Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
|
|
- Lech Wójtowicz
- 6 lat temu
- Przeglądów:
Transkrypt
1 Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw udowy Maszyn Zakład Mechaniki Teoria maszyn i podstawy automatyki semestr zimowy 2017/2018 dr inż. Sebastian Korczak
2 Wykład 1 cd pary kinematyczne, mechanizmy, ruchliwość, więzy bierne Licencja: tylko do edukacyjnego użytku studentów Politechniki Warszawskiej TMiP, Wykład 1, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 2
3 Wyznacznie ruchliwości przykład TMiP, Wykład 1, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 3
4 Wyznacznie ruchliwości przykład TMiP, Wykład 1, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 4
5 Wyznacznie ruchliwości przykład TMiP, Wykład 1, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 5
6 Wyznacznie ruchliwości przykład TMiP, Wykład 1, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 6
7 Wyznacznie ruchliwości przykład F = 0 Zablokowany? TMiP, Wykład 1, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 7
8 Wyznacznie ruchliwości przykład F = 0 zablokowany? Nie! To więzy bierne! TMiP, Wykład 1, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 8
9 Wyznacznie ruchliwości przykład TMiP, Wykład 1, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 9
10 Wyznacznie ruchliwości przykład F = TMiP, Wykład 1, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 10
11 Mechanizm przegubowy Kulisty mechanizm przegubowy (Przegub Cardana, przegub krzyżakowy, sprzęgło wyhylne, universal joint, Hooke's joint, Hardy Spicer) TMiP, Wykład 1, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 11
12 Mechanizm przegubowy Kulisty mechanizm przegubowy (Przegub Cardana, przegub krzyżakowy, sprzęgło wyhylne, universal joint, Hooke's joint, Hardy Spicer) ω 2 = ω 1 cosβ, ω 1 sin 2 βcos 2 1 = d γ 1 γ 1 dt, ω 2 = d γ 2 dt TMiP, Wykład 1, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 12
13 Mechanizm przegubowy Przegub dwukrzyżakowy TMiP, Wykład 1, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 13
14 Przykłady do wykładu nr TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 14
15 Przykłady do wykładu nr 1 źródło: TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 15
16 Przykłady do wykładu nr TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 16
17 Przykłady do wykładu nr 1 Mechanizm maltański TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 17
18 Wykład 2 Podział strukturalny mechanizmów, metody wyznaczania prędkości i przyspieszeń mechanizmów płaskich. Licencja: tylko do edukacyjnego użytku studentów Politechniki Warszawskiej TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 18
19 Klasyfikacja łańcuchów kinematycznych Łańcuch kinematyczny prosty każdy człon łańcucha wchodzi w nie więcej niż dwie pary kinematyczne. Łańcuch kinematyczny złożony co najmniej jeden człon mechanizmu wchodzi w więcej niż dwie pary kinematyczne TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 19
20 Klasyfikacja łańcuchów kinematycznych Łańcuch kinematyczny prosty każdy człon łańcucha wchodzi w nie więcej niż dwie pary kinematyczne. Łańcuch kinematyczny złożony co najmniej jeden człon mechanizmu wchodzi w więcej niż dwie pary kinematyczne. Łańcuch kinematyczny otwarty istnieją człony wchodzące tylko w jedną parę kinematyczną. Łańcuch kinematyczny zamknięty żaden człon mechanizmu nie wchodzi w skład tylko jednej pary kinematycznej TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 20
21 Klasyfikacja łańcuchów kinematycznych Przykłady TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 21
22 Podział strukturalny mechanizmów Grupa strukturalna najprostszy łańcuch kinematyczny o ruchliwości zero powstały z podziału mechanizmu TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 22
23 Podział strukturalny mechanizmów Grupa strukturalna najprostszy łańcuch kinematyczny o ruchliwości zero powstały z podziału mechanizmu. Mechanizm płaski tylko z parami V klasy: F=3 n 2 p 5 = TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 23
24 Podział strukturalny mechanizmów Grupa strukturalna najprostszy łańcuch kinematyczny o ruchliwości zero powstały z podziału mechanizmu. Mechanizm płaski tylko z parami V klasy: F=3 n 2 p 5 =0 p 5 n = 3 2 = 6 4 = 9 6 = TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 24
