Dynamika punktu materialnego Katarzyna Weron. Wykład dla Matematyki Stosowanej

Wielkość: px
Rozpocząć pokaz od strony:

Download "Dynamika punktu materialnego Katarzyna Weron. Wykład dla Matematyki Stosowanej"

Transkrypt

1 Dynamika punktu materialnego Katarzyna Weron Wykład dla Matematyki Stosowanej

2 Powtórka Kinematyczne równania ruchu r = r t = x t, y t, z(t) Otrzymujemy z definicji d v a = dt, a = a x, a y, a z = dv x dt, dv y dt, dv x dt d r v = dt, v = v x, v y, v z = dx dt, dy dt, dz dt Skąd znamy a = a(t)? Musimy znać warunki początkowe

3 Równania parametryczne kinetyczne równania ruchu (parametr to czas t) tor ruchu eliminacja t y = y(x)

4 Równanie parametryczne okręgu y y 0 R x x y y 0 2 = R 2 Podstawmy: x x 0 = Rcosα y y 0 = Rsinα x 0 x Czyli: x = x 0 + Rcosα y = y 0 + Rsinα

5 Fizycy lubią pytać Dlaczego? Dlaczego satelita nie spada na Ziemię? Dlaczego astronauta na statku kosmicznym znajduje się w stanie nieważkości?

6 Siła przyczyna ruchu czy przyśpieszenia? Poglądy przez Newtonem Stanem naturalnym ciała jest spoczynek Aby utrzymać ciało w ruchu ze stałą prędkością należy je jakoś napędzać Bez tego oddziaływania ciało po jakimś czasie się zatrzyma Bez dodatkowej siły ciało się zatrzyma Brzmi rozsądnie?

7 Bez dodatkowej siły ciało się zatrzyma? Pchnijmy krążek a) Na stole zatrzyma się szybko b) Na lodzie zatrzyma się dalej c) Na powietrznym stole do hokeja pojedzie najdalej UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

8 Pierwsza zasada dynamiki Newtona Philosophiae Naturalis Principia Mathematica, (1726) W inercjalnym układzie odniesienia, jeśli na ciało nie działa żadna siła lub siły działające równoważą się, to ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym. Tzn. że ta zasada nie zawsze działa? Co to jest układ inercjalny? Dlaczego ta zasada nosi nazwę prawa inercji?

9 Pierwsza zasada dynamiki Newtona nie działa we wszystkich układach! Co się dzieje w samolocie lecącym ze stałą v = 800 km/h? UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley A co się dzieje na karuzeli obracającej się ze stałą v = 10 km/h?

10 Układ Inercjalny Kluczowa koncepcja Newtona I zasada dynamiki Newtona definiuje układ inercjalny Pierwsza zasada dynamiki - postulat istnienia inercjalnego układu odniesienia Jeżeli nie jest spełniona I zasada to układ nie jest inercjalny jakieś przykłady?

11 Układ Inercjalny vs. nieinercjalny W układzie nieinercjalnym nie są spełnione zasady Newtona! Siła bezwładności Siła dośrodkowa Siła Coriolisa Układ poruszający się ruchem jednostajnym względem układu inercjalnego też jest inercjalny!

12 Efekt Coriolisa

13 Siła i efekt Coriolisa Siłą pozorna, działającą na ciała, poruszające się w wirującym układzie odniesienia Efekt Coriolisa odchylenie danego obiektu z jego toru ruchu (widziane w tym układzie) Znany od XVII wieku: ruch obrotowy Ziemi powoduje odchylenie pocisków artyleryjskich od ich torów Ważne zjawisko w meteorologii odpowiedzialne za zmianę kierunków wiatrów, kierunek cyklonów na półkuli PN wirują odwrotnie do ruchu wskazówek zegara na półkuli PD zgodnie z ruchem wskazówek zegara

14 Inercjalne i nieinercjalne układy odniesienia (inercjalne definiuje I zasada dynamiki) a = (0, a y, 0) Jestem w układzie nieinercjalnym! Jestem w układzie inercjalnym Pomocy!!! Tu są siły nieczyste! F = m a

15 W inercjalnych układach odniesienia nie ma siły odśrodkowej i bezwładności!!! R. DOUGLAS GREGORY, CLASSICAL MECHANICS Classical_M.pdf

16 Równowaga Ciało spoczywa lub porusza się ruchem jednostajnym prostoliniowym F = 0, F x = 0, F y = 0, Przykłady: Wisząca lampa Stojący stół Samochód jadący prosto ze stałą prędkością

17 Równowaga trwała i nietrwała (stabilna i niestabilna) równowaga stabilna (minimum) równowaga niestabilna (maksimum) równowaga metastabilna (minimum lokalne) Więcej jak poznamy koncepcję energii

18 Co się dzieje jeśli siła nie równa się zero?

19 Jak przyśpieszenie zależy od siły? F = m a Masa bezwładna Druga zasada dynamiki Newtona Dlaczego nazywamy tą masę bezwładną?

20 A co z masą? Użyjmy tej samej siły do trzech różnych mas Im większa masa tym większej trzeba użyć siły żeby nadać jej przyśpieszenie (zmienić prędkość) Masa miara bezwładności Masa skalar, jednostka to kilogram [kg]

21 Druga zasada dynamiki Newtona F = m a Czyli: F x = ma x F y = ma y F z = ma z Spełniona tylko w układach inercjalnych!

