MECHANIKA 2 Wykład 3 Podstawy i zasady dynamiki

Wielkość: px
Rozpocząć pokaz od strony:

Download "MECHANIKA 2 Wykład 3 Podstawy i zasady dynamiki"

Transkrypt

1 MECHANIKA 2 Wykład 3 Podstawy i zasady dynamiki Prowadzący: dr Krzysztof Polko

2 Wprowadzenie DYNAMIKA jest działem mechaniki opisującym ruch układu materialnego pod wpływem sił działających na ten układ. Oparta jest na zasadach sformułowanych przez Newtona w traktacie: Philosophiae naturalia principia mathematica (1687).

3 Zasady dynamiki klasycznej Newtona Zasada pierwsza Punkt materialny, na który nie działają żadne siły lub działają siły wzajemnie równoważące się, pozostaje względem układu odniesienia w spoczynku lub ruchu jednostajnego prostoliniowego.

4 Zasady dynamiki klasycznej Newtona Zasada druga Zmiana ilości ruchu (pędu) jest proporcjonalna względem siły działającej i ma kierunek prostej, wzdłuż której ta siła działa. Dla m = const

5 Zasady dynamiki klasycznej Newtona Zasada trzecia (akcji i reakcji) Każdemu działaniu towarzyszy równe, lecz przeciwnie zwrócone oddziaływanie.

6 Zasady dynamiki klasycznej Newtona Zasada czwarta (prawo superpozycji) Jeśli na punkt materialny o masie m działa jednocześnie kilka sił, to punkt uzyskuje przyspieszenie równe sumie geometrycznej przyspieszeń, jakie uzyskałby w wyniku niezależnego działania każdej z sił.

7 Zasady dynamiki klasycznej Newtona Zasada piąta (prawo grawitacji) Każde dwa punkty materialne przyciągają się wzajemnie z siłą wprost proporcjonalną do iloczynu mas (m 1, m 2 ) i odwrotnie proporcjonalnie do kwadratu odległości r między nimi. Kierunek siły leży na prostej łączącej te punkty. G - stała grawitacji

8 Siła bezwładności Rozpędzamy wózek z przyspieszeniem. Musimy więc ρ działać siłą równą ρ F = ma,. Zgodnie z zasadą akcji i reakcji na nasze ręce działa taka sama siła pochodząca od wózka, lecz zwrócona przeciwnie. Jest to siła bezwładności ( d Alemberta ) a ρ D ρ =

9 Siła bezwładności Ciężarek o masie m obracany na nici wokół punktu 0 poddany jest działaniu siły skierowanej dośrodka 0. ρ F = ρ ma n Nić jest rozciągana siłą bezwładności nazywamy ją czasem siłą odśrodkową D ρ =

10 Siła bezwładności Niech po dowolnym torze porusza się punkt materialny o masie m. Na punkt ten działa siła F ρ nadając, mu przyspieszenia całkowitego a ρ. Siłę F oraz przyspieszenie a rozłożymy na kierunek styczny i normalny do toru, otrzymamy: siłę styczną do toru F ρ t = siłę normalną do toru F ρ n =

11 Siła bezwładności ρ ρ Poruszającemu się punktowi przypiszemy siłę bezwładności D = ma, równą co do modułu sile F ρ, lecz zwróconą przeciwnie. Siłę tę możemy również rozłożyć na kierunek styczny i normalny do toru. Styczna siła bezwładności D ρ t = Normalna siła bezwładności D ρ n =

12 Siła bezwładności Siła bezwładności ma wartość równą iloczynowi masy przez przyspieszenie ruchu. Jej kierunek jest taki jak kierunek przyspieszenia ruchu, zaś zwrot jest zawsze przeciwny niż zwrot przyspieszenia. Siła bezwładności jest równa zeru wtedy, gdy w ruchu nie występuje przyspieszenie. W szczególności, styczna siła bezwładności nie występuje w ruchu jednostajnym punktu, normalna siła bezwładności jest równa zeru w ruchu prostoliniowym.

13 Zasada D Alemberta W ruchu swobodnego punktu materialnego układ sił czynnych równoważy się z siłą bezwładności.

14 Zasada D Alemberta W ruchu punktu nieswobodnego siły czynne i reakcje więzów równoważą się z siłą bezwładności. Tak więc wprowadzając do zagadnień dynamiki siłę bezwładności sprowadzamy je do zagadnień statyki. Metodę tę nazywamy metodą kinetostatyki.

15 Przykład Rozpatrzmy ruch masy m zawieszonej na końcu liny rozwijającej się z bębna. Załóżmy,że przyspieszenie opadającej masy wynosi. a ρ Na rozważaną masę działa siła ciężkości, siła napięcia w linie S ρ i siła bezwładności D ρ, zwróconą przeciw przyspieszeniu. Warunek równowagi: G ρ

16 Przykład Po podstawieniu stąd Rys. 8 W przypadku swobodnego spadku masy g ρ = a ρ, siła napięcia liny będzie równa zeru. Przy jednostajnym ruchu masy siła w linie będzie równa sile ciężkości.

17 Pęd punktu materialnego Punkt materialny o masie m porusza się pod wpływem ρ układu sił F F ρ ρ,,..., F 1 2 n Drugą zasadę Newtona zapiszemy w postaci: Wektor v nazywany jest pędem lub ilością ruchu punktu materialnego. m ρ p ρ

18 Pęd punktu materialnego Po wprowadzeniu pojęcia pędu, drugą zasadę Newtona możemy przedstawić w postaci Pochodna pędu punktu materialnego względem czasu jest równa sumie sił działających na dany punkt.

19 Zasada zachowania pędu punktu materialnego W przypadku gdy na punkt materialny nie działają siły lub siły działające równoważą się, pęd punktu materialnego jest stały.

20 Zasada pędu masy i impulsu siły Drugą zasadę Newtona przepiszemy w postaci Po oznaczeniu Elementarny impuls siły otrzymamy Impuls elementarny siły działającej na punkt materialny jest równy przyrostowi elementarnego pędu tego punktu.

21 Zasada pędu masy i impulsu siły Całkując obustronnie poprzednie równanie otrzymamy t2 ρ Π= F ρ dt t 1 - jest impulsem całkowity siły F w przedziale czasu t 2 -t 1, otrzymamy Przyrost pędu masy poruszającego się punktu jest równy impulsowi całkowitemu sił działających.

