu ekonometrycznego Dobó zmiennych objaśniających do liniowego modelu ekonometycznego Wstępnym zadaniem pzy budowie modelu ekonometycznego jest okeślenie zmiennych objaśniających. Kyteium wybou powinna być meytoyczna znajomość

Bardziej szczegółowo

Wykład 11. a, b G a b = b a,

Wykład 11. a, b G a b = b a, Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada

Bardziej szczegółowo

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem 9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3

Bardziej szczegółowo

Próba określenia miary jakości informacji na gruncie teorii grafów dla potrzeb dydaktyki

Próba określenia miary jakości informacji na gruncie teorii grafów dla potrzeb dydaktyki Póba okeślenia miay jakości infomacji na guncie teoii gafów dla potzeb dydaktyki Zbigniew Osiak E-mail: zbigniew.osiak@gmail.com http://ocid.og/0000-0002-5007-306x http://via.og/autho/zbigniew_osiak Steszczenie

Bardziej szczegółowo

1 Twierdzenia o granicznym przejściu pod znakiem całki

1 Twierdzenia o granicznym przejściu pod znakiem całki 1 Twierdzeia o graiczym przejściu pod zakiem całki Ozaczeia: R + = [0, ) R + = [0, ] (X, M, µ), gdzie M jest σ-ciałem podzbiorów X oraz µ: M R + - zbiór mierzaly, to zaczy M Twierdzeie 1.1. Jeżeli dae

Bardziej szczegółowo

Analiza możliwości wykorzystania wybranych modeli wygładzania wykładniczego do prognozowania wartości WIG-u

Analiza możliwości wykorzystania wybranych modeli wygładzania wykładniczego do prognozowania wartości WIG-u Zbigiew Taapaa Aaliza możliwości wykozysaia wybaych modeli wygładzaia wykładiczego do pogozowaia waości WIG-u Wydział Cybeeyki Wojskowej Akademii Techiczej w Waszawie Seszczeie W aykule pzedsawioo aalizę

Bardziej szczegółowo

ZWIĄZEK FUNKCJI OMEGA Z DOMINACJĄ STOCHASTYCZNĄ

ZWIĄZEK FUNKCJI OMEGA Z DOMINACJĄ STOCHASTYCZNĄ Studia konomiczne. Zeszyty Naukowe Uniwesytetu konomicznego w Katowicach ISSN 283-86 N 237 25 Infomatyka i konometia 2 wa Michalska Uniwesytet konomiczny w Katowicach Wydział Infomatyki i Komunikacji Kateda

Bardziej szczegółowo

D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne (wykład 6 _ZP) [1] ZAGADNIENIE PRZYDZIAŁU (ZP) (Assignment Problem)

D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne (wykład 6 _ZP) [1] ZAGADNIENIE PRZYDZIAŁU (ZP) (Assignment Problem) D. Miszczyńska, M.Miszczyński KBO UŁ, Badaia operacyje (wykład 6 _ZP) [1] ZAGADNIENIE PRZYDZIAŁU (ZP) (Assigmet Problem) Bliskim "krewiakiem" ZT (w sesie podobieństwa modelu decyzyjego) jest zagadieie

Bardziej szczegółowo

MODELE MATEMATYCZNE W UBEZPIECZENIACH. 1. Renty

MODELE MATEMATYCZNE W UBEZPIECZENIACH. 1. Renty MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 2: RENTY. PRZEPŁYWY PIENIĘŻNE. TRWANIE ŻYCIA 1. Rety Retą azywamy pewie ciąg płatości. Na razie będziemy je rozpatrywać bez żadego związku z czasem życiem człowieka.

Bardziej szczegółowo

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii O pewych zastosowaiach rachuku różiczkowego fukcji dwóch zmieych w ekoomii 1 Wielkość wytwarzaego dochodu arodowego D zależa jest od wielkości produkcyjego majątku trwałego M i akładów pracy żywej Z Fukcję

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Zadanie. W kolejnych okesach czasu t =,,3,... ubezpieczony, chaakteyzujący się paametem yzyka Λ, geneuje szkód. Dla danego Λ = λ zmienne N t N, N, N 3,... są waunkowo niezależne i mają (bzegowe) ozkłady

Bardziej szczegółowo

Parametryzacja rozwiązań układu równań

Parametryzacja rozwiązań układu równań Parametryzacja rozwiązań układu rówań Przykład: ozwiąż układy rówań: / 2 2 6 2 5 2 6 2 5 //( / / 2 2 9 2 2 4 4 2 ) / 4 2 2 5 2 4 2 2 Korzystając z postaci schodkowej (środkowa macierz) i stosując podstawiaie

Bardziej szczegółowo

Ćwiczenie 10/11. Holografia syntetyczna - płytki strefowe.

