Twierdzenie 1 (Hindmana). Ustalmy dowolne kolorowanie zbioru liczb naturalnych na sko«czenie wiele kolorów. Wtedy istnieje zbiór niesko«- czony A

Wielkość: px
Rozpocząć pokaz od strony:

Download "Twierdzenie 1 (Hindmana). Ustalmy dowolne kolorowanie zbioru liczb naturalnych na sko«czenie wiele kolorów. Wtedy istnieje zbiór niesko«- czony A"

Transkrypt

1 Twierdzenie 1 (Hindmana). Ustalmy dowolne kolorowanie zbioru liczb naturalnych na sko«czenie wiele kolorów. Wtedy istnieje zbiór niesko«- czony A taki»e wszystkie sko«czone sumy jego (ró»nych) elementów maj ten sam kolor. wiczenie 1. Znajd¹ takie kolorowanie zbioru liczb naturalnych na dwa kolory,»e prócz {0} nie istnieje zbiór monochromatyczny zamkni ty na sko«czone sumy. Denicja 2. Filtr na zbiorze liczb naturalnych to rodzina F zbiorów liczb naturalnych speªniaj ca nast puj ce warunki: (1) je»eli A, B F, to A B F (zamkni cie na przekroje), (2) je»eli A F i B A, to B F (monotoniczno± ), (3) / F (nietrywialno± ), (4) N F (niepusto± ). Ultraltr to ltr maksymalny (ze wzgl du na zawieranie). Równowa»- nie, ltr F jest ultraltrem je»eli dla ka»dego A N mamy A F lub A c F. Uwaga. Intuicyjnie, ltr mówi nam które zbiory uwa»amy za du»e w jakim± sensie. O ultraltrze mo»na my±le jako o mierze sko«czenie addytywnej zerojedynkowej okre±lonej na wszystkich podzbiorach zbioru liczb naturalnych (okre±lonej jako µ(a) = 1 gdy A F i µ(a) = 0 gdy A / F). Stwierdzenie 3. Poka»,»e je»eli U jest ultraltrem i A U, a B A, to B U albo (A \ B) U. Dowód. Je»eli B / U, to B c U, ale wtedy A\B = A B c U. Inaczej: je»eli od zbioru miary 1 odejmiemy zbiór miary 0, to otrzymamy zbiór miary 1. Przykªad 4. Dla ka»dej liczby naturalnej n mamy ultraltr (n) skªadaj cy si z dokªadnie tych zbiorów, do których nale»y n. Ultraltr tego rodzaju nazywamy ultraltrem gªównym. Fakt 5. Korzystaj c z lematu Kuratowskiego-Zorna, ka»dy ltr mo»na rozszerzy do ultraltru. wiczenie 2. Rodzina wszystkich kosko«czonych podzbiorów zbioru liczb naturalnych jest ltrem (nazywanym czasami ltrem Frécheta; sprawd¹ to!). Korzystaj c z poprzedniego faktu uzasadnij,»e istniej ultraltry niegªówne. 1

2 2 Denicja 6. Przestrze«wszystkich ultraltrów na zbiorze liczb naturalnych nazywamy βn, sªownie uzwarceniem ƒecha-stone'a zbioru liczb naturalnych. Sk d wzi topologi na βn? Denicja 7. Topologia na βn zadana jest przez podbaz zbiorów otwartych. Dokªadniej, dla ka»dego A N mamy deniujemy otwarty [A] βn jako [A] = {U βn A U}. Innymi sªowy, U [A] wtedy i tylko wtedy gdy A U. Stwierdzenie 8. [A] [B] = [A B], [A] [B] = [A B] wiczenie 3. Poka»»e ka»dy [A] jest otwarto-domkni ty i»e βn jest przestrzeni Hausdora. wiczenie 4. Funkcja i: N βn okre±lona wzorem i(n) = (n) jest topologicznym wªo»eniem, którego obraz jest otwarty i g sty w βn. (Od teraz uto»samiamy n N z (n) βn, tak»e N βn.) wiczenie 5. Sprawd¹»e przy uto»samieniu N z ultraltrami gªównymi w βn (z poprzedniego wiczenia) nast puj ce warunki s równowa»ne dla n N i A N: n A, A (n), n [A], A n. Pogód¹ si z tym. wiczenie 6. Je»eli F 0 jest niepust rodzin podzbiorów N zamkni t na sko«czone przekroje i nie zawieraj c, to F := {A N B F 0 B A} (rodzina wszystkich nadzbiorów elementów F 0 ) jest ltrem. W szczególno±ci ka»da taka rodzina rozszerza si do ultraltru. Lemat 9. βn jest zwart przestrzeni o±rodkow. Dowód. Wystarczy sprawdzi,»e je»eli βn = A A [A] dla pewnego A P(N), to dla pewnego sko«czonego A 0 A mamy ju» βn = A A 0 [A]. Zaªó»my nie wprost,»e tak nie jest, to znaczy dla ka»dych A 1,..., A n A istnieje taki ultraltr U,»e A 1,..., A n / U. Warunek ten jest równowa»ny temu»e A 1... A n / U (bo suma n zbiorów miary zero

3 jest miary zero!). Oznacza to w szczególno±ci,»e A 1... A n N, a równowa»nie»e A c 1... A c n. Ale wtedy rodzina B sko«czonych przekrojów zbiorów A c, gdzie A A jest zamkni ta na sko«czone przekroje i nie zawiera. wiczenie: pokaza,»e wówczas ka»dy ultraltr rozszerzaj cy B nie nale»y do A A [A] (co przeczy zaªo»eniu,»e ta suma to caªe βn). wiczenie 7. Uzupeªnij brakuj ce elementy powy»szego dowodu. wiczenie 8. Spróbuj udowodni powy»szy lemat w alternatywny sposób: poka»»e βn 2 2N jest domkni te (z topologi produktow ) i»e topologia pokrywa si z t zadan powy»ej. Uwaga. βn\n jest przestrzeni zwart, której ci»ar (moc minimalnej bazy) to c. Denicja 10 (Granica po ultraltrze). Zaªó»my»e (x n ) n jest ci - giem punktów w przestrzeni topologicznej, a U βn. Mówimy»e x = lim n U x n gdy dla ka»dego otoczenia U x zbiór tych n»e x n U nale»y do U. Uwaga. Powy»sz denicj mo»na zrozumie w nast puj cy sposób: je»eli lim n F x n = x i U x jest otwarty, to dla F-prawie wszystkich n zachodzi x n U, to znaczy zbiór tych n»e x n U nale»y do F. wiczenie 9. Je»eli x n jest ci giem punktów w przestrzeni zwartej, a U βn, to istnieje taki x»e x = lim n U x n (wskazówka: na±laduj dowód tego,»e w zwartej przestrzeni metrycznej ka»dy ci g ma podci g zbie»ny). wiczenie 10. Je»eli U = (n) jest ultraltrem gªównym, to czym jest granica po U? wiczenie 11. Je»eli f : X Y jest funkcj ci gª i lim n F x n = x, to lim n F f(x n ) = f(x). wiczenie 12. Je»eli F βn, to wzór µ(a) = lim n F A [ n,n] 2n+1 zadaje sko«czenie addytywn, niezmiennicz na translacje probabilistyczn miar sko«czenie addytywn na grupie Z liczb caªkowitych (t miar nazywamy ±redni Banacha). Istnienie takiej miary oznacza»e grupa liczb caªkowitych jest ±redniowalna. Ogólnie, mówimy»e grupa (dyskretna) jest ±redniowalna gdy istnieje sko«czenie addytywna, niezmiennicza miara probabilistyczna okre±lona na wszystkich jej podzbiorach. Nie wszystkie grupy s ±redniowalne, np. grupa wolna rangi 2 nie jest (vide paradoks Banacha-Tarskiego). 3

