Zeszyty naukowe nr 9

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zeszyty naukowe nr 9"

Transkrypt

1 Zeszyty aukowe r 9 Wyższej Szkoły Ekoomiczej w Bochi 2011 Piotr Fijałkowski Model zależości otowań giełdowych a przykładzie otowań ołowiu i spółki Orzeł Biały S.A. Streszczeie Niiejsza praca opisuje próbę kostrukcji liiowego, potęgowego, wykładiczego i logarytmiczego modelu ekoometryczego zależości otowań ołowiu i akcji spółki Orzeł Biały S.A. zajmującej się odzyskiwaiem ołowiu z wyeksploatowaych akumulatorów. Dae do modelu pochodzą z pięciomiesięczego okresu otowań ołowiu a Lodo Metal Exchage i akcji spółki Orzeł Biały S.A. a Giełdzie Papierów Wartościowych w Warszawie. Abstract The preset article describes the attempt to costructio of the liear, power, expoetial ad logarithmic ecoometric models of depedece betwee quotatios of the lead ad the stock of Orzeł Biały S.A., the compay recoverig the lead from exploited accumulators. The data to the model iclude the five-moth period of quotatios of the lead o Lodo Metal Exchage ad the stock of Orzeł Biały S.A. o Warsaw Stock Exchage. 1. Wstęp Celem iiejszej pracy jest testowaie hipotezy o liiowej, ewetualie potęgowej, wykładiczej lub logarytmiczej zależości pomiędzy dwiema zmieymi: giełdowymi otowaiami ołowiu jako zmieą objaśiającą x i kursem akcji spółki Orzeł Biały S.A. (OBL) zajmującej się odzyskiwaiem ołowiu z wyeksploatowaych akumulatorów jako zmieą objaśiaą y. Oszacowaie modelu takiej zależości mogłoby być pomoce w progozowaiu otowań OBL a podstawie przewidywaego tredu ce ołowiu.

2 Notowaia Dae użyte w iiejszym opracowaiu pochodzą ze stroy iteretowej [4]. Poiżej przedstawioe jest tabelarycze zestawieie otowań ołowiu a Lodo Metal Exchage (LME) - dostawa za 3 miesiące w USD/t (zmiea x) oraz kurs zamkięcia OBL a Giełdzie Papierów Wartościowych (GPW) w PLN (zmiea w półroczym okresie od połowy listopada 2010 do połowy kwietia W zestawieiu tym pomiięte są soboty i iedziele, czyli di tygodia, w których obie giełdy są ieczye oraz dodatkowo , , i di, w których ie była czya GPW. Tabela podaje rówieżśredi kurs NBP dolara względem złotego (zmiea z). Tabela1. Notowaia ołowiu a LME x w USD/t, kurs akcji OBL a GPW y w PLN oraz średi kurs NBP dolara z w PLN/USD (a podstawie [4]) Data x (USD/t) Y (PLN) z (PLN/USD) Data x (USD/t) Y (PLN) z (PLN/USD) ,0 24,3 2, ,5 23,8 2, ,0 23,5 2, ,0 23,5 2, ,0 23,2 2, ,0 23,0 2, ,0 23,4 2, ,0 22,5 2, ,0 23,5 2, ,0 23,4 2, ,0 23,4 2, ,0 23,7 2, ,0 23,0 2, ,0 23,5 2, ,0 23,0 2, ,5 23,9 2, ,0 22,8 2, ,0 24,9 2, ,0 22,5 3, ,0 25,4 2, ,0 22,5 3, ,0 25,4 2, ,0 22,9 3, ,0 25,1 2, ,0 22,0 3, ,0 25,6 2, ,0 22,3 3, ,0 25,7 2, ,0 22,5 3, ,0 25,7 2, ,0 22,6 3, ,0 25,0 2, ,0 23,2 2, ,0 24,8 2, ,0 23,9 3, ,0 25,6 2, ,0 23,9 3, ,0 25,7 2, ,0 23,9 3, ,0 25,7 2, ,0 23,5 3, ,0 25,9 2, ,0 23,6 2, ,0 26,5 2, ,5 23,5 2, ,0 26,5 2,8843

3 ,0 23,1 3, ,0 27,0 2, ,5 23,5 2, ,0 27,1 2, ,0 23,5 3, ,0 27,0 2, ,0 23,5 3, ,0 27,0 2, ,0 23,5 3, ,0 26,9 2, ,5 23,0 3, ,0 25,8 2, ,0 23,2 3, ,0 25,8 2, ,0 23,0 3, ,0 25,8 2, ,0 23,1 3, ,0 25,2 2, ,5 23,9 2, ,0 25,0 2, ,5 23,6 2, ,0 25,3 2, ,5 24,1 2, ,0 26,0 2, ,0 24,1 2, ,0 26,0 2, ,0 23,7 2, ,0 25,5 2, ,0 24,0 2, ,0 25,6 2, ,0 23,4 3, ,0 25,5 2, ,5 23,7 3, ,0 25,4 2, ,0 24,0 3, ,0 25,1 2, ,0 24,0 2, ,0 24,5 2, ,0 24,0 2, ,0 24,3 2, ,0 23,6 2, ,0 24,5 2, ,0 23,8 2, ,0 24,4 2, ,0 23,6 2, ,0 24,3 2, ,0 23,8 2, ,0 24,5 2, ,0 23,8 2, ,0 24,4 2, ,0 23,7 2, ,5 24,4 2, ,0 23,7 2, ,0 24,0 2, ,0 23,7 2, ,5 24,3 2, ,0 23,7 2, ,0 23,9 2, ,0 24,0 2, Liiowy model zależości Hipoteza dodatiej korelacji otowań ołowiu i akcji Orła Białego jest aturala ze względu a przedmiot działalości tej spółki. Nie jest oczywiste, czy związek tych dwóch wielkości jest istoty, gdyż jest jeszcze wiele iych czyików, które mogą wpływać a kurs OBL, a iekoieczie a otowaia ołowiu. Przykłady takich czyików moża zaleźć w prospekcie emisyjym