Ćwiczenie 10/11. Holografia syntetyczna - płytki strefowe. Ćwiczeie 10/11 Holografia sytetycza - płytki strefowe. Wprowadzeie teoretycze W klasyczej holografii optyczej, gdzie hologram powstaje w wyiku rejestracji pola iterferecyjego, rekostruuje się jedyie takie

Bardziej szczegółowo

Lista 6. Estymacja punktowa

Lista 6. Estymacja punktowa Estymacja puktowa Lista 6 Model metoda mometów, rozkład ciągły. Zadaie. Metodą mometów zaleźć estymator iezaego parametru a w populacji jedostajej a odciku [a, a +. Czy jest to estymator ieobciążoy i zgody?

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

GEOMETRIA PŁASZCZYZNY

GEOMETRIA PŁASZCZYZNY GEOMETRIA PŁASZCZYZNY. Oblicz pole tapezu ównoamiennego, któego podstawy mają długość cm i 0 cm, a pzekątne są do siebie postopadłe.. Dany jest kwadat ABCD. Punkty E i F są śodkami boków BC i CD. Wiedząc,

Bardziej szczegółowo

Zeszyty naukowe nr 9

Zeszyty naukowe nr 9 Zeszyty aukowe r 9 Wyższej Szkoły Ekoomiczej w Bochi 2011 Piotr Fijałkowski Model zależości otowań giełdowych a przykładzie otowań ołowiu i spółki Orzeł Biały S.A. Streszczeie Niiejsza praca opisuje próbę

Bardziej szczegółowo

ELEMENTY MATEMATYKI FINANSOWEJ. Wprowadzenie

ELEMENTY MATEMATYKI FINANSOWEJ. Wprowadzenie ELEMENTY MATEMATYI FINANSOWEJ Wpowadzeie Pieiądz ma okeśloą watość, któa ulega zmiaie w zależości od czasu, w jakim zostaje o postawioy do aszej dyspozycji. Watość tej samej omialie kwoty będzie ia dziś

Bardziej szczegółowo

MIROSŁAW ROSSA ARCHITEKT 20-827 LUBLIN UL. ZBOŻOWA 6 M +48 501 061 258 T/F +48 81742 86 58 E-MAIL ARCH@ROSSA.PL

MIROSŁAW ROSSA ARCHITEKT 20-827 LUBLIN UL. ZBOŻOWA 6 M +48 501 061 258 T/F +48 81742 86 58 E-MAIL ARCH@ROSSA.PL MIOSŁAW OSSA ACHITEKT 20-827 LUBLI UL. ZBOŻOWA 6 M +48 501 061 258 T/F +48 81742 86 58 E-MAIL ACH@OSSA.PL IFOMACJA O FIMIE PACOWIA POWSTAŁA W 1997 OKU JAKO FIMA WSPOMAGAJĄCA DZIAŁAIA WIĘKSZYCH JEDOSTEK

Bardziej szczegółowo

Wykład 1. Elementy rachunku prawdopodobieństwa. Przestrzeń probabilistyczna.

Wykład 1. Elementy rachunku prawdopodobieństwa. Przestrzeń probabilistyczna. Podstawowe pojęcia. Wykład Elementy achunku pawdopodobieństwa. Pzestzeń pobabilistyczna. Doświadczenie losowe-doświadczenie (zjawisko, któego wyniku nie możemy pzewidzieć. Pojęcie piewotne achunku pawdopodobieństwa

Bardziej szczegółowo

8. Optymalizacja decyzji inwestycyjnych

8. Optymalizacja decyzji inwestycyjnych 8. Optymalizacja decyzji iwestycyjych 8. Wprowadzeie W wielu różych sytuacjach, w tym rówież w czasie wyboru iwestycji do realizacji, podejmujemy decyzje. Sytuacje takie azywae są sytuacjami decyzyjymi.