4 4 Stwierdzenie 11. βn speªnia nast puj c wªasno± uniwersaln : je-»eli X jest przestrzeni zwart Hausdora i f : N X jest dowoln funkcj (tzn. ci giem), to istnieje jedyna funkcja ci gªa βf : βn X przedªu»aj ca f. Dowód. Funkcj t konstruujemy korzystaj c z poprzedniego wiczenia, to znaczy βf(u) = lim n U f(n). Tak okre±lona funkcja jest ci gªa: je»eli V X jest otwarty, to βf 1 [V ] = V [f 1 [V ]], gdzie V przebiega zbiory otwarte takie»e V V. Z g sto±ci N w βn wynika jedyno±. wiczenie 13. Uzupeªnij powy»szy dowód. (Wskazówka: X jest zwarta Hausdora, wi c jest te» regularna, w szczególno±ci je»eli x V, to znajdziemy zbiór V x taki»e V (X \ V ) =. Z drugiej strony je»eli Y X jest dowolnym podzbiorem i y n jest ci giem elementów Y, to lim n U y n Y.) wiczenie 14. Sprawd¹,»e je»eli n N i F βn, to n + F := {B N ( A F) (n + A) B} jest ultraltrem. Wniosek 12. Na βn mamy dziaªanie + zadane wzorem F + U = lim n F n + U i dziaªanie to jest ci gªe w lewym argumencie. Uwaga. Dziaªanie + nie jest przemienne! wiczenie 15. Sprawd¹»e dziaªanie + obci te do N βn ma ª czno± mieszan z lewej, tzn. dla n, m N i F βn mamy n+(m+f) = (n + m) + F. wiczenie 16. Sprawd¹»e dziaªanie + obci te do N βn jest ci gªe w drugim argumencie, to znaczy dla ka»dej liczby naturalnej n odwzorowanie βn βn, gdzie F n + F jest ci gªe. Wywnioskuj st d,»e N s centralne w βn, tzn.»e dla n N i F βn mamy n + F = F + n. Stwierdzenie 13. Dziaªanie + na βn jest ª czne. Dowód. Ustalmy dowolne U 1, U 2, U 3 βn. Wtedy mamy U 1 + (U 2 + U 3 ) = lim (n + lim (m + U 3 )) = lim ( lim (n + m + U 3 ))) (pierwsza równo± z denicji, druga z wiczenia), z drugiej strony z ci gªo±ci + na βn w pierwszym argumencie mamy lim ( lim (n+m+u 3 )) = lim ( lim (n+m)+u 3 ) = lim ( lim (n+m))+u 3.

5 Stosuj c jeszcze raz ci gªo± w drugim argumencie (przy pierwszym argumencie z N), dostajemy lim m U2 (n + m) = (n + U 2 ), wi c z denicjilim n U1 (lim m U2 (n + m)) = U 1 + U 2, co ko«czy dowód. wiczenie 17. Uzupeªnij brakuj ce elementy powy»szego dowodu. Wniosek 14. βn jest zwart lew póªgrup topologiczn. wiczenie 18. Wzór n (F n + F) zadaje wªo»enie Φ: N βn βn (przestrze«wszystkich funkcji βn βn z topologi zbie»no- ±ci punktowej). To indukuje (z wªasno±ci uniwersalnej) odwzorowanie βφ: βn βn βn. Sprawd¹»e ta funkcja jest 1 1 i»e U + F = βφ(u) βφ(f) ( to zªo»enie funkcji). Wywnioskuj st d»e βφ jest wªo»eniem lewych póªgrup topologicznych. wiczenie 19. Sprawd¹»e + na βn zadaje si wzorem U + F = {A N {n A n + F} U} wiczenie 20. Je»eli µ, ν s miarami sko«czenie addytywnymi na póªgrupie S (czy te» raczej odpowiednim ciele podzbiorów S, speªniaj - cymi pewne naturalne zaªo»enia, takie jak mierzalno± mno»enia), to mo»na zada splot miar µ ν wzorem µ ν(a) = χ A (xy) dν(y)dµ(x). Sprawd¹»e je»eli U, F βn, to (je»eli potraktujemy je jako miary zerojedynkowe na póªgrupie (N, +)) zachodzi wzór U F = U + F. W tym celu sprawd¹ najpierw,»e dla A N i U βn zachodzi: { 1 gdy A x + F χ A (x + y) df(y) = 0 w przeciwnym wypadku (spróbuj najpierw z x = 0, x = 1). wiczenie 21. W notacji poprzedniego wiczenia sprawd¹,»e je»eli S jest przemienn póªgrup i µ, ν s przeliczalnie addytywne, to µ ν = ν µ. (Wskazówka: skorzystaj z tw. Fubiniego.) A co je±li tylko jedna z µ, ν jest przeliczalnie addytywna? Co mo»esz powiedzie o ci gªo±ci? (Zauwa»»e przeliczalnie addytywne ultraltry na N to dokªadnie ultraltry gªówne, przypomnij sobie wiczenie 16.) Denicja 15. Je»eli S jest póªgrup, a I S jest niepusty, to mówimy»e I jest (lewym) ideaªem w S gdy SI I (to znaczy dla ka»dego s S oraz i I mamy si I); piszemy wtedy I S. wiczenie 22. Je»eli S jest grup, to jakie s jej ideaªy? 5

6 6 Uwaga. Ideaª minimalny (w sensie inkluzji) zawsze jest ideaªem gªównym, a nawet I = Si dla ka»dego i I. Dowód. Zauwa»my»e je»eli i I, to z denicji Si I. Ale poniewa» I jest minimalny i Si S, to poci ga Si = I. Stwierdzenie 16. W zwartej lewej póªgrupie topologicznej ideaªy gªówne s domkni te. W szczególno±ci ka»dy ideaª zawiera ideaª domkni ty. Dowód. Je»eli I = Sa, ale to jest obraz S przez funkcj ci gª, a wi c zbiór zwarty. Je»eli I jest dowolnym ideaªem i a I, to Sa I jest ideaªem domkni tym. Lemat 17. Ka»da zwarta lewa póªgrupa topologiczna S ma domkni ty ideaª minimalny M. Dowód. Rozwa»my rodzin wszystkich domkni tych ideaªów w S uporz dkowan przez inkluzj. Šatwo sprawdzi,»e speªnia ona zaªo»enia lematu Kuratowskiego-Zorna (ze zwarto±ci), wi c istnieje minimalny ideaª domkni ty. Z poprzedniego stwierdzenia wynika,»e taki ideaª jest jednocze±nie ideaªem minimalnym. Lemat 18 (Ellis-Nakamura). W zaªo»eniach poprzedniego lematu, ka»dy ideaª minimalny M jest generowany przez idempotent (tzn. istnieje taki u S,»e M = Su i u u = u). Dowód. Z wiczenia wynika,»e wystarczy pokaza,»e w M jest idempotent (bo M jest generowany przez ka»dy swój element). Z lematu Kuratowskiego-Zorna i zwarto±ci wynika,»e M ma minimaln domkni t podpóªgrup K. Niech u K b dzie dowolny. Wtedy Ku K i Ku jest domkni t podgrup M: istotnie, je»eli k, k K, to (k u)(k u) = (k uk )u Ku. St d Ku = K, czyli istnieje taki b K,»e bu = u. W szczególno±ci zbiór {b K bu = u} jest niepusty. Z drugiej strony ªatwo sprawdzi,»e jest on domkni t podpóªgrup i zawiera si w K, st d dla ka»dego b K mamy bu = u, a w szczególno±ci uu = u, co nale»aªo dowie±. Uwaga. A posteriori mo»emy stwierdzi,»e K, któr wzi li±my w dowodzie lematu powy»ej, musiaªa by grup trywialn {u}. wiczenie 23. Uzupeªnij luki w powy»szym dowodzie. wiczenie 24. Sprawd¹,»e je»eli M jest ideaªem minimalnym i u M jest idempotentem, to um jest grup. wiczenie 25. Sprawd¹»e je»eli M jest ideaªem minimalnym, a u, v M s idempotentami, to uv = u i vu = v, a ponadto M = u um, gdzie u przebiega idempotenty w M.