4 174 spółki [3] (Dokumet Podsumowujący s. 7, Dokumet Rejestracyjy s. 9-15): kurs dolara, działalość kokurecyjej firmy Baterpol Spółka z o.o., ryzyko powstaia iego przedsiębiorstwa utylizującego akumulatory, straty spowodowae ewetualymi szkodami góriczymi a tereach spółki, duże awarie maszy, ograiczeia dostaw gazu i eergii elektryczej w sytuacjach awaryjych. Dalej spośród ich rozpatrywać będziemy jedyie kurs dolara ze względu a słabą mierzalość i brak daych o iych. Poiżej pokazujemy kostrukcję modelu wspomiaej zależości. Wszystkie obliczeia wykoao za pomocą programu Microsoft Excel. Kostrukcję modelu liiowego zaczyamy od wyzaczeia współczyika korelacji liiowej między zmieymi x i y dla aszej próby ze wzoru (zobacz a przykład [1], s. 481): r i ( ( x x)( y = 1 i i ( x, =. 2 2 x = i i x) ( y i= i 1 1 Dla aszych daych uzyskujemy r ( x, = 0,4837. Wysoka wartość współczyika korelacji dla dużej próby ozacza, że prawdopodobie zmiee x i y są skorelowae w całej populacji otowań, to zaczy, że współczyik korelacji dla populacji ρ jest iezerowy. Moża to zweryfikować stosując test istotości opisay a przykład w [1], s Dla hipotezy zerowej postaci H 0 : ρ = 0 i alteratywej H 0 : ρ 0 test te wykorzystuje statystykę r t = 2 1 r 2 o rozkładzie Studeta z -2 stopiami swobody. Dla = 105 rozkład te moża uzać za rozkład przybliżeiu ormaly. Wartość statystyki testowej wyosi t = 5, 6089, wobec wartość krytyczej 5,3267 a poziomie istotości α =10 7 (uzyskaej z odpowiedich tablic rozkładu ormalego). Możemy zatem uzać, że współczyik korelacji jest istotie iezerowy i przyjąć liiową postać modelu zależości między x i y:

5 175 y = α x + β + ε, gdzie ε jest składikiem losowym (zobacz a przykład [1], s ). Ocey a i b parametrów odpowiedio α i β są wyliczae metodą ajmiejszych kwadratów, to zaczy tak, by miimalizowały wartość wyrażeia 2 ( ˆ ) i = y 1 i yi, gdzie (y i )są wartościami rzeczywistymi, a ( y ˆi = α xi + β ) teoretyczymi zmieej y. Odpowiedie wzory pozwalające obliczyć te ocey mają postać: a ( i= 1 = xi x)( yi, 2 ( x x) i= 1 b = y ax, gdzie x ozacza średią wartość ( x i ), a y - średią wartość ( y i ). Stosując powyższe wzory do aszych daych wyzaczamy oszacowaie modelu liiowego: y = 0,0039x + 14, ε. Miarą dopasowaia wartości rzeczywistych i teoretyczych może być współczyik determiacji r 2 ( x,, którego wartości bliskie 1 wskazują a dobre dopasowaie oszacowaego modelu do daych (zobacz [2], s.41). Dla aszych daych otrzymamy wartość i r 2 ( x, = 0,2340, która wskazuje iestety a iedopasowaie wartości teoretyczych i rzeczywistych. 4. Uwzględieie zmia kursowych Wielkości w powyższym modelu są mierzoe w różych jedostkach pieiężych, których zależość jest zmiea. Wydawać by się mogło, że ustaleie jedej jedostki, a więc a przykład przeliczeie otowań ołowiu

6 176 z USD/t a PLN/t według aktualego kursu dolara, zdecydowaie poprawi jakość modelu. Okazuje się jedak, że tak ie jest. W Tabeli 1 podao średi kurs dolara w NBP z daego dia z, a podstawie którego moża przeliczyć otowaia ołowiu a złotówki według wzoru xz. Współczyik korelacji dla podaych otowań ołowiu a LME wyrażoych w PLN/t (xz) i otowań OBL ( wyosi r( xz, = 0,2391 i jest dużo miejszy iż odpowiedi współczyik dla otowań ołowiu ieprzeliczoych a złotówki (0,4837). W związku z tym budowaie odpowiediego modelu liiowego ie ma sesu, bo będzie o jeszcze słabiej dopasoway do daych, iż poprzedi. W zestawieiu z tymi faktami ciekawe jest to, że współczyik korelacji pomiędzy kursem dolara (z), a otowaiami OBL ( jest zacząco róży od zera i wyosi r ( z, = 0,3109. Przeprowadzając test istotości opisay w rozdziale 3. stwierdzamy, że a poziomie istotości 0,001 korelacja w całej populacji otowań jest istotie iezerowa (wartość statystyki testowej wyosi t = 3, 3201, czyli t = 3, 3201, wobec wartości krytyczej 3,2905). Ozacza to, że po części wzrost kursu dolara idzie w parze ze spadkiem otowań OBL, co prawdopodobie wiąże się z odpływem kapitału spekulacyjego z giełdy warszawskiej w sytuacji słabącej złotówki. Powyższa uwaga mogłaby sugerować, że lepszym modelem wyjaśiającym otowaia OBL będzie model liiowy dwóch zmieych postaci y = α x + βz + γ + ε ze względu iezerową korelację kursu dolara (z), a otowaiami OBL (. Niestety, współczyik korelacji pomiędzy x i z wyosi r( x, z) = 0,3135 i jest większy co do wartości bezwzględej od współczyika korelacji między z i y. Tak więc x i z ie adają się a quasi-iezależe zmiee modelu (zobacz [2], s. 64).

