Laboratorium Metod Statystycznych ĆWICZENIE 2 WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI

Wielkość: px
Rozpocząć pokaz od strony:

Download "Laboratorium Metod Statystycznych ĆWICZENIE 2 WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI"

Transkrypt

1 Laboatoum Metod tatystyczych ĆWICZENIE WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI Oacowała: Katazya tąo

2 Weyfkaca hotez Hoteza statystycza to dowole zyuszczee dotyczące ozkładu oulac. Wyóżamy hotezy: aametycze dotyczą watośc aametu ozkładu eaametycze dotyczą ostac fukcye ozkładu Weyfkaca hotez statystyczych to oces sawdzea awdzwośc tego zyuszczea a odstawe wyków óby losowe. Odbywa sę oa ozez wykoae odowedch testów statystyczych. Póba losowa to uzyskay z użycem dobou losowego odzbó elemetów oulac geeale. Dobó losowy to tak w któym wszystke elemety oulac geeale maą edakowe szase dostaa sę do óby. Poces weyfkac hotezy statystycze zebega astęuąco: fomułowae hotez: o Zeowa (H : Hoteza oddaa weyfkac. o Alteatywa (H : Hoteza zymowaa zy odzuceu hotezy zeowe. Wybó oblczee statystyk testowe: Buduemy ewą statystykę U któa est fukcą wyków z óby losowe wyzaczamy e ozkład zy założeu że hoteza zeowa est awdzwa. Fukcę U azywa sę statystyką testową lub fukcą testową. Okeślee ozomu stotośc: awdoodobeństwo oełea błędu ewszego odzau olegaącego a odzuceu hotezy zeowe w zyadku gdy est oa awdzwa. Wyzaczee obszau kytyczego: odae zakes watośc oblczoe statystyk testowe dla któych odzucamy hotezę zeową. Zależy o od zyętych: ozomu stotośc hotezy alteatywe. Podęce decyz: Oblczoą watość statystyk testowe oówuemy względem obszau kytyczego: o Jeżel watość ta zadze sę w obszaze kytyczym to hotezę zeową ależy odzucć ako eawdzwą. tąd wosek że awdzwa est hoteza alteatywa. o Jeżel atomast watość ta zadze sę oza obszaem kytyczym ozacza to że bak est odstaw do odzucea hotezy zeowe. tąd wosek że hoteza zeowa może ale e mus być awdzwa.. Test stotośc dla śede Paametycze testy stotośc H : mm a H : m<m b H : m>m c H : m m. ( < < ozaczać będze we wszystkch testach ozom stotośc testu lczebość óby... Badaa cecha oulac geeale ma ozkład N(m zae u ( m U a ( u ( b u ( c ( u ( ( u kwatyl ozkładu N(.

3 .. Badaa cecha oulac geeale ma ozkład N(m ezae t ( m t a ( t( b t ( c ( t t ( ( kwatyl ozkładu t-tudeta..3. Badaa cecha oulac geeale ma dowoly ozkład o ezae śede ezae ale skończoe waac. Lczość óby >. m m U * * estymowae odchylea stadadowe. a ( u ( b u ( c ( u ( ( u u ( kwatyl ozkładu N(.. Test stotośc dla waac H : a H : < b H : > c H :. Badaa cecha oulac geeale ma ozkład N(m. estymato waac a ( ( b ( c ( ( ( kwatyl ozkładu ch-kwadat. ( 3. Test ówośc watośc śedch w dwóch oulacach H : m m a H : m <m b H :m >m c H : m m. 3

4 3.. Badaa cecha ma w dwóch oulacach ozkłady N(m oaz N(m o zaych. U + lczośc ób obaych z dwóch oulac a ( u( b u ( c ( u u ( ( u ( kwatyl ozkładu N(. 3.. Badaa cecha ma w dwóch oulacach ozkłady N(m oaz N(m o ówych ale ezaych. t estymatoy waac a ( t( + b t ( + c ( t t ( + ( + t ( kwatyl ozkładu t-tudeta Badaa cecha ma w dwóch oulacach ozkłady N(m oaz N(m o skończoych ale ezaych. (Test Cochaa-Co a C + któa zy założeu awdzwośc hotezy est zmeą o ozkładze któego fukca kwatylowa ma watość zyblżoą osaą wzoem: t( + t( c( + t ( kwatyl ozkładu t-tudeta. a ( c ( 4

5 b c ( c ( c( c( 4. Test ówośc watośc śedch dla a obsewac. Dotyczy zyadku gdy zed wykoaem akeś oeac a elemetach óby dokouemy omaów ewe cechy o ozkładze omalym a astęe o oeac mezymy tę samą cechę otzymuąc w te same koleośc elemetów wyk Y. Hotezę o ówośc śedch zastęuemy hotezą ówoważą: H : m z gdze Z Y a H : m z < b H : m z > c H : m z. t Z Z Z * Z a ( t( b t ( c ( t t ( (. t ( kwatyl ozkładu t-tudeta. 5. Test ówośc waac w dwóch oulacach Badaa cecha ma w dwóch oulacach ozkłady N(m oaz N(m. H : H : < H : > H :. Badaa cecha ma w dwóch oulacach ozkłady N(m oaz N(m. F a F( dla te hotezy statystyką testową est /F b F ( c F + dla te hotezy statystyką testową est ma F. ( l m F l m lczośc óbek lczka maowka F ( kwatyl ozkładu F-edecoa 6. Test ówośc waac w welu oulacach (test Batletta Badaa cecha ma w k > oulacach ozkłady N(m. H :... k H : dla ewych 5

6 k * ( k 33 * ( k log ( log c k * eobcążoe odchylee stadadowe z óby -te oulac łącza długość óby Pzymuąc założee o edakowe lczebośc ób w oulacach stałą c moża oszacować wzoem: k + c + ( 3( k ( k kwatyl ozkładu ch-kwadat 7. Testy zgodośc z ozkładem hotetyczym H : F( F ( H : F( F ( F( dystybuata ezaego ozkładu oulac F ( dystybuata ozkładu hotetyczego 7.. Test Peasoa Testy zgodośc Zadue zastosowae zaówo w zyadku zmee losowe (cechy cągłe ak dyskete. Weyfkac hotezy dokoue sę za omocą statystyk oate a szeegu ozdzelczym z óby. ( D lczba klas watośc zmee (cechy lczośc dośwadczale w oszczególych klasach lczośc hotetycze w oszczególych klasach. ( ( k kwatyl ozkładu ch kwadat z -k- stoam swobody k lczba aametów ozkładu oszacowaych metodą awększe waogodośc 7.. Test Kołmogoowa D su F ( F ( F ( dystybuata emycza F ( dystybuata teoetycza d ( 6

7 d watość kytycza (z tablc dla tego testu moża ą odczytać z tablc statystyczych. Dla > : λ D λ λ kwatyl ozkładu Kołmogoowa Test omalośc ozkładu hao-wlka tosoway dla małych ób ( 3 5. H : Rozkład oulac est omaly H : Rozkład est óży od omalego a ( ( ( + ( W... [ / ] ( a ( stałe zależe od oaz (w tablcach (-+ ( quas-odstęy zędu. Doełee zbou kytyczego: <W(/ W(/ > W(.. kwatyl ozkładu W (w tablcach.!!! Hotezę H odzuca sę a ozome stotośc eśl watość statystyk testowe zadze sę oza doełeem zbou kytyczego. 8. Testy zgodośc ozkładów dwóch oulac Dae są dwe ezależe óby oste o lczbe elemetów odowedo w któych dystybuaty F F badae cechy są cągłe. H : F ( F ( H : F ( F ( 8.. Test mowa-kołmogoowa D su ( ( F F F ( F ( dystybuaty emycze odowedo ewsze duge óby. d ( d ( watość kytycza dla tego testu (z tablc statystyczych Dla > : λ D dla + 7

