Krzywe i powierzchnie stopnia drugiego

Wielkość: px
Rozpocząć pokaz od strony:

Download "Krzywe i powierzchnie stopnia drugiego"

Transkrypt

1 Krzywe i powierzchnie stopnia drugiego Iwona Malinowska, Zbigniew Šagodowski 25 maja 2015 I. Malinowska, Z. Lagodowski Geometria 25 maja / 30

2 Rozwa»my dwie proste przecinaj ce si pod k tem α, 0 < α < π 2. Jedn z nich nazwiemy osia obrotu a drug tworz c. Sto»kiem nazywamy powierzchni zakre±lona przez tworz c podczas obrotu wokóª osi. Punkt przeci cia prostych nazywamy wierzchoªkiem sto»ka. Dzieli on sto»ek na dwie cz ±ci zwane powªokami. I. Malinowska, Z. Lagodowski Geometria 25 maja / 30

3 KRZYWE STO KOWE Krzywymi sto»kowymi- nazywamy krzywe, które mo»na otrzyma w wyniku przeci cia sto»ka pªaszczyzn nieprzechodz ca przez wierzchoªek. I. Malinowska, Z. Lagodowski Geometria 25 maja / 30

4 Typ krzywej zale»y od k ta x jaki tworzy o± sto»ka z pªaszczyzn tn c : elips gdy α < x < π, tj gdy pªaszczyzna tn ca przecina tylko jedn 2 powªok i nie jest prostopadªa do osi ani równolegªa do tworz cej; hiperbola gdy 0 x < αtj. gdy pªaszczyzna tn ca przecina obie powªoki sto»ka; parabola gdy x = α tj. gdy pªaszczyzna tn ca jest równolegªa do tworz cej; okr g gdy x = π, tj gdy pªaszczyzna tn ca jest prostopadªa do osi 2 sto»ka; I. Malinowska, Z. Lagodowski Geometria 25 maja / 30

5 Krzywe sto»kowe s równie» nazywane krzywymi stopnia drugiego, gdy» mo»na je w kartezja«skim ukªadzie wspóªrz dnych opisa równaniami algebraicznymi drugiego stopnia wzgl dem zmiennych x i y I. Malinowska, Z. Lagodowski Geometria 25 maja / 30

6 Elips nazywamy krzyw b d c zbiorem punktów pªaszczyzny, których wspóªrz dne speªniaj równanie: x 2 a 2 + y 2 b 2 = 1 oraz ka»d krzyw, która z niej powstanie przez izometri (przeksztaªcenie, które nie zmienia odlegªo±ci mi dzy punktami np. translacja, obrót, symetria) I. Malinowska, Z. Lagodowski Geometria 25 maja / 30

7 Wierzchoªkami elipsy nazywamy punkty: A 1 (a, 0), A 2 ( a, 0), B 1 (0, b), B 2 (0, b); Wielka osi nazywamy odcinek A 1 A 2,o dªugo±ci 2a, Osi maª nazywamy odcinek B 1 B 2,o dªugo±ci 2b, Ogniskami elipsy nazywamy punkty F 1 (c, 0) i F 2 ( c, 0) przy czym c = a 2 b 2. Proste o równaniach x = a2 c Elipsa ma nast puj ce wªasno±ci: i x = a2 c nazywamy kierownicami elipsy. Suma odlegªo±ci dowolnego punktu elipsy od jej ognisk jest staªa i równa dªugo±ci osi wielkiej. MF 1 + MF 2 = 2a Stosunek odlegªo±ci dowolnego punktu elipsy od ogniska do jego odlegªo±ci od kierownicy jest mniejszy od 1. I. Malinowska, Z. Lagodowski Geometria 25 maja / 30

8 Hiperbol nazywamy krzyw b d c zbiorem punktów pªaszczyzny, których wspóªrz dne speªniaj równanie: x 2 a 2 y 2 b 2 = 1 oraz ka»d krzyw, która z niej powstanie przez izometri. Wierzchoªkami hiperboli nazywamy punkty: A 1 (a, 0), A 2 ( a, 0), Odcinek A 1 A 2 dªugo±ci 2a nazywamy osi rzeczywist, Odcinek B 1 B 2 dªugo±ci 2b le» cy na Oy nazywamy osia urojon Ogniskami hiperboli nazywamy punkty F 1 (c, 0) i F 2 ( c, 0) przy czym c = a 2 + b 2. Proste o równaniach x = a2 c hiperboli. i x = a2 c nazywamy kierownicami I. Malinowska, Z. Lagodowski Geometria 25 maja / 30

9 Hiperbola ma nast puj ce wªasno±ci: Warto± bezwzgl dna ró»nicy odlegªo±ci dowolnego punktu hiperboli od jej ognisk jest staªa i równa dªugo±ci osi rzeczywistej. MF 1 MF 2 = 2a Stosunek odlegªo±ci dowolnego punktu hiperboli od ogniska do jego odlegªo±ci od kierownicy jest staªy i wi kszy od 1. Proste y = b a x i y = b a x s asymptotami hiperboli. I. Malinowska, Z. Lagodowski Geometria 25 maja / 30

10 Parabol nazywamy krzyw b d c zbiorem punktów pªaszczyzny, których wspóªrz dne speªniaj równanie: y 2 = 2px, p > 0 oraz ka»d krzyw, która z niej powstanie przez izometri. Punkt (0, 0) nazywamy wierzchoªkiem paraboli; Ogniskiem paraboli nazywamy punkt F ( p 2, 0); Kierownica paraboli nazywany prost x = p 2. I. Malinowska, Z. Lagodowski Geometria 25 maja / 30

11 Parabola ma nast puj ce wªasno±ci: Dowolnego punktu paraboli jest jednakowo odlegªy od jej ogniska i kierownicy. MF = MD Stosunek odlegªo±ci dowolnego punktu paraboli od ogniska do jego odlegªo±ci od kierownicy jest równy 1. I. Malinowska, Z. Lagodowski Geometria 25 maja / 30

12 Okr g o ±rodku (0, 0) i promieniu r ma równanie: x 2 + y 2 = r 2. Równanie to wyra»a, ze odlegªo± punktu (x,y) od punktu (0,0) jest równa a Okr g o ±rodku (p, q) i promieniu r ma równanie: (x p) 2 + (y q) 2 = r 2. I. Malinowska, Z. Lagodowski Geometria 25 maja / 30

13 Okr g o ±rodku (0, 0) i promieniu r ma równanie: x 2 + y 2 = r 2. Równanie to wyra»a, ze odlegªo± punktu (x,y) od punktu (0,0) jest równa a Okr g o ±rodku (p, q) i promieniu r ma równanie: (x p) 2 + (y q) 2 = r 2. Zbiór punktów P pªaszczyzny poªo»onych w staªej odlegªo±ci od ustalonego punktu P 0 tej pªaszczyzny nazywamy okr giem: PP 0 = const P 0 -±rodek okr gu; staªa const- promie«okr gu. I. Malinowska, Z. Lagodowski Geometria 25 maja / 30