22 Jednostki! Masa jednostka to kilogram kg Przyśpieszenie a = dv dt m/s s = m s 2 Siła F = m a kg m s 2 N Jednostką siły jest Newton zdefiniowany przy pomocy jednostek podstawowych kilograma, metra i sekundy

23 Jakie fizyk stawia pytania? Dalekozasięgowa siła: F 1 = F 2 = G m 1m 2 r 2 Source: Z drugiej strony masa bezwładna: F = m a F y = mg Czy masa grawitacyjna jest równa masie bezwładnej? F y = G Mm r 2

24 Trzecia zasada dynamiki Newtona Jeśli ciało A działa na ciało B pewną siłą (akcja), to ciało B działa na ciało A siłą (reakcja) o takiej samej wartości i kierunku, lecz o przeciwnym zwrocie. F AB = F BA Skąd się bierze opór powietrza? UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

25 Para sił akcja-reakcja Przykład: Gdzie są te siły? Stół na jabłko Ziemia na jabłko Siły działające na jabłko Tu równowaga, ale nie musi być. Co wtedy? Stół na jabłko Jabłko na stół Ziemia na jabłko Jabłko na Ziemię Para sił akcja-reakcja

26 Przykład: Gimnastyczka Gimnastyczka o masie m G = 50kg utrzymuje się trzymając dolny koniec liny przymocowanej do sufitu sali gimnastycznej. Masa liny m l 0 Jaką siłę (wielkość i kierunek) wywiera na nią lina? Jakie jest napięcie na szczycie liny? sytuacja diagram dla gimnastyczki diagram dla liny lina na gimnastyczkę T LG akcja-reakcja T SL sufit na linę ciężar gimnastyczki T GL gimnastyczka na linę

27 Przykład: Gimnastyczka Siły działające na gimnastyczkę (w równowadze) F y = T LG W G = 0 T LG = W G = m G g = 490N Siły działające na linę (w równowadze) F y = T SL T GL = 0 T SL = T GL = T LG = 490N III zasada Newtona sytuacja diagram dla gimnastyczki diagram dla liny lina na gimnastyczkę T LG akcja-reakcja T SL sufit na linę ciężar gimnastyczki T GL gimnastyczka na linę

28 Przykład: lina ma masę y Diagram sił dla gimnastyczki Diagram sił dla liny przy suficie T LG Lina na gimnastyczkę T SL Sufit na linę W G = m G g Ciężar gimnastyczki T GL Gimnastyczna na linę W L = m L g Ciężar liny Jakie napięcie liny przy suficie? Jakie napięcie liny w połowie długości?

29 Zasady Dynamiki Newtona skrót (inercjalne układy odniesienia) 1. F = 0 a = 0 (definicja układu inercjalnego) 2. F = ma 3. F AB = F BA Spadającym jabłkiem rządzą te same prawa co ruchem planet! Rachunek różniczkowy i całkowy Wyznaczamy równania ruchu 2013 Marcin Weron

30 Na Facebooku czy ktoś to rozumie? Nie? Jeszcze do tego wrócimy

31 Sztuka rozwiązywania zadań Pierwsze i drugie prawo Newtona odnoszą się do konkretnego obiektu ustal, który badasz Tylko siły działające na ten obiekt mają znaczenie Bardzo wygodny jest tzw. diagram sił (free-body diagram) narysuj wyłącznie siły działające na obiekt Obiekt zaznacz kropką i wszystkie siły powinny być rysowane z tej kropki Wybierz mądrze układ współrzędnych

32 Typowe błędy przy rysowaniu diagramów! DOBRY ZŁY UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

33 Pola sił i siły kontaktowe Pola sił (siły działające na odległość) siła grawitacji, siła elektromagnetyczna Siły kontaktowe siła nacisku siła naprężenia siła sprężystości siła tarcia siła oporu

34 Jakiej wagi lepiej użyć? UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

35 Masa i waga W życiu codziennym często używane zamiennie Waga siła grawitacyjna działająca na ciało: F = ma, a = g 9.81m/s 2 Obiekt Przyśpieszenie grawitacyjne Słońce m/s 2 Mars 3.69 m/s 2 Jowisz m/s 2 Pluton 0.58 m/s 2 Ziemia m/s 2 Księżyc m/s 2

36 Co mierzy waga łazienkowa? Siła normalna n ciało wywiera nacisk na powierzchnię, ale z III zasady powierzchnia popycha ciało siłą skierowaną prostopadle do powierzchni waga sprężynowa mierzy siłę nacisku F n = F gx F gy F gx F g = mg

37 Przeciążenia i nieważkość y a y = g F N F g = mg F y = ma y mg F N = mg F N = 0 a y = a rad F N F g = mg Singapore Flyer (2008), 165 m F y = ma y F N F g = ma rad y Zumanjaro: Drop of Doom, New Jersey, USA, 126m

38 Dlaczego księżyc nie spada na Ziemię? Dlaczego satelita nie spada na Ziemię? Dlaczego astronauta na statku kosmicznym znajduje się w stanie nieważkości?

39 Oryginalne rozumowanie Newtona Jeżeli wystrzelimy kulę z bardzo dużą prędkością z wysokiej góry Im większą prędkość początkową ma kula, tym dalej poleci Od prędkości początkowej zależy również krzywizna ruchu

40 Oryginalne rozumowanie Newtona Zakrzywienie łuku po jakim będzie opadać = zakrzywieniu Ziemi Powierzchnia planety będzie "uciekać" kuli z taką samą prędkością, z jaką kula będzie ją "gonić" czyli opadać

41 Kula cały czas spada na Ziemię! Analogicznie spada satelita! Statek kosmiczny też spada! To samo dzieje się z astronautą! Co znaczy nieważkość?

42 Siła oporu Siła jaką płyn (gaz lub ciecz) wywiera na ciało w ruchu Skierowana zawsze przeciwnie do kierunku ruchu ciała Poruszające się ciało wywiera siłę na płyn toruje drogę Z III zasady Newtona płyn działa na ciało małe prędkości: f = kv duże prędkości: f = Dv 2 D = 1 2 CρS S- przekrój poprzeczny C współczynnik aerodynamiczny (eksperyment) ρ gęstość ośrodka (powietrza) UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

43 Siła oporu aerodynamicznego f = f v v, v = v v f v = bv + cv 2 związany z lepkością (tarcie płynu), proporcjonalny do: lepkości płynu rozmiaru liniowego obiektu związany z przyśpieszaniem cząstek, z którymi się zderza obiekt proporcjonalny do: gęstości ośrodka przekroju poprzecznego obiektu

44 Przykład: kulka w oleju (mała prędkość) Siła działają tylko w kierunku Y F y (t) = mg kv y (t) = ma y (t) Na początku v y 0 = 0 oraz a y 0 = g Wraz ze wzrostem prędkości rośnie opór W końcu układ osiąga równowagę: F y = mg kv t = 0 v t = mg/k prędkość graniczna (terminal speed) UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

45 Przykład: kulka w oleju równania ruchu v t = mg/k UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

46 Przykład: Spadające koty Badania z 1987r. dane z pogotowia weterynaryjnego w Nowym Yorku 132 koty, 90% kotów przeżyło rekordzista spadł z 32 piętra na beton Prędkość graniczna 97km/h a potem? F g = mg F g = mg F g = mg