8 λ λ kwatyl ozkładu Kołmogoowa. 8.. Test se lczba se defowaych astęuąco: wyk obu ób oządkue sę osąco zy zachowae fomac z któe óby ochodzą ako seę zymue sę każdy maksymaly odcąg składaący sę z elemetów wybae óby. k ( k watość kytycza (z tablc statystyczych. ( 8.3. Test Wlcooa suma wes defowaych astęuąco: wyk obu ób oządkue sę osąco zy zachowae fomac z któe óby ochodzą ako watość wes dla dae watośc ede óby zymue sę lczbę elemetów duge óby ozedzaących daa watość. u( u( u watość kytycza (z tablc statystyczych. ( 8.4. Test koleośc a Wlcooa Model te est odowedkem weyfkac hotezy o ówośc śedch dla a obsewac. tosue sę go wtedy gdy badaa cecha mezala e ma ozkładu omalego dysoue sę wykam elcze óby lub wyk óby wyażoe są tzw. skal oządkowe. Oblcza sę óżce odowadaących sobe a watośc ozdzela e a óżce dodate ueme oaz oma óżce o watośc zeo. Pzedtem edak ależy adać ag bezwzględym watoścom wyzaczoych óżc t. uoządkować w emaleący cąg zysać kolee lczby atuale oczyaąc od watośc ; ależy zwócć uwagę że edakowym watoścom cągu ależy zysać śeda aytmetyczą ag. Rozdzelaąc óżce ależy ozdzelć także odowadaące m ag a astęe oblczyć odowede sumy tych ag T(+ oaz T(. tatystykę testową: T m ( T(+ T( ( T( T watość kytycza (z tablc statystyczych. Dla >5 moża skozystać z faktu że statystyka T ma asymtotyczy ozkład omaly N(ms gdze ( + ( + ( + m s Test zgodośc ozkładów welu oulac 9.. Test sumy ag Kuskala-Wallsa Daych est k oulac w któych badaa cecha ma ozkłady tyu cągłego o ezaych dystybuatach odowedo F.. F k. H : F (... F k ( 8

9 H : F ( F ( dla ewych. k ( + R 3( + R suma ag -te oulac w uoządkowaym emaleąco cągu wszystkch watośc óbkowych z k oulac (zy edakowe watośc klku koleych wyków zysuemy każdemu z ch agę będącą śedą aytmetyczą zysaych m lczb atualych. ( ( kwatyl ozkładu ch kwadat o stoach swobody.. Klasyfkaca oedycza Aalza waac Badaa cecha ma w każde z oulac ozkład omaly N( m o edakowych waacach tz..... Z każde z oulac obeamy ezależą óbę losową o lczeboścach odowedo ty wyk w -te óbce ( < < ozom stotośc testu H : m m... m (śede we wszystkch oulacach są ówe H : m m dla ewych ( (e wszystke śede są ówe QG QR F / Q Q F G R ( zóżcowae mędzyguowego ( zóżcowae wewątzguowe ( F( kwatyl ozkładu edecoa o (-- stoach swobody. W zyadku odzucea hotezy o ówośc śedch do oszacowaa stotośc óżc wyóżoych a śedch moża stosować test NIR (amesze stote óżcy. NIR t Q R + t + ( ( ( lczebośc ób z -te oaz -te oulac t ( kwatyl ozkładu tudeta. 9

10 Pzymue sę że óżca mędzy śedm est statystycze stota gdy: NIR. Klasyfkaca odwóa Poulaca składa sę z waatów (A B ( w każdym z ch dokoao edakowe lczby l omaów badae cechy któa ma ozkład omaly N(m w każdym z waatów oulac. l. k... śeda z kolum l k. k l k l k l k l... śeda z weszy śeda ogóla k k-ty wyk w waace (A B m. m m. m m m Weyfkue sę astęuące hotezy. H : m m dla (ówość watośc zecętych m badae cechy we wszystkch oulacach H : m.... m. (ówość watośc zecętych m. badae cechy oddae dzałau czyka A bez uwzględaa wływu czyka B 3 H 3 : m.... m. (ówość watośc zecętych m. badae cechy oddae dzałau czyka B bez uwzględaa wływu czyka A 4 H 4 : m m. m. + m m m ( m. m + ( m. m (addytywość oddzaływaa efektów ozatywaych czyków bak teakc Waace: Q k Q A l Q B l Q AB l l ( k (ogóla ( (dla czyka A. (. (dla czyka B Q R k l (... (wzaema czyków A B ( k. (esztkowa Weyfkaca H : Na odstawe ezależych óbek każda o lczośc l stosuąc test aalzy waac w zyadku klasyfkac oedycze.

11 Weyfkaca H : QA QR FA ( l <F( (l + Weyfkaca H 4 : QAB QR FAB ( ( ( l <F( (( (l + Weyfkaca H 3 : QB QR FB ( l <F( (l + F( kwatyl zędu ozkładu F-edecoa zy aze ( sto swobody Pzykładowe ytaa sawdzaące zygotowae do zaęć. Wyaś oęce hotezy statystycze.. Na czym olega weyfkaca hotez statystyczych? 3. Czym est óba losowa? 4. Wymeń kolee kok ocesu weyfkac hotezy statystycze. 5. Omów zaczee hotez zeowe alteatywe. 6. Wyaś zaczee ozomu stotośc obszau kytyczego. 7. W ak celu budowaa est statystyka testowego od czego est oa zależa. 8. Omów edą ze zaych C metod weyfkac dowole aametycze hotezy statystycze. 9. Omów edą ze zaych C metod weyfkac dowole eaametycze hotezy statystycze.. Do czego służą testy stotośc dla śede? Poda ostać hotezy zeowe hotez alteatywych.. Wymeń zae C testy stotośc dla śede oda zyadk ch zastosowań.. Do czego służy test stotośc dla waac? Poda ostać hotezy zeowe hotez alteatywych. 3. Do czego służą testy ówośc śede w dwóch oulacach? Poda ostać hotezy zeowe hotez alteatywych. 4. Wymeń zae C testy ówośc śede w dwóch oulacach oda zyadk ch zastosowań. 5. Do czego służy test ówośc śede dla a obsewac? Poda ostać hotezy zeowe hotez alteatywych. 6. Do czego służy test ówośc waac w dwóch oulacach? Poda ostać hotezy zeowe hotez alteatywych. 7. Do czego służy test ówośc waac w welu oulacach? Poda ostać hotezy zeowe hotez alteatywych. 8. Do czego służy test Peasoa. Poda ostać hotezy zeowe hotezy alteatywe. W ak sosób budowaa est statystyka testowa? 9. Do czego służy test Kołomogoowa. Poda ostać hotezy zeowe hotezy alteatywe. W ak sosób budowaa est statystyka testowa?. Do czego służy test omalośc ozkładu hao-wlka. Poda ostać hotezy zeowe hotezy alteatywe.. Do czego służy test mowa-kołomogoowa. Poda ostać hotezy zeowe hotezy alteatywe. W ak sosób budowaa est statystyka testowa?. Do czego służy ak wygląda dzałae testu se? 3. Do czego służy test sumy ag Kuskula-Wallsa. Jake fomace zawea suma ag R -te oulac. 4. Jake hotezy weyfkue klasyfkaca oedycza aalzy waac? 5. Jake hotezy weyfkue klasyfkaca odwóa aalzy waac?