7 wiczenie 26. Sprawd¹»e je±li n N, a U βn, to je»eli U + n = n, to U = 0 (ideaª gªówny generowany przez 0; wskazówka: rozwa» zbiór tych m N,»e m + n {n}). Wywnioskuj st d,»e je»eli M jest ideaªem minimalnym w βn, to M N = (tzn. M skªada si z ideaªów niegªównych). Twierdzenie 19 (Hindmana). Ustalmy dowolne kolorowanie zbioru liczb naturalnych na sko«czenie wiele kolorów. Wtedy istnieje zbiór niesko«czony A taki»e wszystkie sko«czone sumy jego (ró»nych) elementów maj ten sam kolor. Dowód. Ustalmy kolorowanie zbioru liczb naturalnych na sko«czenie wiele kolorów, to znaczy (równowa»nie) partycj N = A 1... A n. Ustalmy dowolny idempotent u βn. Poniewa» u jest ultraltrem, dla pewnego (jedynego) j mamy A j u, czyli u [A j ]. u jest idempotentem, czyli lim n u n+u = u+u = u [A j ] (czyli dla u-prawie wszystkich n mamy n+u [A j ]), oraz oczywi±cie lim n u n = u [A j ] (dla u-prawie wszystkich n zachodzi n [A j ]) W szczególno±ci istnieje takie n 1,»e n 1 + u [A j ] i n 1 [A j ] (to wynika z zamkni cia u na przekroje; sprawd¹ to!). Z drugiej strony, n 1 + u = n 1 + u + u = lim n u n 1 + n + u [A j ], oraz lim n u n 1 + n = n 1 + u [A j ], czyli dla u-prawie wszystkich n mamy n 1 + n + u [A j ] i n 1 + n [A j ] i n + u [A j ] i n [A j ]; w szczególno±ci istnieje takie n = n 2. Analogicznie konstruujemy rekurencyjnie ci g n k, w taki sposób»e dowolna suma n k jest elementem [A j ], te» gdy dodamy u z prawej. Poniewa» dla n N nale»enie n [A j ] jest równowa»ne z tym»e n A j, bior c A = {a k k N} otrzymujemy tez. wiczenie 27. W powy»szym dowodzie jest powa»na luka. Je±li jej nie widzisz, to sprawd¹, co si stanie, je»eli we¹miemy u = 0 (ultraltr gªówny). wiczenie 28. Znajd¹ niesko«czony zbiór A N, taki»e dla ka»dego niesko«czonego B N pewna sko«czona suma elementów B nie jest elementem A (wskazówka: wystarczy sprawdza B A). wiczenie 29. Zaªó»my»e (S, +) jest niesko«czon póªgrup przemienn z wªasno±ci skracania, tzn. dla ka»dych s 1, s 2, s 3 równo± s 1 + s 3 = s 2 + s 3 poci ga s 1 = s 2 (równowa»nie: S jest podpóªgrup pewnej grupy abelowej). Rozumuj c tak jak w dowodzie tw. Hindmana (rozwa»aj c zbiór ultraltrów na S z odpowiedni topologi i struktur póªgrupow ) poka»,»e dla ka»dego kolorowania S na sko«czenie wiele 7

8 8 kolorów istnieje zbiór niesko«czony, taki»e wszystkie sumy jego elementów maj ten sam kolor. A co gdy S nie jest przemienna? wiczenie 30. Znajd¹ niesko«czon póªgrup przemienn S i ideaª minimalny M βs, taki»e M S. Denicja 20. Rozwa»my przestrze«zwart Hausdora X i dowoln grup G dziaªaj c na X przez homeomorzmy. To daje nam odwzorowanie G X X, gdzie X X to przestrze«wszystkich funkcji z X w X z topologi produktow (zbie»no±ci punktowej) i dziaªaniem: skªadaniem funkcji. Póªgrup Ellisa (lub póªgrup obwiedni ) tego dziaªania nazywamy domkni cie w X X obrazu G przez to odwzorowanie. wiczenie 31. Dla G, X jak w denicji powy»ej, sprawd¹»e póªgrupa Ellisa jest zwart lew póªgrup topologiczn. Wniosek 21. W póªgrupie Ellisa mamy (zwarte) ideaªy minimalne, w ka»dym z których znajdziemy idempotent. Co wi cej, ka»dy ideaª minimalny M jest sum rozª czn grup postaci um, gdzie u M jest idempotentem. wiczenie 32. Niech X = S 1, a G b dzie peªn grup homeomorzmów S 1. Sprawd¹»e póªgrupa Ellisa nie jest grup (wskazówka: znajd¹ element, który nie jest na)

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy.

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy. Logika i teoria mnogo±ci, konspekt wykªad 12 Teoria mocy, cz ± II Def. 12.1 Ka»demu zbiorowi X przyporz dkowujemy oznaczany symbolem X obiekt zwany liczb kardynaln (lub moc zbioru X) w taki sposób,»e ta

Bardziej szczegółowo

Ciaªa i wielomiany. 1 Denicja ciaªa. Ciaªa i wielomiany 1

Ciaªa i wielomiany. 1 Denicja ciaªa. Ciaªa i wielomiany 1 Ciaªa i wielomiany 1 Ciaªa i wielomiany 1 Denicja ciaªa Niech F b dzie zbiorem, i niech + (dodawanie) oraz (mno»enie) b d dziaªaniami na zbiorze F. Denicja. Zbiór F wraz z dziaªaniami + i nazywamy ciaªem,

Bardziej szczegółowo

Metody dowodzenia twierdze«

Metody dowodzenia twierdze« Metody dowodzenia twierdze«1 Metoda indukcji matematycznej Je±li T (n) jest form zdaniow okre±lon w zbiorze liczb naturalnych, to prawdziwe jest zdanie (T (0) n N (T (n) T (n + 1))) n N T (n). 2 W przypadku

Bardziej szczegółowo

Zadania. 4 grudnia k=1

Zadania. 4 grudnia k=1 Zadania 4 grudnia 205 Zadanie. Poka»,»e dla dowolnych liczb zespolonych z,..., z n istnieje zbiór B {,..., n}, taki,»e n z k π z k. k B Zadanie 2. Jakie warunki musz speªnia ci gi a n i b n, aby istniaªy

Bardziej szczegółowo

Ekstremalnie maªe zbiory

Ekstremalnie maªe zbiory Maªe jest pi kne Instytut Matematyki Uniwersytetu Warszawskiego Nadarzyn, 27.08.2011 Zbiory silnie miary zero Przypomnienie Zbiór X [0, 1] jest miary Lebesgue'a zero, gdy dla ka»dego ε > 0 istnieje ci

Bardziej szczegółowo

Przekroje Dedekinda 1

Przekroje Dedekinda 1 Przekroje Dedekinda 1 O liczbach wymiernych (tj. zbiorze Q) wiemy,»e: 1. zbiór Q jest uporz dkowany relacj mniejszo±ci < ; 2. zbiór liczb wymiernych jest g sty, tzn.: p, q Q : p < q w : p < w < q 3. 2

Bardziej szczegółowo

Geometria Algebraiczna

Geometria Algebraiczna Geometria Algebraiczna Zadania domowe: seria 1 Zadania 1-11 to powtórzenie podstawowych poj z teorii kategorii. Zapewne rozwi zywali Pa«stwo te zadania wcze±niej, dlatego nie b d one omawiane na wiczeniach.