7 Modele ieliiowe Powodem słabego dopasowaia modelu do daych może być iewłaściwa postać aalitycza modelu. Próbujemy zatem przetestować użycie typowych modeli ieliiowych, sprowadzalych do liiowych: potęgowego, wykładiczego i logarytmiczego. Przez model potęgowy rozumiemy hipotetyczą zależość postaci a ε y = bx e. Logarytmując obie stroy powyższej rówości, sprowadzamy model potęgowy do modelu liiowego: y ' = ax' + b' +ε, gdzie b'= lb, x'= l x, y'= l y. Model wykładiczy to hipotetycza zależość postaci x ε y = ba e. Logarytmując obie stroy powyższej rówości, sprowadzamy model potęgowy do modelu liiowego: y ' = a' x + b' +ε, gdzie b'= lb, a'= l a, y'= l y. Model logarytmiczy to hipotetyczą zależość postaci y = al x + b + ε, sprowadzala do zależości liiowej y = ax' + b + ε przez podstawieie x'= l x. Najprostszym kryterium wyboru postaci modelu spośród powyższych może być wartość współczyika korelacji zmieych w modelu zliearyzowaym. Dla aszych daych uzyskujemy: r ( x', y') = r(l x,l = 0,5026, r ( x, y') = r( x,l = 0,4949, r ( x', = r(l x, = 0,4923.

8 178 Użycie otowań ołowiu przeliczoych a złotówki w miejsce orygialych wyrażoych w dolarach, czyli zmiaa zmieej x a xz daje wyiki słabsze: r (l( xz),l = 0,2719, r ( xz,l = 0,2468, r (l( xz), = 0,2640. Spośród rozpatrywaych wariatów ajlepszym okazał się model potęgowy zmieych x i y. Według rozpatrywaego kryterium jest o ieco lepszy od modelu liiowego. Zliearyzowaa postać tego modelu ma oszacowaie: y ' = x' 0, ε, dla którego współczyik determiacji wyosi r 2 = 0,2526, a więc iezaczie więcej, iż w modelu liiowym. Wyzaczając b = e b' = e 0,0531 = 0,9483, otrzymujemy oszacowaie modelu potęgowego: y 0,4138 ε = 0,9483x e. 5. Wioski Powyższe rozważaia pokazują a kokretym przykładzie trudość uzyskaia dobrego w sesie ekoometryczym modelu zależości otowań giełdowych. Nie ozacza to, że szukaie takich zależości ie ma sesu, gdyż każde badaie statystycze typu szukaie korelacji daje pewie zasób iformacji o związku (lub braku związku) pomiędzy badaymi wielkościami. W aszym przypadku awet tak iedoskoałe modele, jak opisae, mogłyby być podstawą do progozowaia orietacyjego poziomu otowań OBL w sytuacji, gdy uważamy światowe cey surowców za bardziej przewidywale iż otowaia akcji a GPW.

9 179 Bibliografia 1. Aczel A.D., Statystyka w zarządzaiu, PWN, Warszawa 2000, ISBN Welfe A., Ekoometria, Państwowe Wydawictwo Ekoomicze, Warszawa 2008, ISBN Prospekt emisyjy trzyczęściowy spółki Orzeł Biały S.A. [olie], 2007, dostępy w World Wide Web: 4.

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu. Rachuek prawdopodobieństwa i statystyka W12: Statystycza aaliza daych jakościowych Dr Aa ADRIAN Paw B5, pok 407 ada@agh.edu.pl Wprowadzeie Rozróżia się dwa typy daych jakościowych: Nomiale jeśli opisują

Bardziej szczegółowo

Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12

Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12 Wykład Korelacja i regresja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Wykład 8. Badaie statystycze ze względu

Bardziej szczegółowo

STATYSTYKA I ANALIZA DANYCH

STATYSTYKA I ANALIZA DANYCH TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica

Bardziej szczegółowo

Ekonometria Mirosław Wójciak

Ekonometria Mirosław Wójciak Ekoometria Mirosław Wójciak Literatura obowiązkowa Barczak A, ST. Biolik J, Podstawy Ekoometrii, Wydawictwo AE Katowice, Katowice 1998 Dziechciarz J. Ekoometria Metody, przykłady, zadaia (wyd. ) Kukuła

Bardziej szczegółowo

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,.

Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,. Z adaie Niech,,, będą iezależymi zmieymi losowymi o idetyczym rozkładzie ormalym z wartością oczekiwaą 0 i wariacją. Wyzaczyć wariację zmieej losowej. Wskazówka: pokazać, że ma rozkład Γ, ODP: Zadaie Niech,,,

Bardziej szczegółowo

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA Mamy populację geeralą i iteresujemy się pewą cechą X jedostek statystyczych, a dokładiej pewą charakterystyką liczbową θ tej cechy (p. średią wartością

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE. Strona 1

KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE.  Strona 1 KURS STATYSTYKA Lekcja 3 Parametrycze testy istotości ZADANIE DOMOWE www.etrapez.pl Stroa Część : TEST Zazacz poprawą odpowiedź (tylko jeda jest prawdziwa). Pytaie Statystykę moża rozumieć jako: a) próbkę

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elemety modelowaia matematyczego Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Modelowaie daych (ilościowe): Metody statystycze: estymacja parametrów modelu,

Bardziej szczegółowo

COLLEGIUM MAZOVIA INNOWACYJNA SZKOŁA WYŻSZA WYDZIAŁ NAUK STOSOWANYCH. Kierunek: Finanse i rachunkowość. Robert Bąkowski Nr albumu: 9871

COLLEGIUM MAZOVIA INNOWACYJNA SZKOŁA WYŻSZA WYDZIAŁ NAUK STOSOWANYCH. Kierunek: Finanse i rachunkowość. Robert Bąkowski Nr albumu: 9871 COLLEGIUM MAZOVIA INNOWACYJNA SZKOŁA WYŻSZA WYDZIAŁ NAUK STOSOWANYCH Kieruek: Fiase i rachukowość Robert Bąkowski Nr albumu: 9871 Projekt: Badaie statystycze cey baryłki ropy aftowej i wartości dolara

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadaie 1 Rzucamy 4 kości do gry (uczciwe). Prawdopodobieństwo zdarzeia iż ajmiejsza uzyskaa a pojedyczej kości liczba oczek wyiesie trzy (trzy oczka mogą wystąpić a więcej iż jedej kości) rówe jest: (A)