47 Przykład: Powietrzny skoczek Dla ciała ludzkiego spadającego w powietrzu w pozycji jak na zdjęciu wartość współczynnika D 0.25 kg. Znajdź graniczną prędkość m skoczka o masie 50kg. A co jeśli masa będzie większa? F y = mg Dv 2 y = 0 v y = mg D = 44 m s 160 km h! UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

48 Rzut ukośny z oporem liniowym v y > 0 v v x > 0 v x > 0 v y < 0 v F oy = (0, k y v y (t 2 ), 0) F g = (0, mg, 0) F oy = (0, k y v y (t 1 ), 0) F g = (0, mg, 0) v = (v x, v y, 0) v x = (v x, 0,0) v y = (0, v y, 0) v = v x + v y = (v x, v y, 0) Co liczycie z definicji? Współrzędne wektora czy wartości? d v a = dt, a = a x, a y, a z = dv x dt, dv y dt, dv x dt d r v = dt, v = v x, v y, v z = dx dt, dy dt, dz dt

49 Rzut ukośny z oporem liniowym Ruch poziomy: ma x = bv x dv x dt = b m v x x t = v 0x τ 1 exp( t/τ), Gdzie τ = 1 = m czas charakterystyczny (relaksacji) k b Ruch pionowy: ma y = mg bv y dv y dt = g b m v y y t = (v 0y +v g )τ 1 exp( t/τ) v g t

50 Tor ruchu i zasięg (jak policzyć?) x t = v 0x τ 1 exp( t/τ), y t = (v 0y +v g )τ 1 exp( t/τ) v g t y x = v 0y v g v 0x x + v g τln 1 x v 0x τ Zasięg y t R = 0 R = x(t R ) v 0y v g R + v v g τln 1 R 0x v 0x τ = 0

51 Komputer lub rozwiązanie przybliżone v 0y v g v 0x R + v g τln 1 R v 0x τ = 0 Jeśli opór nie jest duży to ten czynnik mały ln 1 ε = (ε ε ε3 + ) Fizycy zawsze szukają czegoś małego lub dużego! Rozwijamy w szereg potęgowy i zaniedbujemy wyrazy wyższego rzędu

52 Siła tarcia Bardzo ważna ( złe i dobre aspekty): Olej w silniku samochodowym minimalizuje tarcie pomiędzy ruchomymi częściami Bez tarcia między oponami a drogą nie mogliśmy jechać ani skręcić Jak odkręcałoby się żarówkę? Dziewczyny pewnie znają ten trik? UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

53 Co się dzieje z tarciem? UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

54 Wybrane współczynniki tarcia powierzchnie μ s μ k stal-stal aluminium na stali szkło-szkło teflon-teflon teflon na stali guma na betonie (suchym) guma na betonie (mokrym) lód-lód nawoskowane drewno na mokrym śniegu nawoskowane drewno na suchym śniegu

55 Tarcie kinetyczne i statyczne Tarcie statyczne działa kiedy nie ma względnego ruchu powierzchni próbujesz przesunąć pudło po podłodze a ono się nie rusza podłoga wywiera przeciwnie skierowaną siłę na pudło f s μ s n UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

56 Tarcie kinetyczne i statyczne Trudniej poruszyć ciało niż utrzymać je w ruchu! Tarcie kinetyczne działa gdy ciało ślizga się po powierzchni dwie powierzchnie poruszają się względem siebie siła tarcia wzrasta, gdy rośnie siła normalna Empiryczne! f k = μ k n współczynnik tarcia kinetycznego UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

57 Przykład: Jazda na sankach z tarciem Jaki kąt, żeby sanki jechały ze stałą prędkością? Znajdź ten kąt w zależności od wagi w i współczynnika tarcia μ k. F x = wsin α f k = wsin α μ k n = 0 wsin α = μ k n Równowaga! F y = n wcos(α) = 0 n = wcos(α) UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

58 Przykład: Jazda na sankach z tarciem F x = wsin α f k = wsin α μ k n = 0 wsin α = μ k n F y = n wcos(α) = 0 n = wcos(α) wsin α = μ k wcos(α) μ k = sin(α) cos(α) = tg(α) UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

59 Przykład: przesuwanie skrzyni (tarcie) Chcesz przesunąć skrzynię o wadze w = 500N po poziomej podłodze. Aby ruszyć skrzynię musisz ciągnąć z siłą 230N, ale gdy już ruszy wystarczy 200N aby utrzymać stałą prędkość. Jakie są współczynniki tarcia statycznego i kinetycznego? Diagram tuż przed ruszeniem Diagram dla ruchu o stałej prędkości UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

60 Przykład: przesuwanie skrzyni (tarcie) przed ruszeniem F x = T + f s max = 0 f s max = T Równowaga! F y = n + w = 0 n = w f s max = μ s n μ s = f s max n = T w = 0.46 UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

61 Przykład: przesuwanie skrzyni (tarcie) po ruszeniu stała prędkość F x = T + ( f k ) = 0 f k = T Równowaga! F y = n + w = 0 n = w f k = μ k n μ k = f k n = T w = 0.40 UNIVERSITY PHYSICS, Copyright 2012 Pearson Education, Inc., publishing as Addison-Wesley

62 Do czytania ten wykład D. Halliday, R. Resnick, J. Walker Podstawy fizyki (2007), Tom 1, Rozdziały 1-4

Dynamika punktu materialnego Katarzyna Sznajd-Weron. Wykład dla Informatyki WPPT

Dynamika punktu materialnego Katarzyna Sznajd-Weron. Wykład dla Informatyki WPPT Dynamika punktu materialnego Katarzyna Sznajd-Weron Wykład dla Informatyki WPPT Fizycy lubią pytać Dlaczego? Dlaczego satelita nie spada na Ziemię? Dlaczego astronauta na statku kosmicznym znajduje się

Bardziej szczegółowo

Zastosowania zasad dynamiki Newtona Katarzyna Sznajd-Weron. Wykład dla Informatyki WPPT

Zastosowania zasad dynamiki Newtona Katarzyna Sznajd-Weron. Wykład dla Informatyki WPPT Zastosowania zasad dynamiki Newtona Katarzyna Sznajd-Weron Wykład dla Informatyki WPPT Zasady Dynamiki Newtona skrót (inercjalne układy odniesienia) 1. F = 0 a = 0 (definicja układu inercjalnego) 2. F