Bardziej szczegółowo

Podstawy matematyki dla informatyków

Podstawy matematyki dla informatyków Podstawy matematyki dla informatyków Wykªad 6 10 listopada 2011 W poprzednim odcinku... Zbiory A i B s równoliczne (tej samej mocy ), gdy istnieje bijekcja f : A 1 1 B. Piszemy A B lub A = B. na Moc zbioru

Bardziej szczegółowo

1 Otwarto± i domkni to±

1 Otwarto± i domkni to± Topologia 1 1 Otwarto± i domkni to± (X, O) przestrze«topologiczna rodzina zbiorów otwartych O 2 X speªnia (i), X O, (ii) U 1, U 2 O U 1 U 2 O, (iii) ( j J U j O ) j J U j O. X D zbiór domkni ty X \ D O;

Bardziej szczegółowo

Zbiory i odwzorowania

Zbiory i odwzorowania Zbiory i odwzorowania 1 Sposoby okre±lania zbiorów 1) Zbiór wszystkich elementów postaci f(t), gdzie t przebiega zbiór T : {f(t); t T }. 2) Zbiór wszystkich elementów x zbioru X speªniaj cych warunek ϕ(x):

Bardziej szczegółowo

Twierdzenie Choqueta o mierzalno±ci rzutów

Twierdzenie Choqueta o mierzalno±ci rzutów Twierdzenie Choqueta o mierzalno±ci rzutów (Na podstawie wykªadu prof. Michaªa Morayne) Mateusz Kwa±nicki 12. grudnia 2004. 1 Wst p Ten tekst jest skróconym zapisem wykªadów dr M. Morayne, po±wi conych

Bardziej szczegółowo

Wykªad 4. Funkcje wielu zmiennych.

Wykªad 4. Funkcje wielu zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 4. Funkcje wielu zmiennych. Zbiory na pªaszczy¹nie i w przestrzeni.

Bardziej szczegółowo

istnienie elementu neutralnego dodawania (zera): 0 K a K a + 0 = a, istnienie elementu neutralnego mno»enia (jedynki): 1 K a K a 1 = a,

istnienie elementu neutralnego dodawania (zera): 0 K a K a + 0 = a, istnienie elementu neutralnego mno»enia (jedynki): 1 K a K a 1 = a, Ciaªo Denicja. Zbiór K z dziaªaniami dodawania + oraz mno»enia (których argumentami s dwa elementy z tego zbioru, a warto±ciami elementy z tego zbioru) nazywamy ciaªem, je±li zawiera co najmniej dwa elementy

Bardziej szczegółowo

AM II /2019 (gr. 2 i 3) zadania przygotowawcze do I kolokwium

AM II /2019 (gr. 2 i 3) zadania przygotowawcze do I kolokwium AM II.1 2018/2019 (gr. 2 i 3) zadania przygotowawcze do I kolokwium Normy w R n, iloczyn skalarny sprawd¹ czy dana funkcja jest norm sprawd¹, czy dany zbiór jest kul w jakiej± normie i oblicz norm wybranego

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Mierzalne liczby kardynalne

Mierzalne liczby kardynalne czyli o miarach mierz cych wszystko Instytut Matematyki Uniwersytetu Warszawskiego Grzegorzewice, 26 stycznia 2007 Ogólny problem miary Pytanie Czy na pewnym zbiorze X istnieje σ-addytywna miara probabilistyczna,

Bardziej szczegółowo

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X.

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X. Relacje 1 Relacj n-argumentow nazywamy podzbiór ϱ X 1 X 2... X n. Je±li ϱ X Y jest relacj dwuargumentow (binarn ), to zamiast (x, y) ϱ piszemy xϱy. Relacj binarn okre±lon w zbiorze X nazywamy podzbiór

Bardziej szczegółowo

1 Poj cia pomocnicze. Przykªad 1. A A d

1 Poj cia pomocnicze. Przykªad 1. A A d Poj cia pomocnicze Otoczeniem punktu x nazywamy dowolny zbiór otwarty zawieraj cy punkt x. Najcz ±ciej rozwa»amy otoczenia kuliste, tj. kule o danym promieniu ε i ±rodku x. S siedztwem punktu x nazywamy

Bardziej szczegółowo

Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt:

Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt: Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt: zdzedzej@mif.pg.gda.pl www.mif.pg.gda.pl/homepages/zdzedzej () 5 pa¹dziernika 2016 1 / 1 Literatura podstawowa R. Rudnicki, Wykªady z analizy

Bardziej szczegółowo

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1 J zyki formalne i operacje na j zykach J zyki formalne s abstrakcyjnie zbiorami sªów nad alfabetem sko«czonym Σ. J zyk formalny L to opis pewnego problemu decyzyjnego: sªowa to kody instancji (wej±cia)

Bardziej szczegółowo

1 Granice funkcji wielu zmiennych.

1 Granice funkcji wielu zmiennych. AM WNE 008/009. Odpowiedzi do zada«przygotowawczych do czwartego kolokwium. Granice funkcji wielu zmiennych. Zadanie. Zadanie. Pochodne. (a) 0, Granica nie istnieje, (c) Granica nie istnieje, (d) Granica

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja

Bardziej szczegółowo

Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski

Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Twierdzenie Wainera Marek Czarnecki Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Wydziaª Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 3 lipca 2009 Motywacje Dla dowolnej

Bardziej szczegółowo

XVII Warmi«sko-Mazurskie Zawody Matematyczne

XVII Warmi«sko-Mazurskie Zawody Matematyczne 1 XVII Warmi«sko-Mazurskie Zawody Matematyczne Kategoria: klasa VIII szkoªy podstawowej i III gimnazjum Olsztyn, 16 maja 2019r. Zad. 1. Udowodnij,»e dla dowolnych liczb rzeczywistych x, y, z speªniaj cych

Bardziej szczegółowo

Indeksowane rodziny zbiorów

Indeksowane rodziny zbiorów Logika i teoria mnogo±ci, konspekt wykªad 7 Indeksowane rodziny zbiorów Niech X b dzie przestrzeni zbiorem, którego podzbiorami b d wszystkie rozpatrywane zbiory, R rodzin wszystkich podzbiorów X za± T

Bardziej szczegółowo

Oba zbiory s uporz dkowane liniowo. Badamy funkcj w pobli»u kresów dziedziny. Pewne punkty szczególne (np. zmiana denicji funkcji).