14 POWIERZCHNIE STOPNIA DRUGIEGO Powierzchni stopnia drugiego nazywamy zbiór punktów przestrzeni trójwymiarowej, które speªniaj równanie: Kx 2 + Ly 2 + Mz 2 + Nxy + Pxz + Qyz + Rx + Sy + Tz + U = 0, gdzie K,L,...,U sa staªymi. Ponadto przynajmniej jedna ze staªych K,L,M,N,P,Q musi by ró»na od zera. Podamy tak zwane równania kanoniczne najcz ±ciej spotykanych powierzchni stopnia drugiego. I. Malinowska, Z. Lagodowski Geometria 25 maja / 30

15 Elipsoida Elipsoid nazywamy powierzchni dan równaniem: x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 I. Malinowska, Z. Lagodowski Geometria 25 maja / 30

16 Przekroje elipsoidy pªaszczyznami ukªadu wspóªrz dnych to zawsze elipsy: x 2 + y 2 a 2 b 2 x 2 + z2 a 2 c 2 y 2 + z2 b 2 c 2 = 1 dla przekroju pªaszczyzn z=0; = 1 dla przekroju pªaszczyzn y=0; = 1 dla przekroju pªaszczyzn x=0; I. Malinowska, Z. Lagodowski Geometria 25 maja / 30

17 Sfera Zauwa»my,ze dla a = b = c = R > 0 otrzymujemy powierzchni zwan sfer o ±rodku w punkcie (0,0,0) i promieniu R. Ogólne równanie sfery o ±rodku (x 0, y 0, z 0 ) i promieniu R na posta : (x x 0 ) 2 + (y y 0 ) 2 + (z z 0 ) 2 = R 2 I. Malinowska, Z. Lagodowski Geometria 25 maja / 30

18 I. Malinowska, Z. Lagodowski Geometria 25 maja / 30

19 Hiperboloida jednopowªokowa Hiperboloid jednopowªokow nazywamy powierzchni o równaniu: x 2 a 2 + y 2 b 2 z 2 c 2 = 1 I. Malinowska, Z. Lagodowski Geometria 25 maja / 30

20 Hiperboloida jednopowªokowa Hiperboloid jednopowªokow nazywamy powierzchni o równaniu: x 2 a 2 + y 2 b 2 z 2 c 2 = 1 I. Malinowska, Z. Lagodowski Geometria 25 maja / 30

21 Przekroje pªaszczyznami równolegªymi do pªaszczyzny Oxy s elipsami Przekroje pªaszczyznami równolegªymi do pªaszczyzny Oxz oraz Oyz s hiperbolami I. Malinowska, Z. Lagodowski Geometria 25 maja / 30

22 Przekroje pªaszczyznami równolegªymi do pªaszczyzny Oxy s elipsami Przekroje pªaszczyznami równolegªymi do pªaszczyzny Oxz oraz Oyz s hiperbolami W szczególno±ci w przeci ciu hiperboloidy jednopowªokowej pªaszczyznami ukªadu wspóªrz dnych otrzymujemy nast puj ce krzywe: z pªaszczyzn Oxy tj. pªaszczyzn z = 0- elips x2 a 2 + y 2 b 2 = 1; z pªaszczyzn Oyz tj. pªaszczyzn x = 0- hiperbol y 2 b 2 z2 c 2 = 1; z pªaszczyzn Oxz tj. pªaszczyzn y = 0- hiperbol x2 a 2 z2 c 2 = 1. I. Malinowska, Z. Lagodowski Geometria 25 maja / 30

23 Hiperboloida dwupowªokowa Hiperboloid dwupowªokowa nazywamy powierzchni o równaniu: x 2 a 2 + y 2 b 2 z 2 c 2 = 1 I. Malinowska, Z. Lagodowski Geometria 25 maja / 30

24 Hiperboloida dwupowªokowa Hiperboloid dwupowªokowa nazywamy powierzchni o równaniu: x 2 a 2 + y 2 b 2 z 2 c 2 = 1 I. Malinowska, Z. Lagodowski Geometria 25 maja / 30

25 Przekroje pªaszczyznami równolegªymi do pªaszczyzny Oxz oraz Oyz s hiperbolami Przekroje pªaszczyznami z = k, k > c s elipsami. I. Malinowska, Z. Lagodowski Geometria 25 maja / 30

26 Przekroje pªaszczyznami równolegªymi do pªaszczyzny Oxz oraz Oyz s hiperbolami Przekroje pªaszczyznami z = k, k > c s elipsami. W szczególno±ci w przeci ciu hiperboloidy dwupowªokowej pªaszczyznami ukªadu wspóªrz dnych otrzymujemy nast puj ce krzywe: z pªaszczyzn Oxy tj. pªaszczyzn z = 0- zbiór pusty z pªaszczyzn Oyz tj. pªaszczyzn x = 0 - hiperbol z2 c 2 y 2 c 2 = 1; z pªaszczyzn Oxz tj. pªaszczyzn y = 0- hiperbol z2 c 2 x2 a 2 = 1. I. Malinowska, Z. Lagodowski Geometria 25 maja / 30

27 Sto»ek Sto»kiem nazywamy powierzchni o równaniu: x 2 a 2 + y 2 b 2 z 2 c 2 = 0 I. Malinowska, Z. Lagodowski Geometria 25 maja / 30

28 Przekroje sto»ka pªaszczyzn z = k, k 0 sa elipsami, przekrój pªaszczyzn z = 0 jest punktem (0,0,0) Przekroje sto»ka pªaszczyzn x = k, k 0 s hiperbolami. Pªaszczyzna x = 0 przecina sto»ek wzdªu» prostych: y b + z c = 0 i y b z c = 0 Przekroje sto»ka pªaszczyzn y = k, k 0 s hiperbolami. Pªaszczyzna y = 0 przecina sto»ek wzdªu» prostych: x a + z c = 0 i x a z c = 0 I. Malinowska, Z. Lagodowski Geometria 25 maja / 30

29 Paraboloida eliptyczn nazywamy powierzchni o równaniu: x 2 a 2 + y 2 b 2 = 2z I. Malinowska, Z. Lagodowski Geometria 25 maja / 30

30 Przekroje pªaszczyzn x = k, oraz y = k s parabolami, Przekroje pªaszczyzn z = k, k 0 s elipsami, przekrój pªaszczyzn z = 0 jest punktem (0,0,0) I. Malinowska, Z. Lagodowski Geometria 25 maja / 30

31 Paraboloida hiperboliczn nazywamy powierzchni o równaniu: x 2 a 2 y 2 b 2 = 2z Przekroje pªaszczyzn z = k, k 0 s hiperbolami, przekrój pªaszczyzn z = 0 daje dwie proste przecinaj ce si Przekroje pªaszczyzn x = k, oraz y = k s parabolami. I. Malinowska, Z. Lagodowski Geometria 25 maja / 30

32 Walcem eliptycznym nazywamy powierzchni o równaniu: x 2 a 2 + y 2 b 2 = 1 I. Malinowska, Z. Lagodowski Geometria 25 maja / 30

