nie zależy (z dok ladności a do jednostajnego homeomorfizmu) od wyboru ci agu uzbieżniaj acego c n. 1 min{n : x n y n }.

Wielkość: px
Rozpocząć pokaz od strony:

Download "nie zależy (z dok ladności a do jednostajnego homeomorfizmu) od wyboru ci agu uzbieżniaj acego c n. 1 min{n : x n y n }."

Transkrypt

1 A N A L I Z A F U N K C J O N A L N A PPI 2r., sem. letni LISTY 5-9 LISTA 5 Wroc law, 14 marca - 25 kwietnia 2006 ZADANIE 1. Niech (X 1,d 1 ), (X 2,d 2 ), (X 3,d 3 ),... bȩdzie ci agiem przestrzeni metrycznych ograniczonych o średnicach nie przekraczaj acych 1. Sprawdź, że w produkcie X 1 X 2 X 3 metryka produktowa d((x n ),(y n )) = n c n d n (x n,y n ), (gdzie c n > 0, n c n ) nie zależy (z dok ladności a do jednostajnego homeomorfizmu) od wyboru ci agu uzbieżniaj acego c n. ZADANIE2. WprodukcieX 1 X 2 X 3 jakwzadaniupoprzednimwprowadźmy metrykȩ,,supremum : d((x n ),(y n )) = sup n {d n (x n,y n )}. Sprawdź, że ta metryka nie jest równoważna z metryk a produktow a. ZADANIE 3. W {0,1} mamy metrykȩ naturaln a d(0,1) = 1, d(0,0) = d(1,1) = 0 (czyli dystkretn a). Sprawdź, że w {0,1} N metryka produktowa jest jednostajnie równoważna z wprowadzon a wcześniej (zwart a) metryk a d((x n ),(y n )) = 1 min{n : x n y n }. ZADANIE 4. Skończony ci ag binarny B = (b 1,b 2,...,b n ) {0,1} n nazwiemy,,blokiem. Sprawdź, że w {0,1} N,,cylinder nad blokiem B, czyli zbiór {x {0,1} N : x 1 = b 1,x 2 = b 2,...,x n = b n } jest otwarty i domkniȩty w metryce produktowej. ZADANIE 5. W przestrzeni C 0 (R) funkcji ci ag lych na R i maj acych granice 0 w plus i minus nieskończoności rozważmy normȩ supremum. Wykaż, że otrzymamy ośrodkow a przestrzeń liniowo-metryczn a. ZADANIE 6. Sprawdź, że przestrzeń z poprzedniego zadania jest izometrycznie izomorficzna z podprzestrzeni a C([0, 1]) sk ladaj ac a siȩ z funkcji f takich, że f(0) = f(1) = 0. ZADANIE 7. Sprawdź, że przestrzeń liniowo-metryczna c ci agów zbieżnych z norm a supremum jest izometrycznie izomorficzna z przestrzeni a C(Ω) funkcji ci ag lych na Ω, gdzie Ω jest przestrzeni a zwart a sk ladaj ac a siȩ z zera i ci agu ( 1 n ).

2 ZADANIE 8. Jakie zachodz a inkluzje pomiȩdzy zbiorami ci agów tworz acymi przestrzenie c, c 0, l 1, l 2 i l (ci agi ograniczone)? ZADANIE9. Rozważmyprzestrzenie(c,d sup ), (c 0,d sup ), (l 1,d 1 ), (l 1,d sup ), (l 2,d 2 ), (l 1,d 2 ), (l 2,d sup ). i (l,d sup ). Które z nich s a zupe lne? Które z nich s a ośrodkowe? LISTY 6-9 ZADANIE 10. Udowodnij, że w przestrzeni liniowej C(R) nie można wprowadzić normy takiej, że zbieżność punktowa funkcji implikuje zbieżność w normie, ani takiej, że zbieżność w normie implikuje zbieżność jednostajn a. ZADANIE 11. Wykaż, że zbiór ci agów sumowalnych z modu lem i o sumie (bez modu lów) zero jest gȩsty w l 2, ale nie w l 1. ZADANIE 12. Wykaż, że klasa bȩd aca elementem przestrzeni L 1 (R) zawiera co najwyżej jedn a funkcjȩ ci ag l a. To samo dla L 2 (R). ZADANIE 13. Sprawdź zupe lność i ośrodkowość przestrzeni l p i L p (µ). Wskaż bazȩ w l p. ROZWIA ZANIEdot. zupe lnościl p (µ). Zgodnieztwierdzeniemzwyk ladu,wystarczy wykazać, że każdy szereg bezwzglȩdnie zbieżny jest zbieżny. A wiȩc za lóżmy, że dany ci ag (f n ) ma zbieżny szereg norm, to znaczy, że ci ag sum k f p jest zbieżny (po k) do jakiejś liczby M. Oczywiście zbieżność ta jest niemalej aca, wiȩc M jest wiȩksza równa od wszystkich takich sum. Mamy wykazać zbieżność w normie ci agu funkcji k g k = f n. Rozważmy funkcje pomocnicze h k = k f n. Z podaddytywności normy mamy, dla każdego k k h k p fn k p = f p M. Oczywiście funkcje h k tworz a niemaj acy ci ag funkcji nieujemnych, wiȩc maj a one w każdym punkcie granicȩ h (na razie jest to tylko granica punktowa i być może przyjmuj aca wartości nieskończone). Funkcje h p k zbiegaj a niemalej aco (w każdym punkcie) do h p. Można wiȩc stosować twierdzenie Lebesgue a o zbieżności monotonicznej, czyli h p dµ = lim h p k dµ. k

3 Naobiestronynak ladamypotȩgȩ 1 p ipoprawejstronie,zci ag lościfunkcjipotȩgowej, możemy z potȩg a można wejść pod granicȩ. Wyjdzie: h p = lim k h k p M. W ten sposób wykazaliśmy, że funkcja h należy do L p (µ), w szczególności funkcja ta jest skończona na zborze X miary pe lnej i ca lka z h p jest skończona. Funkcjȩ h p zastosujemy za chwilȩ jako majorantȩ w Twierdzeniu Lebesgue a o zbieżności zmajoryzowanej. Wracamy do ci agu funkcji f n i ich sum czȩściowych g k. Przed wchwil a wykazaliśmy, że w każdym punkcie x zbioru X szereg f n(x) jest bezwzglȩdnie zbieżny, a wiȩc zbieżny (w R). Zatem na X funkcja graniczna f = f n jest dobrze zdefiniowana. Trzeba wykazać, że sumy skończone g k zbiegaj a do f w normie, tzn, że normy f g k p zbiegaj a po k do zera. Ale f g k to ogon szeregu, czyli trzeba wykazać, że funkcje n=k+1 f n zbiegaj a (po k) do zera w normie. Opuszczaja ac zewnȩtrzn a potȩgȩ (do 1 p ), mamy wykazać, że n=k+1 f n p dµ k 0 Pod ca lk a mamy ci ag funkcji nieujemnych zbieżny prawie wszȩdzie (na X ) do zera (w każdym punkcie s a to ogony szeregu zbieżnego). Wystarczy wiȩc wspólnie oszacować z góry wszystkie funkcje podca lkowe przez jedn a funkcjȩ nieujemn a o ca lce skończonej, aby zbieżność ca lek do zera wynika la z Tw. Lebesgue a. Mamy p ( p ( p f n f n ) f n ) = h p. n=k+1 n=k+1 Już wiemy, że h p ma ca lkȩ skończon a, wiȩc koniec dowodu. ZADANIE 14. Jakie zachodz a inkluzje pomiȩdzy zbiorami klas tworz acymi przestrzeniel 1 (R), L p (R)iL (R). Tosamopytaniedladziedziny[0,1]wmiejsceR(uwaga, bȩd a różnice!). ZADANIE 15. Czy ze zbieżności w L 1 wynika zbieżność prawie wszȩdzie? A na odwrót? ZADANIE 16. Podaj przyk lad ci agu funkcji na R zbieżnego w L 2 ale nie w L 1 oraz przeciwny przyk lad na [0, 1]. Czy s a przyk lady,w których zamienimy role R i [0, 1]? ZADANIE 17. Udowodnij, że normy równoważne s a zawsze lipshitzowsko równoważne. Wykaż, że w R n (lub C n ) wszystkie normy s a równoważne. ZADANIE 18. Czy prawd a jest, że jeśli za lożymy, że ci ag funkcji z L 1 L 2 zbiega do granicy należ acej do L 1 L 2, to zbieżność w normie L 1 jest równoważna ze zbieżności a w L 2. Czy to jest prawd a na R i [0,1]?