25 Podział strukturalny mechanizmów Grupa strukturalna najprostszy łańcuch kinematyczny o ruchliwości zero powstały z podziału mechanizmu. Mechanizm płaski tylko z parami V klasy: F=3 n 2 p 5 =0 p 5 n = 3 2 = 6 4 = 9 6 =... II grupa strukturalna n=2 p 5 = TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 25
26 Podział strukturalny mechanizmów Grupa strukturalna najprostszy łańcuch kinematyczny o ruchliwości zero powstały z podziału mechanizmu. Mechanizm płaski tylko z parami V klasy: F=3 n 2 p 5 =0 p 5 n = 3 2 = 6 4 = 9 6 =... II grupa strukturalna III grupa strukturalna n=2 p 5 =3 n=4 p 5 = TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 26
27 Podział strukturalny mechanizmów Grupa strukturalna najprostszy łańcuch kinematyczny o ruchliwości zero powstały z podziału mechanizmu. Mechanizm płaski tylko z parami V klasy: F=3 n 2 p 5 =0 p 5 n = 3 2 = 6 4 = 9 6 =... II grupa strukturalna III grupa strukturalna IV grupa strukturalna n=2 p 5 =3 n=4 p 5 =6 n=6 p 5 = TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 27
28 Podział strukturalny mechanizmów I grupa strukturalna człon napędowy n=1 p 5 =1 + napęd napęd korbowy napęd liniowy napęd obrotowy TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 28
29 Podział strukturalny mechanizmów Przykład 1 C E D TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 29
30 Podział strukturalny mechanizmów Przykład 1 C E D I TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 30
31 Podział strukturalny mechanizmów Przykład 1 C D C I E TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 31
32 Podział strukturalny mechanizmów Przykład 1 C D C II I E TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 32
33 Podział strukturalny mechanizmów Przykład 1 C D C II I E TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 33
34 Podział strukturalny mechanizmów Przykład C II D C II I E Jest to mechanizm II klasy TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 34
35 Podział strukturalny mechanizmów Przykład TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 35
36 Podział strukturalny mechanizmów Przykład TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 36
37 Kinematyka mechanizmów naliza kinematyczna mechanizmu polega na wyznaczeniu prędkości i przyspieszeń wybranych członów mechanizmu w interesujących nas położeniach tego mechanizmu. Dana musi być budowa mechanizmu (geometria członów, rodzaje par kinematycznych) oraz sposób jego napędzania TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 37
38 Metody wyznaczania prędkości i przyspieszeń mechanizmów Metody wykreślne - metoda rzutów prędkości, - metoda chwilowego środka obrotu, - metoda chwilowego środka przyspieszeń, - metoda prędkości obróconych, - metoda rozkładu prędkości, - metoda rozkładu przyspieszeń, - metoda planu prędkości, - metoda planu przyspieszeń. Metoda analityczna TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 38
39 Metody wyznaczania prędkości i przyspieszeń mechanizmów Metody wykreślne Metoda analityczna zalety możliwość lepszego zrozumienia pracy mechanizmu, możliwość analizowania bardzo złożonych mechanizmów, brak konieczności użycia komputera. wynikiem są funkcje opisujące prędkości i przyspieszenia dla dowolnej konfiguracji mechanizmu, możliwość analizowania bardzo złożonych mechanizmów, ale z użyciem komputera. wady bardzo duża pracochłonność, konieczność powtarzania procedury rysowania dla wielu położeń mechanizmu, występowanie błędów rysunkowych. w przypadku skomplikowanych mechanizmów otrzymujemy trudne w rozwiązaniu układy równań, interpretacja wyników obliczeń może być trudna TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 39
40 Metoda rzutów prędkości Rzuty prędkości dwóch punktów bryły sztywnej na kierunek łączący te punkty są sobie równe. v v TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 40
41 Metoda rzutów prędkości Przykład zastosowania Dane: v i kierunek v Szukane: v v TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 41
42 Metoda rzutów prędkości Przykład zastosowania Dane: v i kierunek v Szukane: v v TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 42
43 Metoda rzutów prędkości Przykład zastosowania Dane: v i kierunek v Szukane: v v TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 43
