Logika i teoria mnogo±ci, konspekt wykªad 12 Teoria mocy, cz ± II Def. 12.1 Ka»demu zbiorowi X przyporz dkowujemy oznaczany symbolem X obiekt zwany liczb kardynaln (lub moc zbioru X) w taki sposób,»e ta sama liczba kardynalna przyporz dkowana jest dwóm zbiorom wtedy i tylko wtedy, gdy zbiory te s równoliczne. Def. 12.2 Zbiór A nazywamy zbiorem sko«czonym gdy istnieje taka liczba naturalna n,»e zbiór A jest równoliczny ze zbiorem {1, 2,..., n}. Dla takiego zbioru Tw. 12.1 A = n. 1. Zbiory {1, 2,..., m} i {1, 2,..., n} s równoliczne wtedy i tylko wtedy, gdy m = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. 3. Suma sko«czonej (t.j. takiej, dla której zbiór indeksów jest zbiorem sko«czonym) rodziny zbiorów sko«czonych jest zbiorem sko«czonym. 4. Zbiór wszystkich podzbiorów zbioru sko«czonego jest zbiorem sko«czonym. 5. Zbiór funkcji o o dziedzinie i przeciwdziedzinie b d cych zbiorami sko«czonymi jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy. Kolejne dwa twierdzenia równie» podamy bez dowodu. Tw. 12.2 Zbiór liczb naturalnych nie jest zbiorem sko«czonym. Tw. 12.3 Zbiór A jest zbiorem niesko«czonym wtedy i tylko wtedy, gdy ma co najmniej tyle elementów, co zbiór liczb naturalnych (czyli, na mocy denicji 11.1, istnieje ró»nowarto±ciowa funkcja N A). Tw. 12.4 Zbiór A jest niesko«czony wtedy i tylko wtedy, gdy jest równoliczny z pewnym swoim podzbiorem wªa±ciwym 1
Dowód Podamy dowód implikacji w prawo. Niech A b dzie zbiorem niesko«czonym. Oznaczmy przez B istniej cy na mocy tw. 12.3 podzbiór zbioru A równoliczny z N i niech f : N B b dzie bijekcj (istnieje ona na mocy denicji równoliczno±ci zbiorów). Niech wreszcie C oznacza zbiór warto±ci funkcji f dla parzystych warto±ci argumentów, C = f(2n). Zachodzi (A \ B) C A i (A \ B) C A (gdy», na przykªad, f(1) A oraz f(1) (A \ B) C), czyli (A \ B) C jest podzbiorem wªa±ciwym zbioru A. Niech teraz g : A (A \ B) C b dzie zadana wzorem a A : g(a) = { a, a A \ B, f ( 2f 1 (a) ), a B. Funkcja g jest ró»nowarto±ciowa i na (prosz to sprawdzi!), co dowodzi tezy twierdzenia. Def. 12.3 Zbiory sko«czone lub równoliczne z N nazywamy zbiorami przeliczalnymi. Tw. 12.5 Suma dwóch zbiorów przeliczalnych jest zbiorem przeliczalnym. Dowód Je±li zarówno A jak i B s zbiorami sko«czonymi, to ich suma jest (na mocy tw. 12.1) zbiorem sko«czonym, a wi c przeliczalnym. Niech A b dzie zbiorem przeliczalnym niesko«czonym, za± B zbiorem sko«czonym. Istnieje wi c bijekcja N n f(n) A, oraz, dla pewnego sko«czonego m, istnieje bijekcja {1,..., m} n g(n) B. Je»eli jako przeciwdziedzin funkcji f potraktujemy zbiór A B, to f stanie si ró»nowarto±ciow funkcj N A B. Z drugiej strony, odwzorowanie 2f 1 (a) + 1, a A, h(a) = 2g 1 (a), a B przyporz dkowuj ce elementom zbioru A kolejne liczby nieparzyste, za± elementom zbioru B kolejne liczby parzyste, jest ró»nowarto±ciow funkcj A B N. Twierdzenie Cantora-Bernsteina daje wi c tez. Niech wreszcie zarówno A, jak i B b d zbiorami niesko«czonymi. Funkcj f deniujemy jak powy-»ej; bijekcja g zdeniowana jest formuª N n g(n) B. 2