Bardziej szczegółowo

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2. Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM RACHUNEK EKONOMICZNY W ELEKTROENERGETYCE INSTRUKCJA DO ĆWICZENIA

Bardziej szczegółowo

Egzamin maturalny z informatyki Poziom rozszerzony część I

Egzamin maturalny z informatyki Poziom rozszerzony część I Zadaie 1. Długość apisów biarych (7 pkt) Opisaa poiżej fukcja rekurecyja wyzacza, dla liczby aturalej 0, długość apisu uzyskaego przez sklejeie biarych reprezetacji liczb aturalych od 1 do 1. ukcja krok

Bardziej szczegółowo

a) symbole logiczne (wspólne dla wszystkich języków) zmienne przedmiotowe: x, y, z, stałe logiczne:,,,,,, symbole techniczne: (, )

a) symbole logiczne (wspólne dla wszystkich języków) zmienne przedmiotowe: x, y, z, stałe logiczne:,,,,,, symbole techniczne: (, ) PROGRAMOWANIE W JĘZYU OGII WPROWADZENIE OGIA PIERWSZEGO RZĘDU Symbole języka pierwszego rzędu dzielą się a: a symbole logicze (wspóle dla wszystkich języków zmiee przedmiotowe: x y z stałe logicze: symbole

Bardziej szczegółowo

Struktura danych = system relacyjny U, U uniwersum systemu - zbiór relacji (operacji) na strukturze danych

Struktura danych = system relacyjny U, U uniwersum systemu - zbiór relacji (operacji) na strukturze danych Temat: Stuktuy dzewiste 1. Stuktua słownika { } I Stuktua danych = system elacyjny U, i i U uniwesum systemu { i } i I - zbió elacji (opeacji) na stuktuze danych Fomalna definicja stuktuy danych składa

Bardziej szczegółowo

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej 3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi

Bardziej szczegółowo

1 Układy równań liniowych

1 Układy równań liniowych Katarzya Borkowska, Wykłady dla EIT, UTP Układy rówań liiowych Defiicja.. Układem U m rówań liiowych o iewiadomych azywamy układ postaci: U: a x + a 2 x 2 +... + a x =b, a 2 x + a 22 x 2 +... + a 2 x =b

Bardziej szczegółowo

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy

Bardziej szczegółowo

ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ.

ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. STRESZCZENIE Na bazie fizyki klasycznej znaleziono nośnik ładunku gawitacyjnego, uzyskano jedność wszystkich odzajów pól ( elektycznych,

Bardziej szczegółowo

DOŚWIADCZENIA Z EKSPLOATACJI MEW O ZMIENNEJ PRĘDKOŚCI OBROTOWEJ

DOŚWIADCZENIA Z EKSPLOATACJI MEW O ZMIENNEJ PRĘDKOŚCI OBROTOWEJ Zeszyty Poblemowe Maszyy Elektycze N 3/212 (96) 97 Tomasz Węgiel, Daiusz Bokowski Politechika Kakowska, Kaków DOŚWIAZENIA Z EKSPLOATACJI MEW O ZMIENNEJ PRĘDKOŚCI OBROTOWEJ EXPLOITATION EXPERIENCES OF VARIABLE

Bardziej szczegółowo

ANALIZA BRYTYJSKIEGO RYNKU RENT HIPOTECZNYCH EQUITY RELEASE ORAZ KALKULACJA ŚWIADCZEŃ DLA POLSKICH ROZWIĄZAŃ Z WYKORZYSTANIEM RACHUNKU RENT ŻYCIOWYCH

ANALIZA BRYTYJSKIEGO RYNKU RENT HIPOTECZNYCH EQUITY RELEASE ORAZ KALKULACJA ŚWIADCZEŃ DLA POLSKICH ROZWIĄZAŃ Z WYKORZYSTANIEM RACHUNKU RENT ŻYCIOWYCH Batosz Lawędziak Uiwesytet Ekoomiczy w Katowicach Wydział Ekoomii Kateda Metod Statystyczo-Matematyczych w Ekoomii batoszlaw@ue.katowice.pl ANALIZA BRYTYJSKIEGO RYNKU RENT HIPOTECZNYCH EQUITY RELEASE ORAZ

Bardziej szczegółowo

AKADEMIA INWESTORA INDYWIDUALNEGO CZĘŚĆ II. AKCJE.