4 ZADANIE 19. Udowodnij, że w przestrzeni c 0 nie ma przeliczalnej bazy Hamela. ZADANIE 20. Podaj przyk lad przestrzeni o przeliczalnej bazie Hamela. Udowodnij, że w żadnej przestrzeni Banacha nie ma przeliczalnej bazy Hamela. ROZWIA ZANIE dot. przestrzeni Banacha. Niech B = {e 1,e 2,...} bȩdzie baz a Hamela w przestrzeni Banacha V. Od razu możemy za lożyć, że e n = 1 dla każdego n. Rozważmy podprzestrzenie V 0 = {0} i V n = Lin{e 1,e 2,...,e n } dla n 1. Ponieważ to s a przestrzenie skończenie-wymiarowe, to s a one domnkiȩte. Przypomnijmy, że odleg lość punktu od zbioru domkniȩtego, do którego ten punkt nie należy, jest liczb a dodatni a. Zdefiniujemy teraz ci ag (x n ), który tworzy szereg bezwzglȩdniezbieżnyaleniezbieżny. Niechx 1 = e 1. Niechǫ 0 = d(x 1,V 0 )(odleg lość punktu od zbioru domkniȩtego; w pierwszym kroku to jest akurat tyle samo co x 1 a to jest 1). Niech x 2 = ǫ0 3 e 2 Z niezależności zbioru {e 1,e 2 } wynika, że element x 1 +x 2 = e 1 + ǫ0 3 e 2 nie należy do V 1. Niech ǫ 1 = d(x 1 +x 2,V 1 ). Oczywiście ǫ 1 d(x 1 +x 2,x 1 ) = x 2 = ǫ0 3. I dalej indukcyjnie. Przypuśćmy, że dla i = 1,2,...,n zdefiniowaliśmy elementy x i w taki sposób, że odleg lość spe lnia (za lożenie indukcyjne) ǫ n 1 = d(x 1 +x 2 + +x n,v n 1 ) ǫ n 1 ǫ n 2 3. Niech x n+1 = ǫn 1 3 e n+1. Z niezależności zbioru {e 1,...,e n,e n+1 } wynika, że elementx 1 + +x n +x n+1 nienależydov n. Określmyǫ n = d(x 1 + +x n +x n+1,v n ) i zauważmy, że ǫ n d(x 1 + +x n +x n+1,x 1 + +x n ) = x n+1 = ǫ n 1 3, czyli, że za lożenie indukcyjne jest spe lnione dla n+1. W ten sposób skonstruowaliśmy ci ag x n (i liczby ǫ n ) o w lasności ǫ n ǫn 1 3 dla wszystklich n. Teraz zauważmy, że ci ag ǫ n tworzy szereg zbieżny, gdyż rekurencyjnie mamy ǫ n 1 3. Ale co najistotniejsze, mamy n również n=n 0+1 ǫ n ǫ n0 i=1 1 3 i = ǫ 1 n 0 2. Zatem ci ag x n tworzy szereg bezwzglȩdnie zbieżny, gdyż x n = ǫn 2 3 (dla n 2). Za lóżmy, że szereg ten jest zbieżny do pewnego x = x n. Z za lożenia o bazie Hamela, x musi należeć, do którejś podprzestrzeni V n0. Ale zauważmy, że odleg lość x 1 + +x n0 +x n0+1 od V n0 wynosi ǫ n0, zatem d(x,x 1 + +x n0 +x n0+1) nie może być mniejsza. Ale ta odleg lość to norma ogona szeregu n=n x 0+2 n, która nie przekracza ogona szeregu norm ǫ n3 n=n 0, a to nie przekracza ǫn ǫ 1 n 0 6 = ǫn 0 2. Sprzeczność. ZADANIE 21. Wskaż bazy topologiczne w c 0, c i l 2.

5 ZADANIE 22. Podaj przyk lad na to, że zbiór niezależny liniowo gȩsty nie musi być baz a topologiczn a (np. gdy jakiś element przestrzeni daje siȩ przybliżać kombinacjami liniowymi z tego zbioru, ale nie sumami czȩściowymi szeregu). Podaj inny przyk lad, gdzie nie ma jednoznaczności reprezentacji (na przyk lad dla zera). ZADANIE 23. Wykonaj rachunek pokazuj acy, że do sprawdzenia jednoznaczności przedstawienia wektora v jako szeregu w bazie B wystarczy to zrobić dla v = 0. ZADANIE 24. Wskaż bazȩ w przestrzeni funkcji ci ag lych na [0, 1] zeruj acych siȩ w ustalonym punkcie p. ZADANIE 26. W przestrzeni z iloczynem skalarnym wyprowadź warunek równoleg loboku: x+y 2 + x y 2 = 2 x 2 +2 y 2. ZADANIE 27. Przy za lożeniu warunku równoleg loboku wyprowadź wzór na iloczyn skalarny wyrażony wy l acznie za pomoc a normy. Sprawdź poprawność definicji. **************************************************************************** W zadaniach {e 1,e 2,...} jest uk ladem ortonormalnym w przestrzeni unitarnej V i x V. ZADANIE28. Sprawdź,żerzutortogonalnyx W napodprzestrzeńw = Lin{e 1,e 2,...,e n } jest jednoznaczny. ZADANIE 29. Sprawdź, że n x e i 2 x 2. i=1 ZADANIE 30. Niech x = n i=1 c ie i. Sprawdź, że x 2 = n i=1 c2 i. ZADANIE 31. Niech (c i ) l 2. Wykaż, że wtedy elementy x n = n i=1 c ie i tworz a ci ag podstawowy. ZADANIE 32. Wylicz, że jeśli istnieje granica x ci agu x n z poprzedniego zadania, to x 2 = c 2 i. i=1 **************************************************************************** ZADANIE33. Czywktórejśzprzestrzenic,c 0,l 1,l,L 1 (R),L (R),L 1 ([0,1]),L ([0,1]) da siȩ wprowadzić iloczyn skalarny zgodny z norm a?