Bardziej szczegółowo

Zastosowania zasad dynamiki Newtona Katarzyna Sznajd-Weron. Wykład dla Matematyki Stosowanej

Zastosowania zasad dynamiki Newtona Katarzyna Sznajd-Weron. Wykład dla Matematyki Stosowanej Zastosowania zasad dynamiki Newtona Katarzyna Sznajd-Weron Wykład dla Matematyki Stosowanej Zasady Dynamiki Newtona skrót (inercjalne układy odniesienia) 1. σ F = 0 a = 0 (definicja układu inercjalnego)

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Fizyka 1- Mechanika Wykład 4 6.X.017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ III zasada dynamiki Zasada akcji i reakcji Każdemu działaniu

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,

Bardziej szczegółowo

MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu

MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu Prowadzący: dr Krzysztof Polko Dynamiczne równania ruchu Druga zasada dynamiki zapisana w postaci: Jest dynamicznym wektorowym równaniem ruchu. Dynamiczne

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 4 27.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 4 27.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Fizyka 1- Mechanika Wykład 4 27.X.2016 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ III zasada dynamiki Zasada akcji i reakcji Każdemu działaniu

Bardziej szczegółowo

Wykład FIZYKA I. 3. Dynamika punktu materialnego. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 3. Dynamika punktu materialnego.  Dr hab. inż. Władysław Artur Woźniak Wykład IZYKA I 3. Dynamika punktu materialnego Dr hab. inż. Władysław Artur Woźniak Instytut izyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Dynamika to dział mechaniki,

Bardziej szczegółowo

Oddziaływania te mogą być różne i dlatego można podzieli je np. na:

Oddziaływania te mogą być różne i dlatego można podzieli je np. na: DYNAMIKA Oddziaływanie między ciałami można ilościowo opisywać posługując się pojęciem siły. Działanie siły na jakieś ciało przejawia się albo w zmianie stanu ruchu tego ciała (zmianie prędkości), albo

Bardziej szczegółowo

Podstawy fizyki sezon 1 II. DYNAMIKA

Podstawy fizyki sezon 1 II. DYNAMIKA Podstawy fizyki sezon 1 II. DYNAMIKA Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka a dynamika Kinematyka

Bardziej szczegółowo

Podstawy fizyki sezon 1 II. DYNAMIKA

Podstawy fizyki sezon 1 II. DYNAMIKA Podstawy fizyki sezon 1 II. DYNAMIKA Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka a dynamika Kinematyka

Bardziej szczegółowo

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: Dynamika Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: mamy ciało (zachowujące się jak punkt materialny) o znanych właściwościach (masa, ładunek itd.),

Bardziej szczegółowo

DYNAMIKA dr Mikolaj Szopa

DYNAMIKA dr Mikolaj Szopa dr Mikolaj Szopa 17.10.2015 Do 1600 r. uważano, że naturalną cechą materii jest pozostawanie w stanie spoczynku. Dopiero Galileusz zauważył, że to stan ruchu nie zmienia się, dopóki nie ingerujemy I prawo

Bardziej szczegółowo

Fizyka 4. Janusz Andrzejewski

Fizyka 4. Janusz Andrzejewski Fizyka 4 Ruch jednostajny po okręgu 2 Ruch jednostajny po okręgu Ruch cząstki jest ruchem jednostajnym po okręgu jeśli porusza się ona po okręgu lub kołowym łuku z prędkością o stałej wartości bezwzględnej.

Bardziej szczegółowo

I zasada dynamiki Newtona

I zasada dynamiki Newtona I zasada dynamiki Newtona Każde ciało pozostaje w spoczynku lub porusza się ze stałą prędkością po linii prostej dopóki nie zadziała na nie niezrównoważona siła z zewnątrz. Jeśli! F i = 0! i v = 0 lub

Bardziej szczegółowo

Zasady dynamiki Isaak Newton (1686 r.)

Zasady dynamiki Isaak Newton (1686 r.) Zasady dynamiki Isaak Newton (1686 r.) I (zasada bezwładności) Istnieje taki układ odniesienia, w którym ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym, jeśli nie działają

Bardziej szczegółowo

Prawa ruchu: dynamika

Prawa ruchu: dynamika Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Dynamika ruchu po okręgu siła dośrodkowa Prawa ruchu w układzie nieinercjalnym siły bezwładności Prawa ruchu w układzie obracajacym się siła odśrodkowa siła

Bardziej szczegółowo

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski Elementy dynamiki klasycznej - wprowadzenie dr inż. Romuald Kędzierski Po czym można rozpoznać, że na ciało działają siły? Możliwe skutki działania sił: Po skutkach działania sił. - zmiana kierunku ruchu

Bardziej szczegółowo

DYNAMIKA SIŁA I JEJ CECHY

DYNAMIKA SIŁA I JEJ CECHY DYNAMIKA SIŁA I JEJ CECHY Wielkość wektorowa to wielkość fizyczna mająca cztery cechy: wartość liczbowa punkt przyłożenia (jest początkiem wektora, zaznaczamy na rysunku np. kropką) kierunek (to linia

Bardziej szczegółowo

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna

Bardziej szczegółowo

Dynamika: układy nieinercjalne

Dynamika: układy nieinercjalne Dynamika: układy nieinercjalne Spis treści 1 Układ inercjalny 2 Układy nieinercjalne 2.1 Opis ruchu 2.2 Prawa ruchu 2.3 Ruch poziomy 2.4 Równia 2.5 Spadek swobodny 3 Układy obracające się 3.1 Układ inercjalny

Bardziej szczegółowo

Zasady dynamiki przypomnienie wiadomości z klasy I

Zasady dynamiki przypomnienie wiadomości z klasy I Zasady dynamiki przypomnienie wiadomości z klasy I I zasada dynamiki Newtona Jeżeli na ciało nie działa żadna siła lub działające siły się równoważą, to ciało pozostaje w spoczynku lub porusza się ruchem

Bardziej szczegółowo

14P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (od początku do grawitacji)

14P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (od początku do grawitacji) Włodzimierz Wolczyński 14P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY (od początku do grawitacji) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią

Bardziej szczegółowo

Zasady dynamiki Newtona. dr inż. Romuald Kędzierski

Zasady dynamiki Newtona. dr inż. Romuald Kędzierski Zasady dynamiki Newtona dr inż. Romuald Kędzierski Czy do utrzymania ciała w ruchu jednostajnym prostoliniowym potrzebna jest siła? Arystoteles 384-322 p.n.e. Do utrzymania ciała w ruchu jednostajnym prostoliniowym

Bardziej szczegółowo

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Siły w przyrodzie Oddziaływania Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Występujące w przyrodzie rodzaje oddziaływań dzielimy na:

Bardziej szczegółowo

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego 1. Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, aby balon

Bardziej szczegółowo

Sprawdzian Na rysunku przedstawiono siłę, którą kula o masie m przyciąga kulę o masie 2m.