44 Metoda rzutów prędkości Przykład zastosowania Dane: v i kierunek v Szukane: v v TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 44
45 Metoda rzutów prędkości Przykład zastosowania Dane: v i kierunek v Szukane: v v TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 45
46 Metoda rzutów prędkości Przykład zastosowania Dane: v i kierunek v Szukane: v v v TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 46
47 Metoda chwilowego środka obrotu Z chwilowego środka obrotu widać końce wektorów prędkości wszystkich punktów bryły sztywnej pod jednakowym kątem względem prostej łączącej te punkty ze środkiem obrotu. v v S TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 47
48 Metoda chwilowego środka obrotu Przykład zastosowania Dane: v i v Szukane: v C C v v TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 48
49 Metoda chwilowego środka obrotu Przykład zastosowania Dane: v i v Szukane: v C C v v S TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 49
50 Metoda chwilowego środka obrotu Przykład zastosowania Dane: v i v Szukane: v C C v v ω S ω= v S = v S TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 50
51 Metoda chwilowego środka obrotu Przykład zastosowania Dane: v i v Szukane: v C C v v ω S ω= v S = v S TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 51
52 Metoda chwilowego środka obrotu Przykład zastosowania Dane: v i v Szukane: v C v C v C =ω SC C v v ω S ω= v S = v S TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 52
53 Metoda chwilowego środka obrotu Przykład zastosowania 2 v v =ω C v C v C =ω C ω D v D v D =ω D TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 53
54 Metoda rozkładu prędkości Dowolny ruch płaski bryły sztywnej możemy przedstawić za pomocą sumy ruchu postępowego i obrotowego TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 54
55 Metoda rozkładu prędkości Dowolny ruch płaski bryły sztywnej możemy przedstawić za pomocą sumy ruchu postępowego i obrotowego. Przykład 1 = TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 55
56 Metoda rozkładu prędkości Dowolny ruch płaski bryły sztywnej możemy przedstawić za pomocą sumy ruchu postępowego i obrotowego. Przykład 2 = TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 56
57 Metoda rozkładu prędkości Dowolny ruch płaski bryły sztywnej możemy przedstawić za pomocą sumy ruchu postępowego i obrotowego. Przykład 2 = + Prędkość bezwzględna punktu v = v + v Prędkość ruchu postępowego całej bryły Prędkość ruchu obrotowego punktu względem punktu TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 57
58 Metoda rozkładu prędkości Dowolny ruch płaski bryły sztywnej możemy przedstawić za pomocą sumy ruchu postępowego i obrotowego. Przykład 2 = + ω Prędkość bezwzględna punktu v = v + v Prędkość ruchu postępowego całej bryły Prędkość ruchu obrotowego punktu względem punktu v = ω TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 58
59 Metoda planu prędkości Planem prędkości członu sztywnego nazywamy miejsce geometryczne końców wektorów prędkości bezwzględnych członu odłożonych z punktu zwanego biegunem planu prędkości. Plan prędkości członu jest do niego podobny pod względem konfiguracji punktów i obrócony o kąt 90 o zgodnie ze zwrotem chwilowej prędkości kątowej członu TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 59
60 Metoda planu prędkości Dane: geometria, v i v Przykład Szukane: v C C v v TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 60
61 Metoda planu prędkości Dane: geometria, v i v Przykład Szukane: v C C v v Rysunek w skali! np. Podziałka geometrii: 1cm 10cm Podziałka wektorów: 1cm 1m/s TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 61
62 Metoda planu prędkości Dane: geometria, v i v Przykład v Szukane: v C C O v v v v Rysunek w skali! np. Podziałka geometrii: 1cm 10cm Podziałka wektorów: 1cm 1m/s TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 62
63 Metoda planu prędkości Dane: geometria, v i v Przykład a v Szukane: v C C 90 o O v v v v Rysunek w skali! np. Podziałka geometrii: 1cm 10cm Podziałka wektorów: 1cm 1m/s b TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 63
64 Metoda planu prędkości Dane: geometria, v i v Przykład a v Szukane: v C C 90 o O v v v c v Rysunek w skali! np. Podziałka geometrii: 1cm 10cm Podziałka wektorów: 1cm 1m/s Inna podziałka geometrii! b TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 64