6 ZADANIE 34. W przestrzeni L 2 (T) funkcji zespolonych ca lkowalnych z kwadratem modu lu na kole jednostkowym T = {z : z = 1}. iloczyn skalarny (zespolony) zadajemy wzorem f g = 1 2π f(z)g(z)dz. Udowodnij, żeuk ladfunkcji{γ n (z) = z n : n Z}jestbaz aortonormaln azespolonej przestrzeni Hilberta L 2 (T). ZADANIE 35. Czy L 2 ([0,1]) jest ośrodkow a przestrzeni a Hilberta? ZADANIE 36. Wykaż, że w przestrzeni Hilberta uk lad ortonormalny jest baz a wtedy i tylko wtedy gdy jedynym wektorem ortogonalnym do wszystkich wektorów bazy jest zero. ZADANIE 38. Wykaż, że każda rzeczywista ośrodkowa przestrzeń Hilberta jest izometrycznie izomorficzna z l 2. ZADANIE 39. Uk lad wielomianów 1,x,x 2,... jest liniowo niezależny w L 2 ([0,1]). Co otrzymamy po dokonaniu ortogonalizacji Gramma-Schmidta? Czy otrzymamy bazȩ? CZȨŚĆ ROZWIA ZANIA: Czȩści a rozwi azania jest wykazanie, że funkcje ci ag le leż a gȩsto w L 2 ([0,1]). Dan a funkcjȩ f L 2 ([0,1]) przybliżamy najpierw funkcj a ograniczon a. Uzyskujemytoobcinaj acf napoziomach M im: f M = min{ M,max{f,M}}. Ca lki f f M 2 dx zbiegaj a (przy M ) do zera, gdyż funkcje podca lkowe s a nieujemne i zbiegaj a punktowo do zera poniżej ca lkowalnej fukcji f 2. Nastȩpnie dowoln a funkcjȩ mierzaln a ograniczon a (np. f M ) można przybliżać jednostajnie funkcjami prostymi g n (to wiemy z teorii miary). Zbieżność jednostajna implikuje zbieżność w L 2 ([0,1]). Dalej, każda funkcja prosta g jest postaci k i=1 c i1 Ai, gdzie {A i } jest rozbiciem na zbiory mierzalne. Z regularności miary Lebesgue a, każdy ze zbiorów A i można przybliżyć z dok ladności a do ǫ kc i (w sensie miary) zawartym w nimzbioremdomkniȩtymf i izawieraj acymgozbioremotwartymu i. Ztwierdzenia Urysohnaistniejefunkcjaci ag laf i zeruj acasiȩpozazbioremu i irówna1naf i. Wtedy f i 1 Ai dx < ǫ kc i, a zatem, k lad ac f = k i=1 f i otrzymujemy g f dx < ǫ. W ten sposób przybliżyliśmy dowoln a funkcjȩ prost a funkcj a ci ag l a w L 1 ([0,1]), a ponieważ funkcja przybliżana i wszystkie przybliżaj ace funkcje s a wspólnie ograniczone, przybliżanie jest w L 2 ([0,1]). Koniec. ZADANIE 40. Niech f n = 2 1 [0, 1 2 n] [ 2 2 n, 3 2 n] [2n 1 2n,1] 1. Sprawdź, że uk lad {f n : n = 1,2,...} jest ortonormalny w L 2 ([0,1]). Czy jest on baz a? (Uk lad ten nazywa siȩ uk ladem Rademachera.)

7 ZADANIE 41. Sprawdź, że uk lad {sin(nx),cos(nx) : n = 1,2,...} jest baz a w L 2 ([ π,π]). CZȨŚĆROZWIA ZANIA:Gdzieśpodrodzetrzebapokazać,żewośrodkowejprzestrzeni Hilberta uk lad wektorów B = {v 1,v 2,...} ortonormalny i liniowo gȩsty jest baz a. To jest latwe. Wiemy, że rzut każdego wektora na przestrzeń domkniȩt a rozpiȩt a przez przeliczalny uk lad ortonormalny zapisuje siȩ jako szereg Fouriera nad tym uk ladem i jest to zapis jednoznaczny. Ale skoro lin(b) jest z za lożenia ca l a przestrzeni a, to rzut każdego wektora jest tymże wektorem. Czyli każdy wektor zapsiuje siȩ jednoznacznie jako szereg Fouriera nad B. Koniec. ZADANIE 42. Niech {x 1,x 2,...} bȩdzie uk ladem ortonormalnym w przestrzeni Hilberta V rozpinaj acym podprzestrzeń w laściw a W i niech x V. Wykaż, że rzut ortogonalny x W = n x n x x n jest najbliższym x-owi punktem podprzestrzeni W i jest to jedyny tak bliski punkt. ZADANIE 43. Rozwiń funkcjȩ y = x na [ π,π] w szereg Fouriera w bazie {1,sinnx,cosnx,n = 1,2,...}. ZADANIE 44. Dlaczego można powiedzieć, że ucho ludzkie to miȩdzy innymi przyrz ad do rozwijania funkcji w szereg Fouriera? Tomasz Downarowicz

Tomasz Downarowicz Instytut Matematyki i Informatyki Politechnika Wroc lawska Wroc law Wroc law, kwiecień 2011

Tomasz Downarowicz Instytut Matematyki i Informatyki Politechnika Wroc lawska Wroc law Wroc law, kwiecień 2011 Tomasz Downarowicz Instytut Matematyki i Informatyki Politechnika Wroc lawska 50-370 Wroc law Wroc law, kwiecień 2011 Analiza Funkcjonalna WPPT IIr. Wyk lady 4 i 5: Przestrzenie unitarne i Hilberta (rzeczywiste

Bardziej szczegółowo

Elementy analizy funkcjonalnej PRZESTRZENIE LINIOWE

Elementy analizy funkcjonalnej PRZESTRZENIE LINIOWE Elementy analizy funkcjonalnej PRZESTRZENIE LINIOWE Niech K = R lub K = C oraz X - dowolny zbiór. Określmy dwa dzia lania: dodawanie + : X X X i mnożenie przez liczbȩ : K X X, spe lniaj ace nastȩpuj ace

Bardziej szczegółowo

T O P O L O G I A WPPT I, sem. letni WYK LAD 8. Wroc law, 21 kwietnia D E F I N I C J E Niech (X, d) oznacza przestrzeń metryczn a.

T O P O L O G I A WPPT I, sem. letni WYK LAD 8. Wroc law, 21 kwietnia D E F I N I C J E Niech (X, d) oznacza przestrzeń metryczn a. T O P O L O G I A WPPT I, sem. letni WYK LAD 8 Zwartość D E F I N I C J E Niech (X, d) oznacza przestrzeń metryczn a. Wroc law, 1 kwietnia 008 Definicja 1. (X, d) jest ca lkowicie ograniczona jeśli dla

Bardziej szczegółowo

WPPT 2r., sem. letni KOLOKWIUM 1 Wroc law, 19 kwietnia 2011

WPPT 2r., sem. letni KOLOKWIUM 1 Wroc law, 19 kwietnia 2011 A N A L I Z A F U N K C J O N A L N A WPPT r, sem letni KOLOKWIUM Wroc law, 9 kwietnia 0 ZADANIE ab W pewnej przestrzeni mamy wie metryki i przy czym czyni nasz a przestrzeń zwart a a jest s labsza o (tzn

Bardziej szczegółowo

Analiza dla informatyków 2 DANI LI2 Pawe l Domański szkicowe notatki do wyk ladu

Analiza dla informatyków 2 DANI LI2 Pawe l Domański szkicowe notatki do wyk ladu Analiza dla informatyków 2 DANI LI2 Pawe l Domański szkicowe notatki do wyk ladu Wyk lad 5 1. Iloczyn ortogonalny funkcji Wróćmy na chwilȩ do dowodu wzorów Eulera-Fouriera. Kluczow a rolȩ odgrywa l wzór:

Bardziej szczegółowo

Informacja o przestrzeniach Hilberta

Informacja o przestrzeniach Hilberta Temat 10 Informacja o przestrzeniach Hilberta 10.1 Przestrzenie unitarne, iloczyn skalarny Niech dana będzie przestrzeń liniowa X. Załóżmy, że każdej parze elementów x, y X została przyporządkowana liczba

Bardziej szczegółowo

Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?

Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi? Zadania z Analizy Funkcjonalnej I - 1 1. Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi? a) X = R, d(x, y) = arctg x y ; b) X = R n, d(x, y) = x 1 y 1 + x 2 y 2 + max i 3 x i

Bardziej szczegółowo

a to, jako ogon szeregu zbieżnego można uczynić dowolnie ma lym wybieraj ac dostatecznei

a to, jako ogon szeregu zbieżnego można uczynić dowolnie ma lym wybieraj ac dostatecznei Analiza Funkcjonalna WPPT IIr. semestr letni 2011 WYK LADY 2 i 3: PRZESTRZENIE UNORMOWANE i BANACHA BAZA TOPOLOGICZNA 29/03/11 Definicja. Norm a w rzestrzeni liniowej V nazywamy funkcjȩ : V [0, ) se lniaj

Bardziej szczegółowo

Teoria miary WPPT IIr. semestr zimowy 2009 Wyk lady 6 i 7. Mierzalność w sensie Carathéodory ego Miara Lebesgue a na prostej

Teoria miary WPPT IIr. semestr zimowy 2009 Wyk lady 6 i 7. Mierzalność w sensie Carathéodory ego Miara Lebesgue a na prostej Teoria miary WPPT IIr. semestr zimowy 2009 Wyk lady 6 i 7. Mierzalność w sensie Carathéodory ego Miara Lebesgue a na prostej 27-28/10/09 ZBIORY MIERZALNE WZGLȨDEM MIARY ZEWNȨTRZNEJ Niech µ bȩdzie miar