Bardziej szczegółowo

L.Kowalski zadania ze statystyki matematycznej-zestaw 3 ZADANIA - ZESTAW 3

L.Kowalski zadania ze statystyki matematycznej-zestaw 3 ZADANIA - ZESTAW 3 L.Kowalski zadaia ze statystyki matematyczej-zestaw 3 ZADANIA - ZESTAW 3 Zadaie 3. Cecha X populacji ma rozkład N m,. Z populacji tej pobrao próbę 7 elemetową i otrzymao wyiki x7 = 9, 3, s7 =, 5 a Na poziomie

Bardziej szczegółowo

Optymalizacja sieci powiązań układu nadrzędnego grupy kopalń ze względu na koszty transportu

Optymalizacja sieci powiązań układu nadrzędnego grupy kopalń ze względu na koszty transportu dr hab. iż. KRYSTIAN KALINOWSKI WSIiZ w Bielsku Białej, Politechika Śląska dr iż. ROMAN KAULA Politechika Śląska Optymalizacja sieci powiązań układu adrzędego grupy kopalń ze względu a koszty trasportu

Bardziej szczegółowo

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

BADANIA DOCHODU I RYZYKA INWESTYCJI

BADANIA DOCHODU I RYZYKA INWESTYCJI StatSoft Polska, tel. () 484300, (60) 445, ifo@statsoft.pl, www.statsoft.pl BADANIA DOCHODU I RYZYKA INWESTYCJI ZA POMOCĄ ANALIZY ROZKŁADÓW Agieszka Pasztyła Akademia Ekoomicza w Krakowie, Katedra Statystyki;

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA. Wykład wstępy. Teoria prawdopodobieństwa i elemety kombiatoryki 3. Zmiee losowe 4. Populacje i próby daych 5. Testowaie hipotez i estymacja parametrów 6. Test t 7. Test 8. Test

Bardziej szczegółowo

0.1 ROZKŁADY WYBRANYCH STATYSTYK

0.1 ROZKŁADY WYBRANYCH STATYSTYK 0.1. ROZKŁADY WYBRANYCH STATYSTYK 1 0.1 ROZKŁADY WYBRANYCH STATYSTYK Zadaia 0.1.1. Niech X 1,..., X będą iezależymi zmieymi losowymi o tym samym rozkładzie. Obliczyć ES 2 oraz D 2 ( 1 i=1 X 2 i ). 0.1.2.

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam

Bardziej szczegółowo

EKONOMETRIA. Liniowy model ekonometryczny (regresji) z jedną zmienną objaśniającą

EKONOMETRIA. Liniowy model ekonometryczny (regresji) z jedną zmienną objaśniającą EKONOMETRIA Tema wykładu: Liiowy model ekoomeryczy (regresji z jedą zmieą objaśiającą Prowadzący: dr iż. Zbigiew TARAPATA e-mail: Zbigiew.Tarapaa Tarapaa@isi.wa..wa.edu.pl hp:// zbigiew.arapaa.akcja.pl/p_ekoomeria/

Bardziej szczegółowo

SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY

SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY Weryfikacja hipotez statystyczych WNIOSKOWANIE STATYSTYCZNE Wioskowaie statystycze, to proces uogóliaia wyików uzyskaych a podstawie próby a całą

Bardziej szczegółowo

Wykład. Inwestycja. Inwestycje. Inwestowanie. Działalność inwestycyjna. Inwestycja

Wykład. Inwestycja. Inwestycje. Inwestowanie. Działalność inwestycyjna. Inwestycja Iwestycja Wykład Celowo wydatkowae środki firmy skierowae a powiększeie jej dochodów w przyszłości. Iwestycje w wyiku użycia środków fiasowych tworzą lub powiększają majątek rzeczowy, majątek fiasowy i

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia

Bardziej szczegółowo

Analiza popytu na alkohol w Polsce z zastosowaniem modelu korekty błędem AIDS

Analiza popytu na alkohol w Polsce z zastosowaniem modelu korekty błędem AIDS Ekoomia Meedżerska 2011, r 10, s. 161 172 Jacek Wolak *, Grzegorz Pociejewski ** Aaliza popytu a alkohol w Polsce z zastosowaiem modelu korekty błędem AIDS 1. Wprowadzeie Okres trasformacji, zapoczątkoway

Bardziej szczegółowo

Testowanie hipotez. H 1 : µ 15 lub H 1 : µ < 15 lub H 1 : µ > 15

Testowanie hipotez. H 1 : µ 15 lub H 1 : µ < 15 lub H 1 : µ > 15 Testowaie hipotez ZałoŜeia będące przedmiotem weryfikacji azywamy hipotezami statystyczymi. KaŜde przypuszczeie ma swoją alteratywę. Jeśli postawimy hipotezę, Ŝe średica pia jedoroczych drzew owej odmiay

Bardziej szczegółowo

STATYSTYCZNA OCENA WYNIKÓW POMIARÓW.

STATYSTYCZNA OCENA WYNIKÓW POMIARÓW. Statytycza ocea wyików pomiaru STATYSTYCZNA OCENA WYNIKÓW POMIARÓW CEL ĆWICZENIA Celem ćwiczeia jet: uświadomieie tudetom, że każdy wyik pomiaru obarczoy jet błędem o ie zawze zaej przyczyie i wartości,

Bardziej szczegółowo

Uwarunkowania rozwojowe województw w Polsce analiza statystyczno-ekonometryczna

Uwarunkowania rozwojowe województw w Polsce analiza statystyczno-ekonometryczna 3 MAŁGORZATA STEC Dr Małgorzata Stec Zakład Statystyki i Ekoometrii Uiwersytet Rzeszowski Uwarukowaia rozwojowe województw w Polsce aaliza statystyczo-ekoometrycza WPROWADZENIE Rozwój społeczo-gospodarczy