Portfel złożony z wielu papierów wartościowych

Portfel złożony z wielu papierów wartościowych Portfel westycyy ćwczea Na odst. Wtold Jurek: Kostrukca aalza, rozdzał 4 dr Mchał Kooczyńsk Portfel złożoy z welu aerów wartoścowych. Zwrot ryzyko Ozaczea: w kwota ulokowaa rzez westora w aery wartoścowe

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT.. Zagadee trasportowe w postac tablcy Z m puktów (odpowedo A,...,A m ) wysyłamy edorody produkt w loścach a,...,a m do puktów odboru (odpowedo B,...,B ), gdze est odberay w

Bardziej szczegółowo

L.Kowalski PODSTAWOWE TESTY STATYSTYCZNE WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH

L.Kowalski PODSTAWOWE TESTY STATYSTYCZNE WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH L.Kowalsk PODSTAWOWE TESTY STATYSTYCZNE TESTY STATYSTYCZNE poteza statystycza to dowole przypuszczee dotyczące rozkładu cechy X. potezy statystycze: -parametrycze dotyczą ezaego parametru, -parametrycze

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

Fizyka, technologia oraz modelowanie wzrostu kryształów

Fizyka, technologia oraz modelowanie wzrostu kryształów Fzyka, techologa oaz modelowae wzostu kyształów Stasław Kukowsk Mchał Leszczyńsk Istytut Wysokch Cśeń PA 0-4 Waszawa, ul Sokołowska 9/37 tel: 88 80 44 e-mal: stach@upess.waw.pl, mke@upess.waw.pl Zbgew

Bardziej szczegółowo

Planowanie eksperymentu pomiarowego I

Planowanie eksperymentu pomiarowego I POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak

Bardziej szczegółowo

www.bdas.pl Rozdział 3 Zastosowanie języka SQL w statystyce opisowej 1 Wprowadzenie

www.bdas.pl Rozdział 3 Zastosowanie języka SQL w statystyce opisowej 1 Wprowadzenie Rozdzał moogaf: 'Bazy Daych: Nowe Techologe', Kozelsk S., Małysak B., Kaspowsk P., Mozek D. (ed.), WKŁ 007 Rozdzał 3 Zastosowae języka SQL w statystyce opsowej Steszczee. Relacyje bazy daych staową odpowede

Bardziej szczegółowo

Miary statystyczne. Katowice 2014

Miary statystyczne. Katowice 2014 Mary statystycze Katowce 04 Podstawowe pojęca Statystyka Populacja próba Cechy zmee Szereg statystycze Wykresy Statystyka Statystyka to auka zajmująca sę loścowym metodam aalzy zjawsk masowych (występujących

Bardziej szczegółowo

1. Relacja preferencji

1. Relacja preferencji dr Mchał Koopczyńsk EKONOMIA MATEMATYCZNA Wykłady, 2, 3 (a podstawe skryptu r 65) Relaca preferec koszyk towarów: przestrzeń towarów: R + = { x R x 0} x = ( x,, x ) X X R+ x 0 x 0 =, 2,, x~y xf y x y x

Bardziej szczegółowo

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki)

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki) Podstawy aalzy epewośc pomarowych (I Pracowa Fzyk) Potr Cygak Zakład Fzyk Naostruktur Naotecholog Istytut Fzyk UJ Pok. 47 Tel. 0-663-5838 e-mal: potr.cygak@uj.edu.pl Potr Cygak 008 Co to jest błąd pomarowy?

Bardziej szczegółowo

Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym?

Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym? Oblczae średej, odchylea tadardowego meday oraz kwartyl w zeregu zczegółowym rozdzelczym? Średa medaa ależą do etymatorów tzw. tedecj cetralej, atomat odchylee tadardowe to etymatorów rozprozea (dyperj)

Bardziej szczegółowo

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych dr Ewa Wycka Wyższa Szkoła Bakowa w Gdańsku Wtold Komorowsk, Rafał Gatowsk TZ SKOK S.A. Statystycza aalza mesęczych zma współczyka szkodowośc kredytów hpoteczych Wskaźk szkodowośc jest marą obcążea kwoty/lczby

Bardziej szczegółowo

L.Kowalski zadania ze statystyki matematycznej-zestaw 3 ZADANIA - ZESTAW 3

L.Kowalski zadania ze statystyki matematycznej-zestaw 3 ZADANIA - ZESTAW 3 L.Kowalski zadaia ze statystyki matematyczej-zestaw 3 ZADANIA - ZESTAW 3 Zadaie 3. Cecha X populacji ma rozkład N m,. Z populacji tej pobrao próbę 7 elemetową i otrzymao wyiki x7 = 9, 3, s7 =, 5 a Na poziomie

Bardziej szczegółowo

ĆWICZENIE 10 OPTYMALIZACJA STRUKTURY CZUJKI TEMPERATURY W ASPEKCIE NIEZWODNOŚCI

ĆWICZENIE 10 OPTYMALIZACJA STRUKTURY CZUJKI TEMPERATURY W ASPEKCIE NIEZWODNOŚCI ĆWICZENIE 0 OPTYMALIZACJA STUKTUY CZUJKI TEMPEATUY W ASPEKCIE NIEZWODNOŚCI Cel ćwczea: zapozae z metodam optymalzac wewętrze struktury mozakowe czuk temperatury stosowae w systemach sygalzac pożaru; wyzaczee

Bardziej szczegółowo

Szeregi czasowe, modele DL i ADL, przyczynowość, integracja

Szeregi czasowe, modele DL i ADL, przyczynowość, integracja Szereg czasowe, modele DL ADL, rzyczyowość, egracja Szereg czasowy, o cąg realzacj zmeej losowej, owedzmy y, w kolejych okresach czasu: { y } T, co rówoważe możemy zasać: = 1 y = { y1, y,..., y T }. Najogólej

Bardziej szczegółowo

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B W przypadku gdy e występuje statystyczy rozrzut wyków (wszystke pomary dają te sam wyk epewość pomaru wyzaczamy w y sposób. Główą przyczyą epewośc pomaru jest epewość

Bardziej szczegółowo

Wyrażanie niepewności pomiaru

Wyrażanie niepewności pomiaru Wyrażae epewośc pomaru Adrzej Kubaczyk Wydzał Fzyk, Poltechka Warszawska Warszawa, 05 Iformacje wstępe Każdy pomar welkośc fzyczej dokoyway jest ze skończoą dokładoścą, co ozacza, że wyk tego pomaru dokoyway