22 PĘD MASY. IMPULS SIŁY Stwierdzamy więc, że dla zmiany pędu masy niezbędny jest określony czas działania siły. Siły działające nieskończenie krótko lub, praktycznie biorąc, mające bardzo krótki czas działania nazywamy siłami chwilowymi (działanie nogi gracza na piłkę, siły przy uderzeniu kul bilardowych) w odróżnieniu od sił ciągłych, do której zaliczamy np. siłę ciężkości. Z równania tego wynika, że zmiana wektora pędu będzie tym intensywniejsza, im większa będzie siła F ρ oraz im mniejsza będzie masa m i pęd początkowy p ρ 1.

23 KRĘT PUNKTU MATERIALNEGO Po dowolnym torze porusza się punkt o masie m, z prędkością v ρ. Obierzmy dowolny punkt 0 jako początek układu stałego x, y, z i połączmy go z poruszającym się punktem promieniem-wektorem. r ρ Krętem poruszającego się punktu materialnego względem obranego bieguna 0 nazywamy wektor równy iloczynowi wektorowemu promienia, przez pęd poruszającego się punktu. Kręt jest więc momentem pędu względem obranego bieguna.

24 Pochodna krętu względem czasu Po zróżniczkujemy wektora krętu względem czasu otrzymamy czyli

25 Pochodna krętu względem czasu v ρ mv ρ = 0 Iloczyn wektorowy wektorów ρ ρrównoległych, natomiast iloczyn r ma przedstawia moment sił działających na poruszający się punkt materialny względem obranego bieguna 0. Tak więc Pochodna wektora krętu względem czasu jest równa momentowi głównemu wszystkich sił działających na dany punkt materialny.

26 Zasada zachowania krętu Jeżeli moment sił działających na poruszający się punkt materialny jest względem jakiegoś bieguna jest równy zeru, to kręt poruszającego się punktu względem tego bieguna jest wektorem stałym.

27 DYNAMICZNE RÓWNANIA RUCHU PUNKTU MATERIALNEGO Z drugiej zasady dynamiki Po podstawieniu oraz Otrzymamy dynamiczne równaniami ruchu

28 DYNAMICZNE RÓWNANIA RUCHU PUNKTU MATERIALNEGO Przy analizie ruchu punktu stosuje się w mechanice oprócz układu kartezjańskiego również inne układy ortogonalne. Równania ruchu w tych układach otrzymamy uwzględniając znane z kinematyki wzory przedstawiające przyspieszenia w tych układach. Tak na przykład w biegunowym układzie współrzędnych dynamiczne równania ruchu maja postać: W układzie współrzędnych walcowych, równania te będą wyglądały następująco:,

29 DYNAMICZNE RÓWNANIA RUCHU PUNKTU MATERIALNEGO W kinematyce podaliśmy składowe przyspieszenia w naturalnym układzie współrzędnych. Opierając się na tych składowych napiszemy dynamiczne równania ruchu w naturalnym układzie współrzędnych Wreszcie podamy jeszcze dynamiczne równania ruchu we współrzędnych kulistych:

30 DYNAMICZNE RÓWNANIA RUCHU PUNKTU MATERIALNEGO Rozwiązanie równań dynamicznych sprowadza się do dwóch zagadnień zwanych niekiedy dwoma zadaniami dynamiki. 1. Zadanie pierwsze polega na tym, że mamy parametryczne równania toru, po którym porusza się punkt materialny, czyli mamy określone równania x = x(t), y = y(t), z = z(t) Chcemy natomiast wyznaczyć siłę, pod której wpływem porusza się punkt materialny Zadanie to rozwiązuje się w prosty sposób. Różniczkując dwukrotnie względem czasu równania parametryczne, określamy składowe przyspieszenia, podstawiając je do dynamicznych równań ruchu znajdujemy szukane składowe siły działającej, a więc i wektor siły. F ρ

31 DYNAMICZNE RÓWNANIA RUCHU PUNKTU MATERIALNEGO 2. Bardziej złożone jest drugie zadanie dynamiki. Polega ono na wyznaczeniu (przy danej masie i sile) przyspieszenia, prędkości i toru poruszającego się punktu. W zadaniu tym musimy mieć określoną siłę działającą. Możemy tu rozróżnić następujące przypadki. a) Siła jest wektorem stałym, np. siła ciężkości, tarcie, b) Siła jest funkcją czasu, np. siła odśrodkowa wahadła, c) Siła zależy od położenia, np. siła sprężystości, siła ciężkości przy uwzględnieniu dużego obszaru, d) Siła zależy od prędkości poruszającego się punktu, np. opór powietrza. W najogólniejszym przypadku równania ruchu w współrzędnych kartezjańskich b miały postać

32 Całka ogólna tych równań (o ile istnieje) ma postać trzech równań zawierających sześć stałych całkowania. Różniczkując te równania i uwzględniając warunki początkowe dla t=0, x o x = o x x & &=, y o y = o y y & &= z o z = o z z & &=, określimy parametryczne równania toru ),,,,,, ( 1 t z y x z y x f x o o o o o o & & & = ),,,,,, ( 2 t z y x z y x f y o o o o o o & & & = ),,,,,, ( 3 t z y x z y x f z o o o o o o & & & = Ten układ równań określa ruch punktu, na który działają znane siły i który w chwili początkowej zajmował określone położenie i miał określoną prędkość początkową. DYNAMICZNE RÓWNANIA RUCHU PUNKTU MATERIALNEGO

33 CAŁKOWANIE RÓWNAŃ RUCHU Określenie siły na podstawie parametrycznych równań toru. Masa m = 4 kg porusza się po torze określonym parametrycznymi równaniami 3 2 x= 4t + 2t 6 m, y 3t =, m. Określić działająca siłę. Różniczkujemy dwukrotnie względem czasu i znajdujemy składowe przyspieszenia Podstawiając je do równań ruchu znajdujemy szukaną siłę lub w postaci wektorowej F ρ =

34 CAŁKOWANIE RÓWNAŃ RUCHU F ρ = 0 Ruch pod wpływem siły ma postać ma ρ = 0, czyli r &ρ = 0 Po scałkowaniu i przyjęciu,że w chwili t = 0. W tym przypadku równanie dynamiczne &ρ ρ r = v o o Całkując drugi raz i uwzględniając,że dla t = 0 r&ρ ρ o = v o r ρ = ρ r o, otrzymamy, otrzymamy Dochodzimy w ten sposób do znanych równań ruchu jednostajnego i prostoliniowego.