Bardziej szczegółowo

są niezależnymi zmiennymi losowymi o jednakowym rozkładzie Poissona z wartością oczekiwaną λ równą 10. Obliczyć v = var( X

są niezależnymi zmiennymi losowymi o jednakowym rozkładzie Poissona z wartością oczekiwaną λ równą 10. Obliczyć v = var( X Prawdoodobieństwo i statystyka 5..008 r. Zadaie. Załóżmy że 3 są iezależymi zmieymi losowymi o jedakowym rozkładzie Poissoa z wartością oczekiwaą λ rówą 0. Obliczyć v = var( 3 + + + 3 = 9). (A) v = 0 (B)

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 1 i 2

STATYSTYKA OPISOWA WYKŁAD 1 i 2 STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest

Bardziej szczegółowo

Przemysław Jaśko Wydział Ekonomii i Stosunków Międzynarodowych, Uniwersytet Ekonomiczny w Krakowie

Przemysław Jaśko Wydział Ekonomii i Stosunków Międzynarodowych, Uniwersytet Ekonomiczny w Krakowie MODELE SCORINGU KREDYTOWEGO Z WYKORZYSTANIEM NARZĘDZI DATA MINING ANALIZA PORÓWNAWCZA Przemysław Jaśko Wydział Ekoomii i Stosuków Międzyarodowych, Uiwersytet Ekoomiczy w Krakowie 1 WROWADZENIE Modele aplikacyjego

Bardziej szczegółowo

Metody analizy długozasięgowej

Metody analizy długozasięgowej Copyright (c) 999-00 by Hugo Steihaus Ceter Metody aalizy długozasięgowej Adrzej Zacharewicz Warsztat aalizy zależości długotermiowej jest wciąż rozwijay i udoskoalay. Od czasów Hursta (95) i jego aalizy

Bardziej szczegółowo

Wprowadzenie do laboratorium 1

Wprowadzenie do laboratorium 1 Wprowadzeie do laboratorium 1 Etymacja jedorówaiowego modelu popytu a bilety loticze Etapy budowy modelu ekoometryczego Specyfikacja modelu Zebraie daych tatytyczych Etymacja parametrów modelu Weryfikacja

Bardziej szczegółowo

Laboratorium Sensorów i Pomiarów Wielkości Nieelektrycznych. Ćwiczenie nr 1

Laboratorium Sensorów i Pomiarów Wielkości Nieelektrycznych. Ćwiczenie nr 1 1. Cel ćwiczeia: Laboratorium Sesorów i Pomiarów Wielkości Nieelektryczych Ćwiczeie r 1 Pomiary ciśieia Celem ćwiczeia jest zapozaie się z kostrukcją i działaiem czujików ciśieia. W trakcie zajęć laboratoryjych

Bardziej szczegółowo

Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień.

Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień. Metoda aalizy hierarchii Saaty ego Ważym problemem podejmowaia decyzji optymalizowaej jest często występująca hierarchiczość zagadień. Istieje wiele heurystyczych podejść do rozwiązaia tego problemu, jedak

Bardziej szczegółowo

Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności. Łączny rozkład cech X, Y jest normalny: Test współczynnika korelacji Pearsona

Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności. Łączny rozkład cech X, Y jest normalny: Test współczynnika korelacji Pearsona Badanie zależności między cechami Obserwujemy dwie cechy: X oraz Y Obiekt (X, Y ) H 0 : Cechy X oraz Y są niezależne Próba: (X 1, Y 1 ),..., (X n, Y n ) Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy transportowe cd, Problem komiwojażera

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy transportowe cd, Problem komiwojażera Istrukcja do ćwiczeń laboratoryjych z przedmiotu: Badaia operacyje Temat ćwiczeia: Problemy trasportowe cd Problem komiwojażera Zachodiopomorski Uiwersytet Techologiczy Wydział Iżyierii Mechaiczej i Mechatroiki

Bardziej szczegółowo

SIGMA KWADRAT. Weryfikacja hipotez statystycznych. Statystyka i demografia CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY

SIGMA KWADRAT. Weryfikacja hipotez statystycznych. Statystyka i demografia CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY Weryfikacja hipotez statystycznych Statystyka i demografia PROJEKT DOFINANSOWANY ZE ŚRODKÓW NARODOWEGO BANKU POLSKIEGO URZĄD STATYSTYCZNY

Bardziej szczegółowo

Struktura czasowa stóp procentowych (term structure of interest rates)

Struktura czasowa stóp procentowych (term structure of interest rates) Struktura czasowa stóp procetowych (term structure of iterest rates) Wysokość rykowych stóp procetowych Na ryku istieje wiele różorodych stóp procetowych. Poziom rykowej stopy procetowej (lub omialej stopy,

Bardziej szczegółowo

Metody oceny projektów inwestycyjnych

Metody oceny projektów inwestycyjnych Metody ocey projektów iwestycyjych PRZEDMIIOT : EFEKTYWNOŚĆ SYSTEMÓW IINFORMATYCZNYCH Pla wykładu Temat: Metody ocey projektów iwestycyjych 5 FINANSOWE METODY OCENY PROJEKTÓW INWESTYCYJNYCH... 4 5.1. WPROWADZENIE...

Bardziej szczegółowo

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy

Bardziej szczegółowo

14. RACHUNEK BŁĘDÓW *

14. RACHUNEK BŁĘDÓW * 4. RACHUNEK BŁĘDÓW * Błędy, które pojawiają się w czasie doświadczeia mogą mieć włase źródła. Są imi błędy związae z błędą kalibracją torów pomiarowych, szumy, czas reagowaia przyrządu, ograiczeia kostrukcyje,

Bardziej szczegółowo

Moment skrawania w procesie gwintowania PA6 a wybór medium obróbkowego DR HAB. INŻ. Ryszard Wójcik, PROF. PŁ, DR INŻ. Hieronim Korzeniewski,

Moment skrawania w procesie gwintowania PA6 a wybór medium obróbkowego DR HAB. INŻ. Ryszard Wójcik, PROF. PŁ, DR INŻ. Hieronim Korzeniewski, fot. Thikstock Momet skrawaia w procesie gwitowaia PA6 a wybór medium obróbkowego DR HAB. INŻ. Ryszard Wójcik, PROF. PŁ, DR INŻ. Hieroim Korzeiewski, INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN POLITECHNIKI