Oba zbiory s uporz dkowane liniowo. Badamy funkcj w pobli»u kresów dziedziny. Pewne punkty szczególne (np. zmiana denicji funkcji). Plan Spis tre±ci 1 Granica 1 1.1 Po co?................................. 1 1.2 Denicje i twierdzenia........................ 4 1.3 Asymptotyka, granice niewªa±ciwe................. 7 2 Asymptoty 8 2.1

Bardziej szczegółowo

Funkcje jednej zmiennej. Granica, ci gªo±. (szkic wykªadu)

Funkcje jednej zmiennej. Granica, ci gªo±. (szkic wykªadu) Funkcje jednej zmiennej Granica, ci gªo± (szkic wykªadu) opracowaªa Gra»yna Ciecierska 1 Granica funkcji Denicja Niech 0 R, r > 0 Otoczeniem punktu 0 o promieniu r nazywamy przedziaª ( 0 r, 0 +r) Otoczeniem

Bardziej szczegółowo

ELEMENTARNA TEORIA LICZB. 1. Podzielno±

ELEMENTARNA TEORIA LICZB. 1. Podzielno± ELEMENTARNA TEORIA LICZB IZABELA AGATA MALINOWSKA N = {1, 2,...} 1. Podzielno± Denicja 1.1. Niepusty podzbiór A zbioru liczb naturalnych jest ograniczony, je»eli istnieje taka liczba naturalna n 0,»e m

Bardziej szczegółowo

Matematyka dyskretna dla informatyków

Matematyka dyskretna dla informatyków UNIWERSYTET IM. ADAMA MICKIEWICZA W POZNANIU Jerzy Jaworski, Zbigniew Palka, Jerzy Szyma«ski Matematyka dyskretna dla informatyków uzupeænienia Pozna«007 A Notacja asymptotyczna Badaj c du»e obiekty kombinatoryczne

Bardziej szczegółowo

Podzbiory Symbol Newtona Zasada szuadkowa Dirichleta Zasada wª czania i wyª czania. Ilo± najkrótszych dróg. Kombinatoryka. Magdalena Lema«ska

Podzbiory Symbol Newtona Zasada szuadkowa Dirichleta Zasada wª czania i wyª czania. Ilo± najkrótszych dróg. Kombinatoryka. Magdalena Lema«ska Kombinatoryka Magdalena Lema«ska Zasady zaliczenia przedmiotu Zasady zaliczenia przedmiotu Maksymalna ilo± punktów to 100 punktów = 100 procent. Zasady zaliczenia przedmiotu Maksymalna ilo± punktów to

Bardziej szczegółowo

GRUPA PODSTAWOWA I X. GRZEGORZ ZBOROWSKI

GRUPA PODSTAWOWA I X. GRZEGORZ ZBOROWSKI GRUPA PODSTAWOWA GRZEGORZ ZBOROWSKI 1. Definicja i podstawowe poj cia Pierwszym krokiem do zdeniowania grupy podstawowej b dzie poj cie drogi w przestrzeni topologicznej, czyli mówi c nie±ci±le, krzywej

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA. W obu podpunktach zakªadamy,»e kolejno± ta«ców jest wa»na.

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA. W obu podpunktach zakªadamy,»e kolejno± ta«ców jest wa»na. Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zadanko 1 (12p.) Na imprezie w Noc Kupaªy s 44 dziewczyny. Nosz one 11 ró»nych imion, a dla ka»dego imienia s dokªadnie 4 dziewczyny o tym imieniu przy czym ka»da

Bardziej szczegółowo

Metodydowodzenia twierdzeń

Metodydowodzenia twierdzeń 1 Metodydowodzenia twierdzeń Przez zdanie rozumiemy dowolne stwierdzenie, które jest albo prawdziwe, albo faªszywe (nie mo»e by ono jednocze±nie prawdziwe i faªszywe). Tradycyjnie b dziemy u»ywali maªych

Bardziej szczegółowo

Strategia czy intuicja?

Strategia czy intuicja? Strategia czy intuicja czyli o grach niesko«czonych Instytut Matematyki Uniwersytetu Warszawskiego Grzegorzewice, 29 sierpnia 2009 Denicja gry Najprostszy przypadek: A - zbiór (na ogóª co najwy»ej przeliczalny),

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

2 Podstawowe obiekty kombinatoryczne

2 Podstawowe obiekty kombinatoryczne 2 Podstawowe obiety ombinatoryczne Oznaczenia: N {0, 1, 2,... } zbiór liczb naturalnych. Dla n N przyjmujemy [n] {1, 2,..., n}. W szczególno±ci [0] jest zbiorem pustym. Je±li A jest zbiorem so«czonym,

Bardziej szczegółowo

Statystyka matematyczna - ZSTA LMO

Statystyka matematyczna - ZSTA LMO Statystyka matematyczna - ZSTA LMO Šukasz Smaga Wydziaª Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza w Poznaniu Wykªad 4 Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 4 1 / 18 Wykªad 4 - zagadnienia

Bardziej szczegółowo

Podstawy matematyki dla informatyków. Funkcje. Funkcje caªkowite i cz ±ciowe. Deniowanie funkcji. Wykªad pa¹dziernika 2012

Podstawy matematyki dla informatyków. Funkcje. Funkcje caªkowite i cz ±ciowe. Deniowanie funkcji. Wykªad pa¹dziernika 2012 Podstawy matematyki dla informatyków Wykªad 3 Funkcje 18 pa¹dziernika 2012 Deniowanie funkcji Funkcje caªkowite i cz ±ciowe Denicja wprost: f (x) = x + y f = λx. x + y Denicja warunkowa: { n/2, je±li n

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. II Rachunek ró»niczkowy funkcji wielu zmiennych

Zadania z analizy matematycznej - sem. II Rachunek ró»niczkowy funkcji wielu zmiennych Zadania z analizy matematycznej - sem II Rachunek ró»niczkowy funkcji wielu zmiennych Denicja (Pochodne cz stkowe dla funkcji trzech zmiennych) Niech D R 3 b dzie obszarem oraz f : D R f = f y z) P 0 =

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Maªgorzata Murat. Modele matematyczne.

Maªgorzata Murat. Modele matematyczne. WYKŠAD I Modele matematyczne Maªgorzata Murat Wiadomo±ci organizacyjne LITERATURA Lars Gårding "Spotkanie z matematyk " PWN 1993 http://moodle.cs.pollub.pl/ m.murat@pollub.pl Model matematyczny poj cia

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

W poprzednim odcinku... Podstawy matematyki dla informatyków. Relacje równowa»no±ci. Zbiór (typ) ilorazowy. Klasy abstrakcji

W poprzednim odcinku... Podstawy matematyki dla informatyków. Relacje równowa»no±ci. Zbiór (typ) ilorazowy. Klasy abstrakcji W poprzednim odcinku... Podstawy matematyki dla informatyków Rodzina indeksowana {A t } t T podzbiorów D to taka funkcja A : T P(D),»e A(t) = A t, dla dowolnego t T. Wykªad 3 20 pa¹dziernika 2011 Produkt

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych dr Krzysztof yjewski Analiza matematyczna 2; MatematykaS-I 0 lic 21 maja 2018 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(, y b dzie okre±lona przynajmniej na otoczeniu punktu

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Jan Rodziewicz-Bielewicz, Wydziaª Informatyki ZUT May 8, 2019 8 Struktury algebraiczne ZASTOSOWANIE: Kryptograa. 1. Sprawdzi, czy jest dziaªaniem wewn trznym: (a) y y w zbiorze Q,

Bardziej szczegółowo

Wybrane poj cia i twierdzenia z wykªadu z teorii liczb

Wybrane poj cia i twierdzenia z wykªadu z teorii liczb Wybrane poj cia i twierdzenia z wykªadu z teorii liczb 1. Podzielno± Przedmiotem bada«teorii liczb s wªasno±ci liczb caªkowitych. Zbiór liczb caªkowitych oznacza b dziemy symbolem Z. Zbiór liczb naturalnych