AKADEMIA INWESTORA INDYWIDUALNEGO CZĘŚĆ II. AKCJE. uma Pzedsiębiocy /6 Lipiec 205. AKAEMIA INWESTORA INYWIUALNEGO CZĘŚĆ II. AKCJE. WYCENA AKCJI Wycena akcji jest elementem analizy fundamentalnej akcji. Następuje po analizie egionu, gospodaki i banży, w

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VI: Metoda Mote Carlo 17 listopada 2014 Zastosowaie: przybliżoe całkowaie Prosta metoda Mote Carlo Przybliżoe obliczaie całki ozaczoej Rozważmy całkowalą fukcję f : [0, 1] R. Chcemy zaleźć przybliżoą

Bardziej szczegółowo

ĆWICZENIE PROJEKTOWE NR 4 POSADOWIENIE NA PALACH Wybrane schematy i tablice z PN-83/B :

ĆWICZENIE PROJEKTOWE NR 4 POSADOWIENIE NA PALACH Wybrane schematy i tablice z PN-83/B : ĆWICZENIE PROJEKTOWE NR 4 POSADOWIENIE NA PALACH Wybae schematy i tablice z PN-83/B-048 : http://www.uwm.edu.pl/edu/piotsokosz/mg.htm UWAGA! Rysuki ie są w skali!!! N = 900 kn M = 500 knm G, I L =0.3 0.0m

Bardziej szczegółowo

Wytrzymałość śruby wysokość nakrętki

Wytrzymałość śruby wysokość nakrętki Wyzymałość śuby wysoość aęi Wpowazeie zej Wie Działająca w śubie siła osiowa jes pzeoszoa pzez zeń i zwoje gwiu. owouje ozciągaie lub ścisaie zeia śuby, zgiaie i ściaie zwojów gwiu oaz wywołuje acisi a

Bardziej szczegółowo

BADANIA DOCHODU I RYZYKA INWESTYCJI

BADANIA DOCHODU I RYZYKA INWESTYCJI StatSoft Polska, tel. () 484300, (60) 445, ifo@statsoft.pl, www.statsoft.pl BADANIA DOCHODU I RYZYKA INWESTYCJI ZA POMOCĄ ANALIZY ROZKŁADÓW Agieszka Pasztyła Akademia Ekoomicza w Krakowie, Katedra Statystyki;

Bardziej szczegółowo

Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień.

Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień. Metoda aalizy hierarchii Saaty ego Ważym problemem podejmowaia decyzji optymalizowaej jest często występująca hierarchiczość zagadień. Istieje wiele heurystyczych podejść do rozwiązaia tego problemu, jedak

Bardziej szczegółowo

Przemysław Jaśko Wydział Ekonomii i Stosunków Międzynarodowych, Uniwersytet Ekonomiczny w Krakowie

Przemysław Jaśko Wydział Ekonomii i Stosunków Międzynarodowych, Uniwersytet Ekonomiczny w Krakowie MODELE SCORINGU KREDYTOWEGO Z WYKORZYSTANIEM NARZĘDZI DATA MINING ANALIZA PORÓWNAWCZA Przemysław Jaśko Wydział Ekoomii i Stosuków Międzyarodowych, Uiwersytet Ekoomiczy w Krakowie 1 WROWADZENIE Modele aplikacyjego

Bardziej szczegółowo

z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X

z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X Matematyka ubezpieczeń majątkowych.0.0 r. Zadaie. Mamy day ciąg liczb q, q,..., q z przedziału 0,. Rozważmy trzy zmiee losowe: o X X X... X, gdzie X i ma rozkład dwumiaowy o parametrach,q i, i wszystkie

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 6..003 r. Zadaie. W kolejych okresach czasu t =,, 3, 4, 5 ubezpieczoy, charakteryzujący się parametrem ryzyka Λ, geeruje szkód. Dla daego Λ = λ zmiee N, N,..., N 5 są

Bardziej szczegółowo

Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem:

Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem: Relacje rekurecyje Defiicja: Niech =,,,... będzie astępująco zdefiiowaym ciągiem: () = r, = r,..., k = rk, gdzie r, r,..., r k są skalarami, () dla k, = a + a +... + ak k, gdzie a, a,..., ak są skalarami.

Bardziej szczegółowo

Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Rekursja Materiały pomocicze do wykładu wykładowca: dr Magdalea Kacprzak Rozwiązywaie rówań rekurecyjych Jedorode liiowe rówaia rekurecyje Twierdzeie Niech k będzie ustaloą liczbą aturalą dodatią i iech

Bardziej szczegółowo

WERYFIKACJA WPŁYWU PORÓWNAŃ PROWADZONYCH W WARUNKACH ZRÓWNOWAŻONEGO EKSPERYMENTU WEWNĄTRZLABOROTORYJNEGO NA CMC LABORATORIUM WZORCUJĄCEGO