Sprawdzian Na rysunku przedstawiono siłę, którą kula o masie m przyciąga kulę o masie 2m. Imię i nazwisko Data Klasa Wersja A Sprawdzian 1. 1. Orbita każdej planety jest elipsą, a Słońce znajduje się w jednym z jej ognisk. Treść tego prawa podał a) Kopernik. b) Newton. c) Galileusz. d) Kepler..

Bardziej szczegółowo

Fizyka dla informatyków Wykład 2: Kinematyka Katarzyna Weron. Wykład dla Matematyki Stosowanej

Fizyka dla informatyków Wykład 2: Kinematyka Katarzyna Weron. Wykład dla Matematyki Stosowanej Fizyka dla informatyków Wykład 2: Kinematyka Katarzyna Weron Wykład dla Matematyki Stosowanej Kim jestem? Prof. dr hab. Katarzyna Weron (Sznajd- Weron w nauce/pub) Fizyk teoretyk, układy złożone (bio,

Bardziej szczegółowo

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone

Bardziej szczegółowo

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule Fizyka Kurs przygotowawczy na studia inżynierskie mgr Kamila Haule Siła Zasady dynamiki Newtona Skąd się bierze przyspieszenie? Siła powoduje przyspieszenie Siła jest wektorem! Siła jest przyczyną przyspieszania

Bardziej szczegółowo

Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia.

Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Grupa 1. Kinematyka 1. W ciągu dwóch sekund od wystrzelenia z powierzchni ziemi pocisk przemieścił się o 40 m w poziomie i o 53

Bardziej szczegółowo

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Siły - wektory Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub

Bardziej szczegółowo

Prawa ruchu: dynamika

Prawa ruchu: dynamika Prawa ruchu: dynamika Fizyka I (Mechanika) Wykład III: Bezwładność I zasada dynamiki, układ inercjalny II zasada dynamiki III zasada dynamiki Bezwładność Bezwładność (inercja) PWN 1998: właściwość układu

Bardziej szczegółowo

D Y N A M I K A Na początek kilka powodów dla których warto uczyć się dynamiki:

D Y N A M I K A Na początek kilka powodów dla których warto uczyć się dynamiki: D Y N A M I K A Na początek kilka powodów dla których warto uczyć się dynamiki: od odkryć Galileusza i Newtona w dynamice rozpoczęła się nowoczesna fizyka jest stosunkowo łatwy na poziomie liceum zawiera

Bardziej szczegółowo

2.3. Pierwsza zasada dynamiki Newtona

2.3. Pierwsza zasada dynamiki Newtona Wykład 3.3. Pierwsza zasada dynamiki Newtona 15 X 1997 r. z przylądka Canaveral na Florydzie została wystrzelona sonda Cassini. W 004r. minęła Saturna i wszystko wskazuje na to, że będzie dalej kontynuować

Bardziej szczegółowo

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności Zasady dynamiki Newtona Pęd i popęd Siły bezwładności Copyright by pleciuga@o2.pl Inercjalne układy odniesienia Układy inercjalne to takie układy odniesienia, względem których wszystkie ciała nie oddziałujące

Bardziej szczegółowo

Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc.

Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc. Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc. ZESTAW ZADAŃ NA ZAJĘCIA ROZGRZEWKA 1. Przypuśćmy, że wszyscy ludzie na świecie zgromadzili się w jednym miejscu na Ziemi i na daną komendę jednocześnie

Bardziej szczegółowo

Zakład Dydaktyki Fizyki UMK

Zakład Dydaktyki Fizyki UMK Toruński poręcznik do fizyki I. Mechanika Materiały dydaktyczne Krysztof Rochowicz Zadania przykładowe Dr Krzysztof Rochowicz Zakład Dydaktyki Fizyki UMK Toruń, czerwiec 2012 1. Samochód jadący z prędkością

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Wzorce sekunda Aktualnie niepewność pomiaru czasu to 1s na 70mln lat!!! 2 Modele w fizyce Uproszczenie problemów Tworzenie prostych modeli, pojęć i operowanie nimi 3 Opis ruchu Opis

Bardziej szczegółowo

09-TYP-2015 DYNAMIKA RUCHU PROSTOLINIOWEGO

09-TYP-2015 DYNAMIKA RUCHU PROSTOLINIOWEGO Włodzimierz Wolczyński 09-TYP-2015 POWTÓRKA PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII ROZSZERZONY DYNAMIKA RUCHU PROSTOLINIOWEGO Obejmuje działy u mnie wyszczególnione w konspektach jako 01 WEKTORY,

Bardziej szczegółowo

Zasady dynamiki Newtona. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Zasady dynamiki Newtona. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Zasady dynamiki Newtona Autorzy: Zbigniew Kąkol Kamil Kutorasiński 2019 Zasady dynamiki Newtona Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Podstawowa teoria, która pozwala przewidywać ruch ciał, składa

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Opis ruchu Opis ruchu Tor, równanie toru Zależność od czasu wielkości wektorowych: położenie przemieszczenie prędkość przyśpieszenie UWAGA! Ważne żeby zaznaczać w jakim układzie

Bardziej szczegółowo

τ = wyp τ i ! F = wyp Równowaga statyczna

τ = wyp τ i ! F = wyp Równowaga statyczna Równowaga statyczna Ciało sztywne znajduje się w równowadze statycznej tj. w bezruchu względem inercjalnego układu odniesienia - gdy wypadkowa siła oraz wypadkowy moment siły (liczony względem dowolnego

Bardziej szczegółowo

3. Zadanie nr 21 z rozdziału 7. książki HRW

3. Zadanie nr 21 z rozdziału 7. książki HRW Lista 3. do kursu Fizyka; rok. ak. 2012/13 sem. letni W. Inż. Środ.; kierunek Inż. Środowiska Tabele wzorów matematycznych (http://www.if.pwr.wroc.pl/~wsalejda/mat-wzory.pdf) i fizycznych (http://www.if.pwr.wroc.pl/~wsalejda/wzf1.pdf;

Bardziej szczegółowo

MECHANIKA 2 Wykład 3 Podstawy i zasady dynamiki

MECHANIKA 2 Wykład 3 Podstawy i zasady dynamiki MECHANIKA 2 Wykład 3 Podstawy i zasady dynamiki Prowadzący: dr Krzysztof Polko Wprowadzenie DYNAMIKA jest działem mechaniki opisującym ruch układu materialnego pod wpływem sił działających na ten układ.