35 CAŁKOWANIE RÓWNAŃ RUCHU Ruch pod wpływem siły stałej równanie ruchu w postaci F ρ = const. Napiszemy Po dwukrotnym scałkowaniu i przyjęciu warunków początkowych: r&ρ ρ o = v o ρ r = ρ r dla t = 0 oraz dla o będzie r ρ =

36 CAŁKOWANIE RÓWNAŃ RUCHU Ruch pod wpływem siły, która jest funkcją położenia. Jako przykład rozpatrzmy ruch punktu materialnego o masie m wystrzelonego z planety o masie M (rys. 9). Równanie ruchu ma postać ale lub Po całkowaniu otrzymujemy równanie Rys. 9

37 CAŁKOWANIE RÓWNAŃ RUCHU Obliczymy, na jaką wysokość H wzniesie się punkt materialny wyrzucony z planety o promieniu R, jeżeli nadano mu prędkość początkową v o. Podstawimy więc v = 0, x = H, x o = R otrzymamy po przekształceniu Zastanówmy się, z jaką prędkością należy wyrzucić punkt materialny z planety, aby na nią nie wrócił, czyli aby stał się satelitą planety. Prędkość tę, zwaną prędkością ucieczki v, otrzymamy, podstawiając do wzoru v o = v oraz H =. Na prędkość ucieczki otrzymamy wyrażenie

38 CAŁKOWANIE RÓWNAŃ RUCHU Na powierzchni Ziemi siła grawitacji ma wartość Prędkość ucieczki dla Ziemi będzie Przyjmując w szczególności R = 6340 km oraz g = 9,81 m/s 2 otrzymamy v 11,8 km/s km/h. Jest to prędkość, jaką należy nadać ciału, aby stało się ono satelitą Ziemi.

39 RUCH WZGLĘDNY PUNKTU MATERIALNEGO układ ruchomy wykonuje ruch postępowy Względem układu stałego ruch punktu jest określony równaniem oraz W układzie ruchomym ruch określony jest więc równaniem (17) ρ ρ w którym D u = ma u nazywamy siłą bezwładności unoszenia. Jest ona równa iloczynowi masy punktu przez przyspieszenie unoszenia i jest zwrócona przeciwnie niż a ρ u.

40 RUCH WZGLĘDNY PUNKTU MATERIALNEGO układ ruchomy wykonuje ruch postępowy Równanie ruchu przyjmuje następującą postać: Względem ruchomego układu odniesienia wykonującego ruch postępowy punkt materialny porusza się tak, jakby działała na niego, oprócz sił danych, jeszcze pomyślana siła bezwładności unoszenia. Zasada względności mechaniki klasycznej: Za pomocą żadnych zjawisk mechanicznych nie możemy wykazać istnienia prostoliniowego, jednostajnego ruchu postępowego układu odniesienia.

41 RUCH WZGLĘDNY PUNKTU MATERIALNEGO układ ruchomy wykonuje ruch postępowy Rys. 8 Ostatecznie: Dla a u < g tg α punkt materialny będzie poruszał się w dół. W przeciwnym przypadku punkt będzie poruszał się do góry. Gdy a u = g tg α, punkt pozostanie w spoczynku lub w ruchu jednostajnym prostoliniowym (względem ruchomej płaszczyzny).

42 RUCH WZGLĘDNY PUNKTU MATERIALNEGO układ ruchomy wykonuje ruch obrotowy W układzie stałym równanie ruchu będzie następujące: oraz Równanie ruchu w układzie ruchomym przyjmie postać: (18) ρ ρ D u = ma u ρ ρ D c = ma c siła bezwładności unoszenia, siła bezwładności unoszenia Coriolisa.

43 RUCH WZGLĘDNY PUNKTU MATERIALNEGO układ ruchomy wykonuje ruch obrotowy Względem ruchomego układu odniesienia wykonującego ruch obrotowy punkt materialny porusza się tak jakby działała na niego, oprócz sil danych, jeszcze pomyślana siła bezwładności unoszenia i pomyślana siła bezwładności Coriolisa. W ruchu obrotowym przyspieszenie całkowite jest sumą geometryczną przyspieszenia obrotowego i doosiowego, czyli (19) w związku z tym (20)

44 RUCH WZGLĘDNY PUNKTU MATERIALNEGO układ ruchomy wykonuje ruch obrotowy ρ ρ D o = ma o obrotowa (styczna) siła bezwładności, ρ ρ D d = ma d poosiowa (normalna) siła bezwładności, przy czym D o = D = = d D c Ruch punktu wzdłuż prostej l opisuje równanie Rozwiązaniem ogólnym będzie wyrażenie Rys. 9

45 RUCH WZGLĘDNY PUNKTU MATERIALNEGO układ ruchomy wykonuje ruch obrotowy W wielu zagadnieniach praktycznych za układ odniesienia przyjmujemy Ziemię. W ogólności jest to układ nieinercjalny. Jednak z wystarczająco dobrym przybliżeniem Ziemię możemy uważać za układ inercjalny, o ile tylko będziemy rozpatrywać ruch w przedziałach czasu krótkich w porównaniu z okresem ruchu postępowego i obrotowego Ziemi. Szczególnie niewielką rolę odgrywa, przy występujących w praktyce prędkościach, siła Coriolisa.

46 PRZYKŁAD 1 Człowiek naciska na podłogę windy siłą N 1 = 500 N, jeśli winda jest w spoczynku, natomiast siłą N 2 = 550 N, jeśli winda rusza. Jakie jest przyspieszenie windy? Przyjąć g = 10 m/s 2. spoczynek ruch ρ a =? N ρ 2 N ρ 1 G ρ G ρ

47 Rozwiązanie Dla spoczynku Z warunków równowagi: Dla ruchu windy Z II zasady dynamiki Newtona: Odp.:

48 PRZYKŁAD 2 Ciało o masie m 1 porusza się po chropowatej równi pochyłej, tworzącej za poziomem kąt α. Za pomocą nieważkiej, doskonale wiotkiej linki, przerzuconej przez kołek K, wprawia w ruch ciało o masie m 2, znajdujące się na chropowatej płaszczyźnie poziomej. Współczynnik tarcia kinetycznego na obydwu powierzchniach jest równy µ. Znaleźć wartość siły wypadkowej działającej na ciało o masie m 1.

49 Rozwiązanie N ρ 2 T ρ 2 G ρ 2 T ρ 1 α N ρ 1 G ρ 1 Wartości sił działających na ciało 2:

50 Rozwiązanie Wartości sił działających na ciało 1: Niech F ρ GN1 wypadkowa sił N 1 i G 1. Wtedy Zatem wypadkowa sił działających na ciało 1 ma wartość:

51 PRZYKŁAD 3 ZASADA PĘDU Przypadek taki sam, jak w poprzednim zadaniu. Prędkość początkowa ciała o masie m 1 wynosi v 0. Znaleźć czas, po którym prędkość będzie n razy większa.