WERYFIKACJA WPŁYWU PORÓWNAŃ PROWADZONYCH W WARUNKACH ZRÓWNOWAŻONEGO EKSPERYMENTU WEWNĄTRZLABOROTORYJNEGO NA CMC LABORATORIUM WZORCUJĄCEGO PROBLEM AND PROGRE IN METROLOG PPM 8 Cofeece Digest Wiesław GOK Główy Uząd Mia amodziele Laboatoium Pzepływów WERFIKACJA WPŁWU PORÓWNAŃ PROWADZONCH W WARUNKACH ZRÓWNOWAŻONEGO EKPERMENTU WEWNĄTRZLABOROTORJNEGO

Bardziej szczegółowo

5. Zasada indukcji matematycznej. Dowody indukcyjne.

5. Zasada indukcji matematycznej. Dowody indukcyjne. Notatki do lekcji, klasa matematycza Mariusz Kawecki, II LO w Chełmie 5. Zasada idukcji matematyczej. Dowody idukcyje. W rozdziale sformułowaliśmy dla liczb aturalych zasadę miimum. Bezpośredią kosekwecją

Bardziej szczegółowo

Algorytmy I Struktury Danych Prowadząca: dr Hab. inż. Małgorzata Sterna. Sprawozdanie do Ćwiczenia 3 Algorytmy grafowe ( )

Algorytmy I Struktury Danych Prowadząca: dr Hab. inż. Małgorzata Sterna. Sprawozdanie do Ćwiczenia 3 Algorytmy grafowe ( ) Poiedziałki 11.45 Grupa I3 Iformatyka a wydziale Iformatyki Politechika Pozańska Algorytmy I Struktury Daych Prowadząca: dr Hab. iż. Małgorzata Stera Sprawozdaie do Ćwiczeia 3 Algorytmy grafowe (26.03.12)

Bardziej szczegółowo

będą niezależnymi zmiennymi losowymi z rozkładu jednostajnego na przedziale ( 0,

będą niezależnymi zmiennymi losowymi z rozkładu jednostajnego na przedziale ( 0, Zadaie iech X, X,, X 6 będą iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), a Y, Y,, Y6 iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), gdzie, są iezaymi

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi. Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Szeregi liczbowe

Zadania z analizy matematycznej - sem. I Szeregi liczbowe Zadaia z aalizy matematyczej - sem. I Szeregi liczbowe Defiicja szereg ciąg sum częściowyc. Szeregiem azywamy parę uporządkowaą a ) S ) ) ciągów gdzie: ciąg a ) ciąg S ) jest day jest ciągiem sum częściowych

Bardziej szczegółowo

Statystyka matematyczna. Wykład II. Estymacja punktowa

Statystyka matematyczna. Wykład II. Estymacja punktowa Statystyka matematycza. Wykład II. e-mail:e.kozlovski@pollub.pl Spis treści 1 dyskretych Rozkłady zmieeych losowych ciągłych 2 3 4 Rozkład zmieej losowej dyskretej dyskretych Rozkłady zmieeych losowych

Bardziej szczegółowo

STATYSTYKA I ANALIZA DANYCH

STATYSTYKA I ANALIZA DANYCH TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica

Bardziej szczegółowo

THE FUZZY-PROBABILISTIC SEQUENT SYSTEM FOR CONTROL- LING THE SPARK IGNITION IN FUEL ENGINE

THE FUZZY-PROBABILISTIC SEQUENT SYSTEM FOR CONTROL- LING THE SPARK IGNITION IN FUEL ENGINE Joual of KONES Iteal Combustio Egies 2005, vol. 2, 3-4 THE FUZZY-PROBABILISTIC SEQUENT SYSTEM FOR CONTROL- LING THE SPARK IGNITION IN FUEL ENGINE Maiusz Topolsi Politechia Wocławsa, Wydział Eletoii Kateda

Bardziej szczegółowo

LIST EMISYJNY nr 3 /2014 Ministra Finansów

LIST EMISYJNY nr 3 /2014 Ministra Finansów LIST EMISYJNY n /0 Minista Finansów z dnia stycznia 0. w spawie emisji kótkookesowych oszczędnościowych obligacji skabowych o opocentowaniu stałym ofeowanych w sieci spzedaży detalicznej Na podstawie at.