65 Metoda planu prędkości Dane: geometria, v i v Przykład a v Szukane: v C C 90 o O v v C v v c v Rysunek w skali! np. Podziałka geometrii: 1cm 10cm Podziałka wektorów: 1cm 1m/s Inna podziałka geometrii! b TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 65
66 Metoda planu prędkości Dane: geometria, prędkość kątowa członu napędowego Przykład TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 66
67 Prędkości w ruchu złożonym TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 67
68 Prędkości w ruchu złożonym TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 68
69 Prędkości w ruchu złożonym 1 2 v 2 = v 1 + v 2 1 Prędkość bezwzględna punktu 2 Prędkość unoszenia Prędkość względna TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 69
70 Prędkości w ruchu złożonym Dane: geometria, prędkość kątowa członu napędowego Przykład TMiP, Wykład 2, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 70
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw udowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2016/2017
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2017/2018
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2017/2018
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2016/2017
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2016/2017
PAiTM - zima 2014/2015
PAiTM - zima 204/205 Wyznaczanie przyspieszeń mechanizmu płaskiego metodą planu przyspieszeń (metoda wykreślna) Dane: geometria mechanizmu (wymiary elementów, ich położenie i orientacja) oraz stała prędkość
Z poprzedniego wykładu:
Z poprzedniego wykładu: Człon: Ciało stałe posiadające możliwość poruszania się względem innych członów Para kinematyczna: klasy I, II, III, IV i V (względem liczby stopni swobody) Niższe i wyższe pary
Podstawy analizy strukturalnej układów kinematycznych
Podstawy analizy strukturalnej układów kinematycznych Układem kinematycznym nazywamy dowolny zespół elementów składowych (członów) połączonych ze sobą w sposób umożliwiający ruch względny stworzony przez
Podstawy analizy strukturalnej układów kinematycznych
Podstawy analizy strukturalnej układów kinematycznych Układem kinematycznym nazywamy dowolny zespół elementów składowych (członów) połączonych ze sobą w sposób umożliwiający ruch względny stworzony przez
Podstawy analizy strukturalnej układów kinematycznych
Podstawy analizy strukturalnej układów kinematycznych Układem kinematycznym nazywamy dowolny zespół elementów składowych (członów) połączonych ze sobą w sposób umożliwiający ruch względny stworzony przez
Ogłoszenie. Egzaminy z TEORII MASZYN I MECHANIZMÓW dla grup 12A1, 12A2, 12A3 odbędą się w sali A3: I termin 1 lutego 2017 r. godz
Laboratorium Badań Technoklimatycznych i Maszyn Roboczych Ogłoszenie Egzaminy z TEORII MASZYN I MECHANIZMÓW dla grup 12A1, 12A2, 12A3 odbędą się w sali A3: I termin 1 lutego 2017 r. godz. 9 00 12 00. II
Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)
Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek
TEORIA MASZYN MECHANIZMÓW ĆWICZENIA LABORATORYJNE Badanie struktury modeli mechanizmów w laboratorium.
MiBM. Teoria maszyn i mechanizmów. Ćwiczenie laboratoryjne nr 1 str. 1 MiBM Akademia Górniczo-Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Mechaniki i Wibroakustyki TEORIA MASZYN MECHANIZMÓW
1. STRUKTURA MECHANIZMÓW 1.1. POJĘCIA PODSTAWOWE
1. STRUKTURA MECHANIZMÓW 1.1. POJĘCIA PODSTAWOWE 1.1.1. Człon mechanizmu Człon mechanizmu to element konstrukcyjny o dowolnym kształcie, ruchomy bądź nieruchomy, zwany wtedy podstawą, niepodzielny w aspekcie
Teoria maszyn mechanizmów
Adam Morecki - Jan Oderfel Teoria maszyn mechanizmów Państwowe Wydawnictwo Naukowe SPIS RZECZY Przedmowa 9 Część pierwsza. MECHANIKA MASZYN I MECHANIZMÓW Z CZŁONAMI SZTYWNYMI 13 1. Pojęcia wstępne do teorii
Spis treści. Wstęp Część I STATYKA
Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.
MECHANIKA OGÓLNA (II)
MECHNIK GÓLN (II) Semestr: II (Mechanika I), III (Mechanika II), rok akad. 2013/2014 Liczba godzin: sem. II *) - wykład 30 godz., ćwiczenia 30 godz. sem. III *) - wykład 30 godz., ćwiczenia 30 godz., ale
TEORIA MECHANIZMÓW I MANIPULATORÓW