52 Zgodnie z zasadą pędu: Rozwiązanie Odp.:

53 PRZYKŁAD 4 ZASADA ZACHOWANIA PĘDU Z działa o masie M = 1000 kg wystrzelono pocisk o masie m = 1 kg. W chwili wylotu z lufy pocisk ma prędkość o wartości v = 400 m/s. Działo ulega odrzuceniu w przeciwną stronę niż leci pocisk. Obliczyć szybkość odrzutu działa szybkość chwilową w momencie, gdy pocisk opuszcza lufę. u =? v = 400 m s

54 Rozwiązanie Działo i pocisk tworzą układ zamknięty. Przyjmujemy istnienie wyłącznie oddziaływań między działem i pociskiem (oddziaływania grawitacyjne w chwili wystrzału możemy pominąć). Nie ma oddziaływań zewnętrznych w stosunku do układu działo-pocisk. Ponieważ siły między działem i pociskiem się równoważą, w układzie działo-pocisk obowiązuje zasada zachowania pędu. F ρ F ρ

55 gdzie p 1 pęd układu w spoczynku; p 2 pęd układu w chwili odrzutu. więc Odp.: Mu ρ mv ρ

56 PRZYKŁAD 5 Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, alby balon zaczął wznosić się z tą samą prędkością? Masa balonu (z balastem) wynosi M = 300 kg, a siła wyporu F wyp = 2900 N. Dane: M, F wyp Szukane: m =?

57 Rozwiązanie Na balon działają 3 siły: ciężkości G; wyporu F wyp ; oporu ośrodka R. Balon porusza się ze stałą prędkością, więc na podst. I zasady dynamiki:

58 Uwaga! Ponieważ szybkość przy opadaniu i wznoszeniu jest taka sama, a siła oporu powietrza R zależy tylko od prędkości, jej wartość przy opadaniu i wznoszeniu również będzie taka sama. Gdy balon wznosi się, również będzie spełniona I zasada dynamiki:

59 PRZYKŁAD 6 Dwa klocki o masach m 1 i m 2 związane nieważką i nierozciągliwą nicią leżą na poziomym stole. Do drugiego z nich przyłożono siłę F pod kątem α. Współczynniki tarcia między klockami a stołem wynoszą odpowiednio µ 1 i µ 2. Oblicz przyspieszenie klocków i siłę napinającą nić. Dane: m 1, m 2, F,α,µ 1,µ 2 Szukane: a, S

60 Rozwiązanie Na układ działają siły: G 1, G 2 siły ciężkości; T 1, T 2 siły tarcia; N 1, N 2 siły nacisku (reakcji podłoża); S siła napięcia linki; F dodatkowa siła zewnętrzna. Wykorzystamy fakt, iż oba klocki poruszają się z tym samym przyspieszeniem o wartości a.

61 Równania ruchu pierwszego klocka: II zasada dynamiki równanie równowagi Równania ruchu drugiego klocka: II zasada dynamiki równanie równowagi

62 Rozwiązania: Uwaga! Powyższe rozważania mają sens, gdy klocek nie odrywa się od podłoża (tj. gdy G 2 > Fsinα) oraz gdy a > 0, tj. gdy:

63 PRZYKŁAD 7 W wagonie poruszającym się poziomo ruchem jednostajnie przyspieszonym wisi na nici ciężarek o masie m = 0,1 kg. Nić odchylona jest od pionu o kąt α = 15. Obliczyć przyspieszenie wagonu i siłę napięcia linki. Dane: m,α Szukane: a, S

64 Rozwiązanie Kulka względem wagonu jest w spoczynku, a względem ziemi porusza się z przyspieszeniem a równym przyspieszeniu wagonu. Na kulkę działają jedynie siły: grawitacji G; napięcia linki S. Obie siły składają się na wypadkową F, która powoduje ruch kulki względem ziemi z przyspieszeniem a. II zasada dynamiki dla kulki:

65 Skalarnie: Rozwiązanie:

MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu

MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu Prowadzący: dr Krzysztof Polko Dynamiczne równania ruchu Druga zasada dynamiki zapisana w postaci: Jest dynamicznym wektorowym równaniem ruchu. Dynamiczne

Bardziej szczegółowo

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego 1. Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, aby balon

Bardziej szczegółowo

MECHANIKA 2 Wykład Nr 9 Dynamika układu punktów materialnych

MECHANIKA 2 Wykład Nr 9 Dynamika układu punktów materialnych MECHANIKA 2 Wykład Nr 9 Dynamika układu punktów materialnych Prowadzący: dr Krzysztof Polko Dynamiczne równania ruchu układu punktów materialnych Układem punktów materialnych nazwiemy zbiór punktów w sensie

Bardziej szczegółowo

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ

Bardziej szczegółowo

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez

Bardziej szczegółowo

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: Dynamika Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: mamy ciało (zachowujące się jak punkt materialny) o znanych właściwościach (masa, ładunek itd.),

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Fizyka 1- Mechanika Wykład 4 6.X.017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ III zasada dynamiki Zasada akcji i reakcji Każdemu działaniu

Bardziej szczegółowo

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,

Bardziej szczegółowo

MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 11 Praca, moc, energia Prowadzący: dr Krzysztof Polko PRACA MECHANICZNA SIŁY STAŁEJ Pracą siły stałej na prostoliniowym przemieszczeniu w kierunku działania siły nazywamy iloczyn

Bardziej szczegółowo

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski Elementy dynamiki klasycznej - wprowadzenie dr inż. Romuald Kędzierski Po czym można rozpoznać, że na ciało działają siły? Możliwe skutki działania sił: Po skutkach działania sił. - zmiana kierunku ruchu

Bardziej szczegółowo

Zasady dynamiki Isaak Newton (1686 r.)

Zasady dynamiki Isaak Newton (1686 r.) Zasady dynamiki Isaak Newton (1686 r.) I (zasada bezwładności) Istnieje taki układ odniesienia, w którym ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym, jeśli nie działają

Bardziej szczegółowo

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi) Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek

Bardziej szczegółowo

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna

Bardziej szczegółowo

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Siły w przyrodzie Oddziaływania Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Występujące w przyrodzie rodzaje oddziaływań dzielimy na:

Bardziej szczegółowo

Przykładowe zdania testowe I semestr,

Przykładowe zdania testowe I semestr, Przykładowe zdania testowe I semestr, 2015-2016 Rozstrzygnij, które z podanych poniżej zdań są prawdziwe, a które nie. Podstawy matematyczno-fizyczne. Działania na wektorach. Zagadnienia kluczowe: Układ

Bardziej szczegółowo

Zasady dynamiki Newtona. dr inż. Romuald Kędzierski

Zasady dynamiki Newtona. dr inż. Romuald Kędzierski Zasady dynamiki Newtona dr inż. Romuald Kędzierski Czy do utrzymania ciała w ruchu jednostajnym prostoliniowym potrzebna jest siła? Arystoteles 384-322 p.n.e. Do utrzymania ciała w ruchu jednostajnym prostoliniowym