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

ĆWICZENIE 5. Badanie przekaźnikowych układów sterowania

ĆWICZENIE 5. Badanie przekaźnikowych układów sterowania ĆWICZENIE 5 Badanie zekaźnikowych układów steowania 5. Cel ćwiczenia Celem ćwiczenia jest badanie zekaźnikowych układów steowania obiektem całkującoinecyjnym. Ćwiczenie dotyczy zekaźników dwu- i tójołożeniowych

Bardziej szczegółowo

METODY ANALIZY DANYCH DOŚWIADCZALNYCH

METODY ANALIZY DANYCH DOŚWIADCZALNYCH POLITECHNIKA Ł ÓDZKA TOMASZ W. WOJTATOWICZ METODY ANALIZY DANYCH DOŚWIADCZALNYCH Wybrae zagadea ŁÓDŹ 998 Przedsłowe Specyfką teor pomarów jest jej wtóry charakter w stosuku do metod badawczych stosowaych

Bardziej szczegółowo

Badania Maszyn CNC. Nr 2

Badania Maszyn CNC. Nr 2 Poltechka Pozańska Istytut Techolog Mechaczej Laboratorum Badaa Maszy CNC Nr 2 Badae dokładośc pozycjoowaa os obrotowych sterowaych umerycze Opracował: Dr. Wojcech Ptaszy sk Mgr. Krzysztof Netter Pozań,

Bardziej szczegółowo

Monika Jeziorska - Pąpka Uniwersytet Mikołaja Kopernika w Toruniu

Monika Jeziorska - Pąpka Uniwersytet Mikołaja Kopernika w Toruniu DYNAMICZNE MODELE EKONOMERYCZNE X Ogólopolske Semarum Naukowe, 4 6 wrześa 2007 w oruu Katedra Ekoometr Statystyk, Uwersytet Mkołaja Koperka w oruu Moka Jezorska - Pąpka Uwersytet Mkołaja Koperka w oruu

Bardziej szczegółowo

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5 L.Kowalsk zadaa ze statystyk opsowej-zestaw 5 Zadae 5. X cea (zł, Y popyt (tys. szt.. Mając dae ZADANIA Zestaw 5 x,5,5 3 3,5 4 4,5 5 y 44 43 43 37 36 34 35 35 Oblcz współczyk korelacj Pearsoa. Oblcz współczyk

Bardziej szczegółowo

ANALIZA INPUT - OUTPUT

ANALIZA INPUT - OUTPUT Aalza put - output Notatk S Dorosewcz J Staseńko Stroa z 28 SŁAWOMIR DOROSIEWICZ JUSTYNA STASIEŃKO ANALIZA INPUT - OUTPUT NOTATKI Istytut Ekoometr SGH Aalza put - output Notatk S Dorosewcz J Staseńko Stroa

Bardziej szczegółowo

Ocena precyzji badań międzylaboratoryjnych metodą odporną "S-algorytm"

Ocena precyzji badań międzylaboratoryjnych metodą odporną S-algorytm Eugen T.VOLODARSKY, Zygmunt L.WARSZA Naodowy Unwesytet Technczny Ukany -Poltechnka Kowska (), Pzemysłowy Instytut Automatyk Pomaów (PIAP) Waszawa () do:.599/48.5..4 Ocena pecyz badań mędzylaboatoynych

Bardziej szczegółowo

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację.

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację. Wrażlwość oblgacj Jedym z czyków ryzyka westowaa w oblgacje jest zmeość rykowych stóp procetowych. Iżyera fasowa dyspouje metodam pozwalającym zabezpeczyć portfel przed egatywym skutkam zma stóp procetowych.

Bardziej szczegółowo

5. OPTYMALIZACJA NIELINIOWA

5. OPTYMALIZACJA NIELINIOWA 5. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często, że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też, oprócz lowych zadań decyzyjych, formułujemy także elowe

Bardziej szczegółowo

Janusz Górczyński. Moduł 1. Podstawy prognozowania. Model regresji liniowej

Janusz Górczyński. Moduł 1. Podstawy prognozowania. Model regresji liniowej Materały omoccze do e-leargu Progozowae symulacje Jausz Górczyńsk Moduł. Podstawy rogozowaa. Model regresj lowej Wyższa Szkoła Zarządzaa Marketgu Sochaczew Od Autora Treśc zawarte w tym materale były erwote

Bardziej szczegółowo

PŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej

PŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej PŁAKA GEOMETRIA MA Środek cężkośc fgury płaskej Mometam statyczym M x M y fgury płaskej względem os x lub y (rys. 7.1) azywamy gracę algebraczej sumy loczyów elemetarych pól d przez ch odległośc od os,

Bardziej szczegółowo

Podstawowe zadanie statystyki. Statystyczna interpretacja wyników eksperymentu. Zalety statystyki II. Zalety statystyki

Podstawowe zadanie statystyki. Statystyczna interpretacja wyników eksperymentu. Zalety statystyki II. Zalety statystyki tatystycza terpretacja wyków eksperymetu Małgorzata Jakubowska Katedra Chem Aaltyczej Wydzał IŜyer Materałowej Ceramk AGH Podstawowe zadae statystyk tatystyka to uwersale łatwo dostępe arzędze, które pomaga

Bardziej szczegółowo

STATYSTYKA MORANA W ANALIZIE ROZKŁADU CEN NIERUCHOMOŚCI

STATYSTYKA MORANA W ANALIZIE ROZKŁADU CEN NIERUCHOMOŚCI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XII/, 0, tr. 3 STATYSTYKA MORANA W ANALIZIE ROZKŁADU CEN NIERUCHOMOŚCI Dorota Kozoł-Kaczorek Katedra Ekoomk Rolcta Mędzyarodoych Stoukó Gopodarczych Szkoła

Bardziej szczegółowo

Statystyczne charakterystyki liczbowe szeregu

Statystyczne charakterystyki liczbowe szeregu Statystycze charakterystyk lczbowe szeregu Aalzę badaej zmeej moża uzyskać posługując sę parametram opsowym aczej azywaym statystyczym charakterystykam lczbowym szeregu. Sytetycza charakterystyka zborowośc

Bardziej szczegółowo

Materiały do wykładu 7 ze Statystyki

Materiały do wykładu 7 ze Statystyki Materał do wkładu 7 ze Statstk Aalza ZALEŻNOŚCI pomędz CECHAMI (Aalza KORELACJI REGRESJI) korelacj wkres rozrzutu (korelogram) rodzaje zależośc (brak, elowa, lowa) pomar sł zależośc lowej (współczk korelacj

Bardziej szczegółowo

Metoda Monte-Carlo i inne zagadnienia 1

Metoda Monte-Carlo i inne zagadnienia 1 Metoda Mote-Carlo e zagadea Metoda Mote-Carlo Są przypadk kedy zamast wykoać jakś eksperymet chcelbyśmy symulować jego wyk używając komputera geeratora lczb (pseudolosowych. Wększość bblotek programów

Bardziej szczegółowo

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE Marek Cecura, Jausz Zacharsk PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE CZĘŚĆ II STATYSTYKA OPISOWA Na prawach rękopsu Warszawa, wrzeseń 0 Data ostatej aktualzacj: czwartek, 0 paźdzerka

Bardziej szczegółowo

3. OPTYMALIZACJA NIELINIOWA

3. OPTYMALIZACJA NIELINIOWA Wybrae zaadea badań operacyjych dr ż. Zbew Tarapata 3. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też oprócz