Bardziej szczegółowo

Niech X bȩdzie dowolnym zbiorem. Dobry porz adek to relacja P X X (bȩdziemy pisać x y zamiast x, y P ) o w lasnościach:

Niech X bȩdzie dowolnym zbiorem. Dobry porz adek to relacja P X X (bȩdziemy pisać x y zamiast x, y P ) o w lasnościach: Teoria miary WPPT IIr semestr zimowy 2009 Wyk lad 4 Liczby kardynalne, indukcja pozaskończona DOBRY PORZA DEK 14/10/09 Niech X bȩdzie dowolnym zbiorem Dobry porz adek to relacja P X X (bȩdziemy pisać x

Bardziej szczegółowo

1 Przestrzenie metryczne

1 Przestrzenie metryczne Topologia I Notatki do wyk ladu LITERATURA UZUPE LNIAJA CA R. Duda, Wprowadzenie do topologii, czȩść I. R. Engelking, Topologia ogólna. R. Engelking, K. Sieklucki, Wstȩp do topologii. W. Rudin, Podstawy

Bardziej szczegółowo

T O P O L O G I A O G Ó L N A WPPT WYK LAD 14 Topologie w przestrzeniach funkcji ci ag lych, Twierdzenie Stone a Weierstrassa

T O P O L O G I A O G Ó L N A WPPT WYK LAD 14 Topologie w przestrzeniach funkcji ci ag lych, Twierdzenie Stone a Weierstrassa T O P O L O G I A O G Ó L N A WPPT WYK LAD 14 Topologie w przestrzeniach funkcji ci ag lych, Twierdzenie Stone a Weierstrassa Niech X i Y oznaczaj a przestrzenie topologiczne, zaś C(X,Y) bȩdzie zbiorem

Bardziej szczegółowo

Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?

Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi? Zadania z Analizy Funkcjonalnej I - 1 1. Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?. a) X = R, x = arctg x ; b) X = R n, d(x, y) = x 1 y 1 + x 2 y 2 + max i 3 x i y i ;

Bardziej szczegółowo

Zadania z Analizy Funkcjonalnej I* - 1

Zadania z Analizy Funkcjonalnej I* - 1 Zadania z Analizy Funkcjonalnej I* - 1 1. Która z następujących przestrzeni jest przestrzenią Banacha w normie supremum: C(R); C ogr (R) przestrzeń funkcji ciągłych ograniczonych; C zw (R) przestrzeń funkcji

Bardziej szczegółowo

1 Przestrzenie unitarne i przestrzenie Hilberta.

1 Przestrzenie unitarne i przestrzenie Hilberta. Przestrzenie unitarne i przestrzenie Hilberta.. Wykazać, że iloczyn skalarny w przestrzeni wektorowej X nad cia lem K ma nastepuj ace w lasności: (i) x, y + z = x, y + x, z, (ii) x, λy = λ x, y, (iii)

Bardziej szczegółowo

Analiza dla informatyków 1 DANI LI1 Pawe l Domański szkicowe notatki do wyk ladu

Analiza dla informatyków 1 DANI LI1 Pawe l Domański szkicowe notatki do wyk ladu Analiza dla informatyków 1 DANI LI1 Pawe l Domański szkicowe notatki do wyk ladu Wyk lad 4 1. Zbiory otwarte i domkniȩte Pojȩcia które teraz wprowadzimy można rozpatrywać w każdej przestrzeni metrycznej

Bardziej szczegółowo

2.7 Przestrzenie unormowane skończenie wymiarowe

2.7 Przestrzenie unormowane skończenie wymiarowe 2.7 Przestrzenie unormowane skończenie wymiarowe Rozważamy teraz przestrzenie unormowane X skończenie wymiarowe. Załóżmy, że dimx = m. Niech dalej e,e 2,...,e m będzie bazą algebraiczną tej przestrzeni

Bardziej szczegółowo

jest ciągiem elementów z przestrzeni B(R, R)

jest ciągiem elementów z przestrzeni B(R, R) Wykład 2 1 Ciągi Definicja 1.1 (ciąg) Ciągiem w zbiorze X nazywamy odwzorowanie x: N X. Dla uproszczenia piszemy x n zamiast x(n). Przykład 1. x n = n jest ciągiem elementów z przestrzeni R 2. f n (x)

Bardziej szczegółowo

Wyk lad 7 Baza i wymiar przestrzeni liniowej

Wyk lad 7 Baza i wymiar przestrzeni liniowej Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem

Bardziej szczegółowo

ci agi i szeregi funkcji Javier de Lucas Ćwiczenie 1. Zbadać zbieżność (punktow a i jednostajn a) ci agu funkcji nx 2 + x

ci agi i szeregi funkcji Javier de Lucas Ćwiczenie 1. Zbadać zbieżność (punktow a i jednostajn a) ci agu funkcji nx 2 + x ci agi i szeregi funkcji Javier de Lucas Ćwiczenie 1 Zbadać zbieżność (punktow a i jednostajn a) ci agu funkcji f n : [, [ x nx + x nx + 1, Rozwi azanie: Mówi siȩ, że ci ag funkcji f n zd aży punktowo

Bardziej szczegółowo

Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas

Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas Ćwiczenie 1. Dowieść, że jeśli U i V s a podprzestrzeniami n-wymiarowej przestrzeni wektorowej oraz dim U = r i dim V = s, to max(0,

Bardziej szczegółowo

Rozdzia l 11. Przestrzenie Euklidesowe Definicja, iloczyn skalarny i norma. iloczynem skalarnym.

Rozdzia l 11. Przestrzenie Euklidesowe Definicja, iloczyn skalarny i norma. iloczynem skalarnym. Rozdzia l 11 Przestrzenie Euklidesowe 11.1 Definicja, iloczyn skalarny i norma Definicja 11.1 Przestrzenia Euklidesowa nazywamy par e { X K,ϕ }, gdzie X K jest przestrzenia liniowa nad K, a ϕ forma dwuliniowa

Bardziej szczegółowo

n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = :

n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = : 4. Zbiory borelowskie. Zbiór wszystkich podzbiorów liczb naturalnych będziemy oznaczali przez ω. Najmniejszą topologię na zbiorze ω, w której zbiory {A ω : x A ω \ y}, gdzie x oraz y są zbiorami skończonymi,

Bardziej szczegółowo

Rozdzia l 2. Najważniejsze typy algebr stosowane w logice

Rozdzia l 2. Najważniejsze typy algebr stosowane w logice Rozdzia l 2. Najważniejsze typy algebr stosowane w logice 1. Algebry Boole a Definicja. Kratȩ dystrybutywn a z zerem i jedynk a, w której dla każdego elementu istnieje jego uzupe lnienie nazywamy algebr

Bardziej szczegółowo

Twierdzenie Stolza i metryki Javier de Lucas. a n = (2n + 1) 1 4 n 5 4

Twierdzenie Stolza i metryki Javier de Lucas. a n = (2n + 1) 1 4 n 5 4 Twierdzenie Stolza i metryki Javier de Lucas Zadanie Zbadać zbieżność ci agu i znaleźć granicȩ: a n 4 + 3 4 + + (2n + ) 4 n 5 4 Rozwi azanie: Żeby obliczyć tak a granicȩ korzystamy z twierdzenia Stolza,

Bardziej szczegółowo

Zdzisław Dzedzej. Politechnika Gdańska. Gdańsk, 2013

Zdzisław Dzedzej. Politechnika Gdańska. Gdańsk, 2013 Zdzisław Dzedzej Politechnika Gdańska Gdańsk, 2013 1 PODSTAWY 2 3 Definicja. Przestrzeń metryczna (X, d) jest zwarta, jeśli z każdego ciągu {x n } w X można wybrać podciąg zbieżny {x nk } w X. Ogólniej