33 Przekroje pªaszczyzn z = k, s elipsami, Przekrój pªaszczyzn np. x = 0, jest para prostych y = b, y = b. Przekrój pªaszczyzn np. y = 0 jest para prostych x = a, x = a. I. Malinowska, Z. Lagodowski Geometria 25 maja / 30

34 Przekroje pªaszczyzn z = k, s hiperbolami, I. Malinowska, Z. Lagodowski Geometria 25 maja / 30 Walcem hiperbolicznym nazywamy powierzchni o równaniu: x 2 a 2 y 2 b 2 = 1

35 Walcem paraboliczny nazywamy powierzchni o równaniu: y 2 = 2px Przekroje pªaszczyzn z = k, s parabolami. I. Malinowska, Z. Lagodowski Geometria 25 maja / 30

- Wydział Fizyki Zestaw nr 2. Krzywe stożkowe

- Wydział Fizyki Zestaw nr 2. Krzywe stożkowe 1 Algebra Liniowa z Geometria - Wydział Fizyki Zestaw nr 2 Krzywe stożkowe 1 Znaleźć współrze dne środka i promień okre gu x 2 8x + y 2 + 6y + 20 = 0 2 Znaleźć zbiór punktów płaszczyzny R 2, których odległość

Bardziej szczegółowo

Elementy geometrii w przestrzeni R 3

Elementy geometrii w przestrzeni R 3 Elementy geometrii w przestrzeni R 3 Z.Šagodowski Politechnika Lubelska 29 maja 2016 Podstawowe denicje Wektorem nazywamy uporz dkowan par punktów (A,B) z których pierwszy nazywa si pocz tkiem a drugi

Bardziej szczegółowo

- Wydział Fizyki Zestaw nr 2. Krzywe stożkowe

- Wydział Fizyki Zestaw nr 2. Krzywe stożkowe 1 Algebra Liniowa z Geometria - Wydział Fizyki Zestaw nr 2 Krzywe stożkowe 1 Znaleźć współrze dne środka i promień okre gu x 2 8x + y 2 + 6y + 20 = 0 2 Znaleźć zbiór punktów płaszczyzny R 2, których odległość

Bardziej szczegółowo

Stereometria (geometria przestrzenna)

Stereometria (geometria przestrzenna) Stereometria (geometria przestrzenna) Wzajemne poªo»enie prostych w przestrzeni Stereometria jest dziaªem geometrii, którego przedmiotem bada«s bryªy przestrzenne oraz ich wªa±ciwo±ci. Na pocz tek omówimy

Bardziej szczegółowo

r = x x2 2 + x2 3.

r = x x2 2 + x2 3. Przestrze«aniczna Def. 1. Przestrzeni aniczn zwi zan z przestrzeni liniow V nazywamy dowolny niepusty zbiór P z dziaªaniem ω : P P V (które dowolnej parze elementów zbioru P przyporz dkowuje wektor z przestrzeni

Bardziej szczegółowo

Arkusz 4. Elementy geometrii analitycznej w przestrzeni

Arkusz 4. Elementy geometrii analitycznej w przestrzeni Arkusz 4. Elementy geometrii analitycznej w przestrzeni Zadanie 4.1. Obliczy dªugo±ci podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos

Bardziej szczegółowo

Zestaw Obliczyć objętość równoległościanu zbudowanego na wektorach m, n, p jeśli wiadomo, że objętość równoległościanu zbudowanego na wektorach:

Zestaw Obliczyć objętość równoległościanu zbudowanego na wektorach m, n, p jeśli wiadomo, że objętość równoległościanu zbudowanego na wektorach: Zestaw 9. Wykazać, że objętość równoległościanu zbudowanego na przekątnych ścian danego równoległościanu jest dwa razy większa od objętości równoległościanu danego.. Obliczyć objętość równoległościanu

Bardziej szczegółowo

Zadania z z matematyki dla studentów gospodarki przestrzennej UŠ. Marek Majewski Aktualizacja: 31 pa¹dziernika 2006

Zadania z z matematyki dla studentów gospodarki przestrzennej UŠ. Marek Majewski Aktualizacja: 31 pa¹dziernika 2006 Zadania z z matematyki dla studentów gospodarki przestrzennej UŠ Marek Majewski Aktualizacja: 1 pa¹dziernika 006 Spis tre±ci 1 Macierze dziaªania na macierzach. Wyznaczniki 1 Macierz odwrotna. Rz d macierzy

Bardziej szczegółowo

Elementy geometrii analitycznej w przestrzeni

Elementy geometrii analitycznej w przestrzeni Wykªad 3 Elementy geometrii analitycznej w przestrzeni W wykªadzie tym wi kszy nacisk zostaª poªo»ony raczej na intuicyjne rozumienie deniowanych poj, ni» ±cisªe ich zdeniowanie. Dlatego niniejszy wykªad

Bardziej szczegółowo

- Wydział Fizyki Zestaw nr 5. Powierzchnie 2-go stopnia

- Wydział Fizyki Zestaw nr 5. Powierzchnie 2-go stopnia 1 Algebr Liniow z Geometri - Wydził Fizyki Zestw nr 5 Powierzchnie -go stopni 1 N sferze 1 + + 3 = 4 znleźć punkt, którego odległość od punktu p = (, 6, 3) byłby njmniejsz Wyznczyć osie elipsy powstłej

Bardziej szczegółowo

Graka komputerowa Wykªad 3 Geometria pªaszczyzny

Graka komputerowa Wykªad 3 Geometria pªaszczyzny Graka komputerowa Wykªad 3 Geometria pªaszczyzny Instytut Informatyki i Automatyki Pa«stwowa Wy»sza Szkoªa Informatyki i Przedsi biorczo±ci w Šom»y 2 0 0 9 Spis tre±ci Spis tre±ci 1 Przeksztaªcenia pªaszczyzny

Bardziej szczegółowo

Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a).

Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a). Rozwi zania zada«z egzaminu podstawowego z Analizy matematycznej 2.3A (24/5). Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a). Zadanie P/4. Metod operatorow rozwi

Bardziej szczegółowo

Rachunek caªkowy funkcji wielu zmiennych

Rachunek caªkowy funkcji wielu zmiennych Rachunek caªkowy funkcji wielu zmiennych I. Malinowska, Z. Šagodowski Politechnika Lubelska 8 czerwca 2015 Caªka iterowana podwójna Denicja Je»eli funkcja f jest ci gªa na prostok cie P = {(x, y) : a x

Bardziej szczegółowo

KWADRYKI PARABOLOIDA HIPERBOLICZNA ELIPSOIDA HIPERBOLOIDA DWUPOWŁOKOWA HIPERBOLOIDA JEDNOPOWŁOKOWA PARABOLOIDA ELIPTYCZNA

KWADRYKI PARABOLOIDA HIPERBOLICZNA ELIPSOIDA HIPERBOLOIDA DWUPOWŁOKOWA HIPERBOLOIDA JEDNOPOWŁOKOWA PARABOLOIDA ELIPTYCZNA POWIERZCHNIE 1. Powierzchnia jedno z podstawowych pojęć geometrii. 1.1. W geometrii elementarnej powierzchnię opisuje się jako pewne zbiory punktów lub prostych o określonych własnościach np.: - sfera

Bardziej szczegółowo

Geometria. Hiperbola

Geometria. Hiperbola Geometria. Hiperbola Definicja 1 Dano dwa punkty na płaszczyźnie: F 1 i F 2 oraz taką liczbę d, że F 1 F 2 > d > 0. Zbiór punktów płaszczyzny będących rozwiązaniami równania: XF 1 XF 2 = ±d. nazywamy hiperbolą.