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fasowy gospodark Zajęca r 6 Matematyka fasowa c.d. Rachuek retowy (autetowy) Maem rachuku retowego określa sę regulare płatośc w stałych odstępach czasu przy założeu stałej stopy procetowej. Przykłady

Bardziej szczegółowo

Statystyka Inżynierska

Statystyka Inżynierska Statystyka Iżyerska dr hab. ż. Jacek Tarasuk AGH, WFIS 013 Wykład 3 DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE, PODSTAWY ESTYMACJI Dwuwymarowa, dyskreta fukcja rozkładu rawdoodobeństwa, Rozkłady brzegowe

Bardziej szczegółowo

Procent prosty Gdy znamy kapitał początkowy i stopę procentową

Procent prosty Gdy znamy kapitał początkowy i stopę procentową cet psty Gdy zay aptał pczątwy stpę pcetwą F = + I aptał ńcwy, pczątwy, dset I = I = stpa pcetwa (w stsuu czy) F = ( + ) aledaze dsetwe 360/360, 365/365, 360/365, 365/360 es wyaży w latach (dla óżych esów

Bardziej szczegółowo

Modele wartości pieniądza w czasie

Modele wartości pieniądza w czasie Joaa Ceślak, Paula Bawej Modele wartośc peądza w czase Podstawowe pojęca ozaczea Kaptał (ag. prcpal), kaptał początkowy, wartośd początkowa westycj - peądze jake zostały wpłacoe a początku westycj (a początku

Bardziej szczegółowo

Badanie energetyczne płaskiego kolektora słonecznego

Badanie energetyczne płaskiego kolektora słonecznego Katedra Slnów Salnowych Pojazdów ATH ZAKŁAD TERMODYNAMIKI Badane energetyczne łasego oletora słonecznego - 1 - rowadzene yorzystane energ celnej romenowana słonecznego do celów ogrzewana, chłodzena oraz

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I Pracowa IF UJ Luy 03 PODRĘCZNIKI Wsęp do aalzy błędu pomarowego Joh R. Taylor Wydawcwo Naukowe PWN Warszawa 999 I Pracowa

Bardziej szczegółowo

Niezawodność i diagnostyka Kierunek AiR, sem. V, rok. ak. 2010/11 STRUKTURY I MIARY PROBABILISTYCZNE SYSTEMÓW METODA DRZEWA (STANÓW) NIEZDATNOŚCI

Niezawodność i diagnostyka Kierunek AiR, sem. V, rok. ak. 2010/11 STRUKTURY I MIARY PROBABILISTYCZNE SYSTEMÓW METODA DRZEWA (STANÓW) NIEZDATNOŚCI Nezawodość dagosyka Keruek, sem. V, rok. ak. 00/ STUKTUY I MIY POILISTYCZNE SYSTEMÓW METOD DZEW STNÓW NIEZDTNOŚCI. Srukury obeków złożoych ch rerezeace Wsółczese obeky sysemy echcze, a szczególe wększe

Bardziej szczegółowo

Badanie efektu Halla w półprzewodniku typu n

Badanie efektu Halla w półprzewodniku typu n Badaie efektu alla w ółrzewodiku tyu 35.. Zasada ćwiczeia W ćwiczeiu baday jest oór elektryczy i aięcie alla w rostoadłościeej róbce kryształu germau w fukcji atężeia rądu, ola magetyczego i temeratury.

Bardziej szczegółowo

Lekcja 1. Pojęcia podstawowe: Zbiorowość generalna i zbiorowość próbna

Lekcja 1. Pojęcia podstawowe: Zbiorowość generalna i zbiorowość próbna TECHNIKUM ZESPÓŁ SZKÓŁ w KRZEPICACH PRACOWNIA EKONOMICZNA TEORIA ZADANIA dla klasy II Techkum Marek Kmeck Zespół Szkół Techkum w Krzepcach Wprowadzee do statystyk Lekcja Statystyka - określa zbór formacj

Bardziej szczegółowo

Modelowanie niezawodności i wydajności synchronicznej elastycznej linii produkcyjnej

Modelowanie niezawodności i wydajności synchronicznej elastycznej linii produkcyjnej Dr hab. ż. Ato Śwć, prof. adzw. Istytut Techologczych ystemów Iformacyych oltechka Lubelska ul. Nadbystrzycka 36, 2-68 Lubl e-mal: a.swc@pollub.pl Dr ż. Lech Mazurek aństwowa Wyższa zkoła Zawodowa w Chełme

Bardziej szczegółowo

Analiza wariancji. dr Janusz Górczyński

Analiza wariancji. dr Janusz Górczyński Analiza wariancji dr Janusz Górczyński Wprowadzenie Powiedzmy, że badamy pewną populację π, w której cecha Y ma rozkład N o średniej m i odchyleniu standardowym σ. Powiedzmy dalej, że istnieje pewien czynnik

Bardziej szczegółowo

BADANIE STATYSTYCZNEJ CZYSTOŚCI POMIARÓW

BADANIE STATYSTYCZNEJ CZYSTOŚCI POMIARÓW INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII RODUKCJI I TECHNOLOGII MATERIAŁÓW OLITECHNIKA CZĘSTOCHOWSKA RACOWNIA DETEKCJI ROMIENIOWANIA JĄDROWEGO Ć W I C Z E N I E N R J-6 BADANIE STATYSTYCZNEJ CZYSTOŚCI OMIARÓW

Bardziej szczegółowo

WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ

WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ 9 Cel ćwczea Ćwczee 9 WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANE PODCZAS ZDERZENIA CIAŁ Celem ćwczea jest wyzaczee wartośc eerg rozpraszaej podczas zderzea cał oraz współczyka restytucj charakteryzującego

Bardziej szczegółowo

Ćwiczenia nr 3 Finanse II Robert Ślepaczuk. Teoria portfela papierów wartościowych

Ćwiczenia nr 3 Finanse II Robert Ślepaczuk. Teoria portfela papierów wartościowych Ćczea r 3 Fae II obert Ślepaczuk Teora portfela paperó artoścoych Teora portfela paperó artoścoych jet jedym z ajażejzych dzałó ooczeych faó. Dotyczy oa etycj faoych, a przede zytkm etycj dokoyaych a ryku

Bardziej szczegółowo

Portfel. Portfel pytania. Portfel pytania. Analiza i Zarządzanie Portfelem cz. 2. Katedra Inwestycji Finansowych i Zarządzania Ryzykiem

Portfel. Portfel pytania. Portfel pytania. Analiza i Zarządzanie Portfelem cz. 2. Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Katedra Ietycj Faoych Zarządzaa yzykem Aalza Zarządzae Portfelem cz. Dr Katarzya Kuzak Co to jet portfel? Portfel grupa aktyó (trumetó faoych, aktyó rzeczoych), które zotały yelekcjooae, którym ależy zarządzać

Bardziej szczegółowo

4.5. PODSTAWOWE OBLICZENIA HAŁASOWE 4.5.1. WPROWADZENIE

4.5. PODSTAWOWE OBLICZENIA HAŁASOWE 4.5.1. WPROWADZENIE 4.5. PODTAWOWE OBCZENA HAŁAOWE 4.5.. WPROWADZENE Z dotychczasowych ozważań wiemy już dużo w zakesie oisu, watościowaia i omiau hałasu w zemyśle. Wato więc tę wiedzę odsumować w jedym zwatym ukcie, co umożliwi

Bardziej szczegółowo

PROJEKT: GNIAZDO POTOKOWE

PROJEKT: GNIAZDO POTOKOWE POLITEHNIK POZNŃSK WYZIŁ UOWY MSZYN I ZZĄZNI ZZĄZNIE POUKJĄ GUP ZIM-Z3 POJEKT: GNIZO POTOKOWE WYKONWY: 1. TOMSZ PZYMUSIK 2. TOMSZ UTOWSKI POWZĄY: Mg iż. Maiola Ozechowska SPIS TEŚI OZZIŁ 1. Wpowadzeie.