Bardziej szczegółowo

ALGORYTM OPTYMALIZACJI PARAMETRÓW EKSPLOATACYJNYCH ŚRODKÓW TRANSPORTU

ALGORYTM OPTYMALIZACJI PARAMETRÓW EKSPLOATACYJNYCH ŚRODKÓW TRANSPORTU Łukasz WOJCIECHOWSKI, Tadeusz CISOWSKI, Piotr GRZEGORCZYK ALGORYTM OPTYMALIZACJI PARAMETRÓW EKSPLOATACYJNYCH ŚRODKÓW TRANSPORTU Streszczeie W artykule zaprezetowao algorytm wyzaczaia optymalych parametrów

Bardziej szczegółowo

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz

Bardziej szczegółowo

WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład 0 Wprowadzenie ( ) ( ) dy x dx ( )

WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład 0 Wprowadzenie ( ) ( ) dy x dx ( ) Rówaia óżiczkowe zwyczaje Rówaie postaci: Wykład Wpowadzeie dy x dx ( x y ( x) ) = f () Gdzie f ( x y ) jest fukcją dwóch zmieych okeśloą i ciągłą w pewym obszaze płaskim D azywamy ówaiem óżiczkowym zwyczajym

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2011 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2011 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY Cetrala Komisja Egzamiacyja Arkusz zawiera iformacje prawie chroioe do mometu rozpoczęcia egzamiu. Układ graficzy CKE 2010 KOD WISUJE ZDAJĄCY ESEL Miejsce a aklejkę z kodem EGZAMIN MATURALNY Z INORMATYKI

Bardziej szczegółowo

Analiza dokładności pomiaru, względnego rozkładu egzytancji widmowej źródeł światła, dokonanego przy użyciu spektroradiometru kompaktowego

Analiza dokładności pomiaru, względnego rozkładu egzytancji widmowej źródeł światła, dokonanego przy użyciu spektroradiometru kompaktowego doi:1.15199/48.215.4.38 Eugeiusz CZECH 1, Zbigiew JAROZEWCZ 2,3, Przemysław TABAKA 4, rea FRYC 5 Politechika Białostocka, Wydział Elektryczy, Katedra Elektrotechiki Teoretyczej i Metrologii (1), stytut

Bardziej szczegółowo

Statystyka opisowa - dodatek

Statystyka opisowa - dodatek Statystyka opisowa - dodatek. *Jak obliczyć statystyki opisowe w dużych daych? Liczeie statystyk opisowych w dużych daych może sprawiać problemy. Dla przykładu zauważmy, że aiwa implemetacja średiej arytmetyczej

Bardziej szczegółowo

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic).

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic). Materiały dydaktycze Aaliza Matematycza Wykład Ciągi liczbowe i ich graice. Graice ieskończoe. Waruek Cauchyego. Działaia arytmetycze a ciągach. Podstawowe techiki obliczaia graic ciągów. Istieie graic

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa aaliza daych doświadczalych Wykład 7 8.04.06 dr iż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr leti 05/06 Cetrale twierdzeie graicze - przypomieie Sploty Pobieraie próby, estymatory

Bardziej szczegółowo

KOLOKACJA SYSTEMÓW BEZPRZEWODOWYCH NA OBIEKTACH MOBILNYCH

KOLOKACJA SYSTEMÓW BEZPRZEWODOWYCH NA OBIEKTACH MOBILNYCH KOLOKACJA SYSTEMÓW BEZPRZEWODOWYCH NA OBIEKTACH MOBILNYCH Janusz ROMANIK, Kzysztof KOSMOWSKI, Edwad GOLAN, Adam KRAŚNIEWSKI Zakład Radiokomunikacji i Walki Elektonicznej Wojskowy Instytut Łączności 05-30

Bardziej szczegółowo

20. Model atomu wodoru według Bohra.

20. Model atomu wodoru według Bohra. Model atou wodou według Boha Wybó i opacowaie zadań Jadwiga Mechlińska-Dewko Więcej zadań a te teat zajdziesz w II części skyptu Opieając się a teoii Boha zaleźć: a/ poień -tej obity elektou w atoie wodou,

Bardziej szczegółowo

METODY APROKSYMACJI MATEUSZ WAGA. Gimnazjum im. Jana Matejki w Zabierzowie

METODY APROKSYMACJI MATEUSZ WAGA. Gimnazjum im. Jana Matejki w Zabierzowie METODY APROKSYMACJI MATEUSZ WAGA Gimazjum im. Jaa Matejki w Zabierzowie SPIS TREŚCI 1 WSTĘP... 2 2 MODEL MATEMATYCZNY... 3 3 UOGÓLNIENIE MODELU MATEMATYCZNEG... 6 4 MODEL INFORMATYCZNY... 7 5 PRZYKŁADY

Bardziej szczegółowo

Ekonomia matematyczna 2-2

Ekonomia matematyczna 2-2 Ekoomia matematycza - Fukcja produkcji Defiicja Efektywym przekształceiem techologiczym azywamy odwzorowaie (iekiedy wielowartościowe), które kazdemu wektorowi akładów R przyporządkowuje zbiór wektorów