Funkcja f ( ) n+1 2 H(n) = g ( ) n 2 n 2N + 1, n 2N, przyporz dkowuj ca liczbom nieparzystym elementy zbioru A, za± liczbom parzystym elementy zbioru B, jest bijekcj N A B. Uwaga. Zgodnie z denicj 10.6 ci giem o wyrazach ze zbioru A nazywamy odwzorowanie N n a(n) a n A. Je±li A jest zbiorem przeliczalnym, to z denicji istnieje bijekcja N n a n A. Oznacza to,»e A jest zbiorem przeliczalnym wtedy i tylko wtedy, gdy wszystkie jego elementy mo»emy ustawi w ci g, którego wyrazy nie powtarzaj si. Tw. 12.6 Iloczyn kartezja«ski dwóch zbiorów przeliczalnych A i B jest zbiorem przeliczalny. Dowód Podamy dowód w przypadku, gdy zarówno A jak i B s zbiorami niesko«czonymi (pozostaªe przypadki jako wiczenie). Niech (a m ) m N = (a 1, a 2,...) b dzie ci giem, w który zostaªy ustawione elementy zbioru A (patrz Uwaga powy»ej) za± (b n ) n N = (b 1, b 2,...) ci giem, w który zostaªy ustawione elementy zbioru B. Podzielmy elementy zbioru A B na grupy w taki sposób,»e k tej grupie (k = 2, 3, 4,...) znajd sie te pary a m, b n dla których m + n = k. Na przykªad w grupie k = 2 znajdzie si jedynie para a 1, b 2, w grupie k = 3 znajd si pary a 1, b 2 i a 2, b 1 itd. Uporz dkujmy teraz pary wewn trz ka»dej grupy w kolejno±ci rosn cego indeksu ci gu a m. Na przykªad, uporz dkowana grupa k = 5 ma posta a 1, b 4, a 2, b 3, a 3, b 2, a 4, b 1. Elementy zbioru A B mo»emy wi c ustawi w ci g: najpierw para z grupy k = 2, potem uporz dkowane pary z grupy k = 3, potem uporz dkowane pary z grupy k = 4 itd. W ci gu tym wyst pi wszystkie elementy zbioru A B,»aden element nie b dzie si powtarzaª. Na mocy uwagi powy»ej wykazali±my wi c,»e zbiór A B jest przeliczalny. Twierdzenia 12.5 i 12.6 pozostaj prawdziwe, je±li zamiast sumy (iloczynu kartezja«skiego) dwóch zbiorów przeliczalnych b dziemy rozpatrywa sum (odpowiednio iloczyn kartezja«ski) dowolnej, sko«czonej rodziny zbiorów przeliczalnych. Wnioski z Tw. 12.5 i 12.6 I. Zbiór liczb caªkowitych jest przeliczalny. 3
Dowód Niech A = N {0}. Bijekcja N N n 1 A pokazuje,»e A jest zbiorem przeliczalnym. Podobnie, dal zbioru B = { 1, 2,...} = N bijekcja N N n B pokazuje równoliczno± zbiorów N i B. Wreszcie, równo± Z = A B i twierdzenie 12.5 daj Z = N. II. Zbiór liczb wymiernych jest przeliczalny. Dowód Liczb wymiern q Q zapisujemy w postaci uªamka zwyczajnego, q = m n, gdzie m i n s wzgl dnie pierwszymi (nie maj cymi wspólnych, ró»nych od 1 czynników) liczbami caªkowitymi. Odwzorowanie Q q = m h(q) = m, n Z Z n jest ró»nowarto±ciow funkcj ze zbioru liczb wymiernych w zbiór liczb caªkowitych. Poniewa» (na mocy Tw. 12.6 i Wniosku I) zbiór