Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy Justyna Winnicka Na podstawie podręcznika Matematyka. e-book M. Dędys, S. Dorosiewicza, M. Ekes, J. Kłopotowskiego. rok akademicki 217/218
Definicja Rzeczywistą n-wymiarową przestrzenią liniową (wektorową) R n nazywamy zbiór wszystkich elementów postaci x = x 1 x 2 x n, gdzie x 1, x 2,..., x n R, z działaniami dodawania elementów i mnożenia ich przez liczbę rzeczywistą: x + y = x 1 x 2 x n + y 1 y 2 y n = x 1 + y 1 x 2 + y 2 x n + y n, α x = α x 1 x 2 x n = αx 1 αx 2 αx n.
Definicja Rzeczywistą n-wymiarową przestrzenią liniową (wektorową) R n nazywamy zbiór wszystkich elementów postaci x = x 1 x 2 x n, gdzie x 1, x 2,..., x n R, z działaniami dodawania elementów i mnożenia ich przez liczbę rzeczywistą: x + y = x 1 x 2 x n + y 1 y 2 y n = x 1 + y 1 x 2 + y 2 x n + y n, α x = α x 1 x 2 x n = αx 1 αx 2 αx n. Element x R n nazywamy wektorem, liczbę x i - i-tą współrzędną wektora x.
Definicja (c.d.) x + y nazywamy sumą wektorów x i y, αx - iloczynem wektora x przez liczbę α.
Definicja (c.d.) x + y nazywamy sumą wektorów x i y, αx - iloczynem wektora x przez liczbę α. x 1 x Wektor x = 2 nazywamy wektorem przeciwnym x n do wektora x,
Definicja (c.d.) x + y nazywamy sumą wektorów x i y, αx - iloczynem wektora x przez liczbę α. x 1 x Wektor x = 2 nazywamy wektorem przeciwnym x n do wektora x, wektor = - wektorem zerowym,
Definicja (c.d.) x + y nazywamy sumą wektorów x i y, αx - iloczynem wektora x przez liczbę α. Wektor x = x 1 x 2 x n nazywamy wektorem przeciwnym do wektora x, wektor = - wektorem zerowym, wektory e 1 = 1, e 2 = 1,, e n = 1 - wektorami jednostkowymi.
Przykład Dla wektorów x, y R 2, x = [ 2 1 ] i y = [ 3 ] wyznaczymy wektory 2 x + y, 2x, 3x, 1 2 x 1 2 y i podamy ich interpretację graficzną.
Definicja Niech a, b R n, a b. Prostą w przestrzeni R n nazywamy zbiór l = {(1 t)a + tb, t R}. Równanie x = (1 t)a + tb, t R nazywamy równaniem parametrycznym prostej przechodzącej przez punkty a, b.
Przykład Wyznaczymy równanie parametryczne prostej przechodzącej przez punkty a = 2 1 1, b = 3 1 i sprawdzimy, czy punkt c = 3 3 1 do niej należy.
Definicja Każdą prostą l R n można przedstawić w postaci l = {x + tv, t R}. Wektor v nazywamy wektorem kierunkowym prostej l. Równanie x = x + tv, t R nazywamy równaniem parametrycznym prostej. Prosta o równaniu x = x + tv, t R przechodzi przez punkt x i jest równoległa do wektora v.
Przykład Wyznaczymy wektor kierunkowy prostej przechodzącej przez 2 a = 1, b = 3 i jej równanie parametryczne. 1 1
Definicja Odcinkiem o końcach a, b, gdzie a, b R n, a b nazywamy zbiór [a, b] = {(1 t)a + tb, t, 1 }.
Przykład Sprawdzimy, czy c [a, b], gdzie a = 2 1 1, b = 3 1, c = 3 3 1.
Definicja Zbiór H = {x R n a 1 x 1 + a 2 x 2 + + a n x n = b}, gdzie co najmniej jedna z liczb a 1, a 2,, a n jest różna od zera ( a 2 1 + a2 2 + + a2 n ), nazywamy hiperpłaszczyzną. Równanie a 1 x 1 + a 2 x 2 + + a n x n = b nazywamy równaniem hiperpłaszczyzny.
Przykład Hiperpłaszczyzna w przestrzeni R 2 to zbiór H = {[ x 1 x 2 ] a 1 x 1 + a 2 x 2 = b, a 2 1 + a2 2 },
Przykład Hiperpłaszczyzna w przestrzeni R 2 to zbiór H = {[ x 1 ] a x 1 x 1 + a 2 x 2 = b, a1 2 + a2 2 }, czyli prosta. 2
Przykład Hiperpłaszczyzna w przestrzeni R 2 to zbiór H = {[ x 1 ] a x 1 x 1 + a 2 x 2 = b, a1 2 + a2 2 }, czyli prosta. 2 Hiperpłaszczyzna w przestrzeni R 3, to zbiór x 1 H = { x 2 a 1 x 1 + a 2 x 2 + a 3 x 3 = b, a1 2 + a2 2 + a2 3 }, x 3
Przykład Hiperpłaszczyzna w przestrzeni R 2 to zbiór H = {[ x 1 ] a x 1 x 1 + a 2 x 2 = b, a1 2 + a2 2 }, czyli prosta. 2 Hiperpłaszczyzna w przestrzeni R 3, to zbiór x 1 H = { x 2 a 1 x 1 + a 2 x 2 + a 3 x 3 = b, a1 2 + a2 2 + a2 3 }, czyli x 3 płaszczyzna.