Bardziej szczegółowo

Analiza spektralna stóp zwrotu z inwestycji w akcje

Analiza spektralna stóp zwrotu z inwestycji w akcje Nasz rye aptałowy, 003 r3, str. 38-43 Joaa Góra, Magdalea Osńsa Katedra Eoometr Statysty Uwersytet Mołaja Kopera w Toruu Aalza spetrala stóp zwrotu z westycj w acje. Wstęp Agregacja w eoom eoometr bywa

Bardziej szczegółowo

UOGÓLNIONA ANALIZA WRAŻLIWOŚCI ZYSKU W PRZEDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW. 1. Wprowadzenie

UOGÓLNIONA ANALIZA WRAŻLIWOŚCI ZYSKU W PRZEDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW. 1. Wprowadzenie B A D A N I A O P E R A C Y J N E I D E C Y J E Nr 2 2007 Aa ĆWIĄKAŁA-MAŁYS*, Woletta NOWAK* UOGÓLNIONA ANALIA WRAŻLIWOŚCI YSKU W PREDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW Przedstawoo ajważejsze elemety

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 1 i 2

STATYSTYKA OPISOWA WYKŁAD 1 i 2 STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest

Bardziej szczegółowo

MATERIAŁY I STUDIA. Efektywność sektora publicznego na poziomie samorządu lokalnego. Zesz y t nr 242. Barbara Karbownik, Grzegorz Kula

MATERIAŁY I STUDIA. Efektywność sektora publicznego na poziomie samorządu lokalnego. Zesz y t nr 242. Barbara Karbownik, Grzegorz Kula MATERAŁY STUDA Zesz y t r 242 Efektywość sektora publczego a pozome samorządu lokalego Barbara Karbowk, Grzegorz Kula Warszawa 2009 Barbara Karbowk Narodowy Bak Polsk, barbara.karbowk@bp.pl Grzegorz Kula

Bardziej szczegółowo

Przetwarzanie danych meteorologicznych

Przetwarzanie danych meteorologicznych Sps teśc I Rozważaa ogóle 5 Pzetwazae daych meteoologczych Notat z wyładu pokhamaa Wyoała: Alesada Kadaś I Iomacja odowae 5 I Poces pzetwazaa daych 5 I Aalza 6 I Syteza 7 I3 Edycja wzualzacja 7 I3 Dae

Bardziej szczegółowo

Pomiary parametrów napięć i prądów przemiennych

Pomiary parametrów napięć i prądów przemiennych Ćwczee r 3 Pomary parametrów apęć prądów przemeych Cel ćwczea: zapozae z pomaram wartośc uteczej, średej, współczyków kształtu, szczytu, zekształceń oraz mocy czyej, berej, pozorej współczyka cosϕ w obwodach

Bardziej szczegółowo

SPOŁECZNA AKDAEMIA NAUK W ŁODZI

SPOŁECZNA AKDAEMIA NAUK W ŁODZI SPOŁECZNA AKDAEMIA NAUK W ŁODZI KIERUNEK STUDIÓW: ZARZĄDZANIE PRZEDMIOT: METODY ILOŚCIOWE W ZARZĄDZANIU (MATERIAŁ POMOCNICZY PRZEDMIOT PODSTAWOWY ) Łódź Sps treśc Moduł Wprowadzee do metod loścowych w

Bardziej szczegółowo

FINANSE II. Model jednowskaźnikowy Sharpe a.

FINANSE II. Model jednowskaźnikowy Sharpe a. ODELE RYNKU KAPITAŁOWEGO odel jedowskaźkowy Sharpe a. odel ryku kaptałowego - CAP (Captal Asset Prcg odel odel wycey aktywów kaptałowych). odel APT (Arbtrage Prcg Theory Teora artrażu ceowego). odel jedowskaźkowy

Bardziej szczegółowo

Ze względu na sposób zapisu wielkości błędu rozróżnia się błędy bezwzględne i względne.

Ze względu na sposób zapisu wielkości błędu rozróżnia się błędy bezwzględne i względne. Katedra Podsta Systemó Techczych - Podstay metrolog - Ćczee 3. Dokładość pomaró, yzaczae błędó pomaroych Stroa:. BŁĘDY POMIAROWE, PODSTAWOWE DEFINICJE Każdy yk pomaru bez określea dokładośc pomaru jest

Bardziej szczegółowo

Analiza wyniku finansowego - analiza wstępna

Analiza wyniku finansowego - analiza wstępna Aalza wyku fasowego - aalza wstępa dr Potr Ls Welkość wyku fasowego determuje: etowość przedsęborstwa Welkość podatku dochodowego Welkość kaptałów własych Welkość dywded 1 Aalza wyku fasowego ma szczególe

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup Jednoczynnkowa Analza Waranc (ANOVA) Wykład 11 Przypomnene: wykłady zadana kursu były zaczerpnęte z podręcznków: Statystyka dla studentów kerunków techncznych przyrodnczych, J. Koronack, J. Melnczuk, WNT

Bardziej szczegółowo

MECHANIKA BUDOWLI 12

MECHANIKA BUDOWLI 12 Olga Koacz, Kzysztof Kawczyk, Ada Łodygowski, Michał Płotkowiak, Agnieszka Świtek, Kzysztof Tye Konsultace naukowe: of. d hab. JERZY RAKOWSKI Poznań /3 MECHANIKA BUDOWLI. DRGANIA WYMUSZONE, NIETŁUMIONE

Bardziej szczegółowo

Proces narodzin i śmierci

Proces narodzin i śmierci Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do

Bardziej szczegółowo

PRZEMIANA ENERGII ELEKTRYCZNEJ W CIELE STAŁYM

PRZEMIANA ENERGII ELEKTRYCZNEJ W CIELE STAŁYM PRZEMIANA ENERGII ELEKTRYCZNE W CIELE STAŁYM Anaizowane są skutki pzepływu pądu pzemiennego o natężeniu I pzez pzewodnik okągły o pomieniu. Pzyęto wstępne założenia upaszcząace: - kształt pądu est sinusoidany,

Bardziej szczegółowo

Tekst oraz ilustracje do niniejszego opracowania zaczerpnięto z następujących podręczników, publikacji i wydawnictw popularno naukowych:

Tekst oraz ilustracje do niniejszego opracowania zaczerpnięto z następujących podręczników, publikacji i wydawnictw popularno naukowych: UZUPEŁNIAJĄCE MATERIAŁY DYDAKTYCZNE DLA UCZNIÓW TECHNIKUM MECHANICZNEGO PRZYGOTOWUJĄCYCH SIĘ DO ZEWNĘTRZNEGO EGZAMINU KWALIFIKACYJNEGO METROLOGIA TECHNICZNA (materały wybrae) Materały zebrał : mgr ż. Aatol