Z Z jest przeliczalny, wi c istnieje bijekcja Z Z m, n f( m, n ) N. Zªo»enie bijekcji i funkcji ró»nowarto±ciowej jest funkcj ró»nowarto±ciow ; funkcja f g : Q N jest wi c ró»nowarto±ciow funkcj przyporz dkowuj c ka»dej liczbie wymiernej liczb naturaln. Z drugiej strony, funkcja N n h(n) = n 1 Q jest ró»nowarto±ciow funkcj przyporz dkowuj c ka»dej liczbie naturalnej liczb wymiern. Wªasno±ci funkcji f g i h oraz twierdzenie Cantora-Bernsteina daj tez. Tw. 12.7 Zbiór liczb rzeczywistych nie jest przeliczalny. Dowód (nie wprost). Przypu± my,»e teza twierdzenie jest faªszywa; liczby rzeczywiste mo»emy wi c ustawi w ci g taki,»e wyst puje w nim ka»da liczba rzeczywista. Oznaczmy ten ci g przez (a n ) n N = (a 1, a 2,...). Zbudujemy teraz ci g podzbiorów osi rzeczywistej [p 1, q 1 ], [p 2, q 2 ], [p 3, q 3 ],... takich,»e dla ka»dego n = 1, 2, 3,... : 1) q n p n = 1 3 n, 4
2) [p n, q n ] [p n 1, q n 1 ], 3) a 1, a 2,..., a n [p 2, q n ]. Na przykªad: jako [p 1, q 1 ] wybierzmy ten z przedziaªów [0, 1 3 ], [ 1 3, 2 3 ], [ 2 3, 1] do którego nie nale»y liczba a 1. Jako [p 2, q 2 ] wybierzmy ten fragment przedziaªu [p 1, q 1 ] (o dªugo±ci 1 9 ), do którego nie nale»y liczba a 2 (oczywi±cie a 1 te» tam nie nale»y) i.t.d. Niech teraz lub, równowa»nie Dla ka»dego naturalnego n mamy {c} = [p n, q n ] n=1 c = lim n p n = lim n q n. a n [p n, q n ] c [p n, q n ] c a n. Liczba rzeczywista c nie wyst puje wi c w ci gu (a n ) n N co daje sprzeczno± z naszym zaªo»eniem,»e w ci gu tym wyst puj wszystkie liczby rzeczywiste. Niech teraz {0, 1} X b dzie zbiorem funkcji o argumentach w zbiorze X i warto±ciach w zbiorze {0, 1} i niech P (X) oznacza zbiór wszystkich podzbiorów zbioru X. Funkcj charakterystyczn zbioru A P (X) nazywamy f A {0, 1} X zdeniowan wzorem 1, gdy x A, X x f A (x) = 0, gdy x A. Odwzorowanie, które przyporz dkowuje podzbiorowi jego funkcj charakterystyczn, jest w oczywisty sposób bijekcj (jaka jest posta funkcji do niej odwrotnej?), co dowodzi równoliczno±ci zbiorów {0, 1} X i P (X). Tw. 12.8 (Cantor) aden zbiór nie jest równoliczny ze zbiorem wszystkich swoich podzbiorów. Dowód (nie wprost). Niech X b dzie zbiorem i przypu± my,»e X P (X). Je±li tak, to istnieje bijekcja f : X P (X). Bijekcja ta jest tak»e surjekcj, t.j. (A P (X)) (a X) : A = f(a). Zdeniujmy teraz zbiór Z X jako zawieraj ce te i tylko te elementy x X, które nie s elementami f(x) : x Z x f(x). 5 ( )
Na mocy zaªo»onej surjektywno±ci funkcji f wiemy,»e dla pewnego a 0 zachodzi Z = f(a 0 ). Pytaj c, czy a 0 Z dochodzimy do sprzeczno±ci: je±li a 0 f(a 0 ), to na mocy ( ) dostajemy a 0 Z, co jest sprzeczne z równo±ci Z = f(a 0 ). Podobnie, je±li a f(a 0 ), to na mocy ( ) dostajemy a 0 Z, co jest ponownie sprzeczne z równo±ci Z = f(a 0 ). Funkcja o wªasno±ciach, których» damy od f, nie mo»e wi c istnie. 6