Bardziej szczegółowo

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności Zasady dynamiki Newtona Pęd i popęd Siły bezwładności Copyright by pleciuga@o2.pl Inercjalne układy odniesienia Układy inercjalne to takie układy odniesienia, względem których wszystkie ciała nie oddziałujące

Bardziej szczegółowo

Zasady dynamiki Newtona. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Zasady dynamiki Newtona. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Zasady dynamiki Newtona Autorzy: Zbigniew Kąkol Kamil Kutorasiński 2019 Zasady dynamiki Newtona Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Podstawowa teoria, która pozwala przewidywać ruch ciał, składa

Bardziej szczegółowo

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )

Bardziej szczegółowo

MECHANIKA 2. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Prowadzący: dr Krzysztof Polko PLAN WYKŁADÓW 1. Podstawy kinematyki 2. Ruch postępowy i obrotowy bryły 3. Ruch płaski bryły 4. Ruch złożony i ruch względny 5. Ruch kulisty i ruch ogólny bryły

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Opis ruchu Opis ruchu Tor, równanie toru Zależność od czasu wielkości wektorowych: położenie przemieszczenie prędkość przyśpieszenie UWAGA! Ważne żeby zaznaczać w jakim układzie

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Wzorce sekunda Aktualnie niepewność pomiaru czasu to 1s na 70mln lat!!! 2 Modele w fizyce Uproszczenie problemów Tworzenie prostych modeli, pojęć i operowanie nimi 3 Opis ruchu Opis

Bardziej szczegółowo

ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał.

ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał. ZASADY DYNAMIKI Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał Dynamika klasyczna zbudowana jest na trzech zasadach podanych przez Newtona w 1687 roku I zasada dynamiki Istnieją

Bardziej szczegółowo

DYNAMIKA SIŁA I JEJ CECHY

DYNAMIKA SIŁA I JEJ CECHY DYNAMIKA SIŁA I JEJ CECHY Wielkość wektorowa to wielkość fizyczna mająca cztery cechy: wartość liczbowa punkt przyłożenia (jest początkiem wektora, zaznaczamy na rysunku np. kropką) kierunek (to linia

Bardziej szczegółowo

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, 2010 Spis treści Część I. STATYKA 1. Prawa Newtona. Zasady statyki i reakcje więzów 11 1.1. Prawa Newtona 11 1.2. Jednostki masy i

Bardziej szczegółowo

MECHANIKA 2. Teoria uderzenia

MECHANIKA 2. Teoria uderzenia MECHANIKA 2 Wykład Nr 14 Teoria uderzenia Prowadzący: dr Krzysztof Polko DYNAMIKA PUNKTU NIESWOBODNEGO Punkt, którego ruch ograniczony jest jakimiś więzami, nazywamy punktem nieswobodnym. Więzy oddziaływają

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 4 27.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 4 27.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Fizyka 1- Mechanika Wykład 4 27.X.2016 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ III zasada dynamiki Zasada akcji i reakcji Każdemu działaniu

Bardziej szczegółowo

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone

Bardziej szczegółowo

Dynamika: układy nieinercjalne

Dynamika: układy nieinercjalne Dynamika: układy nieinercjalne Spis treści 1 Układ inercjalny 2 Układy nieinercjalne 2.1 Opis ruchu 2.2 Prawa ruchu 2.3 Ruch poziomy 2.4 Równia 2.5 Spadek swobodny 3 Układy obracające się 3.1 Układ inercjalny

Bardziej szczegółowo

Zakład Dydaktyki Fizyki UMK

Zakład Dydaktyki Fizyki UMK Toruński poręcznik do fizyki I. Mechanika Materiały dydaktyczne Krysztof Rochowicz Zadania przykładowe Dr Krzysztof Rochowicz Zakład Dydaktyki Fizyki UMK Toruń, czerwiec 2012 1. Samochód jadący z prędkością

Bardziej szczegółowo

Prawa ruchu: dynamika

Prawa ruchu: dynamika Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Dynamika ruchu po okręgu siła dośrodkowa Prawa ruchu w układzie nieinercjalnym siły bezwładności Prawa ruchu w układzie obracajacym się siła odśrodkowa siła

Bardziej szczegółowo

2.3. Pierwsza zasada dynamiki Newtona

2.3. Pierwsza zasada dynamiki Newtona Wykład 3.3. Pierwsza zasada dynamiki Newtona 15 X 1997 r. z przylądka Canaveral na Florydzie została wystrzelona sonda Cassini. W 004r. minęła Saturna i wszystko wskazuje na to, że będzie dalej kontynuować

Bardziej szczegółowo

MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO Prowadzący: dr Krzysztof Polko WSTĘP z r C C(x C,y C,z C ) r C -r B B(x B,y B,z B ) r C -r A r B r B -r A A(x A,y A,z A ) Ciało sztywne

Bardziej szczegółowo

Oddziaływania te mogą być różne i dlatego można podzieli je np. na:

Oddziaływania te mogą być różne i dlatego można podzieli je np. na: DYNAMIKA Oddziaływanie między ciałami można ilościowo opisywać posługując się pojęciem siły. Działanie siły na jakieś ciało przejawia się albo w zmianie stanu ruchu tego ciała (zmianie prędkości), albo

Bardziej szczegółowo

DYNAMIKA ZADANIA. Zadanie DYN1

DYNAMIKA ZADANIA. Zadanie DYN1 DYNAMIKA ZADANIA Zadanie DYN1 Na ciało działa siła (przy czym i to stałe). W chwili początkowej ciało miało prędkość i znajdowało się w punkcie. Wyznacz położenie i prędkość ciała w funkcji czasu., Zadanie

Bardziej szczegółowo

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas 3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to

Bardziej szczegółowo

SIŁA JAKO PRZYCZYNA ZMIAN RUCHU MODUŁ I: WSTĘP TEORETYCZNY

SIŁA JAKO PRZYCZYNA ZMIAN RUCHU MODUŁ I: WSTĘP TEORETYCZNY SIŁA JAKO PRZYCZYNA ZMIAN RUCHU MODUŁ I: WSTĘP TEORETYCZNY Opracowanie: Agnieszka Janusz-Szczytyńska www.fraktaledu.mamfirme.pl TREŚCI MODUŁU: 1. Dodawanie sił o tych samych kierunkach 2. Dodawanie sił

Bardziej szczegółowo

05 DYNAMIKA 1. F>0. a=const i a>0 ruch jednostajnie przyspieszony prostoliniowy 2. F<0. a=const i a<0 ruch jednostajnie opóźniony prostoliniowy 3.