Bardziej szczegółowo

Geometria w R 3. Iloczyn skalarny wektorów

Geometria w R 3. Iloczyn skalarny wektorów Geometria w R 3 Andrzej Musielak Str 1 Geometria w R 3 Działania na wektorach Wektory w R 3 możemy w naturalny sposób dodawać i odejmować, np.: [2, 3, 1] + [ 1, 2, 1] = [1, 5, 2] [2, 3, 1] [ 1, 2, 1] =

Bardziej szczegółowo

Krzywe stożkowe Lekcja VII: Hiperbola

Krzywe stożkowe Lekcja VII: Hiperbola Krzywe stożkowe Lekcja VII: Hiperbola Wydział Matematyki Politechniki Wrocławskiej Czym jest hiperbola? Hiperbola jest krzywą stożkową powstałą przez przecięcie stożka płaszczyzną pod kątem 0 β < α (gdzie

Bardziej szczegółowo

Arkusz maturalny. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne

Arkusz maturalny. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne Arkusz maturalny Šukasz Dawidowski Powtórki maturalne 25 kwietnia 2016r. Odwrotno±ci liczby rzeczywistej 1. 9 8 2. 0, (1) 3. 8 9 4. 0, (8) 3 4 4 4 1 jest liczba Odwrotno±ci liczby rzeczywistej 3 4 4 4

Bardziej szczegółowo

Optyka geometryczna. Soczewki. Marcin S. Ma kowicz. rok szk. 2009/2010. Zespóª Szkóª Ponadgimnazjalnych Nr 2 w Brzesku

Optyka geometryczna. Soczewki. Marcin S. Ma kowicz. rok szk. 2009/2010. Zespóª Szkóª Ponadgimnazjalnych Nr 2 w Brzesku skupiaj ce rozpraszaj ce Optyka geometryczna Zespóª Szkóª Ponadgimnazjalnych Nr 2 w Brzesku rok szk. 2009/2010 skupiaj ce rozpraszaj ce Spis tre±ci 1 Wprowadzenie 2 Ciekawostki 3 skupiaj ce Konstrukcja

Bardziej szczegółowo

Wykªad 4. Funkcje wielu zmiennych.

Wykªad 4. Funkcje wielu zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 4. Funkcje wielu zmiennych. Zbiory na pªaszczy¹nie i w przestrzeni.

Bardziej szczegółowo

Geometria. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne

Geometria. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne Geometria Šukasz Dawidowski Powtórki maturalne 25 kwietnia 2016r. Dane s równania postych, w których zawarte s boki trójk ta ABC : 3x 4y + 36 = 0 x y = 0 4x + 3y + 23 = 0 1. Obliczy wspóªrz dne wierzchoªków

Bardziej szczegółowo

2. L(a u) = al( u) dla dowolnych u U i a R. Uwaga 1. Warunki 1., 2. mo»na zast pi jednym warunkiem: L(a u + b v) = al( u) + bl( v)

2. L(a u) = al( u) dla dowolnych u U i a R. Uwaga 1. Warunki 1., 2. mo»na zast pi jednym warunkiem: L(a u + b v) = al( u) + bl( v) Przeksztaªcenia liniowe Def 1 Przeksztaªceniem liniowym (homomorzmem liniowym) rzeczywistych przestrzeni liniowych U i V nazywamy dowoln funkcj L : U V speªniaj c warunki: 1 L( u + v) = L( u) + L( v) dla

Bardziej szczegółowo

Arkusz maturalny. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne

Arkusz maturalny. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne Arkusz maturalny Šukasz Dawidowski Powtórki maturalne 25 kwietnia 2016r. W pewnym sonda»u partia A uzyskaªa o 8 punktów procentowych wi ksze poparcie ni» partia B. Wiadomo,»e liczba gªosów oddanych w sonda»u

Bardziej szczegółowo

1 a + b 1 = 1 a + 1 b 1. (a + b 1)(a + b ab) = ab, (a + b)(a + b ab 1) = 0, (a + b)[a(1 b) + (b 1)] = 0,

1 a + b 1 = 1 a + 1 b 1. (a + b 1)(a + b ab) = ab, (a + b)(a + b ab 1) = 0, (a + b)[a(1 b) + (b 1)] = 0, XIII Warmi«sko-Mazurskie Zawody Matematyczne. Olsztyn 2015 Rozwi zania zada«dla szkóª ponadgimnazjalnych ZADANIE 1 Zakªadamy,»e a, b 0, 1 i a + b 1. Wykaza,»e z równo±ci wynika,»e a = -b 1 a + b 1 = 1

Bardziej szczegółowo

Dynamika Bryªy Sztywnej

Dynamika Bryªy Sztywnej Dynamika Bryªy Sztywnej Adam Szmagli«ski Instytut Fizyki PK Kraków, 27.10.2016 Podstawy dynamiki bryªy sztywnej Bryªa sztywna to ukªad cz stek o niezmiennych wzajemnych odlegªo±ciach. Adam Szmagli«ski

Bardziej szczegółowo

Krzywe stożkowe. Algebra. Aleksander Denisiuk

Krzywe stożkowe. Algebra. Aleksander Denisiuk Algebra Krzywe stożkowe Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Algebra p. 1 Krzywe stożkowe

Bardziej szczegółowo

Informacje pomocnicze

Informacje pomocnicze Funkcje wymierne. Równania i nierówno±ci wymierne Denicja. (uªamki proste) Wyra»enia postaci Informacje pomocnicze A gdzie A d e R n N (dx e) n nazywamy uªamkami prostymi pierwszego rodzaju. Wyra»enia

Bardziej szczegółowo

Zadania nadobowiązkowe KRZYWE STOŻKOWE OKRĄG

Zadania nadobowiązkowe KRZYWE STOŻKOWE OKRĄG OKRĄG Przykład 1. W układzie współrzędnych XOY narysujmy okrąg o środku w punkcie (0,0) i promieniu 1: Współrzędne dowolnego punktu P(x,y) leżącego na okręgu spełniają równanie + y =1, natomiast współrzędne

Bardziej szczegółowo

Rozdział 2. Krzywe stożkowe. 2.1 Elipsa. Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie

Rozdział 2. Krzywe stożkowe. 2.1 Elipsa. Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie Rozdział Krzywe stożkowe Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie x + By + Cxy + Dx + Ey + F = 0. (.) W zależności od relacji pomiędzy współczynnikami otrzymujemy elipsę,