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych dr Krzysztof yjewski Informatyka I rok I 0 in» 12 stycznia 2016 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0 y 0 )

Bardziej szczegółowo

Matematyka 1. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski

Matematyka 1. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski Matematyka 1 Šukasz Dawidowski Instytut Matematyki, Uniwersytet l ski Pochodna funkcji Niech a, b R, a < b. Niech f : (a, b) R b dzie funkcj oraz x, x 0 (a, b) b d ró»nymi punktami przedziaªu (a, b). Wyra»enie

Bardziej szczegółowo

Czy funkcja zadana wzorem f(x) = ex e x. 1 + e. = lim. e x + e x lim. lim. 2 dla x = 1 f(x) dla x (0, 1) e e 1 dla x = 1

Czy funkcja zadana wzorem f(x) = ex e x. 1 + e. = lim. e x + e x lim. lim. 2 dla x = 1 f(x) dla x (0, 1) e e 1 dla x = 1 II KOLOKWIUM Z AM M1 - GRUPA A - 170101r Ka»de zadanie jest po 5 punktów Ostatnie zadanie jest nieobowi zkowe, ale mo»e dostarczy dodatkowe 5 punktów pod warunkiem rozwi zania pozostaªych zada«zadanie

Bardziej szczegółowo

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14 WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 2013/14 Spis tre±ci 1 Kodowanie i dekodowanie 4 1.1 Kodowanie a szyfrowanie..................... 4 1.2 Podstawowe poj cia........................

Bardziej szczegółowo

Twierdzenie Wedderburna Witold Tomaszewski

Twierdzenie Wedderburna Witold Tomaszewski Twierdzenie Wedderburna Witold Tomaszewski Pier±cie«przemienny P nazywamy dziedzin caªkowito±ci (lub po prostu dziedzin ) je±li nie posiada nietrywialnych dzielników zera. Pier±cie«z jedynk nazywamy pier±cieniem

Bardziej szczegółowo

Wykªad 12. Transformata Laplace'a i metoda operatorowa

Wykªad 12. Transformata Laplace'a i metoda operatorowa Wykªad 2. Tranformata Laplace'a i metoda operatorowa Tranformata Laplace'a Dla odpowiednio okre±lonej klay funkcji zdeniujemy operator L, nazywany tranformat Laplace'a, okre±lony wzorem L[ f ]() = f(t)e

Bardziej szczegółowo

Ultrafiltry. Dominik KWIETNIAK, Kraków. 1. Ultrafiltry

Ultrafiltry. Dominik KWIETNIAK, Kraków. 1. Ultrafiltry W niniejszym artykule zero nie jest liczbą naturalną! Ultrafiltry Dominik KWIETNIAK, Kraków Artykuł ten stanowi zapis referatu jaki został wygłoszony na XLVII Szkole Matematyki Poglądowej Ekstrema. Przedstawiono

Bardziej szczegółowo

Freyd, Abelian Categories

Freyd, Abelian Categories Algebra 2, zadania na wiczenia, seria II Króti wst p do ategorii i funtorów. W tej serii jest du»o zada«ale s (z reguªy) ªatwe lub bardzo ªatwe. Najpierw denicje, tóre zapewne Pa«stwo znaj lub pozna ªatwo

Bardziej szczegółowo

Logika dla matematyków i informatyków Wykªad 1

Logika dla matematyków i informatyków Wykªad 1 Logika dla matematyków i informatyków Wykªad 1 Stanisªaw Goldstein Wydziaª Matematyki i Informatyki UŠ 16 lutego 2016 Wszech±wiat matematyczny skªada si wyª cznie ze zbiorów. Liczby naturalne s zdeniowane

Bardziej szczegółowo

c Marcin Sydow Spójno± Grafy i Zastosowania Grafy Eulerowskie 2: Drogi i Cykle Grafy Hamiltonowskie Podsumowanie

c Marcin Sydow Spójno± Grafy i Zastosowania Grafy Eulerowskie 2: Drogi i Cykle Grafy Hamiltonowskie Podsumowanie 2: Drogi i Cykle Spis Zagadnie«drogi i cykle spójno± w tym sªaba i silna k-spójno± (wierzchoªkowa i kraw dziowa) dekompozycja grafu na bloki odlegªo±ci w grae i poj cia pochodne grafy Eulera i Hamiltona

Bardziej szczegółowo

Matematyka dyskretna dla informatyków

Matematyka dyskretna dla informatyków Matematyka dyskretna dla informatyków Cz ± I: Elementy kombinatoryki Jerzy Jaworski Zbigniew Palka Jerzy Szyma«ski Uniwersytet im. Adama Mickiewicza Pozna«2007 2 Podstawowe zasady i prawa przeliczania

Bardziej szczegółowo

punkcie. Jej granica lewostronna i prawostronna w punkcie x = 2 wynosz odpowiednio:

punkcie. Jej granica lewostronna i prawostronna w punkcie x = 2 wynosz odpowiednio: 5.9. lim x x +4 f(x) = x +4 Funkcja f(x) jest funkcj wymiern, która jest ci gªa dla wszystkich x, dla których mianownik jest ró»ny od zera, czyli dla: x + 0 x Zatem w punkcie x = funkcja ta jest okre±lona

Bardziej szczegółowo

1 Metody iteracyjne rozwi zywania równania f(x)=0

1 Metody iteracyjne rozwi zywania równania f(x)=0 1 Metody iteracyjne rozwi zywania równania f()=0 1.1 Metoda bisekcji Zaªó»my,»e funkcja f jest ci gªa w [a 0, b 0 ]. Pierwiastek jest w przedziale [a 0, b 0 ] gdy f(a 0 )f(b 0 ) < 0. (1) Ustalmy f(a 0

Bardziej szczegółowo

Macierze i Wyznaczniki

Macierze i Wyznaczniki Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja 1. Tablic nast puj cej postaci a 11 a 12... a 1n a 21 a 22... a 2n A =... a m1 a m2... a mn nazywamy macierz o m wierszach i n kolumnach,

Bardziej szczegółowo

Metoda tablic semantycznych. 1 Metoda tablic semantycznych

Metoda tablic semantycznych. 1 Metoda tablic semantycznych 1 Zarówno metoda tablic semantycznych, jak i rezolucji, to dosy sprawny algorytm do badania speªnialni±ci formuª, a wi c i tautologii. Chodzi w niej o wskazanie, je±li istnieje, modelu dla formuªy. Opiera

Bardziej szczegółowo

. 0 0... 1 0. 0 0 0 0 1 gdzie wektory α i tworz baz ortonormaln przestrzeni E n

. 0 0... 1 0. 0 0 0 0 1 gdzie wektory α i tworz baz ortonormaln przestrzeni E n GAL II 2013-2014 A. Strojnowski str.45 Wykªad 20 Denicja 20.1 Przeksztaªcenie aniczne f : H H anicznej przestrzeni euklidesowej nazywamy izometri gdy przeksztaªcenie pochodne f : T (H) T (H) jest izometri

Bardziej szczegółowo

PRZYPOMNIENIE Ka»d przestrze«wektorow V, o wymiarze dim V = n < nad ciaªem F mo»na jednoznacznie odwzorowa na przestrze«f n n-ek uporz dkowanych:

PRZYPOMNIENIE Ka»d przestrze«wektorow V, o wymiarze dim V = n < nad ciaªem F mo»na jednoznacznie odwzorowa na przestrze«f n n-ek uporz dkowanych: Plan Spis tre±ci 1 Homomorzm 1 1.1 Macierz homomorzmu....................... 2 1.2 Dziaªania............................... 3 2 Ukªady równa«6 3 Zadania 8 1 Homomorzm PRZYPOMNIENIE Ka»d przestrze«wektorow