Bardziej szczegółowo

Influence of financial crisis on Hurst exponent estimates - fractal analysis of selected metals prices

Influence of financial crisis on Hurst exponent estimates - fractal analysis of selected metals prices MPRA Muich Persoal RePEc Archive Ifluece of fiacial crisis o Hurst expoet estimates - fractal aalysis of selected metals prices Rafa l Bu la Uiversity of Ecoomics i Katowice 0 Olie at http://mpra.ub.ui-mueche.de/5970/

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM RACHUNEK EKONOMICZNY W ELEKTROENERGETYCE INSTRUKCJA DO ĆWICZENIA

Bardziej szczegółowo

METODYKA WYKONYWANIA POMIARÓW ORAZ OCENA NIEPEWNOŚCI I BŁĘDÓW POMIARU

METODYKA WYKONYWANIA POMIARÓW ORAZ OCENA NIEPEWNOŚCI I BŁĘDÓW POMIARU METODYKA WYKONYWANIA POMIARÓW ORAZ OCENA NIEPEWNOŚCI I BŁĘDÓW POMIARU Celem każdego ćwiczeia w laboratorium studeckim jest zmierzeie pewych wielkości, a astępie obliczeie a podstawie tych wyików pomiarów

Bardziej szczegółowo

AUDYT SYSTEMU GRZEWCZEGO

AUDYT SYSTEMU GRZEWCZEGO Wytycze do audytu wykoao w ramach projektu Doskoaleie poziomu edukacji w samorządach terytorialych w zakresie zrówoważoego gospodarowaia eergią i ochroy klimatu Ziemi dzięki wsparciu udzieloemu przez Isladię,

Bardziej szczegółowo

Materiał ćwiczeniowy z matematyki Marzec 2012

Materiał ćwiczeniowy z matematyki Marzec 2012 Materiał ćwiczeiowy z matematyki Marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Marzec 0 Klucz puktowaia do zadań zamkiętych Nr zad 3 5 6 7 8 9 0

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI Miejsce a aklejkę z kodem szkoły dysleksja MIN-R_P-072 EGZAMIN MATURALNY Z INFORMATYKI MAJ ROK 2007 POZIOM ROZSZERZONY CZĘŚĆ I Czas pracy 90 miut Istrukcja dla zdającego. Sprawdź, czy arkusz egzamiacyjy

Bardziej szczegółowo

O liczbach naturalnych, których suma równa się iloczynowi

O liczbach naturalnych, których suma równa się iloczynowi O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą

Bardziej szczegółowo

8. Optymalizacja decyzji inwestycyjnych

8. Optymalizacja decyzji inwestycyjnych 8. Optymalizacja decyzji iwestycyjych 8. Wprowadzeie W wielu różych sytuacjach, w tym rówież w czasie wyboru iwestycji do realizacji, podejmujemy decyzje. Sytuacje takie azywae są sytuacjami decyzyjymi.

Bardziej szczegółowo

40:5. 40:5 = 500000υ5 5p 40, 40:5 = 500000 5p 40.

40:5. 40:5 = 500000υ5 5p 40, 40:5 = 500000 5p 40. Portfele polis Poieważ składka jest ustalaa jako wartość oczekiwaa rzeczywistego, losowego kosztu ubezpieczeia, więc jest tym bliższa średiej wydatków im większa jest liczba ubezpieczoych Polisy grupuje

Bardziej szczegółowo

STATYSTYKA OPISOWA I PROJEKTOWANIE EKSPERYMENTU dr inż Krzysztof Bryś

STATYSTYKA OPISOWA I PROJEKTOWANIE EKSPERYMENTU dr inż Krzysztof Bryś 1 STATYSTYKA OPISOWA I PROJEKTOWANIE EKSPERYMENTU dr iż Krzysztof Bryś Pojȩcia wstȩpe populacja - ca ly zbiór badaych przedmiotów lub wartości. próba - skończoy podzbiór populacji podlegaj acy badaiu.

Bardziej szczegółowo

Sprawność językowa dzieci 5-letnich a ich aktywność i doświadczenia raport z badań

Sprawność językowa dzieci 5-letnich a ich aktywność i doświadczenia raport z badań EETP 36(2015)2, ISSN 1896-2327 DOI: 10.14632/eetp_36.5 Patrycja Brydiak Sprawość językowa dzieci 5-letich a ich aktywość i doświadczeia raport z badań The Liguistic Skills of 5-Year-Old Childre Versus

Bardziej szczegółowo

Wydział Matematyki. Testy zgodności. Wykład 03

Wydział Matematyki. Testy zgodności. Wykład 03 Wydział Matematyki Testy zgodności Wykład 03 Testy zgodności W testach zgodności badamy postać rozkładu teoretycznego zmiennej losowej skokowej lub ciągłej. Weryfikują one stawiane przez badaczy hipotezy

Bardziej szczegółowo

Moda (Mo, D) wartość cechy występującej najczęściej (najliczniej).

Moda (Mo, D) wartość cechy występującej najczęściej (najliczniej). Cetrale miary położeia Średia; Moda (domiata) Mediaa Kwatyle (kwartyle, decyle, cetyle) Moda (Mo, D) wartość cechy występującej ajczęściej (ajlicziej). Mediaa (Me, M) dzieli uporządkoway szereg liczbowy

Bardziej szczegółowo

Metody numeryczne Laboratorium 5 Info

Metody numeryczne Laboratorium 5 Info Metody umerycze Laboratorium 5 Ifo Aproksymacja - proces określaia rozwiązań przybliżoych a podstawie rozwiązań zaych, które są bliskie rozwiązaiom dokładym w ściśle sprecyzowaym sesie. Metoda ajmiejszych

Bardziej szczegółowo

Jak obliczać podstawowe wskaźniki statystyczne?