Bardziej szczegółowo

Prosta, płaszczyzna, powierzchnie drugiego. stopnia. stopnia. JJ, IMiF UTP

Prosta, płaszczyzna, powierzchnie drugiego. stopnia. stopnia. JJ, IMiF UTP JJ, IMiF UTP 16 PŁASZCZYZNA W R 3 Równanie płaszczyzny prostopadłej do wektora n = [A, B, C] i przechodzącej przez punkt P 1 (x 1, y 1, z 1 ): A(x x 1 ) + B(y y 1 ) + C(z z 1 ) = 0. n = [A, B, C] P 1 (x

Bardziej szczegółowo

Ksztaªt orbity planety: I prawo Keplera

Ksztaªt orbity planety: I prawo Keplera V 0 V 0 Ksztaªt orbity planety: I prawo Keplera oka»emy,»e orbit planety poruszaj cej si pod dziaªaniem siªy ci»ko±ci ze strony Sªo«ca jest krzywa sto»kowa, w szczególno±ci elipsa. Wektor pr dko±ci planety

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennch Wkres i warstwice funkcji wielu zmiennch. Przeglad powierzchni stopnia drugiego. Granice i ciagłość funkcji wielu zmiennch. Małgorzata Wrwas Katedra Matematki Wdział Informatki Politechnika

Bardziej szczegółowo

1 Geometria analityczna

1 Geometria analityczna 1 Geometria analityczna 1.1 Wektory na płaszczyźnie Wektor to uporządkowana para punktów, z których pierwszy nazywa się początkiem, a drugi końcem wektora. Jeżeli wprowadzimy prostokątny układ współrzędnych,

Bardziej szczegółowo

Repetytorium z matematyki ćwiczenia

Repetytorium z matematyki ćwiczenia Spis treści 1 Liczby rzeczywiste 1 2 Geometria analityczna. Prosta w układzie kartezjańskim Oxy 4 3 Krzywe drugiego stopnia na płaszczyźnie kartezjańskiej 6 4 Dziedzina i wartości funkcji 8 5 Funkcja liniowa

Bardziej szczegółowo

Geometria analityczna - przykłady

Geometria analityczna - przykłady Geometria analityczna - przykłady 1. Znaleźć równanie ogólne i równania parametryczne prostej w R 2, któr przechodzi przez punkt ( 4, ) oraz (a) jest równoległa do prostej x + 5y 2 = 0. (b) jest prostopadła

Bardziej szczegółowo

Ekstremalnie fajne równania

Ekstremalnie fajne równania Ekstremalnie fajne równania ELEMENTY RACHUNKU WARIACYJNEGO Zaczniemy od ogólnych uwag nt. rachunku wariacyjnego, który jest bardzo przydatnym narz dziem mog cym posªu»y do rozwi zywania wielu problemów

Bardziej szczegółowo

1 Granice funkcji wielu zmiennych.

1 Granice funkcji wielu zmiennych. AM WNE 008/009. Odpowiedzi do zada«przygotowawczych do czwartego kolokwium. Granice funkcji wielu zmiennych. Zadanie. Zadanie. Pochodne. (a) 0, Granica nie istnieje, (c) Granica nie istnieje, (d) Granica

Bardziej szczegółowo

1. Przedstaw w postaci algebraicznej liczby zespolone: 2. Narysuj zbiory punktów na pªaszczy¹nie:

1. Przedstaw w postaci algebraicznej liczby zespolone: 2. Narysuj zbiory punktów na pªaszczy¹nie: ZADANIA Z MATEMATYKI Zestaw. Przedstaw w postaci algebraicznej liczby zespolone: (3 + j)(5 j) 3 j +j (5 + j) (3 + j) 3. Narysuj zbiory punktów na pªaszczy¹nie: +j +j 3 Re z = Im z = 5 z ( j) = z j z +

Bardziej szczegółowo

Stereometria. Zimowe Powtórki Maturalne. 22 lutego 2016 r.

Stereometria. Zimowe Powtórki Maturalne. 22 lutego 2016 r. Stereometria Zimowe Powtórki Maturalne 22 lutego 2016 r. 1. Przek tna sze±cianu o boku 1 ma dªugo± : 1. Przek tna sze±cianu o boku 1 ma dªugo± : 1 1. Przek tna sze±cianu o boku 1 ma dªugo± : 1 2 1. Przek

Bardziej szczegółowo

Wektory w przestrzeni

Wektory w przestrzeni Wektory w przestrzeni Informacje pomocnicze Denicja 1. Wektorem nazywamy uporz dkowan par punktów. Pierwszy z tych punktów nazywamy pocz tkiem wektora albo punktem zaczepienia wektora, a drugi - ko«cem

Bardziej szczegółowo

Funkcje, wielomiany. Informacje pomocnicze

Funkcje, wielomiany. Informacje pomocnicze Funkcje, wielomiany Informacje pomocnicze Przydatne wzory: (a + b) 2 = a 2 + 2ab + b 2 (a b) 2 = a 2 2ab + b 2 (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 (a b) 3 = a 3 3a 2 b + 3ab 2 b 3 a 2 b 2 = (a + b)(a

Bardziej szczegółowo

. 0 0... 1 0. 0 0 0 0 1 gdzie wektory α i tworz baz ortonormaln przestrzeni E n

. 0 0... 1 0. 0 0 0 0 1 gdzie wektory α i tworz baz ortonormaln przestrzeni E n GAL II 2013-2014 A. Strojnowski str.45 Wykªad 20 Denicja 20.1 Przeksztaªcenie aniczne f : H H anicznej przestrzeni euklidesowej nazywamy izometri gdy przeksztaªcenie pochodne f : T (H) T (H) jest izometri

Bardziej szczegółowo

Materiaªy do Repetytorium z matematyki

Materiaªy do Repetytorium z matematyki Materiaªy do Repetytorium z matematyki 0/0 Dziaªania na liczbach wymiernych i niewymiernych wiczenie Obliczy + 4 + 4 5. ( + ) ( 4 + 4 5). ( : ) ( : 4) 4 5 6. 7. { [ 7 4 ( 0 7) ] ( } : 5) : 0 75 ( 8) (

Bardziej szczegółowo

1 Trochoidalny selektor elektronów

1 Trochoidalny selektor elektronów 1 Trochoidalny selektor elektronów W trochoidalnym selektorze elektronów TEM (Trochoidal Electron Monochromator) stosuje si skrzy»owane i jednorodne pola: elektryczne i magnetyczne. Jako pierwsi taki ukªad

Bardziej szczegółowo

Równania prostych i krzywych; współrzędne punktu

Równania prostych i krzywych; współrzędne punktu Równania prostych i krzywych; współrzędne punktu Zad 1: Na paraboli o równaniu y = 1 x znajdź punkt P leŝący najbliŝej prostej o równaniu x + y = 0 Napisz równanie stycznej do tej paraboli, poprowadzonej

Bardziej szczegółowo

Funkcja kwadratowa, wielomiany oraz funkcje wymierne

Funkcja kwadratowa, wielomiany oraz funkcje wymierne Funkcja kwadratowa, wielomiany oraz funkcje wymierne Šukasz Dawidowski Nocne powtórki maturalne 28 kwietnia 2014 r. Troch teorii Funkcj f : R R dan wzorem: f (x) = ax 2 + bx + c gdzie a 0 nazywamy funkcj

Bardziej szczegółowo

Geometria Analityczna w Przestrzeni

Geometria Analityczna w Przestrzeni Algebra p. 1/25 Algebra Geometria Analityczna w Przestrzeni Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045

Bardziej szczegółowo

UZUPEŁNIA ZDAJ CY miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJ CY

UZUPEŁNIA ZDAJ CY miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJ CY Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. MMA 017 KOD UZUPEŁNIA ZDAJ CY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: czerwca 017 r.