Bardziej szczegółowo

lim a n Cigi liczbowe i ich granice

lim a n Cigi liczbowe i ich granice Cigi liczbowe i ich graice Cigiem ieskoczoym azywamy dowol fukcj rzeczywist okrelo a zbiorze liczb aturalych. Dla wygody zapisu, zamiast a() bdziemy pisa a. Elemet a azywamy -tym wyrazem cigu. Cig (a )

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólopolskie Semiaium Naukowe, 4 6 wześia 2007 w Touiu Kateda Ekoometii i Statystyki, Uiwesytet Mikołaja Kopeika w Touiu Akademia Ekoomicza w Kakowie O kwatylowym fukcjoale

Bardziej szczegółowo

Laboratorium Metod Statystycznych ĆWICZENIE 2 WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI

Laboratorium Metod Statystycznych ĆWICZENIE 2 WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI Laboatoum Metod tatystyczych ĆWICZENIE WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI Oacowała: Katazya tąo Weyfkaca hotez Hoteza statystycza to dowole zyuszczee dotyczące ozkładu oulac. Wyóżamy hotezy: aametycze

Bardziej szczegółowo

Model klasyczny gospodarki otwartej

Model klasyczny gospodarki otwartej Model klasyczny gospodaki otwatej Do tej poy ozpatywaliśmy model sztucznie zakładający, iż gospodaka danego kaju jest gospodaką zamkniętą. A zatem bak było międzynaodowych pzepływów dób i kapitału. Jeżeli

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji ( ) : m f x = Ax ( A) { Ax x } = Defiicja: Zakresem macierzy A Œ âm azywamy

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji : m f x = Ax RAAx x Defiicja: Zakresem macierzy A Œ âm azywamy podprzestrzeń

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 1 i 2

STATYSTYKA OPISOWA WYKŁAD 1 i 2 STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest

Bardziej szczegółowo

I. Ciągi liczbowe. , gdzie a n oznacza n-ty wyraz ciągu (a n ) n N. spełniający warunek. a n+1 a n = r, spełniający warunek a n+1 a n

I. Ciągi liczbowe. , gdzie a n oznacza n-ty wyraz ciągu (a n ) n N. spełniający warunek. a n+1 a n = r, spełniający warunek a n+1 a n I. Ciągi liczbowe Defiicja 1. Fukcję określoą a zbiorze liczb aturalych o wartościach rzeczywistych azywamy ciągiem liczbowym. Ciągi będziemy ozaczać symbolem a ), gdzie a ozacza -ty wyraz ciągu a ). Defiicja.

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa aaliza daych doświadczalych Wykład 7 7.04.07 dr iż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr leti 06/07 Cetrale twierdzeie graicze - przypomieie Sploty Pobieraie próby, estymatory

Bardziej szczegółowo

Fizyka, technologia oraz modelowanie wzrostu kryształów

Fizyka, technologia oraz modelowanie wzrostu kryształów Fzyka, techologa oaz modelowae wzostu kyształów Stasław Kukowsk Mchał Leszczyńsk Istytut Wysokch Cśeń PA 0-4 Waszawa, ul Sokołowska 9/37 tel: 88 80 44 e-mal: stach@upess.waw.pl, mke@upess.waw.pl Zbgew

Bardziej szczegółowo

co wskazuje, że ciąg (P n ) jest ciągiem arytmetycznym o różnicy K 0 r. Pierwszy wyraz tego ciągu a więc P 1 z uwagi na wzór (3) ma postać P

co wskazuje, że ciąg (P n ) jest ciągiem arytmetycznym o różnicy K 0 r. Pierwszy wyraz tego ciągu a więc P 1 z uwagi na wzór (3) ma postać P WIADOMOŚCI WSTĘPNE Odsetki powstają w wyiku odjęcia od kwoty teaźiejszej K kwoty początkowej K 0, zate Z = K K 0. Z ekooiczego puktu widzeia właściciel kapitału K 0 otzyuje odsetki jako zapłatę od baku

Bardziej szczegółowo

Przykładowe pytania na egzamin dyplomowy dla kierunku Automatyka i Robotyka

Przykładowe pytania na egzamin dyplomowy dla kierunku Automatyka i Robotyka Przykładowe pytaia a egzami dyplomowy dla kieruku Automatyka i obotyka Aktualizacja: 13.12.2016 r. Przedmiot: Matematyka 1 (Algebra liiowa) 1. Wiemy że struktura (Gh) jest grupą z elemetem eutralym e.