Bardziej szczegółowo

1 Przestrzenie Hilberta

1 Przestrzenie Hilberta M. Beśka, Wykład monograficzny, Dodatek 1 1 Przestrzenie Hilberta 1.1 Podstawowe fakty o przestrzeniach Hilberta Niech H będzie przestrzenią liniową nad ciałem liczb rzeczywistych. Określmy odwzorowanie,

Bardziej szczegółowo

Wyk lad 6 Podprzestrzenie przestrzeni liniowych

Wyk lad 6 Podprzestrzenie przestrzeni liniowych Wyk lad 6 Podprzestrzenie przestrzeni liniowych 1 Określenie podprzestrzeni Definicja 6.1. Niepusty podzbiór V 1 V nazywamy podprzestrzeni przestrzeni liniowej V, jeśli ma on nastepuj ace w lasności: (I)

Bardziej szczegółowo

T O P O L O G I A O G Ó L N A. WPPT WYK LAD 13 Ci agi uogólnione, topologie w przestrzeniach produktowych

T O P O L O G I A O G Ó L N A. WPPT WYK LAD 13 Ci agi uogólnione, topologie w przestrzeniach produktowych T O P O L O G I A O G Ó L N A WPPT WYK LAD 13 Ci agi uogólnione, topologie w przestrzeniach produktowych Definicja. Przez rodzinȩ skierowan a rozumiemy dowolny zbiór z porz adkiem czȩściowym (K, ), taki

Bardziej szczegółowo

Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki.

Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. 3. Funkcje borelowskie. Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. (1): Jeśli zbiór Y należy do rodziny F, to jego dopełnienie X

Bardziej szczegółowo

STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1

STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1 1 STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1 Klasyczny Rachunek Prawdopodobieństwa. 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany. Posiadamy

Bardziej szczegółowo

Wykład 1. Przestrzeń Hilberta

Wykład 1. Przestrzeń Hilberta Wykład 1. Przestrzeń Hilberta Sygnały. Funkcje (w języku inżynierów - sygnały) które będziemy rozważali na tym wykładzie będą kilku typów Sygnały ciągłe (analogowe). ) L (R) to funkcje na prostej spełniające

Bardziej szczegółowo

Wyk lad 9 Baza i wymiar przestrzeni liniowej

Wyk lad 9 Baza i wymiar przestrzeni liniowej Wyk lad 9 Baza i wymiar przestrzeni liniowej 1 Operacje elementarne na uk ladach wektorów Niech α 1,..., α n bed dowolnymi wektorami przestrzeni liniowej V nad cia lem K. Wyróżniamy nastepuj ace operacje

Bardziej szczegółowo

Wykład 1. Przestrzeń Hilberta

Wykład 1. Przestrzeń Hilberta Wykład 1. Przestrzeń Hilberta Sygnały. Funkcje (w języku inżynierów - sygnały) które będziemy rozważali na tym wykładzie będą kilku typów Sygnały ciągłe (analogowe). ) L 2 (R) to funkcje na prostej spełniające

Bardziej szczegółowo

z n n=1 S n nazywamy sum a szeregu. Szereg, który nie jest zbieżny, nazywamy rozbieżnym. n=1

z n n=1 S n nazywamy sum a szeregu. Szereg, który nie jest zbieżny, nazywamy rozbieżnym. n=1 3 Szeregi zespolone 3. Szeregi liczbowe Mówimy, że szereg o wyrazach zespolonych jest zbieżny, jeżeli ci ag jego sum czȩściowych {S n }, gdzie S n = z + z +... + jest zbieżny do granicy w laściwej. Granicȩ

Bardziej szczegółowo

1 Relacje i odwzorowania

1 Relacje i odwzorowania Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X

Bardziej szczegółowo

Wyk lad 11 1 Wektory i wartości w lasne

Wyk lad 11 1 Wektory i wartości w lasne Wyk lad 11 Wektory i wartości w lasne 1 Wektory i wartości w lasne Niech V bedzie przestrzenia liniowa nad cia lem K Każde przekszta lcenie liniowe f : V V nazywamy endomorfizmem liniowym przestrzeni V

Bardziej szczegółowo

Zadania do Rozdziału X

Zadania do Rozdziału X Zadania do Rozdziału X 1. 2. Znajdź wszystkie σ-ciała podzbiorów X, gdy X = (i) {1, 2}, (ii){1, 2, 3}. (b) Znajdź wszystkie elementy σ-ciała generowanego przez {{1, 2}, {2, 3}} dla X = {1, 2, 3, 4}. Wykaż,

Bardziej szczegółowo

W poszukiwaniu kszta ltów kulistych

W poszukiwaniu kszta ltów kulistych W poszukiwaniu kszta ltów kulistych Piotr Mankiewicz April 4, 2005 Konwersatorium dla doktorantów Notacje 1 Cia lo wypuk le - wypuk ly, domkniȩty podzbiór ograniczony w R n. Odleg lość geometryczna dwóch

Bardziej szczegółowo

TOPOLOGIA PRZESTRZENI METRYCZNYCH, ZWARTOŚĆ,

TOPOLOGIA PRZESTRZENI METRYCZNYCH, ZWARTOŚĆ, TOPOLOGIA PRZESTRZENI METRYCZNYCH, ZWARTOŚĆ, SPÓJNOŚĆ I POJȨCIA BLISKIE (DO UŻYTKU WEWNȨTRZNEGO, I DO SPRAWDZENIA) R R Abstract. Poniższe notatki do ćwiczeń zbieraj a podstawowe pojȩcia i stwierdzenia

Bardziej szczegółowo

Analiza matematyczna / Witold Kołodziej. wyd Warszawa, Spis treści

Analiza matematyczna / Witold Kołodziej. wyd Warszawa, Spis treści Analiza matematyczna / Witold Kołodziej. wyd. 5. - Warszawa, 2010 Spis treści Wstęp 1. Podstawowe pojęcia mnogościowe 13 1. Zbiory 13 2. Działania na zbiorach 14 3. Produkty kartezjańskie 15 4. Relacje

Bardziej szczegółowo

Analiza funkcjonalna 1.

Analiza funkcjonalna 1. Analiza funkcjonalna 1. Wioletta Karpińska Semestr letni 2015/2016 0 Bibliografia [1] Banaszczyk W., Analiza matematyczna 3. Wykłady. (http://math.uni.lodz.pl/ wbanasz/am3/) [2] Birkholc A., Analiza matematyczna.

Bardziej szczegółowo

ANALIZA II 15 marca 2014 Semestr letni. Ćwiczenie 1. Czy dan a funkcjȩ da siȩ dookreślić w punkcie (0, 0) tak, żeby otrzymana funkcja by la ci ag la?

ANALIZA II 15 marca 2014 Semestr letni. Ćwiczenie 1. Czy dan a funkcjȩ da siȩ dookreślić w punkcie (0, 0) tak, żeby otrzymana funkcja by la ci ag la? Ci ag lość i norma Ćwiczenie. Czy dan a funkcjȩ da siȩ dookreślić w punkcie (0, 0) tak, żeby otrzymana funkcja by la ci ag la? f (x, y) = x2 y 2 x 2 + y 2, f 2(x, y) = x2 y x 2 + y 2 f 3 (x, y) = x2 y

Bardziej szczegółowo

Twierdzenie spektralne

Twierdzenie spektralne Twierdzenie spektralne Algebrę ograniczonych funkcji borelowskich na K R będziemy oznaczać przez B (K). Spektralnym rozkładem jedności w przestrzeni Hilberta H nazywamy odwzorowanie, które każdemu zbiorowi

Bardziej szczegółowo

7. Miara, zbiory mierzalne oraz funkcje mierzalne.

7. Miara, zbiory mierzalne oraz funkcje mierzalne. 7. Miara, zbiory mierzalne oraz funkcje mierzalne. Funkcję rzeczywistą µ nieujemną określoną na ciele zbiorów S będziemy nazywali miarą, gdy dla dowolnego ciągu A 0, A 1,... zbiorów rozłącznych należących