Bardziej szczegółowo

XVII Warmi«sko-Mazurskie Zawody Matematyczne

XVII Warmi«sko-Mazurskie Zawody Matematyczne 1 XVII Warmi«sko-Mazurskie Zawody Matematyczne Kategoria: klasa VIII szkoªy podstawowej i III gimnazjum Olsztyn, 16 maja 2019r. Zad. 1. Udowodnij,»e dla dowolnych liczb rzeczywistych x, y, z speªniaj cych

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x, y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0, y 0 ) Pochodn cz stkow pierwszego rz du funkcji dwóch zmiennych wzgl

Bardziej szczegółowo

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 Wykład 16 Geometria analityczna Przegląd wiadomości z geometrii analitycznej na płaszczyźnie rtokartezjański układ współrzędnych powstaje przez ustalenie punktu początkowego zwanego początkiem układu współrzędnych

Bardziej szczegółowo

Optyka geometryczna. Zwierciadªa. Marcin S. Ma kowicz. rok szk. 2009/2010. Zespóª Szkóª Ponadgimnazjalnych Nr 2 w Brzesku

Optyka geometryczna. Zwierciadªa. Marcin S. Ma kowicz. rok szk. 2009/2010. Zespóª Szkóª Ponadgimnazjalnych Nr 2 w Brzesku Optyka geometryczna Zespóª Szkóª Ponadgimnazjalnych Nr 2 w Brzesku rok szk. 2009/2010 Spis tre±ci 1 2 Jak konstuowa obraz w zwierciadle pªaskim 3 Konstrukcja obrazu w zwierciadle kulistym wkl sªym Równanie

Bardziej szczegółowo

Zbiory i odwzorowania

Zbiory i odwzorowania Zbiory i odwzorowania 1 Sposoby okre±lania zbiorów 1) Zbiór wszystkich elementów postaci f(t), gdzie t przebiega zbiór T : {f(t); t T }. 2) Zbiór wszystkich elementów x zbioru X speªniaj cych warunek ϕ(x):

Bardziej szczegółowo

GEOMETRIA ANALITYCZNA W PRZESTRZENI

GEOMETRIA ANALITYCZNA W PRZESTRZENI GEOMETRIA ANALITYCZNA W PRZESTRZENI Położenie punktu w przestrzeni określamy za pomocą trzech liczb (x, y, z). Liczby te odpowiadają rzutom na osie układu współrzędnych: każdy rzut wzdłuż płaszczyzny równoległej

Bardziej szczegółowo

Przeksztaªcenia liniowe

Przeksztaªcenia liniowe Przeksztaªcenia liniowe Przykªady Pokaza,»e przeksztaªcenie T : R 2 R 2, postaci T (x, y) = (x + y, x 6y) jest przeksztaªceniem liniowym Sprawdzimy najpierw addytywno± przeksztaªcenia T Niech v = (x, y

Bardziej szczegółowo

c a = a x + gdzie = b 2 4ac. Ta postać wielomianu drugiego stopnia zwana jest kanoniczna, a wyrażenie = b 2 4ac wyróżnikiem tego wielomianu.

c a = a x + gdzie = b 2 4ac. Ta postać wielomianu drugiego stopnia zwana jest kanoniczna, a wyrażenie = b 2 4ac wyróżnikiem tego wielomianu. y = ax 2 + bx + c WIELOMIANY KWADRATOWE Zajmiemy sie teraz wielomianami stopnia drugiego, zwanymi kwadratowymi. Symbol w be dzie w tym rozdziale oznaczać wielomian kwadratowy, tj. w(x) = ax 2 + bx + c

Bardziej szczegółowo

Układy równań i nierówności

Układy równań i nierówności Układy równań i nierówności Zad : Dla jakich wartości parametru m rozwiązaniem układu równań: + y m = 0 + y = 0 y jest para liczb x, y spełniająca warunek: =? x Odp: m = lub m = 4 Zad : Dla jakich wartości

Bardziej szczegółowo

1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci

1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci Zebraª do celów edukacyjnych od wykªadowców PK, z ró»nych podr czników Maciej Zakarczemny 1 Przypomnienie wiadomo±ci ze szkoªy ±redniej Rozwi zywanie prostych równa«i nierówno±ci dotycz cych funkcji elementarnych,

Bardziej szczegółowo

(a) (b) (c) o1" o2" o3" o1'=o2'=o3'

(a) (b) (c) o1 o2 o3 o1'=o2'=o3' Zad.0. Odwzorowanie powierzchni stożka, walca, sfery oraz punktów leżących na tych powierzchniach. Przy odwzorowaniu powierzchni stożka, walca, sfery przyjmiemy reprezentację konturową, co oznacza, że

Bardziej szczegółowo

2 Liczby rzeczywiste - cz. 2

2 Liczby rzeczywiste - cz. 2 2 Liczby rzeczywiste - cz. 2 W tej lekcji omówimy pozostaªe tematy zwi zane z liczbami rzeczywistymi. 2. Przedziaªy liczbowe Wyró»niamy nast puj ce rodzaje przedziaªów liczbowych: (a) przedziaªy ograniczone:

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych dr Krzysztof yjewski Informatyka I rok I 0 in» 12 stycznia 2016 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0 y 0 )

Bardziej szczegółowo

Powierzchnie stopnia drugiego

Powierzchnie stopnia drugiego Powierzchnie stopnia drugiego Autor Pracy: Michał Kaliszuk Ze szkoły: II Liceum Ogólnokształcące im. Heleny Malczewskiej w Zawierciu ul. Daszyńskiego 2 42-400 Zawiercie tel.: 32 67 227 46 Opiekun: Bożena

Bardziej szczegółowo

Bifurkacje. Ewa Gudowska-Nowak Nowak. Plus ratio quam vis

Bifurkacje. Ewa Gudowska-Nowak Nowak. Plus ratio quam vis Bifurkacje Nowak Plus ratio quam vis M. Kac Complex Systems Research Center, M. Smoluchowski Institute of Physics, Jagellonian University, Kraków, Poland 2008 Gªówna idea.. Pozornie "dynamika" ukªadów

Bardziej szczegółowo

1 Funkcje dwóch zmiennych podstawowe pojęcia

1 Funkcje dwóch zmiennych podstawowe pojęcia 1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej

Bardziej szczegółowo

Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna

Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna 1. Podaj denicj liczby zespolonej. 2. Jak obliczy sum /iloczyn dwóch liczb zespolonych w postaci algebraicznej? 3. Co to jest liczba urojona?