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elemety modelowaia matematyczego Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Modelowaie daych (ilościowe): Metody statystycze: estymacja parametrów modelu,

Bardziej szczegółowo

Ewa Wędrowska Miary entropii w statystyce i teorii informacji. Ekonomiczne Problemy Usług nr 67,

Ewa Wędrowska Miary entropii w statystyce i teorii informacji. Ekonomiczne Problemy Usług nr 67, Ewa Wędrowska Miary etropii w statystyce i teorii iformacji Ekoomicze Problemy Usług r 67, 33-4 20 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 650 EKONOMICZNE PROBLEMY USŁUG NR 67 20 EWA WĘDROWSKA Uiwersytet

Bardziej szczegółowo

Laboratorium Sensorów i Pomiarów Wielkości Nieelektrycznych. Ćwiczenie nr 1

Laboratorium Sensorów i Pomiarów Wielkości Nieelektrycznych. Ćwiczenie nr 1 1. Cel ćwiczeia: Laboratorium Sesorów i Pomiarów Wielkości Nieelektryczych Ćwiczeie r 1 Pomiary ciśieia Celem ćwiczeia jest zapozaie się z kostrukcją i działaiem czujików ciśieia. W trakcie zajęć laboratoryjych

Bardziej szczegółowo

Wprowadzenie. metody elementów skończonych

Wprowadzenie. metody elementów skończonych Metody komputerowe Wprowadzeie Podstawy fizycze i matematycze metody elemetów skończoych Literatura O.C.Ziekiewicz: Metoda elemetów skończoych. Arkady, Warszawa 972. Rakowski G., acprzyk Z.: Metoda elemetów

Bardziej szczegółowo

Egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!

Egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce! Egzami z Aaliz Matematczej Każde zadaie ależ ozwiązać a oddzielej, podpisaej katce! Zbadać, w jakich puktach jest óżiczkowala fukcja f (, ( + = +, (, (,), (, = (,) Zaleźć ajmiejszą i ajwiększą watość fukcji

Bardziej szczegółowo

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO Agieszka Jakubowska ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO. Wstęp Skąplikowaie współczesego życia gospodarczego powoduje, iż do sterowaia procesem zarządzaia

Bardziej szczegółowo

KOMPUTEROWO WSPOMAGANA ANALIZA KINEMATYKI MECHANIZMU DŹWIGNIOWEGO

KOMPUTEROWO WSPOMAGANA ANALIZA KINEMATYKI MECHANIZMU DŹWIGNIOWEGO XIX Międzynaodowa Szkoła Komputeowego Wspomagania Pojektowania, Wytwazania i Eksploatacji D hab. inż. Józef DREWNIAK, pof. ATH Paulina GARLICKA Akademia Techniczno-Humanistyczna w Bielsku-Białej DOI: 10.17814/mechanik.2015.7.226

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

WYBRANE METODY DOSTĘPU DO DANYCH

WYBRANE METODY DOSTĘPU DO DANYCH WYBRANE METODY DOSTĘPU DO DANYCH. WSTĘP Coraz doskoalsze, szybsze i pojemiejsze pamięci komputerowe pozwalają gromadzić i przetwarzać coraz większe ilości iformacji. Systemy baz daych staowią więc jedo

Bardziej szczegółowo

Twierdzenie Cayleya-Hamiltona

Twierdzenie Cayleya-Hamiltona Twierdzeie Cayleya-Hamiltoa Twierdzeie (Cayleya-Hamiltoa): Każda macierz kwadratowa spełia swoje włase rówaie charakterystycze. D: Chcemy pokazać, że jeśli wielomiaem charakterystyczym macierzy A jest

Bardziej szczegółowo

Algorytmy I Struktury Danych Prowadząca: dr Hab. inż. Małgorzata Sterna. Sprawozdanie do Ćwiczenia 1 Algorytmy sortowania (27.02.

Algorytmy I Struktury Danych Prowadząca: dr Hab. inż. Małgorzata Sterna. Sprawozdanie do Ćwiczenia 1 Algorytmy sortowania (27.02. Poiedziałki 11.45 Grupa I3 Iformatyka a wydziale Iformatyki Politechika Pozańska Algorytmy I Struktury Daych Prowadząca: dr Hab. iż. Małgorzata Stera Sprawozdaie do Ćwiczeia 1 Algorytmy sortowaia (27.2.12)

Bardziej szczegółowo