Bardziej szczegółowo

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie 1 Dzielenie wielomianów Wyk lad 12 Ważne pierścienie Definicja 12.1. Niech P bedzie pierścieniem, który może nie być dziedzina ca lkowitości. Powiemy, że w pierścieniu P [x] jest wykonalne dzielenie z

Bardziej szczegółowo

Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera

Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Określenie podpierścienia Definicja 9.. Podpierścieniem pierścienia (P, +,, 0, ) nazywamy taki podzbiór A P, który jest pierścieniem ze wzgledu

Bardziej szczegółowo

Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania

Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania 1 Przekszta lcenia liniowe i ich w lasności Definicja 9.1. Niech V i W bed przestrzeniami liniowymi. Przekszta lcenie f : V W spe lniajace warunki:

Bardziej szczegółowo

OSOBNO ANALITYCZNYCH

OSOBNO ANALITYCZNYCH Uniwersytet Jagielloński Instytut Matematyki Zbigniew B locki ZBIORY OSOBLIWOŚCI FUNKCJI OSOBNO ANALITYCZNYCH Praca magisterska Promotor: Prof. dr hab. Józef Siciak Kraków 99 .Wstȩp. Jeśli Ω jest zbiorem

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa - 12

Zadania z Rachunku Prawdopodobieństwa - 12 Zadania z Rachunku Prawdopodobieństwa - 12 1. Udowodnij, że dla dowolnych punktów x n, x w przestrzeni metrycznej E δ xn δ x wtedy i tylko wtedy gdy x n x. 2. Wykaż, że 1 n n k=1 δ k/n λ, gdzie λ jest

Bardziej szczegółowo

Wykład 21 Funkcje mierzalne. Kostrukcja i własności całki wzglȩdem miary przeliczalnie addytywnej

Wykład 21 Funkcje mierzalne. Kostrukcja i własności całki wzglȩdem miary przeliczalnie addytywnej Wykład 2 Funkcje mierzalne. Kostrukcja i własności całki wzglȩdem miary przeliczalnie addytywnej czȩść II (opracował: Piotr Nayar) Definicja 2.. Niech (E, E) bȩdzie przestrzenia mierzalna i niech λ : E

Bardziej szczegółowo

Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka

Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka Zagadnienie Dualne Zadania Programowania Liniowego Seminarium Szkoleniowe Edyta Mrówka Ogólne zagadnienie PL Znajdź taki wektor X = (x 1, x 2,..., x n ), który minimalizuje kombinacje liniow a przy ograniczeniach

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA

STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1 STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany.

Bardziej szczegółowo

Rozdzia l 9. Zbiory liczb porz adkowych. Liczby porz adkowe izolowane i graniczne

Rozdzia l 9. Zbiory liczb porz adkowych. Liczby porz adkowe izolowane i graniczne Rozdzia l 9. Zbiory liczb porz adkowych. Liczby porz adkowe izolowane i graniczne 1. Kresy wzglȩdem dowolnego zbioru liczb porz adkowych Poświȩcimy teraz uwagȩ przede wszystkich kratowym w lasnościom klasy

Bardziej szczegółowo

7 Twierdzenie Fubiniego

7 Twierdzenie Fubiniego M. Beśka, Wstęp do teorii miary, wykład 7 19 7 Twierdzenie Fubiniego 7.1 Miary produktowe Niech i będą niepustymi zbiorami. Przez oznaczmy produkt kartezjański i tj. zbiór = { (x, y : x y }. Niech E oraz

Bardziej szczegółowo

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ.

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ. 8 Baza i wymiar Definicja 8.1. Bazą przestrzeni liniowej nazywamy liniowo niezależny układ jej wektorów, który generuję tę przestrzeń. Innymi słowy, układ B = (v i ) i I wektorów z przestrzeni V jest bazą

Bardziej szczegółowo

Wykład 10. Stwierdzenie 1. X spełnia warunek Borela wtedy i tylko wtedy, gdy każda scentrowana rodzina zbiorów domkniętych ma niepusty przekrój.

Wykład 10. Stwierdzenie 1. X spełnia warunek Borela wtedy i tylko wtedy, gdy każda scentrowana rodzina zbiorów domkniętych ma niepusty przekrój. Wykład 10 Twierdzenie 1 (Borel-Lebesgue) Niech X będzie przestrzenią zwartą Z każdego pokrycia X zbiorami otwartymi można wybrać podpokrycie skończone Dowód Lemat 1 Dla każdego pokrycia U przestrzeni ośrodkowej

Bardziej szczegółowo

Wyk lad 14 Cia la i ich w lasności

Wyk lad 14 Cia la i ich w lasności Wyk lad 4 Cia la i ich w lasności Charakterystyka cia la Określenie cia la i w lasności dzia lań w ciele y ly omówione na algerze liniowej. Stosujac terminologie z teorii pierścieni możemy powiedzieć,

Bardziej szczegółowo

Liczby zespolone, liniowa zależność i bazy Javier de Lucas. a d b c. ad bc

Liczby zespolone, liniowa zależność i bazy Javier de Lucas. a d b c. ad bc Liczby zespolone, liniowa zależność i bazy Javier de Lucas Ćwiczenie. Dowieść, że jeśli µ := c d d c, to homografia h(x) = (ax+b)/(cx+d), a, b, c, d C, ad bc, odwzorowuje oś rzeczywist a R C na okr ag

Bardziej szczegółowo

zbiorów domkniętych i tak otrzymane zbiory domknięte ustawiamy w ciąg. Oznaczamy

zbiorów domkniętych i tak otrzymane zbiory domknięte ustawiamy w ciąg. Oznaczamy 5. Funkcje 1 klasy Baire a. Pod koniec XIX i początkiem XX wieku kilku matematyków zajmowało się problemami dotyczącymi klasyfikacji funkcji borelowskich: między innymi R. Baire, E. Borel, H. Lebesgue

Bardziej szczegółowo

Foliacje symetralnymi w zespolonej przestrzeni hiperbolicznej

Foliacje symetralnymi w zespolonej przestrzeni hiperbolicznej Foliacje symetralnymi w zespolonej przestrzeni hiperbolicznej Maciej Czarnecki Uniwersytet Lódzki 8 Forum Matematyków Polskich Lublin, 21 września 2017 r. Forma hermitowska na C n+1 X Y = X 1 Y 1 +...

Bardziej szczegółowo

ROZDZIA l 13. Zbiór Cantora

ROZDZIA l 13. Zbiór Cantora ROZDZIA l 3 Zbiór Cantora Jednym z najciekawszych i najcze ściej spotykanych w matematyce zbiorów jest zbiór Cantora W tym rozdziale opiszemy jego podstawowe w lasności topologiczne Najprościej można go

Bardziej szczegółowo

1 + iϕ n. = cos ϕ + i sin ϕ. e n z n n n. c M n z n, c n z Mn.

1 + iϕ n. = cos ϕ + i sin ϕ. e n z n n n. c M n z n, c n z Mn. WRAiT 2 #1 1. Dla jakich a C ciągi o wyrazach na n, a n 1 + a n, an /n, są zbieżne? 2. Wykaż zbieżność i znajdź granice ciągów n a k, a n 1 + a 2n ( a < 1), a n 1 + a 2n ( a > 1), 1 n 3. Dla danego ϕ R

Bardziej szczegółowo

Analiza Funkcjonalna - Zadania

Analiza Funkcjonalna - Zadania Analiza Funkcjonalna - Zadania 1 Wprowadzamy następujące oznaczenia. K oznacza ciało liczb rzeczywistych lub zespolonych. Jeżeli T jest dowolnym zbiorem niepustym, to l (T ) = {x : E K : x funkcja ograniczona}.

