1. K 5 Ruch postępowy i obrotowy ciała sztywnego Zadanie 1 Koło napędowe o promieniu r 1 =1m przekładni ciernej wprawia w ruch koło o promieniu r =0,5m z przyspieszeniem 1 =0, t. Po jakim czasie prędkość obrotowa drugiego koła osiągnie wartość n =480 obr/min? prędkość v. Można zdefiniować, że: W zadaniu obliczamy najpierw v=r 1 1 =r Należy także dokonać zamiany prędkości obrotowej na prędkość kątową: = n 60 zapis taki ma sens ponieważ, jeśli n oznacza liczbę obrotów na minutę to n 60 oznacza liczbę pełnych =360 o obrotów w ciągu 60 sekund. Możemy zatem zdefinioać prędkość liniową jako: v= n 1 60 r 1= n 1r 1 30 = n r 30 jeśli zatem n =480, wtedy n 1 r 1 30 = 480 r 1 4 30 n 1 =10 obr /min Znając już prędkość obrotową n 1 oraz przyspieszenie 1 =0, t, można policzyć ile wynosi prędkość kątowa a znając prędkość obrotową, możemy policzyć czas po jakim ta prędkość zostanie osiągnięta. 1 = d 1 dt =0, t d 1 =0, t dt td t 1 = 0, t dt 0 0 1 =0,1 t 1 =0,1 t = 10 30 =4 = t 1 0,1 = 4 = 10=6,3 [s ] 0,1 Odp. Czas po jakim koło r osiągnie prędkość obrotowąn =480 obr/min wynosi 6,3 [s].
Zadanie Dla zadanego równaniem ruchu postępowego prostoliniowego ciężaru 1 określić prędkość i przyspieszenie obrotowe, doosiowe oraz całkowite punktu M mechanizmu w chwili, kiedy droga przebyta przez ten ciężar jest równa s. Dane: R = 60 [cm] Szukane: v, a, a n, a t r = 45 [cm] r3 = 36 [cm] x = 10 + 100t [cm]; t [s] s = 50 [cm] Droga jaką przebywa ciężar 1 w czasie t = wynosi s: s= x t= x t =0 =10 100 10=100 100 =50 = 1 Prędkość liczymy jako pochodną drogi po czasie: v= dx dt =00t prędkość kątowa obliczona może być także z zależności: = v R = 00t 60 =10t 3 znając prędkość kątową możemy obliczyć prędkość kątową 3, przyspieszenie kątowe 3 : r = 3 r 3 3 = r r 3 3 = 3 dt =5 6 = 10t 3 45 36 = 5 6 t Znając te wartość policzymy już z łatwością potrzebne wielkości: v M = 3 r 3 = 5 6 t 36=150t a Mt = dv M dt = 3r 3 = 5 6 36=150 a Mn = v M = r 3 r 3 = 150t 3 36 =65t a= a Mt a Mn
. K 7 Określanie prędkości i przyspiesznia w ruchu postępowym ciała sztywnego K7 5 Znaleźć dla zadanego położenia mechanizmu prędkości i przyspieszenia punktów B i C. Dane: OA = 5 [cm] AC = 0 [cm] OA = 1 [s 1 ] OA = 1 [s 1 ] = 30 Szukane: v C, v B, a C, a B Na początku liczymy prędkość liniową punktu A: v A = OA OA=5 [cm/s] Ponieważ chwilowy środek obrotu dla punktów A i B znajduje się w nieskończoności, więc prędkość AB wynosi 0. Dlatego: v A =v B =v C =5 [cm/s ] Licząc dalej, przyspieszenie punktu A jego składowe styczna i normalna:
a ta = OA OA=5[cm/s ] a na = OA OA=5 [cm/s ] a B = a A BA a tba = AB AB a nba = AB AB=0, AB =0 aby obliczyć wartość przyspieszenia bezwzględnego dokonujemy rzutowania na osie: x : a Bx = a na a tab cos 30 o y : a By =a ta a tba cos 60 o a Bx = OA OA AB ABcos 30 o a By = OA OA AB ABcos 60 o Podobnie liczymy wartości dla przyspieszenia dla punktu C: a C = a A CA a C = a na ta tac nac a tac = AB AC a nac = AB AC=0, bo AB =0 I podobnie, aby policzyć wartość przyspieszenia bezwzględnego dla punktu C, rzutujemy wektory na osie współrzędnych: a Cx = a na a tac cos 30 o a Cy =a ta a tac cos 60 o a Cx = OA OA AB AC cos 30 o a Cy = ta OA AB AC cos 60 o a C = a Cx a Cy 3. K 11 Ruch złożony. Określanie prędkości bezwzględnej i przyspeszenia bezwzlędnego w ruchu postępowym unoszenia K11 5 Mając zadane równania ruchu względnego punktu M i ruchu postępowego unoszenia ciała D dla czasu t=t 1 określić prędkość bezwzględną i przyspieszenie bezwzględne punktu M. Dane: x e =4t +7t [cm] Szukane: a M
OM = s r = 5/3πt 3 [cm] t 1 = [s] R = 40 [cm] v M Ruchem względnym jest ruch punktu po obwodzie ćwierćkola, ruchem unoszenia ruch całego wózka. Ruch bezwzględny to ruch punktu M względem punktu 0 1. Prędkością względną będzie pochodna z drogi w ruchu względnym czyli pochodna po czasie z odcinka s r. v w = ds r dt t3 = 5 ' =5 t 3 v w t= =0 [cm/s] Prędkością unoszenia będzie miała tylko jedną składową wynikającą z ruchu postępowego x e v u =v 0 = dx e =48t 7 dt v 0 t = =96 7=103 Położenie wektora prędkości względnej względem układu nieruchomego określa kąt α. W danej chwili czasu t=t 1 wartość kąta α wynosi: s r = 5 3 t3 = R dla t =[s ] R= 40 3 40 = 40 3 = 3 =60o Wartość bezwzględną prędkości otrzymamy po zrzutowaniu na osie wektorów prędkości v 0 i v w.
v x = v 0 v w cos 60 o v y = v w sin 60 o v x = 103 10 v y = 0 3 = 10 3 v= v x v y Wartości przyspieszeń wynoszą odpowiednio: a wt = dv w s r dt =d =10 t dt a wt t= =0 a wn = v w R = 5 t 4 R a wn t= =10 a 0 = dv 0 dt =48 Po zrzutowaniu na osie, przyspieszenie bezwzględne wynosi: a x = a 0 a wt cos 60 o a wn sin 60 o a y = a wt sin 60 o a wn cos 60 o a= a x a y