Bardziej szczegółowo

Wykład 10. Ruch w układach nieinercjalnych

Wykład 10. Ruch w układach nieinercjalnych Wykład 10 Ruch w układach nieinercjalnych Prawa Newtona są słuszne jedynie w układach inercjalnych. Ściśle mówiąc układami inercjalnymi nazywamy takie układy odniesienia, które albo spoczywają, albo poruszają

Bardziej szczegółowo

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ

Bardziej szczegółowo

Zasady dynamiki Newtona

Zasady dynamiki Newtona Zasady dynamiki Newtona Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone nie zmuszają ciała do zmiany tego stanu Jeżeli na ciało nie działa

Bardziej szczegółowo

Ćwiczenie: "Dynamika"

Ćwiczenie: Dynamika Ćwiczenie: "Dynamika" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1. Układy nieinercjalne

Bardziej szczegółowo

I ZASADA DYNAMIKI. m a

I ZASADA DYNAMIKI. m a DYNAMIKA (cz.1) Zasady dynamiki Newtona Siły w mechanice - przykłady Zasady zachowania w mechanice Praca, energia i moc Pęd i zasada zachowania pędu Popęd siły Zderzenia ciał DYNAMIKA Oddziaływanie między

Bardziej szczegółowo

Siły oporu prędkość graniczna w spadku swobodnym

Siły oporu prędkość graniczna w spadku swobodnym FIZYKA I Wykład III Mechanika: Pojęcia podstawowe dynamika i punktu historiamaterialnego (VI) Siły oporu prędkość graniczna w spadku swobodnym s = v 0 t + at v 0 = 0; a = g; s = h h = gt F o = k v F g

Bardziej szczegółowo

Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr

Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr Podstawy fizyki Wykład 2 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Zasady dynamiki Newtona Układy inercjalne i nieinercjalne Siła Masa Przykłady sił Tarcie Opór Ruch jednostajny

Bardziej szczegółowo

Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska Podstawy fizyki Wykład 2 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Janusz Andrzejewski 2 Dynamika Zasady dynamiki Newtona Układy inercjalne i nieinercjalne Siła Masa Przykłady sił Tarcie

Bardziej szczegółowo

I. DYNAMIKA PUNKTU MATERIALNEGO

I. DYNAMIKA PUNKTU MATERIALNEGO I. DYNAMIKA PUNKTU MATERIALNEGO A. RÓŻNICZKOWE RÓWNANIA RUCHU A1. Bryła o masie m przesuwa się po chropowatej równi z prędkością v M. Podać dynamiczne równania ruchu bryły i rozwiązać je tak, aby wyznaczyć

Bardziej szczegółowo

Zasady dynamiki Newtona

Zasady dynamiki Newtona Zasady dynamiki Newtona 1. Znajdź masę ciała (poruszającego się po prostej), które pod działaniem siły o wartości F = 30 N w czasie t= 5s zmienia swą szybkość z v 1 = 15 m/s na v 2 = 30 m/s. 2. Znajdź

Bardziej szczegółowo

Wykład 7: Układy cząstek. WPPT, Matematyka Stosowana

Wykład 7: Układy cząstek. WPPT, Matematyka Stosowana Wykład 7: Układy cząstek WPPT, Matematyka Stosowana Jak odpowiesz na pytania? Honda CRV uderza w Hondę Civic jak będzie wyglądał wypadek? Uderzasz kijem w kule bilardowe czy to uda ci się trafić w kieszeń?

Bardziej szczegółowo

PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU. Piotr Nieżurawski. Wydział Fizyki. Uniwersytet Warszawski

PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU. Piotr Nieżurawski. Wydział Fizyki. Uniwersytet Warszawski PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU Piotr Nieżurawski pniez@fuw.edu.pl Wydział Fizyki Uniwersytet Warszawski http://www.fuw.edu.pl/~pniez/bioinformatyka/ 1 Co to jest praca? Dla punktu

Bardziej szczegółowo

14R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM ROZSZERZONY (od początku do grawitacji)

14R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM ROZSZERZONY (od początku do grawitacji) Włodzimierz Wolczyński 14R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY (od początku do grawitacji) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią

Bardziej szczegółowo

Wykład 2 Mechanika Newtona

Wykład 2 Mechanika Newtona Wykład Mechanika Newtona Dynamika jest nauką, która zajmuję się ruchem ciał z uwzględnieniem sił, które działają na ciało. Podstawą mechaniki klasycznej są trzy doświadczalne zasady, które po raz pierwszy

Bardziej szczegółowo

Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne.

Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. PRACA Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. Rozważmy sytuację, gdy w krótkim czasie działająca siła spowodowała przemieszczenie ciała o bardzo małą wielkość Δs Wtedy praca wykonana

Bardziej szczegółowo

Opory ruchu. Fizyka I (B+C) Wykład XII: Tarcie. Ruch w ośrodku

Opory ruchu. Fizyka I (B+C) Wykład XII: Tarcie. Ruch w ośrodku Opory ruchu Fizyka I (B+C) Wykład XII: Tarcie Lepkość Ruch w ośrodku Tarcie Tarcie kinetyczne Siła pojawiajaca się między dwoma powierzchniami poruszajacymi się względem siebie, dociskanymi siła N. Ścisły

Bardziej szczegółowo

ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał.

ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał. ZASADY DYNAMIKI Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał Dynamika klasyczna zbudowana jest na trzech zasadach podanych przez Newtona w 1687 roku I zasada dynamiki Istnieją

Bardziej szczegółowo

Przykładowe zdania testowe I semestr,

Przykładowe zdania testowe I semestr, Przykładowe zdania testowe I semestr, 2015-2016 Rozstrzygnij, które z podanych poniżej zdań są prawdziwe, a które nie. Podstawy matematyczno-fizyczne. Działania na wektorach. Zagadnienia kluczowe: Układ

Bardziej szczegółowo

09R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM ROZSZERZONY (dynamika ruchu prostoliniowego)

09R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM ROZSZERZONY (dynamika ruchu prostoliniowego) Włodzimierz Wolczyński 09R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY (dynamika ruchu prostoliniowego) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią

Bardziej szczegółowo

Prawa ruchu: dynamika

Prawa ruchu: dynamika Prawa ruchu: dynamika Fizyka I (B+C) Wykład XII: Siły sprężyste Opory ruchu Tarcie Lepkość Ruch w ośrodku Siła sprężysta Prawo Hooke a Opisuje zależność siły sprężystej od odkształcenia ciała: L Prawo

Bardziej szczegółowo

09P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (dynamika ruchu prostoliniowego)

09P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (dynamika ruchu prostoliniowego) Włodzimierz Wolczyński 09P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY (dynamika ruchu prostoliniowego) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią

Bardziej szczegółowo

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez

Bardziej szczegółowo

Mechanika klasyczna opiera się na trzech podstawowych prawach noszących nazwę zasad dynamiki Newtona. Przykładowe sformułowania tych zasad:

Mechanika klasyczna opiera się na trzech podstawowych prawach noszących nazwę zasad dynamiki Newtona. Przykładowe sformułowania tych zasad: III. DYAMIKA 7. Dynamika ruchu postępowego Mechanika klasyczna opiera się na trzech podstawowych prawach noszących nazwę zasad dynamiki ewtona. Przykładowe sformułowania tych zasad: I. Istnieje taki układ

Bardziej szczegółowo

W efekcie złożenia tych dwóch ruchów ciało porusza się ruchem złożonym po torze, który w tym przypadku jest łukiem paraboli.

W efekcie złożenia tych dwóch ruchów ciało porusza się ruchem złożonym po torze, który w tym przypadku jest łukiem paraboli. 1. Pocisk wystrzelony poziomo leciał t k = 10 *s+, spadł w odległości S = 600 *m+. Oblicz prędkośd początkową pocisku V0 =?, i z jakiej wysokości został wystrzelony, jak daleko zaleciałby ten pocisk, gdyby

Bardziej szczegółowo

Wydział Inżynierii Środowiska; kierunek Inż. Środowiska. Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni

Wydział Inżynierii Środowiska; kierunek Inż. Środowiska. Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni Wydział Inżynierii Środowiska; kierunek Inż. Środowiska Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni Tabele wzorów matematycznych i fizycznych oraz obszerniejsze listy zadań do kursu są dostępne

Bardziej szczegółowo

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość

Bardziej szczegółowo

Oddziaływania Grawitacja

Oddziaływania Grawitacja Oddziaływania Grawitacja OPRACOWANIE Oddziaływania. Żadne ciało nie jest wolne od oddziaływania innych ciał na nie. Każdy z nas poddany jest przyciąganiu ziemskiemu, które utrzymuje nas na powierzchni

Bardziej szczegółowo

8. OPORY RUCHU (6 stron)

8. OPORY RUCHU (6 stron) 8. OPORY RUCHU (6 stron) Wszystkie ciała poruszające się w naszym otoczeniu napotykają na mniejsze lub większe opory ruchu. Siły oporu są zawsze skierowane przeciwnie do kierunku wektora prędkości ciała

Bardziej szczegółowo

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą

Bardziej szczegółowo

Podstawy fizyki. Wykład 1. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

Podstawy fizyki. Wykład 1. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska Podstawy fizyki Wykład 1 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Użyteczne informacje Moja strona domowa: www.if.pwr.wroc.pl/~piosit informacje do wykładu: Dydaktyka/Mechaniczny Miejsce

Bardziej szczegółowo

Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18

Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Siły zachowawcze i energia potencjalna Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Polecana literatura John R Taylor, Mechanika klasyczna, tom1 Wydawnictwo Naukowe

Bardziej szczegółowo

Grupa A. Sprawdzian 2. Fizyka Z fizyką w przyszłość 1 Sprawdziany. Siła jako przyczyna zmian ruchu

Grupa A. Sprawdzian 2. Fizyka Z fizyką w przyszłość 1 Sprawdziany. Siła jako przyczyna zmian ruchu Szkoły ponadginazjalne Iię i nazwisko Data Klasa Grupa A Sprawdzian 2 Siła jako przyczyna zian ruchu 1. Przyspieszenie układu przedstawionego na rysunku a wartość (opory poijay) a. 1 7 g b. 2 7 g c. 1

Bardziej szczegółowo

Elementy dynamiki mechanizmów

Elementy dynamiki mechanizmów Elementy dynamiki mechanizmów Dynamika pojęcia podstawowe Dynamika dział mechaniki zajmujący się ruchem ciał materialnych pod działaniem sił. Głównym zadaniem dynamiki jest opis ruchu ciał pod działaniem

Bardziej szczegółowo

ZASADY DYNAMIKI NEWTONA

ZASADY DYNAMIKI NEWTONA ZASADY DYNAMIKI NEWTONA I. Jeżeli na ciało nie działa żadna siła lub działające siły się równoważą to ciało pozostaje w spoczynku lub porusza sie ruchem jednostajnym po linii prostej. Ta zasada często

Bardziej szczegółowo

Materiał powtórzeniowy dla klas pierwszych

Materiał powtórzeniowy dla klas pierwszych Materiał powtórzeniowy dla klas pierwszych 1. Paweł trzyma w ręku teczkę siłą 20N zwróconą do góry. Ciężar teczki ma wartośd: a) 0N b) 10N c) 20N d) 40N 2. Wypadkowa sił działających na teczkę trzymaną

Bardziej szczegółowo

Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów

Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów Fizyka dla Informatyków Wykład 8 Katedra Informatyki Stosowanej PJWSTK 2008 Spis treści Spis treści 1 Podstawowe równania hydrodynamiki 2 3 Równanie Bernoulliego 4 Spis treści Spis treści 1 Podstawowe