Jak obliczać podstawowe wskaźniki statystyczne? Jak obliczać podstawowe wskaźiki statystycze? Przeprowadzoe egzamiy zewętrze dostarczają iformacji o tym, jak ucziowie w poszczególych latach opaowali umiejętości i wiadomości określoe w stadardach wymagań

Bardziej szczegółowo

Wykład 3 Hipotezy statystyczne

Wykład 3 Hipotezy statystyczne Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza

Bardziej szczegółowo

METODY APROKSYMACJI MATEUSZ WAGA. Gimnazjum im. Jana Matejki w Zabierzowie

METODY APROKSYMACJI MATEUSZ WAGA. Gimnazjum im. Jana Matejki w Zabierzowie METODY APROKSYMACJI MATEUSZ WAGA Gimazjum im. Jaa Matejki w Zabierzowie SPIS TREŚCI 1 WSTĘP... 2 2 MODEL MATEMATYCZNY... 3 3 UOGÓLNIENIE MODELU MATEMATYCZNEG... 6 4 MODEL INFORMATYCZNY... 7 5 PRZYKŁADY

Bardziej szczegółowo

TRANSFORMACJA DO UKŁADU 2000 A PROBLEM ZGODNOŚCI Z PRG

TRANSFORMACJA DO UKŁADU 2000 A PROBLEM ZGODNOŚCI Z PRG Tomasz ŚWIĘTOŃ 1 TRANSFORMACJA DO UKŁADU 2000 A ROBLEM ZGODNOŚCI Z RG Na mocy rozporządzeia Rady Miistrów w sprawie aństwowego Systemu Odiesień rzestrzeych już 31 grudia 2009 roku upływa termi wykoaia

Bardziej szczegółowo

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 +

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 + Zadaia róże W tym rozdziale zajdują się zadaia ietypowe, często dotyczące łańcuchów Markowa oraz własości zmieych losowych. Pojawią się także zadaia z estymacji Bayesowskiej.. (Eg 8/) Rozważamy łańcuch

Bardziej szczegółowo

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas: ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań

Bardziej szczegółowo

Obserwacje odstające mają duży wpływ na średnią średnia nie jest odporna.

Obserwacje odstające mają duży wpływ na średnią średnia nie jest odporna. Wykład 8. Przedziały ufości dla średiej Średia a mediaa Mediaa dzieli powierzchię histogramu a połowy. Jest odpora ie mają a ią wpływu obserwacje odstające. Obserwacje odstające mają duży wpływ a średią

Bardziej szczegółowo

Bielecki Jakub Kawka Marcin Porczyk Krzysztof Węgrzyn Bartosz. Zbiorcze bazy danych

Bielecki Jakub Kawka Marcin Porczyk Krzysztof Węgrzyn Bartosz. Zbiorcze bazy danych Bielecki Jakub Kawka Marci Porczk Krzsztof Węgrz Bartosz Zbiorcze baz dach Marzec 2006 Spis treści. Opis działalości bizesowej firm... 3 2. Omówieie struktur orgaizacjej... 4 3. Opis obszaru bizesowego...

Bardziej szczegółowo

Badanie efektu Halla w półprzewodniku typu n

Badanie efektu Halla w półprzewodniku typu n Badaie efektu alla w ółrzewodiku tyu 35.. Zasada ćwiczeia W ćwiczeiu baday jest oór elektryczy i aięcie alla w rostoadłościeej róbce kryształu germau w fukcji atężeia rądu, ola magetyczego i temeratury.

Bardziej szczegółowo

2. ANALIZA BŁĘDÓW I NIEPEWNOŚCI POMIARÓW

2. ANALIZA BŁĘDÓW I NIEPEWNOŚCI POMIARÓW . ANALIZA BŁĘDÓW I NIEPEWNOŚCI POMIARÓW Z powodu iedokładości przyrządów i metod pomiarowych, iedoskoałości zmysłów, iekotrolowaej zmieości waruków otoczeia (wielkości wpływających) i iych przyczy, wyik

Bardziej szczegółowo

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych

Bardziej szczegółowo

PERSPECTIVES OF STATISTICAL METHODS IN DESIGN OF TRADING STRATEGIES FOR FINANCIAL MARKETS USING HIERARCHICAL STRUCTURES AND REGULARIZATION

PERSPECTIVES OF STATISTICAL METHODS IN DESIGN OF TRADING STRATEGIES FOR FINANCIAL MARKETS USING HIERARCHICAL STRUCTURES AND REGULARIZATION STUDIA INFORMATICA 2013 Volume 34 Number 2A (111) Alia MOMOT Politechika Śląska, Istytut Iformatyki Michał MOMOT Istytut Techiki i Aparatury Medyczej ITAM PERSPEKTYWY ZASTOSOWAŃ METOD STATYSTYCZNYCH W

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi. Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

LABORATORIUM METROLOGII

LABORATORIUM METROLOGII AKADEMIA MORSKA W SZCZECINIE Cetrum Iżyierii Ruchu Morskiego LABORATORIUM METROLOGII Ćwiczeie 5 Aaliza statystycza wyików pomiarów pozycji GNSS Szczeci, 010 Zespół wykoawczy: Dr iż. Paweł Zalewski Mgr

Bardziej szczegółowo

Analiza potencjału energetycznego depozytów mułów węglowych

Analiza potencjału energetycznego depozytów mułów węglowych zaiteresowaia wykorzystaiem tej metody w odiesieiu do iych droboziaristych materiałów odpadowych ze wzbogacaia węgla kamieego ależy poszukiwać owych, skutecziej działających odczyików. Zdecydowaie miej

Bardziej szczegółowo

ANALIZA ZJAWISKA STARZENIA SIĘ LUDNOŚCI ŚLĄSKA W UJĘCIU PRZESTRZENNYM

ANALIZA ZJAWISKA STARZENIA SIĘ LUDNOŚCI ŚLĄSKA W UJĘCIU PRZESTRZENNYM Katarzya Zeug-Żebro Uiwersytet Ekoomiczy w Katowicach Katedra Matematyki katarzya.zeug-zebro@ue.katowice.pl ANALIZA ZJAWISKA STARZENIA SIĘ LUDNOŚCI ŚLĄSKA W UJĘCIU PRZESTRZENNYM Wprowadzeie Zjawisko starzeia