05 DYNAMIKA 1. F>0. a=const i a>0 ruch jednostajnie przyspieszony prostoliniowy 2. F<0. a=const i a<0 ruch jednostajnie opóźniony prostoliniowy 3. Włodzimierz Wolczyński 05 DYNAMIKA II zasada dynamiki Newtona Ruch prostoliniowy. Siła i ruch. Zakładamy, że F=const i m=const. I siła może być: F 1. F>0 Czyli zwrot siły zgodny ze zwrotem prędkości a=const

Bardziej szczegółowo

Elementy dynamiki mechanizmów

Elementy dynamiki mechanizmów Elementy dynamiki mechanizmów Dynamika pojęcia podstawowe Dynamika dział mechaniki zajmujący się ruchem ciał materialnych pod działaniem sił. Głównym zadaniem dynamiki jest opis ruchu ciał pod działaniem

Bardziej szczegółowo

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie

Bardziej szczegółowo

I. DYNAMIKA PUNKTU MATERIALNEGO

I. DYNAMIKA PUNKTU MATERIALNEGO I. DYNAMIKA PUNKTU MATERIALNEGO A. RÓŻNICZKOWE RÓWNANIA RUCHU A1. Bryła o masie m przesuwa się po chropowatej równi z prędkością v M. Podać dynamiczne równania ruchu bryły i rozwiązać je tak, aby wyznaczyć

Bardziej szczegółowo

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/

Bardziej szczegółowo

MECHANIKA II. Dynamika układu punktów materialnych

MECHANIKA II. Dynamika układu punktów materialnych MECHANIKA II. Dynamika układu punktów materialnych Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl

Bardziej szczegółowo

Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc.

Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc. Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc. ZESTAW ZADAŃ NA ZAJĘCIA ROZGRZEWKA 1. Przypuśćmy, że wszyscy ludzie na świecie zgromadzili się w jednym miejscu na Ziemi i na daną komendę jednocześnie

Bardziej szczegółowo

Ćwiczenie: "Dynamika"

Ćwiczenie: Dynamika Ćwiczenie: "Dynamika" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1. Układy nieinercjalne

Bardziej szczegółowo

Zasady dynamiki Newtona

Zasady dynamiki Newtona Zasady dynamiki Newtona Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone nie zmuszają ciała do zmiany tego stanu Jeżeli na ciało nie działa

Bardziej szczegółowo

Zasady dynamiki Newtona

Zasady dynamiki Newtona Zasady dynamiki Newtona 1. Znajdź masę ciała (poruszającego się po prostej), które pod działaniem siły o wartości F = 30 N w czasie t= 5s zmienia swą szybkość z v 1 = 15 m/s na v 2 = 30 m/s. 2. Znajdź

Bardziej szczegółowo

Elementy dynamiki mechanizmów

Elementy dynamiki mechanizmów Elementy dynamiki mechanizmów Dynamika pojęcia podstawowe Dynamika dział mechaniki zajmujący się ruchem ciał materialnych pod działaniem sił. Głównym zadaniem dynamiki jest opis ruchu ciał pod działaniem

Bardziej szczegółowo

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących

Bardziej szczegółowo

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Siły - wektory Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub

Bardziej szczegółowo

Plan wynikowy z wymaganiami edukacyjnymi przedmiotu fizyka w zakresie rozszerzonym dla I klasy liceum ogólnokształcącego i technikum

Plan wynikowy z wymaganiami edukacyjnymi przedmiotu fizyka w zakresie rozszerzonym dla I klasy liceum ogólnokształcącego i technikum Plan wynikowy z mi edukacyjnymi przedmiotu fizyka w zakresie rozszerzonym dla I klasy liceum ogólnokształcącego i technikum Temat (rozumiany jako lekcja) Wymagania konieczne (ocena dopuszczająca) Dział

Bardziej szczegółowo

Prawa ruchu: dynamika

Prawa ruchu: dynamika Prawa ruchu: dynamika Spis treści 1 Bezwładność 2 I zasada dynamiki 2.1 Zasada bezwładności 2.2 Układ odniesienia 2.3 Ciało izolowane 2.4 Układ inercjalny 3 II zasada dynamiki 3.1 II prawo Newtona 3.2

Bardziej szczegółowo

Materiały pomocnicze 6 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 6 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 6 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Energia mechaniczna. Energia mechaniczna dzieli się na energię kinetyczną i potencjalną. Energia kinetyczna

Bardziej szczegółowo

Wydział Inżynierii Środowiska; kierunek Inż. Środowiska. Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni

Wydział Inżynierii Środowiska; kierunek Inż. Środowiska. Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni Wydział Inżynierii Środowiska; kierunek Inż. Środowiska Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni Tabele wzorów matematycznych i fizycznych oraz obszerniejsze listy zadań do kursu są dostępne

Bardziej szczegółowo

Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne.

Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. PRACA Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. Rozważmy sytuację, gdy w krótkim czasie działająca siła spowodowała przemieszczenie ciała o bardzo małą wielkość Δs Wtedy praca wykonana

Bardziej szczegółowo

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą

Bardziej szczegółowo

Treści dopełniające Uczeń potrafi:

Treści dopełniające Uczeń potrafi: P Lp. Temat lekcji Treści podstawowe 1 Elementy działań na wektorach podać przykłady wielkości fizycznych skalarnych i wektorowych, wymienić cechy wektora, dodać wektory, odjąć wektor od wektora, pomnożyć

Bardziej szczegółowo

Wykład FIZYKA I. 3. Dynamika punktu materialnego. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 3. Dynamika punktu materialnego.  Dr hab. inż. Władysław Artur Woźniak Wykład IZYKA I 3. Dynamika punktu materialnego Dr hab. inż. Władysław Artur Woźniak Instytut izyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Dynamika to dział mechaniki,

Bardziej szczegółowo

ZASADY DYNAMIKI NEWTONA

ZASADY DYNAMIKI NEWTONA ZASADY DYNAMIKI NEWTONA I. Jeżeli na ciało nie działa żadna siła lub działające siły się równoważą to ciało pozostaje w spoczynku lub porusza sie ruchem jednostajnym po linii prostej. Ta zasada często

Bardziej szczegółowo

Sprawdzian Na rysunku przedstawiono siłę, którą kula o masie m przyciąga kulę o masie 2m.

Sprawdzian Na rysunku przedstawiono siłę, którą kula o masie m przyciąga kulę o masie 2m. Imię i nazwisko Data Klasa Wersja A Sprawdzian 1. 1. Orbita każdej planety jest elipsą, a Słońce znajduje się w jednym z jej ognisk. Treść tego prawa podał a) Kopernik. b) Newton. c) Galileusz. d) Kepler..