TEORIA MECHANIZMÓW I MANIPULATORÓW TEORIA MECHANIZMÓW I MANIPULATORÓW Dr inż. Artur Handke Katedra Inżynierii Biomedycznej, Mechatroniki i Teorii Mechanizmów Wydział Mechaniczny ul. Łukasiewicza 7/9, 50-371
Z poprzedniego wykładu:
Z orzedniego wykładu: Człon: Ciało stałe osiadające możliwość oruszania się względem innych członów Para kinematyczna: klasy I, II, III, IV i V (względem liczby stoni swobody) Niższe i wyższe ary kinematyczne
Teoria maszyn i podstawy automatyki ćwiczenia projektowe Wydział Samochodów i Maszyn Roboczych
grupa 1 (poniedziałek, 8-10, s. 2.19, mgr inż. M. Bieliński) grupa 2 (poniedziałek, 8-10, s. 2.19, mgr inż. R. Nowak) grupa 7 (poniedziałek, 17-19, s. 2.19, mgr inż. M. Bieliński) grupa 8 (poniedziałek,
MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie
AiR. Podstawy modelowania i syntezy mechanizmów. Ćwiczenie laboratoryjne nr 2 str. 1. PMiSM-2017
AiR. Podstawy modelowania i syntezy mechanizmów. Ćwiczenie laboratoryjne nr 2 str. Akademia Górniczo-Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Mechaniki i Wibroakustyki PMiSM-207 PODSTAWY
Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki dr inż. Marek Wojtyra Instytut Techniki Lotniczej
Rozszerzony konspekt preskryptu do przedmiotu Teoria Maszyn i Mechanizmów
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Rozszerzony konspekt preskryptu do przedmiotu Teoria Maszyn i Mechanizmów Prof. dr hab. inż. Janusz Frączek Instytut
Mechanika Teoretyczna Kinematyka
POLITECHNIKA RZESZOWSKA Wydział Budownictwa i Inżynierii Środowiska Katedra Mechaniki Konstrukcji Materiały pomocnicze do zajęć z przedmiotu: Mechanika Teoretyczna Kinematyka dr inż. Teresa Filip tfilip@prz.edu.pl
ANALIZA KINEMATYCZNA PALCÓW RĘKI
MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 40, s. 111-116, Gliwice 2010 ANALIZA KINEMATYCZNA PALCÓW RĘKI ANTONI JOHN, AGNIESZKA MUSIOLIK Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki, Politechnika
MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO Prowadzący: dr Krzysztof Polko WSTĘP z r C C(x C,y C,z C ) r C -r B B(x B,y B,z B ) r C -r A r B r B -r A A(x A,y A,z A ) Ciało sztywne
KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury
KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )
TEORIA MECHANIZMÓW I MANIPULATORÓW
TEORIA MECHANIZMÓW I MANIPULATORÓW TEORIA MECHANIZMÓW I MANIPULATORÓW Dr inż. Artur Handke Katedra Inżynierii Biomedycznej, Mechatroniki i Teorii Mechanizmów Wydział Mechaniczny ul. Łukasiewicza 7/9, 50-371
KINEMATYKA POŁĄCZEŃ STAWOWYCH
KINEMATYKA POŁĄCZEŃ STAWOWYCH RUCHOMOŚĆ STAWÓW Ruchomość określa zakres ruchów w stawach, jedną z funkcjonalnych właściwości połączeń stawowych. WyróŜniamy ruchomość: czynną zakres ruchu jaki uzyskamy
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy Rodzaj zajęć: Wykład TEORIA MASZYN I MECHANIZMÓW Theory of machines and mechanisms Poziom przedmiotu: I stopnia Liczba godzin/tydzień:
MECHANIKA 2. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Prowadzący: dr Krzysztof Polko PLAN WYKŁADÓW 1. Podstawy kinematyki 2. Ruch postępowy i obrotowy bryły 3. Ruch płaski bryły 4. Ruch złożony i ruch względny 5. Ruch kulisty i ruch ogólny bryły
Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka
Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka SPIS TREŚCI Przedmowa... 7 1. PODSTAWY MECHANIKI... 11 1.1. Pojęcia podstawowe... 11 1.2. Zasada d Alemberta... 18 1.3. Zasada prac
Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści
Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, 2010 Spis treści Część I. STATYKA 1. Prawa Newtona. Zasady statyki i reakcje więzów 11 1.1. Prawa Newtona 11 1.2. Jednostki masy i
Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym
Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2017/2018
Teoria maszyn i mechanizmów Kod przedmiotu
Teoria maszyn i mechanizmów - opis przedmiotu Informacje ogólne Nazwa przedmiotu Teoria maszyn i mechanizmów Kod przedmiotu 06.1-WM-MiBM-P-54_15gen Wydział Kierunek Wydział Mechaniczny Mechanika i budowa
Mechanika ogólna I Engineering Mechanics
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 206/207
1. K 5 Ruch postępowy i obrotowy ciała sztywnego
1. K 5 Ruch postępowy i obrotowy ciała sztywnego Zadanie 1 Koło napędowe o promieniu r 1 =1m przekładni ciernej wprawia w ruch koło o promieniu r =0,5m z przyspieszeniem 1 =0, t. Po jakim czasie prędkość