Bardziej szczegółowo

3. (8 punktów) EGZAMIN MAGISTERSKI, Biomatematyka

3. (8 punktów) EGZAMIN MAGISTERSKI, Biomatematyka EGZAMIN MAGISTERSKI, 26.06.2017 Biomatematyka 1. (8 punktów) Rozwój wielko±ci pewnej populacji jest opisany równaniem: dn dt = rn(t) (1 + an(t), b gdzie N(t) jest wielko±ci populacji w chwili t, natomiast

Bardziej szczegółowo

Proste modele o zªo»onej dynamice

Proste modele o zªo»onej dynamice Proste modele o zªo»onej dynamice czyli krótki wst p do teorii chaosu Tomasz Rodak Festiwal Nauki, Techniki i Sztuki 2018 April 17, 2018 Dyskretny model pojedynczej populacji Rozwa»my pojedyncz populacj

Bardziej szczegółowo

X WARMI SKO-MAZURSKIE ZAWODY MATEMATYCZNE 18 maja 2012 (szkoªy ponadgimnazjalne)

X WARMI SKO-MAZURSKIE ZAWODY MATEMATYCZNE 18 maja 2012 (szkoªy ponadgimnazjalne) X WARMI SKO-MAZURSKIE ZAWODY MATEMATYCZNE 18 maja 2012 (szkoªy ponadgimnazjalne) Zadanie 1 Obecnie u»ywane tablice rejestracyjne wydawane s od 1 maja 2000r. Numery rejestracyjne aut s tworzone ze zbioru

Bardziej szczegółowo

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 51. ( pkt) Rozwi równanie 3 x 1. 1 x Zadanie 5. ( pkt) x 3y 5 Rozwi uk ad równa. x y 3 Zadanie 53. ( pkt) Rozwi nierówno x 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 54. ( pkt) 3 Rozwi

Bardziej szczegółowo

Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNI TE. W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied.

Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNI TE. W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied. Egzamin maturalny z matematyki ZADANIA ZAMKNI TE W zadaniach od 1. do 5. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied. Zadanie 1. (1 pkt) Cen nart obni ono o 0%, a po miesi cu now cen obni ono

Bardziej szczegółowo

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2). 1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego

Bardziej szczegółowo

Wektor. Uporz dkowany ukªad liczb (najcz ±ciej: dwóch - na pªaszczy¹nie, trzech - w przestrzeni 3D).

Wektor. Uporz dkowany ukªad liczb (najcz ±ciej: dwóch - na pªaszczy¹nie, trzech - w przestrzeni 3D). Wektor Uporz dkowany ukªad liczb (najcz ±ciej: dwóch - na pªaszczy¹nie, trzech - w przestrzeni 3D). Adam Szmagli«ski (IF PK) Wykªad z Fizyki dla I roku WIL Kraków, 10.10.2015 1 / 13 Wektor Uporz dkowany

Bardziej szczegółowo

Co i czym mo»na skonstruowa

Co i czym mo»na skonstruowa Co i czym mo»na skonstruowa Jarosªaw Kosiorek 5 maja 016 Co mo»na skonstruowa? Maj c dany odcinek dªugo±ci 1 mo»na skonstruowa : 1. odcinek dªugo±ci równej dowolnej liczbie wymiernej dodatniej;. odcinek

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny

Wojewódzki Konkurs Matematyczny sumaryczna liczba punktów (wypeªnia sprawdzaj cy) Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów 13 luty 2014 Czas 90 minut 1. Otrzymujesz do rozwi zania 10 zada«zamkni tych oraz 5 zada«otwartych.

Bardziej szczegółowo

Liczby zespolone. dr Krzysztof yjewski Mechatronika; S-I 0.in». 6 pa¹dziernika Oznaczenia. B dziemy u»ywali nast puj cych oznacze«:

Liczby zespolone. dr Krzysztof yjewski Mechatronika; S-I 0.in». 6 pa¹dziernika Oznaczenia. B dziemy u»ywali nast puj cych oznacze«: Liczby zespolone Oznaczenia B dziemy u»ywali nast puj cych oznacze«: N = {1, 2, 3,...}- zbiór liczb naturalnych, Z = {..., 3, 2, 1, 0, 1, 2, 3,...}- zbiór liczb caªkowitych, Q = { a b : a, b Z, b 0}- zbiór

Bardziej szczegółowo

WBiA Architektura i Urbanistyka. 1. Wykonaj dziaªania na macierzach: Które z iloczynów: A 2 B, AB 2, BA 2, B 2 3, B = 1 2 0

WBiA Architektura i Urbanistyka. 1. Wykonaj dziaªania na macierzach: Które z iloczynów: A 2 B, AB 2, BA 2, B 2 3, B = 1 2 0 WBiA Architektura i Urbanistyka Matematyka wiczenia 1. Wykonaj dziaªania na macierzach: 1) 2A + C 2) A C T ) B A 4) B C T 5) A 2 B T 1 0 2 dla A = 1 2 1 1 0 B = ( 1 2 1 0 1 ) C = 1 2 1 0 2 1 0 1 2. Które

Bardziej szczegółowo

Pochodna funkcji jednej zmiennej

Pochodna funkcji jednej zmiennej Pochodna funkcji jednej zmiennej Denicja. (pochodnej funkcji w punkcie) Je±li funkcja f : D R, D R okre±lona jest w pewnym otoczeniu punktu D i istnieje sko«czona granica ilorazu ró»niczkowego: f f( +

Bardziej szczegółowo

Ruch w potencjale U(r)=-α/r. Zagadnienie Keplera Przybli Ŝ enie małych drgań. Wykład 7 i 8

Ruch w potencjale U(r)=-α/r. Zagadnienie Keplera Przybli Ŝ enie małych drgań. Wykład 7 i 8 Wykład 7 i 8 Zagadnienie Keplera Przybli Ŝ enie małych drgań Ruch w potencjale U(r)=-α/r RozwaŜ my ruch punktu materialnego w polu centralnym, o potencjale odwrotnie proporcjonalnym do odległo ś ci r od

Bardziej szczegółowo

Rozkład materiału klasa 1BW

Rozkład materiału klasa 1BW Rozkład materiału klasa BW wg podręcznika Matematyka kl. wyd. Nowa Era 2h x 38 tyg. = 76h lekcyjnych LICZBYRZECZYWISTE (7 godz.). Zapoznanie z programem nauczania, wymaganiami edukacyjnymi, zasadami BHP

Bardziej szczegółowo

MATEMATYKA - CYKL 5 GODZINNY. DATA : 8 czerwca 2009

MATEMATYKA - CYKL 5 GODZINNY. DATA : 8 czerwca 2009 MATURA EUROPEJSKA 2009 MATEMATYKA - CYKL 5 GODZINNY DATA : 8 czerwca 2009 CZAS TRWANIA EGZAMINU: 4 godziny (240 minut) DOZWOLONE POMOCE : Europejski zestaw wzorów Kalkulator (bez grafiki, bez możliwości

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria i Gospodarka Wodna w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era