Bardziej szczegółowo

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule Fizyka Kurs przygotowawczy na studia inżynierskie mgr Kamila Haule Siła Zasady dynamiki Newtona Skąd się bierze przyspieszenie? Siła powoduje przyspieszenie Siła jest wektorem! Siła jest przyczyną przyspieszania

Bardziej szczegółowo

b) Oblicz ten ułamek dla zderzeń z jądrami ołowiu, węgla. Iloraz mas tych jąder do masy neutronu wynosi: 206 dla ołowiu i 12 dla węgla.

b) Oblicz ten ułamek dla zderzeń z jądrami ołowiu, węgla. Iloraz mas tych jąder do masy neutronu wynosi: 206 dla ołowiu i 12 dla węgla. Zadanie 1 Szybkie neutrony, powstające w reaktorze jądrowym, muszą zostać spowolnione, by mogły wydajnie uczestniczyć w łańcuchowej reakcji rozszczepienia jąder. W tym celu doprowadza się do ich zderzeń

Bardziej szczegółowo

Podstawy fizyki sezon 1 II. DYNAMIKA

Podstawy fizyki sezon 1 II. DYNAMIKA Podstawy fizyki sezon 1 II. DYNAMIKA Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka a dynamika Kinematyka

Bardziej szczegółowo

Mechanika klasyczna opiera się na trzech podstawowych prawach noszących nazwę zasad dynamiki Newtona. Przykładowe sformułowania tych zasad:

Mechanika klasyczna opiera się na trzech podstawowych prawach noszących nazwę zasad dynamiki Newtona. Przykładowe sformułowania tych zasad: III. DYAMIKA 7. Dynamika ruchu postępowego Mechanika klasyczna opiera się na trzech podstawowych prawach noszących nazwę zasad dynamiki ewtona. Przykładowe sformułowania tych zasad: I. Istnieje taki układ

Bardziej szczegółowo

DYNAMIKA dr Mikolaj Szopa

DYNAMIKA dr Mikolaj Szopa dr Mikolaj Szopa 17.10.2015 Do 1600 r. uważano, że naturalną cechą materii jest pozostawanie w stanie spoczynku. Dopiero Galileusz zauważył, że to stan ruchu nie zmienia się, dopóki nie ingerujemy I prawo

Bardziej szczegółowo

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający

Bardziej szczegółowo

Wykład 10. Ruch w układach nieinercjalnych

Wykład 10. Ruch w układach nieinercjalnych Wykład 10 Ruch w układach nieinercjalnych Prawa Newtona są słuszne jedynie w układach inercjalnych. Ściśle mówiąc układami inercjalnymi nazywamy takie układy odniesienia, które albo spoczywają, albo poruszają

Bardziej szczegółowo

Tarcie poślizgowe

Tarcie poślizgowe 3.3.1. Tarcie poślizgowe Przy omawianiu więzów w p. 3.2.1 reakcję wynikającą z oddziaływania ciała na ciało B (rys. 3.4) rozłożyliśmy na składową normalną i składową styczną T, którą nazwaliśmy siłą tarcia.

Bardziej szczegółowo

Zasada zachowania energii

Zasada zachowania energii Zasada zachowania energii Praca i energia Praca Najprostszy przypadek: Stała siła działa na ciało P powodując jego przesunięcie wzdłuż kierunku działania siły o. Praca jaką wykona przy tym siła W przypadku

Bardziej szczegółowo

MECHANIKA II. Praca i energia punktu materialnego

MECHANIKA II. Praca i energia punktu materialnego MECHANIKA II. Praca i energia punktu materialnego Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl

Bardziej szczegółowo

1. Kinematyka 8 godzin

1. Kinematyka 8 godzin Plan wynikowy (propozycja) część 1 1. Kinematyka 8 godzin Wymagania Treści nauczania (tematy lekcji) Cele operacyjne podstawowe ponadpodstawowe Uczeń: konieczne podstawowe rozszerzające dopełniające Jak

Bardziej szczegółowo

MiBM sem. III Zakres materiału wykładu z fizyki

MiBM sem. III Zakres materiału wykładu z fizyki MiBM sem. III Zakres materiału wykładu z fizyki 1. Dynamika układów punktów materialnych 2. Elementy mechaniki relatywistycznej 3. Podstawowe prawa elektrodynamiki i magnetyzmu 4. Zasady optyki geometrycznej

Bardziej szczegółowo

Wektor położenia. Zajęcia uzupełniające. Mgr Kamila Rudź, Podstawy Fizyki. http://kepler.am.gdynia.pl/~karudz

Wektor położenia. Zajęcia uzupełniające. Mgr Kamila Rudź, Podstawy Fizyki. http://kepler.am.gdynia.pl/~karudz Kartezjański układ współrzędnych: Wersory osi: e x x i e y y j e z z k r - wektor o współrzędnych [ x 0, y 0, z 0 ] Wektor położenia: r t =[ x t, y t,z t ] każda współrzędna zmienia się w czasie. r t =

Bardziej szczegółowo

Zasady dynamiki przypomnienie wiadomości z klasy I

Zasady dynamiki przypomnienie wiadomości z klasy I Zasady dynamiki przypomnienie wiadomości z klasy I I zasada dynamiki Newtona Jeżeli na ciało nie działa żadna siła lub działające siły się równoważą, to ciało pozostaje w spoczynku lub porusza się ruchem

Bardziej szczegółowo

Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia.

Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Grupa 1. Kinematyka 1. W ciągu dwóch sekund od wystrzelenia z powierzchni ziemi pocisk przemieścił się o 40 m w poziomie i o 53

Bardziej szczegółowo

Dynamika Newtonowska trzy zasady dynamiki

Dynamika Newtonowska trzy zasady dynamiki Dynamika Newtonowska trzy zasady dynamiki I. Zasada bezwładności Gdy działające siły równoważą się ciało fizyczne pozostaje w spoczynku lubporusza się ruchem prostoliniowym ze stałą prędkością. II. Zasada

Bardziej szczegółowo

I ZASADA DYNAMIKI. m a

I ZASADA DYNAMIKI. m a DYNAMIKA (cz.1) Zasady dynamiki Newtona Siły w mechanice - przykłady Zasady zachowania w mechanice Praca, energia i moc Pęd i zasada zachowania pędu Popęd siły Zderzenia ciał DYNAMIKA Oddziaływanie między

Bardziej szczegółowo

Zasada zachowania pędu

Zasada zachowania pędu Zasada zachowania pędu Zasada zachowania pędu Układ izolowany Układem izolowanym nazwiemy układ, w którym każde ciało może w dowolny sposób oddziaływać z innymi elementami układu, ale brak jest oddziaływań

Bardziej szczegółowo

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka ruchu

Bardziej szczegółowo

Spis treści. Wstęp Część I STATYKA

Spis treści. Wstęp Część I STATYKA Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.