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elemety modelowaia matematyczego Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Modelowaie daych (ilościowe): Metody statystycze: estymacja parametrów modelu,

Bardziej szczegółowo

POLSKA FEDERACJA STOWARZYSZEŃ RZECZOZNAWCÓW MAJĄTKOWYCH POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) KRAJOWY STANDARD WYCENY SPECJALISTYCZNY NR 4 KSWS 4

POLSKA FEDERACJA STOWARZYSZEŃ RZECZOZNAWCÓW MAJĄTKOWYCH POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) KRAJOWY STANDARD WYCENY SPECJALISTYCZNY NR 4 KSWS 4 POZECHNE KRAJOE ZAADY YCENY (PKZ) KRAJOY TANDARD YCENY PECJALITYCZNY NR 4 K 4 INETYCJE LINIOE - ŁUŻEBNOŚĆ PRZEYŁU I BEZUMONE KORZYTANIE Z NIERUCHOMOŚCI 1. PROADZENIE 1.1. Nejszy stadard przedstawa reguły

Bardziej szczegółowo

Przybliżone zapytania do baz danych z akceleracją obliczeń rozkładów prawdopodobieństwa

Przybliżone zapytania do baz danych z akceleracją obliczeń rozkładów prawdopodobieństwa Przyblżoe zapytaa o baz aych z akceleracą oblczeń rozkłaów prawopoobeństwa Wtol Arzeewsk Poltechka Pozańska e mal: Wtol.Arzeewsk@cs.put.poza.pl Artur Gramack, Jarosław Gramack Uwersytet Zeloogórsk e mal:

Bardziej szczegółowo

Przestrzenno-czasowe zróżnicowanie stopnia wykorzystania technologii informacyjno- -telekomunikacyjnych w przedsiębiorstwach

Przestrzenno-czasowe zróżnicowanie stopnia wykorzystania technologii informacyjno- -telekomunikacyjnych w przedsiębiorstwach dr ż. Jolata Wojar Zakład Metod Iloścowych, Wydzał Ekoom Uwersytet Rzeszowsk Przestrzeo-czasowe zróżcowae stopa wykorzystaa techolog formacyjo- -telekomukacyjych w przedsęborstwach WPROWADZENIE W czasach,

Bardziej szczegółowo

Równania różniczkowe. y xy (1.1) x y (1.2) z xyz (1.3)

Równania różniczkowe. y xy (1.1) x y (1.2) z xyz (1.3) ownn oznczkowe Równn óżnczkowe. Wstę Równne óżnczkow nzw ównne zwejące funkcje newdoe zenne nezleżne oz ocodne funkcj newdoc lu c óżnczk. Pzkłd d 5 d d sn d. d d e d d d. z z z z. ównne óżnczkowe zwczjne

Bardziej szczegółowo

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadane teoretyczne Rozwąż dowolne rzez sebe wybrane dwa sośród odanych nże zadań: ZADANIE T Nazwa zadana: Protony antyrotony A. Cząstk o mase równe mase rotonu, ale

Bardziej szczegółowo

OKREŚLANIE NIEPEWNOŚCI POMIARÓW (poradnik do Laboratorium Fizyki)

OKREŚLANIE NIEPEWNOŚCI POMIARÓW (poradnik do Laboratorium Fizyki) Adrzej Kubaczyk Laboratorum Fzyk I Wydzał Fzyk Poltechka Warszawska OKREŚLANIE NIEPEWNOŚCI POMIARÓW (poradk do Laboratorum Fzyk) ROZDZIAŁ Wstęp W roku 995 z cjatywy Mędzyarodowego Komtetu Mar (CIPM) zostały

Bardziej szczegółowo

TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA

TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA Ćwczee 8 TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA 8.. Cel ćwczea Celem ćwczea jest wyzaczee statyczego współczyka tarca pomędzy walcową powerzchą cała a opasującą je lą. Poadto a drodze eksperymetalej

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fasowy gospodark Zajęca r 7 Krzywa retowośc, zadaa (mat. f.), marża w hadlu, NPV IRR, Ustawa o kredyce kosumeckm, fukcje fasowe Excela Krzywa retowośc (dochodowośc) Yeld Curve Krzywa ta jest grafczym

Bardziej szczegółowo

Analiza danych pomiarowych

Analiza danych pomiarowych Materały pomoccze dla studetów Wydzału Chem UW Opracowała Ageszka Korgul. Aalza daych pomarowych wersja trzeca, uzupełoa Lteratura, Wstęp 3 R OZDZIAŁ SPRAWOZDANIE Z DOŚWIADCZENIA FIZYCZNEGO 4 Stałe elemety

Bardziej szczegółowo

KARBOWNICZEK Dagmara doktorantka, mgr inż. ; LEJDA Kazimierz ; prof. dr hab. inż. Politechnika Rzeszowska, Katedra Silników Spalinowych i Transportu

KARBOWNICZEK Dagmara doktorantka, mgr inż. ; LEJDA Kazimierz ; prof. dr hab. inż. Politechnika Rzeszowska, Katedra Silników Spalinowych i Transportu НАЦІОНАЛЬНИЙ ТРАНСПОРТНИЙ УНІВЕРСИТЕТ 1 013 KARBOWNICZEK Dagmara doktoratka, mgr ż. ; LEJDA Kazmerz ; prof. dr hab. ż. oltechka Rzeszowska, Katedra Slków Spalowych Trasportu ANALIZA WSKAŹNIKA GŁĘBOKOŚCI

Bardziej szczegółowo

Statystyka opisowa. W szeregu tym prezentowana jest ilość wystąpień w próbie każdej wartości cechy.

Statystyka opisowa. W szeregu tym prezentowana jest ilość wystąpień w próbie każdej wartości cechy. Statystyka osowa Statystyka osowa óż sę od statystyk matematyczej tym, że óby statystyczej dotyczącej daej cechy, e wykozystuje sę do woskowaa a temat oulacj, z któej óba ta została wylosowaa, a jedye

Bardziej szczegółowo

Elementy arytmetyki komputerowej

Elementy arytmetyki komputerowej Elemety arytmetyk komputerowej cz. I Elemety systemów lczbowych /materał pomocczy do wykładu Iformatyka sem II/ Sps treśc. Wprowadzee.... Wstępe uwag o systemach lczbowych... 3. Przegląd wybraych systemów

Bardziej szczegółowo

PLANOWANIE I WNIOSKOWANIE STATYSTYCZNE W BADANIACH ROLNICZYCH

PLANOWANIE I WNIOSKOWANIE STATYSTYCZNE W BADANIACH ROLNICZYCH INSTYTUT HODOWLI I AKLIMATYZACJI ROLIN PLANOWANIE I WNIOSKOWANIE STATYSTYCZNE W BADANIACH ROLNICZYCH MATERIAY SZKOLENIOWE Dr hab. Zbgew Laudask, prof. adzw. Katedra Bometr Wydza Rolctwa Bolog SGGW Warszawa

Bardziej szczegółowo

Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną)

Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną) 1 Enega potencjalna jest enegą zgomadzoną w układze. Enega potencjalna może być zmenona w nną omę eneg (na pzykład enegę knetyczną) może być wykozystana do wykonana pacy. Sumę eneg potencjalnej knetycznej

Bardziej szczegółowo

Wykład 15 Elektrostatyka

Wykład 15 Elektrostatyka Wykład 5 Elektostatyka Obecne wadome są cztey fundamentalne oddzaływana: slne, elektomagnetyczne, słabe gawtacyjne. Slne słabe oddzaływana odgywają decydującą ole w budowe jąde atomowych cząstek elementanych.