Bardziej szczegółowo

Geometria odwzorowań inżynierskich rzut środkowy 06A

Geometria odwzorowań inżynierskich rzut środkowy 06A Scriptiones Geometrica Volumen I (2014), No. 6A, 1 10. Geometria odwzorowań inżynierskich rzut środkowy 06A Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Rzut środkowy i jego niezmienniki Przyjmijmy

Bardziej szczegółowo

1 Ciągłe operatory liniowe

1 Ciągłe operatory liniowe 1 Ciągłe operatory liniowe Załóżmy, że E, F są przestrzeniami unormowanymi. Definicja 1.1. Operator liniowy T : E F nazywamy ograniczonym, jeżeli zbiór T (B) F jest ograniczony dla dowolnego zbioru ograniczonego

Bardziej szczegółowo

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone Rozdział 4 Ciągi nieskończone W rozdziale tym wprowadzimy pojęcie granicy ciągu. Dalej rozszerzymy to pojęcie na przypadek dowolnych funkcji. Jak zauważyliśmy we wstępie jest to najważniejsze pojęcie analizy

Bardziej szczegółowo

Sterowalność liniowych uk ladów sterowania

Sterowalność liniowych uk ladów sterowania Sterowalność liniowych uk ladów sterowania W zadaniach sterowania docelowego należy przeprowadzić obiekt opisywany za pomoc a równania stanu z zadanego stanu pocz atkowego ẋ(t) = f(x(t), u(t), t), t [t,

Bardziej szczegółowo

Wyk lad 3 Wielomiany i u lamki proste

Wyk lad 3 Wielomiany i u lamki proste Wyk lad 3 Wielomiany i u lamki proste 1 Konstrukcja pierścienia wielomianów Niech P bedzie dowolnym pierścieniem, w którym 0 1. Oznaczmy przez P [x] zbiór wszystkich nieskończonych ciagów o wszystkich

Bardziej szczegółowo

Robert Kowalczyk. Zbiór zadań z teorii miary i całki

Robert Kowalczyk. Zbiór zadań z teorii miary i całki Robert Kowalczyk Zbiór zadań z teorii miary i całki 2 Zadanie 1 Pokazać, że poniższe dwie definicje σ-ciała M są równoważne: (i) Rodzinę M podzbiorów przestrzeni X nazywamy σ-ciałem jeżeli zachodzą następujące

Bardziej szczegółowo

Cia la i wielomiany Javier de Lucas

Cia la i wielomiany Javier de Lucas Cia la i wielomiany Javier de Lucas Ćwiczenie 1. Za lóż, że (F, +,, 1, 0) jest cia lem i α, β F. w laściwości s a prawd a? Które z nastȩpuj acych 1. 0 α = 0. 2. ( 1) α = α. 3. Każdy element zbioru F ma

Bardziej szczegółowo

Wyk lad 8 macierzy i twierdzenie Kroneckera-Capellego

Wyk lad 8 macierzy i twierdzenie Kroneckera-Capellego Wyk lad 8 Rzad macierzy i twierdzenie Kroneckera-Capellego 1 Określenie rz edu macierzy Niech A bedzie m n - macierza Wówczas wiersze macierzy A możemy w naturalny sposób traktować jako wektory przestrzeni

Bardziej szczegółowo

Analiza matematyczna 2, cze ść dziesia ta

Analiza matematyczna 2, cze ść dziesia ta Analiza matematyczna 2, cze ść dziesia ta Informacja ogólna dla tych, którzy jeszcze ze mna chca rozmawiać o stopniach: zdecydowana wie kszość twierdzeń w matematyce, w analizie w szczególności, sk lada

Bardziej szczegółowo

MATEMATYKA DYSKRETNA - wyk lad 1 dr inż Krzysztof Bryś. Wprowadzenie

MATEMATYKA DYSKRETNA - wyk lad 1 dr inż Krzysztof Bryś. Wprowadzenie 1 MATEMATYKA DYSKRETNA - wyk lad 1 dr inż Krzysztof Bryś Wprowadzenie Istniej a dwa różne kryteria mówi ace, które narzȩdzia matematyczne należy zaliczyć do matematyki dyskretnej. Pierwsze definiuje matematykȩ

Bardziej szczegółowo

2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11

2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11 M. Beśka, Wstęp do teorii miary, rozdz. 2 11 2 Rodziny zbiorów 2.1 Algebry i σ - algebry zbiorów Niech X będzie niepustym zbiorem. Rodzinę indeksowaną zbiorów {A i } i I 2 X nazywamy rozbiciem zbioru X

Bardziej szczegółowo

(b) Suma skończonej ilości oraz przekrój przeliczalnej ilości zbiorów typu G α

(b) Suma skończonej ilości oraz przekrój przeliczalnej ilości zbiorów typu G α FUNKCJE BORELOWSKIE Rodzinę F podzbiorów zbioru X (tzn. F X) będziemy nazywali ciałem gdy spełnione są warunki: (1) Jeśli zbiór Y F, to dopełnienie X \ Y też należy do rodziny F. (2) Jeśli S F jest skończoną

Bardziej szczegółowo

Wersja testu D 14 września 2011 r. 1. Czy prawda jest, że a) x Z y Z y 2 = 2 ; b) x Z y Z x 2 = 1 ; c) x Z y Z x 2 = 2 ; d) x Z y Z y 2 = 1?

Wersja testu D 14 września 2011 r. 1. Czy prawda jest, że a) x Z y Z y 2 = 2 ; b) x Z y Z x 2 = 1 ; c) x Z y Z x 2 = 2 ; d) x Z y Z y 2 = 1? 1. Czy prawda jest, że a) x Z y Z y 2 = 2 ; b) x Z y Z x 2 = 1 ; c) x Z y Z x 2 = 2 ; d) x Z y Z y 2 = 1? 2. Czy prawda jest, że a) 5 8 1 jest podzielne przez 4 ; b) 5 7 1 jest podzielne przez 4 ; c) 3

Bardziej szczegółowo

Pierwsze kolokwium z Matematyki I 4. listopada 2013 r. J. de Lucas

Pierwsze kolokwium z Matematyki I 4. listopada 2013 r. J. de Lucas Pierwsze kolokwium z Matematyki I 4. listopada 03 r. J. de Lucas Uwagi organizacyjne: Każde zadanie rozwi azujemy na osobnej kartce, opatrzonej imieniem i nazwiskiem w lasnym oraz osoby prowadz acej ćwiczenia,

Bardziej szczegółowo

Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi

Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi M. Beśka, Wstęp do teorii miary, Dodatek 158 10 Dodatek 10.1 Przestrzenie metryczne Niech X będzie niepustym zbiorem. Funkcję d : X X [0, ) spełniającą dla x, y, z X warunki (i) d(x, y) = 0 x = y, (ii)

Bardziej szczegółowo

Sterowanie optymalne dla uk ladów nieliniowych. Zasada maksimum Pontriagina.

Sterowanie optymalne dla uk ladów nieliniowych. Zasada maksimum Pontriagina. Sterowanie optymalne dla uk ladów nieliniowych. Zasada maksimum Pontriagina. Podstawowy problem sterowania optymalnego dla uk ladów nieliniowych W podstawowym problemie sterowania optymalnego minimalizacji

Bardziej szczegółowo

Przestrzenie wektorowe, liniowa niezależność Javier de Lucas

Przestrzenie wektorowe, liniowa niezależność Javier de Lucas Przestrzenie wektorowe, liniowa niezależność Javier de Lucas Ćwiczenie 1. W literaturze można znaleźć pojȩcia przestrzeni liniowej i przestrzeni wektorowej. Obie rzeczy maj a tak a sam a znaczenie. Nastȩpuj

Bardziej szczegółowo

LOGIKA ALGORYTMICZNA

LOGIKA ALGORYTMICZNA LOGIKA ALGORYTMICZNA 0.0. Relacje. Iloczyn kartezjański: A B := (a, b) : a A i b B} (zak ladamy, że (x, y) i (u, v) s a równe wtedy i tylko wtedy gdy x = u i y = v); A n := (x 1,..., x n ) : x i A}; R

Bardziej szczegółowo

P (x, y) + Q(x, y)y = 0. g lym w obszrze G R n+1. Funkcje. zania uk ladu (1) o wykresie przebiegaja

P (x, y) + Q(x, y)y = 0. g lym w obszrze G R n+1. Funkcje. zania uk ladu (1) o wykresie przebiegaja 19. O ca lkach pierwszych W paragrafie 6 przy badaniu rozwia zań równania P (x, y) + Q(x, y)y = 0 wprowadzono poje cie ca lki równania, podano pewne kryteria na wyznaczanie ca lek równania. Znajomość ca