Bardziej szczegółowo

Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska Podstawy fizyki Wykład 2 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Janusz Andrzejewski 2 Dynamika Zasady dynamiki Newtona Układy inercjalne i nieinercjalne Siła Masa Przykłady sił Tarcie

Bardziej szczegółowo

R o z d z i a ł 2 KINEMATYKA PUNKTU MATERIALNEGO

R o z d z i a ł 2 KINEMATYKA PUNKTU MATERIALNEGO R o z d z i a ł KINEMATYKA PUNKTU MATERIALNEGO Kinematyka zajmuje się opisem ruchu ciał bez uwzględniania ich masy i bez rozpatrywania przyczyn, które ten ruch spowodowały. Przez punkt materialny rozumiemy

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Przedmiot Mechanika teoretyczna Wykład nr 1 Wprowadzenie i podstawowe pojęcia. Rachunek wektorowy. Wypadkowa układu sił. Mechanika: ogólna, techniczna, teoretyczna. Dział fizyki zajmujący się badaniem

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

Podstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA Podstawy Procesów i Konstrukcji Inżynierskich Praca, moc, energia Energia Energia jest to wielkość skalarna, charakteryzująca stan, w jakim znajduje się jedno lub wiele ciał. Energia jest miarą różnych

Bardziej szczegółowo

I zasada dynamiki Newtona

I zasada dynamiki Newtona I zasada dynamiki Newtona Każde ciało pozostaje w spoczynku lub porusza się ze stałą prędkością po linii prostej dopóki nie zadziała na nie niezrównoważona siła z zewnątrz. Jeśli! F i = 0! i v = 0 lub

Bardziej szczegółowo

PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU. Piotr Nieżurawski. Wydział Fizyki. Uniwersytet Warszawski

PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU. Piotr Nieżurawski. Wydział Fizyki. Uniwersytet Warszawski PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU Piotr Nieżurawski pniez@fuw.edu.pl Wydział Fizyki Uniwersytet Warszawski http://www.fuw.edu.pl/~pniez/bioinformatyka/ 1 Co to jest praca? Dla punktu

Bardziej szczegółowo

Mechanika Analityczna

Mechanika Analityczna Mechanika Analityczna Wykład 2 - Zasada prac przygotowanych i ogólne równanie dynamiki Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej 29 lutego 2016 Plan wykładu

Bardziej szczegółowo

Oddziaływania Grawitacja

Oddziaływania Grawitacja Oddziaływania Grawitacja OPRACOWANIE Oddziaływania. Żadne ciało nie jest wolne od oddziaływania innych ciał na nie. Każdy z nas poddany jest przyciąganiu ziemskiemu, które utrzymuje nas na powierzchni

Bardziej szczegółowo

Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3.

Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3. Dynamika ruchu obrotowego Zauważyłem, że zadania dotyczące ruchu obrotowego bardzo często sprawiają maturzystom wiele kłopotów. A przecież wystarczy zrozumieć i stosować zasady dynamiki Newtona. Przeanalizujmy

Bardziej szczegółowo

Fizyka I (mechanika), rok akad. 2011/2012 Zadania na ćwiczenia, seria 2

Fizyka I (mechanika), rok akad. 2011/2012 Zadania na ćwiczenia, seria 2 Fizyka I (mechanika), rok akad. 2011/2012 Zadania na ćwiczenia, seria 2 1 Zadania wstępne (dla wszystkich) Zadanie 1. Pewne ciało znajduje się na równi, której kąt nachylenia względem poziomu można regulować.

Bardziej szczegółowo

D Y N A M I K A Na początek kilka powodów dla których warto uczyć się dynamiki:

D Y N A M I K A Na początek kilka powodów dla których warto uczyć się dynamiki: D Y N A M I K A Na początek kilka powodów dla których warto uczyć się dynamiki: od odkryć Galileusza i Newtona w dynamice rozpoczęła się nowoczesna fizyka jest stosunkowo łatwy na poziomie liceum zawiera

Bardziej szczegółowo

Praca, moc, energia. 1. Klasyfikacja energii. W = Epoczątkowa Ekońcowa

Praca, moc, energia. 1. Klasyfikacja energii. W = Epoczątkowa Ekońcowa Praca, moc, energia 1. Klasyfikacja energii. Jeżeli ciało posiada energię, to ma również zdolnoć do wykonania pracy kosztem częci swojej energii. W = Epoczątkowa Ekońcowa Wewnętrzna Energia Mechaniczna

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Wypadkowa -metoda analityczna Mechanika teoretyczna Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Rodzaje ustrojów prętowych. Składowe poszczególnych sił układu: Składowe

Bardziej szczegółowo

Prawa ruchu: dynamika

Prawa ruchu: dynamika Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Równania ruchu Więzy Rozwiazywanie równań ruchu oscylator harminiczny, wahadło ruch w jednorodnym polu elektrycznym i magnetycznym spektroskop III zasada

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE PRZEDMIOT : FIZYKA ROZSZERZONA

WYMAGANIA EDUKACYJNE PRZEDMIOT : FIZYKA ROZSZERZONA WYMAGANIA EDUKACYJNE PRZEDMIOT : FIZYKA ROZSZERZONA ROK SZKOLNY: 2018/2019 KLASY: 2mT OPRACOWAŁ: JOANNA NALEPA OCENA CELUJĄCY OCENA BARDZO DOBRY - w pełnym zakresie - w pełnym opanował zakresie opanował

Bardziej szczegółowo

Elementy rachunku różniczkowego i całkowego

Elementy rachunku różniczkowego i całkowego Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami

Bardziej szczegółowo

Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr

Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr Podstawy fizyki Wykład 2 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Zasady dynamiki Newtona Układy inercjalne i nieinercjalne Siła Masa Przykłady sił Tarcie Opór Ruch jednostajny

Bardziej szczegółowo

M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA

M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA M WYZNACZANE MOMENTU BEZWŁADNOŚC WAHADŁA OBERBECKA opracowała Bożena Janowska-Dmoch Do opisu ruchu obrotowego ciał stosujemy prawa dynamiki ruchu obrotowego, w których występują wielkości takie jak: prędkość

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Pojęcia podstawowe Punkt materialny Ciało, którego rozmiary można w danym zagadnieniu zaniedbać. Zazwyczaj przyjmujemy, że punkt materialny powinien być dostatecznie mały. Nie jest

Bardziej szczegółowo