Bardziej szczegółowo

Macierze. 1 Podstawowe denicje. 2 Rodzaje macierzy. Denicja

Macierze. 1 Podstawowe denicje. 2 Rodzaje macierzy. Denicja Macierze 1 Podstawowe denicje Macierz wymiaru m n, gdzie m, n N nazywamy tablic liczb rzeczywistych (lub zespolonych) postaci a 11 a 1j a 1n A = A m n = [a ij ] m n = a i1 a ij a in a m1 a mj a mn W macierzy

Bardziej szczegółowo

1 Funkcje i ich granice

1 Funkcje i ich granice Funkcje i ich granice Byªo: Zbiór argumentów; zbiór warto±ci; monotoniczno± ; funkcja odwrotna; funkcja liniowa; kwadratowa; wielomiany; funkcje wymierne; funkcje trygonometryczne i ich odwrotno±ci; funkcja

Bardziej szczegółowo

Elementy geometrii analitycznej w przestrzeni

Elementy geometrii analitycznej w przestrzeni Wykªad 3 Elementy geometrii analitycznej w przestrzeni W wykªadzie tym wi kszy nacisk zostaª poªo»ony raczej na intuicyjne rozumienie deniowanych poj, ni» ±cisªe ich zdeniowanie. Dlatego niniejszy wykªad

Bardziej szczegółowo

Automorzmy modeli i twierdzenie EhrenfeuchtaMostowskiego

Automorzmy modeli i twierdzenie EhrenfeuchtaMostowskiego Automorzmy modeli i twierdzenie EhrenfeuchtaMostowskiego Krzysztof Kapulkin IX Warsztaty Logiczne 5 12 lipca 2008 1 Wst p W referacie tym przedstawiamy wyniki uzyskane przez Andrzeja Ehrenfeuchta i Andrzeja

Bardziej szczegółowo

x y x y x y x + y x y

x y x y x y x + y x y Algebra logiki 1 W zbiorze {0, 1} okre±lamy dziaªania dwuargumentowe,, +, oraz dziaªanie jednoargumentowe ( ). Dziaªanie x + y nazywamy dodawaniem modulo 2, a dziaªanie x y nazywamy kresk Sheera. x x 0

Bardziej szczegółowo

Estymacja parametru gªadko±ci przy u»yciu falek splajnowych

Estymacja parametru gªadko±ci przy u»yciu falek splajnowych Estymacja parametru gªadko±ci przy u»yciu falek splajnowych Politechnika Gda«ska Wydziaª Fizyki Technicznej i Matematyki Stosowanej Wisªa, 3-7.12.2012 Przestrze«Biesowa Przestrze«Biesowa B s p,q, 1 p,

Bardziej szczegółowo

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14 WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 203/4 Spis tre±ci Kodowanie i dekodowanie 4. Kodowanie a szyfrowanie..................... 4.2 Podstawowe poj cia........................

Bardziej szczegółowo

Wyra»enia logicznie równowa»ne

Wyra»enia logicznie równowa»ne Wyra»enia logicznie równowa»ne Denicja. Wyra»enia rachunku zda«nazywamy logicznie równowa»nymi, gdy maj równe warto±ci logiczne dla dowolnych warto±ci logicznych zmiennych zdaniowych. 1 Przykªady: Wyra»enia

Bardziej szczegółowo

Zbiory ograniczone i kresy zbiorów

Zbiory ograniczone i kresy zbiorów Zbiory ograniczone i kresy zbiorów Def.. Liczb m nazywamy ograniczeniem dolnym a liczb M ograniczeniem górnym zbioru X R gdy (i) x m; (ii) x M. Mówimy,»e zbiór X jest ograniczony z doªu (odp. z góry) gdy

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. II Ekstrema funkcji wielu zmiennych, twierdzenia o funkcji odwrotnej i funkcji uwikªanej

Zadania z analizy matematycznej - sem. II Ekstrema funkcji wielu zmiennych, twierdzenia o funkcji odwrotnej i funkcji uwikªanej Zadania z analizy matematycznej - sem. II Ekstrema funkcji wielu zmiennych, twierdzenia o funkcji odwrotnej i funkcji uwikªanej Denicja 1. Niech X = R n b dzie przestrzeni unormowan oraz d(x, y) = x y.

Bardziej szczegółowo

*** Teoria popytu konsumenta *** I. Pole preferencji konsumenta 1. Przestrze«towarów 2. Relacja preferencji konsumenta 3. Optymalny koszyk towarów

*** Teoria popytu konsumenta *** I. Pole preferencji konsumenta 1. Przestrze«towarów 2. Relacja preferencji konsumenta 3. Optymalny koszyk towarów *** Teoria popytu konsumenta *** I. Pole preferencji konsumenta 1. Przestrze«towarów 2. Relacja preferencji konsumenta 3. Optymalny koszyk towarów I.1 Przestrze«towarów Podstawowe poj cia Rynek towarów

Bardziej szczegółowo

Cz ± I. Analiza Matematyczna I

Cz ± I. Analiza Matematyczna I Cz ± I Analiza Matematyczna I ROZDZIAŠ Wst p.. Logika B dziemy rozwa»a zdania, o których mo»emy zawsze stwierdzi, czy s prawdziwe, czy faªszywe. Z punktu widzenia logiki istotne jest wyª cznie to, czy

Bardziej szczegółowo

Rodzinę spełniającą trzeci warunek tylko dla sumy skończonej nazywamy ciałem (algebrą) w zbiorze X.

Rodzinę spełniającą trzeci warunek tylko dla sumy skończonej nazywamy ciałem (algebrą) w zbiorze X. 1 σ-ciała Definicja 1.1 (σ - ciało) σ - ciałem (σ - algebrą) w danym zbiorze X (zwanym przestrzenią) nazywamy rodzinę M pewnych podzbiorów zbioru X, spełniającą trzy warunki: 1 o M; 2 o jeśli A M, to X

Bardziej szczegółowo

Macierze i Wyznaczniki

Macierze i Wyznaczniki dr Krzysztof yjewski Mechatronika; S-I.in». 5 pa¹dziernika 6 Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja. Tablic nast puj cej postaci a a... a n a a... a n A =... a m a m...

Bardziej szczegółowo

Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki.

Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. 3. Funkcje borelowskie. Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. (1): Jeśli zbiór Y należy do rodziny F, to jego dopełnienie X

Bardziej szczegółowo

Matematyczne podstawy kognitywistyki

Matematyczne podstawy kognitywistyki Matematyczne podstawy kognitywistyki Jerzy Pogonowski Zakªad Logiki i Kognitywistyki UAM pogon@amu.edu.pl Rachunek zbiorów Jerzy Pogonowski (MEG) Matematyczne podstawy kognitywistyki Rachunek zbiorów 1

Bardziej szczegółowo

Wielomiany o wspóªczynnikach rzeczywistych

Wielomiany o wspóªczynnikach rzeczywistych Wielomiany o wspóªczynnikach rzeczywistych Wielomian: W (x) = a n x n + a n 1 x n 1 + a n 2 x n 2 +... + a 2 x 2 + a 1 x + a 0 wspóªczynniki wielomianu: a 0, a 1, a 2,..., a n 1, a n ; wyraz wolny: a 0

Bardziej szczegółowo

Ci gªy fragment rachunku µ

Ci gªy fragment rachunku µ Ci gªy fragment rachunku µ Marek Czarnecki Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Wydziaª Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 28 maja 2009 Motywacje 1. Rozwa»amy

Bardziej szczegółowo

f(x) f(x 0 ) i f +(x 0 ) := lim = f(x 0 + x) f(x 0 ) wynika ci gªo± funkcji w punkcie x 0. W ka»dym przypadku zachodzi:

f(x) f(x 0 ) i f +(x 0 ) := lim = f(x 0 + x) f(x 0 ) wynika ci gªo± funkcji w punkcie x 0. W ka»dym przypadku zachodzi: Pochodna funkcji Def 1 Pochodn wªa±ciw funkcji f w punkcie x 0 nazywamy granic f (x 0 ) := lim o ile granica ta istnieje i jest wªa±ciwa Funkcj f nazywamy wtedy ró»niczkowaln Przy zaªo»eniu,»e f jest ci

Bardziej szczegółowo

Prawdopodobie«stwo warunkowe, twierdzenie Bayesa, niezale»no± zdarze«.