Przykład Zbadamy wzajemne położenie w R 3 prostej o równaniu 1 parametrycznym x = 1 + t 2, t R i płaszczyzny 2 1 o równaniu 3x 1 + 2x 2 x 3 = 4.
Definicja Niech v 1, v 2,, v k R n oraz α 1, α 2, α k R. Wektor x = α 1 v 1 + α 2 v 2 + + α k v k nazywamy kombinacją liniową wektorów v 1, v 2,, v k. Liczby α 1, α 2, α k nazywamy współczynnikami kombinacji liniowej. Zbiór wszystkich kombiacji liniowych wektórów v 1, v 2,, v k oznaczamy symbolem L(v 1, v 2,, v k ).
Przykład Wektor x = 2 [ 1 2 ] 1 [ 2 3 ] + 3 [ 1 1 ] = [ 3 ] jest kombinacją 4 liniową wektorów [ 1 2 ], [ 2 3 ], [ 1 1 ] o współczynnikach odpowiednio 2, 1, 3.
Przykład Sprawdzimy, czy x L(a, b) (tzn. czy x jest kombinacją liniową wektorów a, b), jeśli a = 2 1, b = 1 1 oraz a) x = 1 1 1, b) x = 4 3 1.
Definicja Mówimy, że wektory v 1, v 2,, v k R n tworzą układ liniowo niezależny lub że są liniowo niezależne wtedy i tylko wtedy, gdy zachodzi warunek (α 1 v 1 + α 2 v 2 + + α k v k = α 1 = α 2 = = α k = ). α 1,α 2, α k R W przeciwnym przypadku mówimy, że wektory v 1, v 2,, v k R n tworzą układ liniowo zależny lub że są liniowo zależne.
Przykład Zbadamy liniową niezależność wektorów v 1 = 1 2, v 2 = 1 1 1, v 3 = 3 2.
Przykład Zbadamy liniową niezależność wektorów v 1 = 1 1 2, v 2 = 1 1 1, v 3 = 4 6.
Twierdzenie Niech v 1, v 2,, v k R n będzie takim układem wektorów, że k 2. Wektory v 1, v 2,, v k są liniowo zależne wtedy i tylko wtedy, gdy jeden z nich jest kombinacją liniową pozostałych.
Twierdzenie Niech v 1, v 2,, v k R n będzie takim układem wektorów, że k 2. Wektory v 1, v 2,, v k są liniowo zależne wtedy i tylko wtedy, gdy jeden z nich jest kombinacją liniową pozostałych. Przykład 1 2 2 5 Wektory v 1 =, v 3 2 = są liniowo niezależne, bo żaden z 4 6 nich nie jest kombinacją liniową drugiego.
Twierdzenie Niech v 1, v 2,, v k R n będzie takim układem wektorów, że k 2. Wektory v 1, v 2,, v k są liniowo zależne wtedy i tylko wtedy, gdy jeden z nich jest kombinacją liniową pozostałych. Przykład 1 2 2 5 Wektory v 1 =, v 3 2 = są liniowo niezależne, bo żaden z 4 6 nich nie jest kombinacją liniową drugiego. Twierdzenie Wektor v jest liniowo niezależny wtedy i tylko wtedy, gdy
Twierdzenie Niech v 1, v 2,, v k R n będzie takim układem wektorów, że k 2. Wektory v 1, v 2,, v k są liniowo zależne wtedy i tylko wtedy, gdy jeden z nich jest kombinacją liniową pozostałych. Przykład 1 2 2 5 Wektory v 1 =, v 3 2 = są liniowo niezależne, bo żaden z 4 6 nich nie jest kombinacją liniową drugiego. Twierdzenie Wektor v jest liniowo niezależny wtedy i tylko wtedy, gdy v.
Twierdzenie Jeśli v 1, v 2,, v k R n jest takim układem wektorów, że k > n, to wektory v 1, v 2,, v k są liniowo zależne.
Przykład Wektory v 1 = 1 2 3, v 2 = 4 5 6, v 3 = 7 8 9, v 4 = e π 17 3 są liniowo zależne.
Definicja Rzędem macierzy A nazywamy maksymalną liczbę liniowo niezależnych kolumn tej macierzy. Rząd macierzy A oznaczamy symbolem rza.
Definicja Rzędem macierzy A nazywamy maksymalną liczbę liniowo niezależnych kolumn tej macierzy. Rząd macierzy A oznaczamy symbolem rza. Przykład Wyznaczymy rzędy macierzy 4 3 1 a) A = [ 1 11 ], b) B = I 4.
Twierdzenie (własności rzędu macierzy) Dla dowolnych macierzy A m n i B n k spełnione są warunki: a) rz A= rza T, b) rza= rz(a T A)=rz(AA T ), c) rz AB min(rza, rzb).
Definicja Macierz kwadratową A stopnia n nazywamy nieosobliwą wtedy i tylko wtedy, gdy rza = n. W przeciwnym przypadku A nazywamy osobliwą.
Przykład Macierz I 4 jest nieosobliwa.
Przykład Macierz I 4 jest nieosobliwa. Przykład 4 3 1 Wykażemy, że macierz A = 1 1 jest osobliwa. 1 1 2