Bardziej szczegółowo

Przestrzenie metryczne. Elementy Topologii. Zjazd 2. Elementy Topologii

Przestrzenie metryczne. Elementy Topologii. Zjazd 2. Elementy Topologii Zjazd 2 Przestrzenia metryczna (X, d) nazywamy parę złożona ze zbioru X i funkcji d : X X R, taka, że 1 d(x, y) 0 oraz d(x, y) = 0 wtedy i tylko wtedy, gdy x = y, 2 d(x, y) = d(y, x), 3 d(x, z) d(x, y)

Bardziej szczegółowo

Wykłady... b i a i. i=1. m(d k ) inf

Wykłady... b i a i. i=1. m(d k ) inf Wykłady... CŁKOWNIE FUNKCJI WIELU ZMIENNYCH Zaczniemy od konstrukcji całki na przedziale domkniętym. Konstrukcja ta jest, w gruncie rzeczy, powtórzeniem definicji całki na odcinku domkniętym w R 1. Przedziałem

Bardziej szczegółowo

Pojȩcie przestrzeni metrycznej

Pojȩcie przestrzeni metrycznej ROZDZIA l 1 Pojȩcie przestrzeni metrycznej Definicja 1.1. Dowolny niepusty zbiór X z funkcja ρ : X X [0, ), spe lniaja ca naste puja ce trzy warunki M1: ρ(x, y) = 0 x = y, M2: ρ(x, y) = ρ(y, x), M3: ρ(x,

Bardziej szczegółowo

w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak

w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak Równania różniczkowe czastkowe w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak Horyzonty 2014 Podstawowy obiekt wyk ladu: funkcje holomorficzne wielu zmiennych Temat: dwa problemy, których znane

Bardziej szczegółowo

Analiza funkcjonalna I. Ryszard Szwarc

Analiza funkcjonalna I. Ryszard Szwarc Analiza funkcjonalna I Ryszard Szwarc Wrocław 2010 2 Spis treści 1 Przestrzenie unormowane 3 1.1 Dodatek.............................. 13 2 Operatory liniowe 15 3 Przestrzenie Hilberta 26 3.1 Podstawowe

Bardziej szczegółowo

Analiza I.2*, lato 2018

Analiza I.2*, lato 2018 Analiza I.2*, lato 218 Marcin Kotowski 14 czerwca 218 Zadanie 1. Niech x (, 1) ma rozwinięcie binarne.x 1 x 2.... Niech dla x, 1: oraz f() = f(1) =. Pokaż, że f: f(x) = lim sup n (a) przyjmuje wszystkie

Bardziej szczegółowo

POCHODNA KIERUNKOWA. DEFINICJA Jeśli istnieje granica lim. to granica ta nazywa siȩ pochodn a kierunkow a funkcji f(m) w kierunku osi l i oznaczamy

POCHODNA KIERUNKOWA. DEFINICJA Jeśli istnieje granica lim. to granica ta nazywa siȩ pochodn a kierunkow a funkcji f(m) w kierunku osi l i oznaczamy POCHODNA KIERUNKOWA Pochodne cz astkowe funkcji f(m) = f(x, y, z) wzglȩdem x, wzglȩdem y i wzglȩdem z wyrażaj a prȩdkość zmiany funkcji w kierunku osi wspó lrzȩdnych; np. f x jest prȩdkości a zmiany funkcji

Bardziej szczegółowo

Topologia I*, jesień 2012 Zadania omawiane na ćwiczeniach lub zadanych jako prace domowe, grupa 1 (prowadzący H. Toruńczyk).

Topologia I*, jesień 2012 Zadania omawiane na ćwiczeniach lub zadanych jako prace domowe, grupa 1 (prowadzący H. Toruńczyk). Topologia I*, jesień 2012 Zadania omawiane na ćwiczeniach lub zadanych jako prace domowe, grupa 1 (prowadzący H. Toruńczyk). Zadania w dużej mierze pochodzą z zestawu zadań w rozdziale 8 skryptu autorów

Bardziej szczegółowo

Lista. Przestrzenie liniowe. Zadanie 1 Sprawdź, czy (V, +, ) jest przestrzenią liniową nadr :

Lista. Przestrzenie liniowe. Zadanie 1 Sprawdź, czy (V, +, ) jest przestrzenią liniową nadr : Lista Przestrzenie liniowe Zadanie 1 Sprawdź, czy (V, +, ) jest przestrzenią liniową nadr : V = R[X], zbiór wielomianów jednej zmiennej o współczynnikach rzeczywistych, wraz ze standardowym dodawaniem

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Zał. nr do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA FUNKCJONALNA Nazwa w języku angielskim Functional Analysis Kierunek studiów (jeśli dotyczy): Matematyka

Bardziej szczegółowo

Rozdzia l 3. Elementy algebry uniwersalnej

Rozdzia l 3. Elementy algebry uniwersalnej Rozdzia l 3. Elementy algebry uniwersalnej 1. Podalgebry, homomorfizmy Definicja. Niech = B A oraz o bȩdzie n-argumentow a operacj a na zbiorze A. Mówimy, że zbiór B jest zamkniȩty na operacjȩ o, gdy dla

Bardziej szczegółowo

Rozdział 6. Ciągłość. 6.1 Granica funkcji

Rozdział 6. Ciągłość. 6.1 Granica funkcji Rozdział 6 Ciągłość 6.1 Granica funkcji Podamy najpierw dwie definicje granicy funkcji w punkcie i pokażemy ich równoważność. Definicja Cauchy ego granicy funkcji w punkcie. Niech f : X R, gdzie X R oraz

Bardziej szczegółowo

granicą ciągu funkcyjnego (f n ) n N W symbolicznym zapicie fakt, że f jest granicą ciągu funkcyjnego (f n ) n N możemy wyrazić następująco: ε>0 N N

granicą ciągu funkcyjnego (f n ) n N W symbolicznym zapicie fakt, że f jest granicą ciągu funkcyjnego (f n ) n N możemy wyrazić następująco: ε>0 N N 14. Określenie ciągu i szeregu funkcyjnego, zbieżność punktowa i jednostajna. Własności zbieżności jednostajnej. Kryterium zbieżności jednostajnej szeregu funkcyjnego. 1 Definicja Ciąg funkcyjny Niech

Bardziej szczegółowo

a 1, a 2, a 3,..., a n,...

a 1, a 2, a 3,..., a n,... III. Ciągi liczbowe. 1. Definicja ciągu liczbowego. Definicja 1.1. Ciągiem liczbowym nazywamy funkcję a : N R odwzorowującą zbiór liczb naturalnych N w zbiór liczb rzeczywistych R i oznaczamy przez {a

Bardziej szczegółowo

Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH

Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH Katedra Matematyki i Ekonomii Matematycznej SGH 23 października 2018 Definicja iloczynu skalarnego Definicja Iloczynem skalarnym w przestrzeni liniowej R n nazywamy odwzorowanie ( ) : R n R n R spełniające

Bardziej szczegółowo

1 Elementy analizy funkcjonalnej

1 Elementy analizy funkcjonalnej M. Beśka, Dodatek 1 1 Elementy analizy funkcjonalnej 1.1 Twierdzenia o reprezentacji Zaczniemy od znanego twierdzenia Riesza Twierdzenie 1.1 (Riesz) Niech będzie zwartą przestrzenią metryczną i załóżmy,

Bardziej szczegółowo

sa dzie metryka z euklidesowa, to znaczy wyznaczaja ca cki, Wojciech Suwiński)

sa dzie metryka z euklidesowa, to znaczy wyznaczaja ca cki, Wojciech Suwiński) Zadanie 1 Pokazać, że dowolne dwie kule w R z metryka sa homeomorficzne Niech ρ be dzie metryka równoważna z, to znaczy wyznaczaja ca topologie na R Czy wynika z tego, że dowolne dwie kule w metryce ρ

Bardziej szczegółowo