Prawdopodobie«stwo warunkowe, twierdzenie Bayesa, niezale»no± zdarze«. Prawdopodobie«stwo warunkowe, twierdzenie Bayesa, niezale»no± zdarze«. Alicja Czy» WFTiMS April 14, 2010 Spis tre±ci 1 Wprowadzenie Denicja prawdopodobie«stwa warunkowego Twierdzenie Bayesa Niezale»no±

Bardziej szczegółowo

Matematyka dyskretna dla informatyków

Matematyka dyskretna dla informatyków Matematyka dyskretna dla informatyków Cz ± I: Elementy kombinatoryki Jerzy Jaworski Zbigniew Palka Jerzy Szyma«ski Uniwersytet im. Adama Mickiewicza Pozna«2007 4 Zależności rekurencyjne Wiele zale»no±ci

Bardziej szczegółowo

Matematyka. Justyna Winnicka. rok akademicki 2016/2017. Szkoªa Gªówna Handlowa

Matematyka. Justyna Winnicka. rok akademicki 2016/2017. Szkoªa Gªówna Handlowa Matematyka Justyna Winnicka Szkoªa Gªówna Handlowa rok akademicki 2016/2017 kontakt, konsultacje, koordynator mail: justa_kowalska@yahoo.com, jkowal4@sgh.waw.pl, justyna.winnicka@sgh.waw.pl konsultacje:

Bardziej szczegółowo

c Marcin Sydow Przepªywy Grafy i Zastosowania Podsumowanie 12: Przepªywy w sieciach

c Marcin Sydow Przepªywy Grafy i Zastosowania Podsumowanie 12: Przepªywy w sieciach 12: w sieciach Spis zagadnie«sieci przepªywowe przepªywy w sieciach ±cie»ka powi kszaj ca tw. Forda-Fulkersona Znajdowanie maksymalnego przepªywu Zastosowania przepªywów Sieci przepªywowe Sie przepªywowa

Bardziej szczegółowo

Waldemar Sieg. Topologia dziedziny a rozkªady pewnych funkcji pierwszej klasy Baire'a na sumy i ró»nice funkcji o domkni tym wykresie

Waldemar Sieg. Topologia dziedziny a rozkªady pewnych funkcji pierwszej klasy Baire'a na sumy i ró»nice funkcji o domkni tym wykresie Uniwersytet im. Adama Mickiewicza w Poznaniu Wydziaª Matematyki i Informatyki Waldemar Sieg Topologia dziedziny a rozkªady pewnych funkcji pierwszej klasy Baire'a na sumy i ró»nice funkcji o domkni tym

Bardziej szczegółowo

Materiaªy do Repetytorium z matematyki

Materiaªy do Repetytorium z matematyki Materiaªy do Repetytorium z matematyki 0/0 Dziaªania na liczbach wymiernych i niewymiernych wiczenie Obliczy + 4 + 4 5. ( + ) ( 4 + 4 5). ( : ) ( : 4) 4 5 6. 7. { [ 7 4 ( 0 7) ] ( } : 5) : 0 75 ( 8) (

Bardziej szczegółowo

3. (8 punktów) EGZAMIN MAGISTERSKI, Biomatematyka

3. (8 punktów) EGZAMIN MAGISTERSKI, Biomatematyka EGZAMIN MAGISTERSKI, 26.06.2017 Biomatematyka 1. (8 punktów) Rozwój wielko±ci pewnej populacji jest opisany równaniem: dn dt = rn(t) (1 + an(t), b gdzie N(t) jest wielko±ci populacji w chwili t, natomiast

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów 18 maja 2013 Twierdzenie Halla o maª»e«stwach Problem Wyobra¹my sobie,»e mamy m dziewczyn i pewn liczb chªopców. Ka»da dziewczyna chce wyj± za m», przy czym ka»da z nich godzi si po±lubi tylko pewnych

Bardziej szczegółowo

Macierze. Dziaªania na macierzach. 1. Niech b d dane macierze , D = , C = , B = 4 12 A = , F = , G = , H = E = a) Obliczy A + B, 2A 3B,

Macierze. Dziaªania na macierzach. 1. Niech b d dane macierze , D = , C = , B = 4 12 A = , F = , G = , H = E = a) Obliczy A + B, 2A 3B, Macierze Dziaªania na macierzach Niech b d dane macierze A = E = [ 2 3 0 3 2 3 2 0 [ 0 8, B = 4 2, F = [ 2 3, C = 3 2 2 3 0 0 0 4 0 6 3 0, G =, D = 0 2 0 2 0 3 0 3 0 2 0 0 2 2 0 0 5 0 2,, H = 0 0 4 0 0

Bardziej szczegółowo

Zadania do Rozdziału X

Zadania do Rozdziału X Zadania do Rozdziału X 1. 2. Znajdź wszystkie σ-ciała podzbiorów X, gdy X = (i) {1, 2}, (ii){1, 2, 3}. (b) Znajdź wszystkie elementy σ-ciała generowanego przez {{1, 2}, {2, 3}} dla X = {1, 2, 3, 4}. Wykaż,

Bardziej szczegółowo

Informacje pomocnicze

Informacje pomocnicze Funkcje wymierne. Równania i nierówno±ci wymierne Denicja. (uªamki proste) Wyra»enia postaci Informacje pomocnicze A gdzie A d e R n N (dx e) n nazywamy uªamkami prostymi pierwszego rodzaju. Wyra»enia

Bardziej szczegółowo

2 Liczby rzeczywiste - cz. 2

2 Liczby rzeczywiste - cz. 2 2 Liczby rzeczywiste - cz. 2 W tej lekcji omówimy pozostaªe tematy zwi zane z liczbami rzeczywistymi. 2. Przedziaªy liczbowe Wyró»niamy nast puj ce rodzaje przedziaªów liczbowych: (a) przedziaªy ograniczone:

Bardziej szczegółowo

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami. M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A

Bardziej szczegółowo

Teoria grup I. Wykªad 8. 1 Elementarna teoria reprezentacji, cz. III. 2. Reprezentacje o tych samych charakterach s równowa»ne.

Teoria grup I. Wykªad 8. 1 Elementarna teoria reprezentacji, cz. III. 2. Reprezentacje o tych samych charakterach s równowa»ne. Teoria grup I Wykªad 8 1 Elementarna teoria reprezentacji, cz. III Literatura dodatkowa: [Ser88] Zaªo»enia: Jak i w poprzednim, w tym rozdziale rozpatrujemy tylko sko«czone grupy G i ich sko«czeniewymiarowe

Bardziej szczegółowo