Bardziej szczegółowo

Materiały pomocnicze 6 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 6 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 6 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Energia mechaniczna. Energia mechaniczna dzieli się na energię kinetyczną i potencjalną. Energia kinetyczna

Bardziej szczegółowo

Treści dopełniające Uczeń potrafi:

Treści dopełniające Uczeń potrafi: P Lp. Temat lekcji Treści podstawowe 1 Elementy działań na wektorach podać przykłady wielkości fizycznych skalarnych i wektorowych, wymienić cechy wektora, dodać wektory, odjąć wektor od wektora, pomnożyć

Bardziej szczegółowo

FIZYKA Kolokwium nr 2 (e-test)

FIZYKA Kolokwium nr 2 (e-test) FIZYKA Kolokwium nr 2 (e-test) Rozwiązał i opracował: Maciej Kujawa, SKP 2008/09 (więcej informacji na końcu dokumentu) Zad. 1 Cegłę o masie 2kg położono na chropowatej desce. Następnie jeden z końców

Bardziej szczegółowo

Imię i nazwisko ucznia Data... Klasa... Ruch i siły wer. 1

Imię i nazwisko ucznia Data... Klasa... Ruch i siły wer. 1 Przygotowano za pomocą programu Ciekawa fizyka. Bank zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2011 strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Znajdź

Bardziej szczegółowo

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka ruchu

Bardziej szczegółowo

Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18

Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Siły zachowawcze i energia potencjalna Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Polecana literatura John R Taylor, Mechanika klasyczna, tom1 Wydawnictwo Naukowe

Bardziej szczegółowo

Prawa ruchu: dynamika

Prawa ruchu: dynamika Prawa ruchu: dynamika Spis treści 1 Bezwładność 2 I zasada dynamiki 2.1 Zasada bezwładności 2.2 Układ odniesienia 2.3 Ciało izolowane 2.4 Układ inercjalny 3 II zasada dynamiki 3.1 II prawo Newtona 3.2

Bardziej szczegółowo

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ

Bardziej szczegółowo

Fizyka I (mechanika), rok akad. 2011/2012 Zadania na ćwiczenia, seria 2

Fizyka I (mechanika), rok akad. 2011/2012 Zadania na ćwiczenia, seria 2 Fizyka I (mechanika), rok akad. 2011/2012 Zadania na ćwiczenia, seria 2 1 Zadania wstępne (dla wszystkich) Zadanie 1. Pewne ciało znajduje się na równi, której kąt nachylenia względem poziomu można regulować.

Bardziej szczegółowo

Jak zmieni się wartość siły oddziaływania między dwoma ciałami o masie m każde, jeżeli odległość między ich środkami zmniejszy się dwa razy.

Jak zmieni się wartość siły oddziaływania między dwoma ciałami o masie m każde, jeżeli odległość między ich środkami zmniejszy się dwa razy. I ABC FIZYKA 2018/2019 Tematyka kartkówek oraz zestaw zadań na sprawdzian - Dział I Grawitacja 1.1 1. Podaj główne założenia teorii geocentrycznej Ptolemeusza. 2. Podaj treść II prawa Keplera. 3. Odpowiedz

Bardziej szczegółowo

Podstawy fizyki wykład 9

Podstawy fizyki wykład 9 D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 4, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,

Bardziej szczegółowo

Zestaw zadań na I etap konkursu fizycznego. Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła :

Zestaw zadań na I etap konkursu fizycznego. Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła : Zestaw zadań na I etap konkursu fizycznego Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła : A) 5m/s B) 10m/s C) 20m/s D) 40m/s. Zad.2 Samochód o masie 1 tony poruszał

Bardziej szczegółowo

Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3.

Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3. Dynamika ruchu obrotowego Zauważyłem, że zadania dotyczące ruchu obrotowego bardzo często sprawiają maturzystom wiele kłopotów. A przecież wystarczy zrozumieć i stosować zasady dynamiki Newtona. Przeanalizujmy

Bardziej szczegółowo

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi) Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek

Bardziej szczegółowo

Elementy dynamiki mechanizmów

Elementy dynamiki mechanizmów Elementy dynamiki mechanizmów Dynamika pojęcia podstawowe Dynamika dział mechaniki zajmujący się ruchem ciał materialnych pod działaniem sił. Głównym zadaniem dynamiki jest opis ruchu ciał pod działaniem

Bardziej szczegółowo

Dynamika. Fizyka I (Mechanika) Wykład V: Prawa ruchu w układzie nieinercjalnym siły bezwładności

Dynamika. Fizyka I (Mechanika) Wykład V: Prawa ruchu w układzie nieinercjalnym siły bezwładności Dynamika Wykład V: Prawa ruchu w układzie nieinercjalnym siły bezwładności Fizyka I (Mechanika) Prawa ruchu w układzie obracajacym się siła odśrodkowa siła Coriolissa Zasada zachowania pędu Zasada zachowania

Bardziej szczegółowo

Twórcza szkoła dla twórczego ucznia Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Twórcza szkoła dla twórczego ucznia Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego SCENARIUSZ LEKCJI PRZEDMIOT: FIZYKA TEMAT: Pierwsza zasada dynamiki Bezwładność ciała AUTOR SCENARIUSZA: mgr Krystyna Glanc OPRACOWANIE ELEKTRONICZNO GRAFICZNE : mgr Beata Rusin TEMAT LEKCJI Pierwsza zasada

Bardziej szczegółowo

Plan wynikowy. z fizyki dla klasy pierwszej liceum profilowanego

Plan wynikowy. z fizyki dla klasy pierwszej liceum profilowanego Plan wynikowy z fizyki dla klasy pierwszej liceum profilowanego Kurs podstawowy z elementami kursu rozszerzonego koniecznymi do podjęcia studiów technicznych i przyrodniczych do programu DKOS-5002-38/04

Bardziej szczegółowo

Równania różniczkowe opisujące ruch fotela z pilotem:

Równania różniczkowe opisujące ruch fotela z pilotem: . Katapultowanie pilota z samolotu Równania różniczkowe opisujące ruch fotela z pilotem: gdzie D - siłą ciągu, Cd współczynnik aerodynamiczny ciągu, m - masa pilota i fotela, g przys. ziemskie, ρ - gęstość

Bardziej szczegółowo