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTUT EKSPLOATACJI MASZYN I TRANSPORTU ZAKŁAD STEROWANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆWICZENIE: E20 BADANIE UKŁADU

Bardziej szczegółowo

3. Funkcje elementarne

3. Funkcje elementarne 3. Fukcje elemetare Fukcjami elemetarymi będziemy azywać fukcję tożsamościową x x, fukcję wykładiczą, fukcje trygoometrycze oraz wszystkie fukcje, jakie moża otrzymać z wyżej wymieioych drogą astępujących

Bardziej szczegółowo

Estymacja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 7

Estymacja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 7 Metody probabilistycze i statystyka Estymacja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

WYBRANE METODY DOSTĘPU DO DANYCH

WYBRANE METODY DOSTĘPU DO DANYCH WYBRANE METODY DOSTĘPU DO DANYCH. WSTĘP Coraz doskoalsze, szybsze i pojemiejsze pamięci komputerowe pozwalają gromadzić i przetwarzać coraz większe ilości iformacji. Systemy baz daych staowią więc jedo

Bardziej szczegółowo

Kilka uwag o testowaniu istotności współczynnika korelacji

Kilka uwag o testowaniu istotności współczynnika korelacji 341 Zeszyty Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Piotr Peternek Uniwersytet Ekonomiczny we Wrocławiu Marek Kośny Uniwersytet Ekonomiczny we Wrocławiu Kilka uwag o testowaniu istotności

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO Agieszka Jakubowska ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO. Wstęp Skąplikowaie współczesego życia gospodarczego powoduje, iż do sterowaia procesem zarządzaia

Bardziej szczegółowo

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15 VI WYKŁAD STATYSTYKA 9/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 6 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności, zasady

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

Miary położenia. Miary rozproszenia. Średnia. Wariancja. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.

Miary położenia. Miary rozproszenia. Średnia. Wariancja. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i. Miary położeia Średia Dla daych idywidualych: x = 1 x = 1 x i i ẋ i gdzie ẋ i środek i tego przedziału i - liczość i-tego przedziału Domiata moda Liczba ajczęściej występująca jeśli taka istieje - dla

Bardziej szczegółowo

I. Podzielność liczb całkowitych

I. Podzielność liczb całkowitych I Podzielość liczb całkowitych Liczba a = 57 przy dzieleiu przez pewą liczbę dodatią całkowitą b daje iloraz k = 3 i resztę r Zaleźć dzieik b oraz resztę r a = 57 = 3 b + r, 0 r b Stąd 5 r b 8, 3 więc

Bardziej szczegółowo

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:

Bardziej szczegółowo

INWESTYCJE MATERIALNE

INWESTYCJE MATERIALNE OCENA EFEKTYWNOŚCI INWESTYCJI INWESTCJE: proces wydatkowaia środków a aktywa, z których moża oczekiwać dochodów pieiężych w późiejszym okresie. Każde przedsiębiorstwo posiada pewą liczbę możliwych projektów

Bardziej szczegółowo

Załącznik 5. do Umowy nr EPS/[ ]/2016 sprzedaży energii elektrycznej na pokrywanie strat powstałych w sieci przesyłowej. zawartej pomiędzy [ ]

Załącznik 5. do Umowy nr EPS/[ ]/2016 sprzedaży energii elektrycznej na pokrywanie strat powstałych w sieci przesyłowej. zawartej pomiędzy [ ] Załączik 5 do Umowy r EPS/[ ]/ sprzedaży eergii elektryczej a pokrywaie strat powstałych w sieci przesyłowej zawartej pomiędzy Polskie Sieci Elektroeergetycze Spółka Akcyja [ ] a WARUNKI ZABEZPIECZENIA

Bardziej szczegółowo

ZARZĄDZANIE FINANSAMI

ZARZĄDZANIE FINANSAMI STOWARZYSZENIE KSIĘGOWYCH W POLSCE ODDZIAŁ WIELKOPOLSKI W POZNANIU ZARZĄDZANIE FINANSAMI WYBRANE ZAGADNIENIA (1/2) DR LESZEK CZAPIEWSKI - POZNAŃ - 1 SPIS TREŚCI 1. RYZYKO W ZARZĄDZANIU FINANSAMI... 4 1.1.

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje

Bardziej szczegółowo

Konspekt lekcji (Kółko matematyczne, kółko przedsiębiorczości)

Konspekt lekcji (Kółko matematyczne, kółko przedsiębiorczości) Kospekt lekcji (Kółko matematycze, kółko przedsiębiorczości) Łukasz Godzia Temat: Paradoks skąpej wdowy. O procecie składaym ogólie. Czas lekcji 45 miut Cele ogóle: Uczeń: Umie obliczyć procet składay

Bardziej szczegółowo

Metoda badań terenów poprzemysłowych owych w celu weryfikacji hipotezy o zanieczyszczeniu terenu poprzemysłowego. owego.

Metoda badań terenów poprzemysłowych owych w celu weryfikacji hipotezy o zanieczyszczeniu terenu poprzemysłowego. owego. Metoda badań tereów poprzemysłowych owych w celu weryfikacji hipotezy o zaieczyszczeiu tereu poprzemysłowego owego Joachim Broder 009--9 Pla prezetacji. Prezetacja algorytmu badań tereów poprzemysłowych

Bardziej szczegółowo

1. Metoda zdyskontowanych przyszłych przepływów pieniężnych

1. Metoda zdyskontowanych przyszłych przepływów pieniężnych Iwetta Budzik-Nowodzińska SZACOWANIE WARTOŚCI DOCHODOWEJ PRZEDSIĘBIORSTWA STUDIUM PRZYPADKU Wprowadzeie Dochodowe metody wycey wartości przedsiębiorstw są postrzegae, jako ajbardziej efektywe sposoby określaia

Bardziej szczegółowo