Bardziej szczegółowo

POLSKA FEDERACJA STOWARZYSZEŃ RZECZOZNAWCÓW MAJĄTKOWYCH POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) KRAJOWY STANDARD WYCENY SPECJALISTYCZNY NR 4 KSWS 4

POLSKA FEDERACJA STOWARZYSZEŃ RZECZOZNAWCÓW MAJĄTKOWYCH POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) KRAJOWY STANDARD WYCENY SPECJALISTYCZNY NR 4 KSWS 4 POZECHNE KRAJOE ZAADY YCENY (PKZ) KRAJOY TANDARD YCENY PECJALITYCZNY NR 4 K 4 YCENA ŁUŻEBNOŚCI PRZEYŁU I OKREŚLANIE KOTY YNAGRODZENIA ZA BEZUMONE KORZYTANIE Z NIERUCHOMOŚCI PRZY INETYCJACH LINIOYCH 1.

Bardziej szczegółowo

Problem plecakowy (KNAPSACK PROBLEM).

Problem plecakowy (KNAPSACK PROBLEM). Problem plecakowy (KNAPSACK PROBLEM). Zagadnene optymalzac zwane problemem plecakowym swą nazwę wzęło z analog do sytuac praktyczne podobne do problemu pakowana plecaka. Chodz o to, by zapakować maksymalne

Bardziej szczegółowo

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja) Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz

Bardziej szczegółowo

ρ (6) przy czym ρ ij to współczynnik korelacji, wyznaczany na podstawie następującej formuły: (7)

ρ (6) przy czym ρ ij to współczynnik korelacji, wyznaczany na podstawie następującej formuły: (7) PROCES ZARZĄDZANIA PORTFELEM PAPIERÓW WARTOŚCIOWYCH WSPOMAGANY PRZEZ ŚRODOWISKO AUTOMATÓW KOMÓRKOWYCH Ageszka ULFIK Streszczee: W pracy przedstawoo sposób zarządzaa portfelem paperów wartoścowych wspomagay

Bardziej szczegółowo

Zarządzanie ryzykiem w przedsiębiorstwie i jego wpływ na analizę opłacalności przedsięwzięć inwestycyjnych

Zarządzanie ryzykiem w przedsiębiorstwie i jego wpływ na analizę opłacalności przedsięwzięć inwestycyjnych dr nż Andrze Chylńsk Katedra Bankowośc Fnansów Wyższa Szkoła Menedżerska w Warszawe Zarządzane ryzykem w rzedsęborstwe ego wływ na analzę ołacalnośc rzedsęwzęć nwestycynych w w w e - f n a n s e c o m

Bardziej szczegółowo

BQR FMECA/FMEA. czujnik DI CPU DO zawór. Rys. 1. Schemat rozpatrywanego systemu zabezpieczeniowego PE

BQR FMECA/FMEA. czujnik DI CPU DO zawór. Rys. 1. Schemat rozpatrywanego systemu zabezpieczeniowego PE BQR FMECA/FMEA Przed rozpoczęcem aalzy ależy przeprowadzć dekompozycję systemu a podsystemy elemety. W efekce dekompozycj uzyskuje sę klka pozomów: pozom systemu, pozomy podsystemów oraz pozom elemetów.

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu. Rachuek prawdopodobieństwa i statystyka W12: Statystycza aaliza daych jakościowych Dr Aa ADRIAN Paw B5, pok 407 ada@agh.edu.pl Wprowadzeie Rozróżia się dwa typy daych jakościowych: Nomiale jeśli opisują

Bardziej szczegółowo

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy (MD) MECHANIKA - Dynamka T. Środek cężkośc środek masy (M) Dynamka T: Środek cężkośc środek masy robert.szczotka(at)gmal.com Fzyka astronoma, Lceum 01/014 1 (MD) MECHANIKA - Dynamka T. Środek cężkośc środek

Bardziej szczegółowo

Teoria i praktyka. Wyższa Szkoła Turystyki i Ekologii. Fizyka. WSTiE Sucha Beskidzka Fizyka

Teoria i praktyka. Wyższa Szkoła Turystyki i Ekologii. Fizyka. WSTiE Sucha Beskidzka Fizyka Nepewośc pomarowe. Teora praktka. Prowadząc: Dr ż. Adrzej Skoczeń Wższa Szkoła Turstk Ekolog Wdzał Iformatk, rok I Fzka 014 03 30 WSTE Sucha Beskdzka Fzka 1 Iformacje teoretcze zameszczoe a slajdach tej

Bardziej szczegółowo

Zależność kosztów produkcji węgla w kopalni węgla brunatnego Konin od poziomu jego sprzedaży

Zależność kosztów produkcji węgla w kopalni węgla brunatnego Konin od poziomu jego sprzedaży Gawlk L., Kasztelewcz Z., 2005 Zależość kosztów produkcj węgla w kopal węgla bruatego Ko od pozomu jego sprzedaży. Prace aukowe Istytutu Górctwa Poltechk Wrocławskej r 2. Wyd. Ofcya Wydawcza Poltechk Wrocławskej,

Bardziej szczegółowo

przegrody (W ) Łukasz Nowak, Instytut Budownictwa, Politechnika Wrocławska, e-mail:lukasz.nowak@pwr.wroc.pl 1

przegrody (W ) Łukasz Nowak, Instytut Budownictwa, Politechnika Wrocławska, e-mail:lukasz.nowak@pwr.wroc.pl 1 1.4. Srawdzn moŝlwośc kondnsacj ary wodnj wwnątrz ścany zwnętrznj dla orawngo oraz dla odwrócongo układu warstw. Oblczn zawlgocna wysychana wlgoc. Srawdzn wykonujmy na odstaw skrytu Matrały do ćwczń z

Bardziej szczegółowo

Statystyka Opisowa Wzory

Statystyka Opisowa Wzory tatystyka Opsowa Wzory zereg rozdzelczy: x - wartośc cechy - lczebośc wartośc cechy - lczebość całej zborowośc Wskaźk atężea przy rysowau wykresu szeregu rozdzelczego przedzałowego o erówych przedzałach:

Bardziej szczegółowo

miąższość warstwy wodonośnej zadana głębokość wody w studni krzywa depresji podłoże nieprzepuszczalne

miąższość warstwy wodonośnej zadana głębokość wody w studni krzywa depresji podłoże nieprzepuszczalne 4 Pemyław Baa www.a.aow.pl\~pbaa Utaloy dopływ wody do tud upełej Według teo Duputa, woda do tud dotaje ę w poób adaly. Le ewpotecjale mają tałt ół, tóyc śedce mejają ę wa bloścą tud, a c śod leżą w jej

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 1 Statystyka opsowa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 W statystyce opsowej mamy pełne nformacje

Bardziej szczegółowo

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału 5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B

Bardziej szczegółowo