Egzamin 1 Strona 1. Egzamin - AR egz Zad 1. Rozwiązanie: Zad. 2. Rozwiązanie: Koła są takie same, więc prędkości kątowe też są takie same
Egzamin 1 Strona 1 Egzamin - AR egz1 2005-06 Zad 1. Rozwiązanie: Zad. 2 Rozwiązanie: Koła są takie same, więc prędkości kątowe też są takie same Zad.3 Rozwiązanie: Zad.4 Rozwiązanie: Egzamin 1 Strona 2
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy na specjalności Mechatronika Rodzaj zajęć: Wykład, Laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Poznanie
I. KARTA PRZEDMIOTU CEL PRZEDMIOTU
I. KARTA PRZEDMIOTU. Nazwa przedmiotu: MECHANIKA TECHNICZNA 2. Kod przedmiotu: Kt 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Mechatronika 5. Specjalność: Eksploatacja Systemów
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ eoria maszyn i podstawy automatyki semestr zimowy 2016/2017
Mechanika Techniczna I Engineering Mechanics I. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
Mechanika Ogólna General Mechanics. Inżynieria Bezpieczeństwa I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
ZARYS TEORII MECHANIZMÓW I MASZYN
cssno JAN ODERFELD ZARYS TEORII MECHANIZMÓW I MASZYN ŁÓDŹ - 1959 - WARSZAWA PAŃSTWOWE WYDAWNICTWO NAUKOWE Spia- rzeczy SPIS' RZECZY Pr a edmowa... 4... *.... 3 1. Wstęp '. 5 2. Struktura mechanizmów-k
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia Mechanika teoretyczna Informacje ogólne 2 Nazwa jednostki prowadzącej moduł Państwowa Szkoła Wyższa im. Papieża Jana Pawła II,Katedra Nauk Technicznych,
WYKŁAD 6 KINEMATYKA PRZEPŁYWÓW CZĘŚĆ 2 1/11
WYKŁAD 6 KINEMATYKA PRZEPŁYWÓW CZĘŚĆ 1/11 DEFORMACJA OŚRODKA CIĄGŁEGO Rozważmy dwa elementy płynu położone w pewnej chwili w bliskich sobie punktach A i B. Jak zmienia się ich względne położenie w krótkim
Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia
Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia Przedmiot: Mechanika Rodzaj przedmiotu: Obowiązkowy Kod przedmiotu: IM 1 S 0 2 24-0_1 Rok: I Semestr: 2 Forma studiów:
VII.1 Pojęcia podstawowe.
II.1 Pojęcia podstawowe. Jan Królikowski Fizyka IBC 1 Model matematyczny ciała sztywnego Zbiór punktów materialnych takich, że r r = const; i, j= 1,... N i j Ciało sztywne nie ulega odkształceniom w wyniku
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 207/208
MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 207/208
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
Elementy dynamiki mechanizmów
Elementy dynamiki mechanizmów Dynamika pojęcia podstawowe Dynamika dział mechaniki zajmujący się ruchem ciał materialnych pod działaniem sił. Głównym zadaniem dynamiki jest opis ruchu ciał pod działaniem
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2017/2018
Wzornictwo Przemysłowe I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
Karta w przygotowaniu KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Mechanika ogólna Nazwa modułu w języku angielskim Engineering Mechanics Obowiązuje od roku akademickiego 2014/2015 A. USYTUOWANIE
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
I. KARTA PRZEDMIOTU CEL PRZEDMIOTU
I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: ROBOTYKA1 2. Kod przedmiotu: Ro1 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Automatyka i Robotyka 5. Specjalność: Elektroautomatyka Okrętowa
Mechanika teoretyczna
Wypadkowa -metoda analityczna Mechanika teoretyczna Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Rodzaje ustrojów prętowych. Składowe poszczególnych sił układu: Składowe
UKŁADY WIELOCZŁONOWE Z WIĘZAMI JEDNOSTRONNYMI W ZASTOSOWANIU DO MODELOWANIA ZŁOŻONYCH UKŁADÓW MECHANICZNYCH
POLITECHNIKA GDAŃSKA KRZYSZTOF LIPIŃSKI UKŁADY WIELOCZŁONOWE Z WIĘZAMI JEDNOSTRONNYMI W ZASTOSOWANIU DO MODELOWANIA ZŁOŻONYCH UKŁADÓW MECHANICZNYCH GDAŃSK 2012 PRZEWODNICZĄCY KOMITETU REDAKCYJNEGO WYDAWNICTWA
PODSTAWY RACHUNKU WEKTOROWEGO
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Skalar Definicja Skalar wielkość fizyczna (lub geometryczna)
KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI. Laboratorium Mechaniki technicznej
KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI Laboratorium Mechaniki technicznej Ćwiczenie 1 Badanie kinematyki czworoboku przegubowego metodą analitycznonumeryczną. 1 Cel ćwiczenia Celem ćwiczenia jest
MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu
MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu Prowadzący: dr Krzysztof Polko Dynamiczne równania ruchu Druga zasada dynamiki zapisana w postaci: Jest dynamicznym wektorowym równaniem ruchu. Dynamiczne
Zadania kinematyki mechanizmów
Zadania kinematyki mechanizmów struktura mechanizmu wymiary ogniw ruch ogniw napędowych związki kinematyczne położeń, prędkości, przyspieszeń ogniw zadanie proste kinematyki zadanie odwrotne kinematyki
Podstawy fizyki wykład 4
Podstawy fizyki wykład 4 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/
Elementy dynamiki mechanizmów
Elementy dynamiki mechanizmów Dynamika pojęcia podstawowe Dynamika dział mechaniki zajmujący się ruchem ciał materialnych pod działaniem sił. Głównym zadaniem dynamiki jest opis ruchu ciał pod działaniem
Podstawy fizyki wykład 4
Podstawy fizyki wykład 4 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada
KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI. Laboratorium Mechaniki technicznej
KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI Laboratorium Mechaniki technicznej Ćwiczenie 1 Badanie kinematyki czworoboku przegubowego metodą analitycznonumeryczną. 1 Cel ćwiczenia Celem ćwiczenia jest
I. KARTA PRZEDMIOTU CEL PRZEDMIOTU
I. KARTA PRZEDMIOTU. Nazwa przedmiotu: PODSTAWY ROBOTYKI 2. Kod przedmiotu: Sr 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Automatyka i Robotyka 5. Specjalność: Elektroautomatyka
Wykaz oznaczeń Przedmowa... 9
Spis treści Wykaz oznaczeń... 6 Przedmowa... 9 1 WPROWADZENIE... 11 1.1 Mechanika newtonowska... 14 1.2 Mechanika lagranżowska... 19 1.3 Mechanika hamiltonowska... 20 2 WIĘZY I ICH KLASYFIKACJA... 23 2.1
Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1. MECHANIKA OGÓLNA - lista zadań 2016/17
Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1 MECHANIKA OGÓLNA - lista zadań 2016/17 Część 1 analiza kinematyczna układów płaskich Przeprowadzić analizę kinematyczną układu. Odpowiednią
KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Mechanika. 2. KIERUNEK: Mechanika i Budowa Maszyn. 3. POZIOM STUDIÓW: Studia pierwszego stopnia
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Mechanika. KIERUNEK: Mechanika i Budowa Maszyn 3. POZIOM STUDIÓW: Studia pierwszego stopnia 4. ROK/ SEMESTR STUDIÓW: rok studiów I/ semestr 5. LICZBA PUNKTÓW ECTS:
Z-ETI-1027 Mechanika techniczna II Technical mechanics II. Stacjonarne. Katedra Inżynierii Produkcji Dr inż. Stanisław Wójcik
Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego Z-ETI-1027 Mechanika
Mechanika. Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Wyznaczanie reakcji.
Mechanika Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Wyznaczanie reakcji. Przyłożenie układu zerowego (układ sił równoważących się, np. dwie siły o takiej samej mierze,
Podstawowe informacje o module
Podstawowe informacje o module Nazwa jednostki prowadzącej studia: Wydział Budownictwa i Inżynierii środowiska Nazwa kierunku studiów: Budownictwo Obszar : nauki techniczne Profil : ogólnoakademicki Poziom
I. KARTA PRZEDMIOTU CEL PRZEDMIOTU
I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: MECHANIKA TECHNICZNA. Kod przedmiotu: Kt 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Mechanika i budowa maszyn 5. Specjalność: Eksploatacja
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to
Przenośnik zgrzebłowy - obliczenia
Przenośnik zgrzebłowy - obliczenia Katedra Maszyn Górniczych, Przeróbczych i Transportowych Przenośnik zgrzebłowy - obliczenia Dr inż. Piotr Kulinowski pk@imir.agh.edu.pl tel. (67) 0 7 B- parter p.6 konsultacje:
KARTA PRZEDMIOTU 1/6. Wydział Mechaniczny PWR. Nazwa w języku polskim: Mechanika I. Nazwa w języku angielskim: Mechanics I
Wydział Mechaniczny PWR KARTA PRZEDMIOTU Nazwa w języku polskim: Mechanika I Nazwa w języku angielskim: Mechanics I Kierunek studiów (jeśli dotyczy): Mechanika i Budowa Maszyn Stopień studiów i forma:
Karta (sylabus) przedmiotu Kierunek studiów Mechatronika Studia pierwszego stopnia. Mechanika Techniczna Rodzaj przedmiotu: Podstawowy Kod przedmiotu:
Karta (sylabus) przedmiotu Kierunek studiów Mechatronika Studia pierwszego stopnia Przedmiot: Mechanika Techniczna Rodzaj przedmiotu: Podstawowy Kod przedmiotu: MT 1 S 0 2 14-0_1 Rok: I Semestr: II Forma
Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.
Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny
Zadania kinematyki mechanizmów
Zadania kinematyki mechanizmów struktura mechanizmu wymiary ogniw ruch ogniw napędowych związki kinematyczne położeń, prędkości, przyspieszeń ogniw zadanie proste kinematyki zadanie odwrotne kinematyki
KARTA PRZEDMIOTU WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI CELE PRZEDMIOTU
Wydział Mechaniczny PWR KARTA PRZEDMIOTU Nazwa w języku polskim: Mechanika I Nazwa w języku angielskim: Mechanics I Kierunek studiów (jeśli dotyczy): Mechanika i Budowa Maszyn Stopień studiów i forma:
Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2015/2016. Forma studiów: Niestacjonarne Kod kierunku: 06.
Państwowa Wyższa Szko la Zawodowa w Nowym Sa czu Karta przedmiotu Instytut Techniczny obowiązuje studentów rozpoczynających studia w roku akademickim 2015/2016 Kierunek studiów: Zarządzanie i inżynieria
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: ENERGETYKA Rodzaj przedmiotu: Kierunkowy ogólny Rodzaj zajęć: Wykład, ćwiczenia MECHANIKA Mechanics Forma studiów: studia stacjonarne Poziom kwalifikacji: I stopnia Liczba godzin/tydzień:
Karta (sylabus) modułu/przedmiotu Mechanika i Budowa Maszyn Studia drugiego stopnia
Karta (sylabus) modułu/przedmiotu Mechanika i Budowa Maszyn Studia drugiego stopnia Przedmiot: Mechanika analityczna Rodzaj przedmiotu: Obowiązkowy Kod przedmiotu: MBM 2 S 0 1 02-0_1 Rok: 1 Semestr: 1
Roboty przemysłowe. Wprowadzenie
Roboty przemysłowe Wprowadzenie Pojęcia podstawowe Manipulator jest to mechanizm cybernetyczny przeznaczony do realizacji niektórych funkcji kończyny górnej człowieka. Należy wyróżnić dwa rodzaje funkcji
Struktura manipulatorów
Temat: Struktura manipulatorów Warianty struktury manipulatorów otrzymamy tworząc łańcuch kinematyczny o kolejnych osiach par kinematycznych usytuowanych pod kątem prostym. W ten sposób w zależności od
Symulacje komputerowe
Fizyka w modelowaniu i symulacjach komputerowych Jacek Matulewski (e-mail: jacek@fizyka.umk.pl) http://www.fizyka.umk.pl/~jacek/dydaktyka/modsym/ Symulacje komputerowe Dynamika bryły sztywnej Wersja: 8
Spis treści. Przedmowa... 7
Spis treści SPIS TREŚCI Przedmowa... 7 1. PODSTAWY MECHANIKI... 11 1.1. Pojęcia podstawowe... 11 1.2. Zasada d Alemberta... 18 1.3. Zasada prac przygotowanych... 22 1.4. Przyrost funkcji i wariacja funkcji...
DRGANIA MECHANICZNE. Poniższe materiały tylko dla studentów uczęszczających na zajęcia. Zakaz rozpowszechniania i powielania bez zgody autora.
DRGANIA MECHANICZNE materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż. Sebastian Korczak część 3 drgania wymuszone siłą harmoniczną drgania
Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)
Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka ruchu
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: WYBRANE ZAGADNIENIA MECHANIKI ANALITYCZNEJ, DRGAŃ I STATECZNOŚCI KONSTRUKCJI MECHANICZNYCH (cz. I MECHANIKA ANALITYCZNA) Kierunki: Budowa i Eksploatacja Maszyn Rodzaj przedmiotu: obieralny
KARTA PRZEDMIOTU. Odniesienie do efektów dla kierunku studiów. Forma prowadzenia zajęć
(pieczęć wydziału) KARTA PRZEDMIOTU 1. Nazwa przedmiotu: MECHANIKA 2. Kod przedmiotu: 3. Karta przedmiotu ważna od roku akademickiego: 2012/2013 4. Forma kształcenia: studia pierwszego stopnia 5. Forma
Modelowanie i Wizualizowanie 3W grafiki. Łańcuchy kinematyczne
Modelowanie i Wizualizowanie 3W grafiki. Łańcuchy kinematyczne Aleksander Denisiuk Uniwersytet Warmińsko-Mazurski Olsztyn, ul. Słoneczna 54 denisjuk@matman.uwm.edu.pl 1 / 31 Łańcuchy kinematyczne Najnowsza
Napęd pojęcia podstawowe
Napęd pojęcia podstawowe Równanie ruchu obrotowego (bryły sztywnej) suma momentów działających na bryłę - prędkość kątowa J moment bezwładności d dt ( J ) d dt J d dt dj dt J d dt dj d Równanie ruchu obrotowego