Bardziej szczegółowo

Podstawy POV-Ray'a. Diana Doma«ska. Uniwersytet l ski. Diana Doma«ska (U ) Podstawy POV-Ray'a 1 / 13

Podstawy POV-Ray'a. Diana Doma«ska. Uniwersytet l ski. Diana Doma«ska (U ) Podstawy POV-Ray'a 1 / 13 Podstawy POV-Ray'a Diana Doma«ska Uniwersytet l ski Diana Doma«ska (U ) Podstawy POV-Ray'a 1 / 13 POV-Ray (Persistence of Vision Raytracer) jest j zykiem opisu sceny sªu» cym do tworzenia trójwymiarowej

Bardziej szczegółowo

FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c

FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c FUNKCJA KWADRATOWA 1. Definicje i przydatne wzory DEFINICJA 1. Funkcja kwadratowa lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax + bx + c taką, że a, b, c R oraz a 0. Powyższe wyrażenie

Bardziej szczegółowo

Zadania do samodzielnego rozwiązania zestaw 11

Zadania do samodzielnego rozwiązania zestaw 11 Zadania do samodzielnego rozwiązania zestaw 11 1 Podać definicję pochodnej funkcji w punkcie, a następnie korzystając z tej definicji obliczyć ( ) π (a) f, jeśli f(x) = cos x, (e) f (0), jeśli f(x) = 4

Bardziej szczegółowo

K P K P R K P R D K P R D W

K P K P R K P R D K P R D W KLASA III TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i

Bardziej szczegółowo

Słownik pojęć matematycznych

Słownik pojęć matematycznych Słownik pojęć matematycznych Aksjomat (postulat) W systemie matematycznym lub logicznym jest to warunek początkowy lub założenie, które przyjmujemy jako prawdziwe bez dowodu i z którego można wyprowadzić

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych dr Krzysztof yjewski Analiza matematyczna 2; MatematykaS-I 0 lic 21 maja 2018 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(, y b dzie okre±lona przynajmniej na otoczeniu punktu

Bardziej szczegółowo

FUNKCJA LINIOWA, OKRĘGI

FUNKCJA LINIOWA, OKRĘGI FUNKCJA LINIOWA, OKRĘGI. Napisz równanie prostej przechodzącej przez początek układu i prostopadłej do prostej 3x-y+=0.. Oblicz pole trójkąta ograniczonego osiami układy i prostą x+y-6=0. 3. Odcinek o

Bardziej szczegółowo

Wst p do sieci neuronowych, wykªad 14 Zespolone sieci neuronowe

Wst p do sieci neuronowych, wykªad 14 Zespolone sieci neuronowe Wst p do sieci neuronowych, wykªad 14 Zespolone sieci neuronowe M. Czoków, J. Piersa Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toru«, Poland 2011-18-02 Motywacja Liczby

Bardziej szczegółowo

Krzywe stożkowe. 1 Powinowactwo prostokątne. 2 Elipsa. Niech l będzie ustaloną prostą i k ustaloną liczbą dodatnią.

Krzywe stożkowe. 1 Powinowactwo prostokątne. 2 Elipsa. Niech l będzie ustaloną prostą i k ustaloną liczbą dodatnią. Krzywe stożkowe 1 Powinowatwo prostokątne Nieh l będzie ustaloną prostą i k ustaloną lizbą dodatnią. Definija 1.1. Powinowatwem prostokątnym o osi l i stosunku k nazywamy przekształenie płaszzyzny, które

Bardziej szczegółowo

Arkusz maturalny treningowy nr 7. W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Arkusz maturalny treningowy nr 7. W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Czas pracy: 170 minut Liczba punktów do uzyskania: 50 Arkusz maturalny treningowy nr 7 W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Zadanie 1. (0-1) Wyrażenie (-8x 3

Bardziej szczegółowo

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania. 10 1 Wykazać, że liczba 008 008 10 + + jest większa od Nie używając kalkulatora, porównać liczby a = log 5 log 0 + log oraz b = 6 5 Rozwiązać równanie x + 4y + x y + 1 = 4xy 4 W prostokątnym układzie współrzędnych

Bardziej szczegółowo

1) 2) 3) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25)

1) 2) 3)  5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25) 1) Wykresem funkcji kwadratowej f jest parabola o wierzchołku w początku układu współrzędnych i przechodząca przez punkt. Wobec tego funkcja f określona wzorem 2) Punkt należy do paraboli o równaniu. Wobec

Bardziej szczegółowo

Krzywe stożkowe Lekcja VI: Parabola

Krzywe stożkowe Lekcja VI: Parabola Krzywe stożkowe Lekcja VI: Parabola Wydział Matematyki Politechniki Wrocławskiej Czym jest parabola? Parabola jest krzywą stożkową powstałą przez przecięcie stożka płaszczyzną pod kątem β = α (gdzie α

Bardziej szczegółowo

pobrano z (A1) Czas GRUDZIE

pobrano z  (A1) Czas GRUDZIE EGZAMIN MATURALNY OD ROKU SZKOLNEGO 014/015 MATEMATYKA POZIOM ROZSZERZONY PRZYK ADOWY ZESTAW ZADA (A1) W czasie trwania egzaminu zdaj cy mo e korzysta z zestawu wzorów matematycznych, linijki i cyrkla

Bardziej szczegółowo

Równania ró»niczkowe I rz du (RRIR) Twierdzenie Picarda. Anna D browska. WFTiMS. 23 marca 2010

Równania ró»niczkowe I rz du (RRIR) Twierdzenie Picarda. Anna D browska. WFTiMS. 23 marca 2010 WFTiMS 23 marca 2010 Spis tre±ci 1 Denicja 1 (równanie ró»niczkowe pierwszego rz du) Równanie y = f (t, y) (1) nazywamy równaniem ró»niczkowym zwyczajnym pierwszego rz du w postaci normalnej. Uwaga 1 Ogólna

Bardziej szczegółowo

Statystyka matematyczna - ZSTA LMO

Statystyka matematyczna - ZSTA LMO Statystyka matematyczna - ZSTA LMO Šukasz Smaga Wydziaª Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza w Poznaniu Wykªad 4 Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 4 1 / 18 Wykªad 4 - zagadnienia

Bardziej szczegółowo

cie uk ladu równań liniowych i podaliśmy sposoby rozwia

cie uk ladu równań liniowych i podaliśmy sposoby rozwia 8. UK LADY RÓWNAŃ LINIOWYCH. DIAGONALIZACJA MACIERZY. W porzednim paragrafie zdefiniowaliśmy poje cie uk ladu równań liniowych i podaliśmy sposoby rozwia zania go, w przypadku, gdy uk lad jest uk ladem

Bardziej szczegółowo

2 Statyka. F sin α + R B = 1 1 n ( 1. Rys. 1. mg 2

2 Statyka. F sin α + R B = 1 1 n ( 1. Rys. 1. mg 2 1 Moment p du Zad. 1.1 Cz stka o masie m = 5 kg znajduj c si w poªo»eniu r = 3i + j + k [m] ma pr dko± v = i [m/s]. Obliczy wektor momentu p du L cz stki wzgl dem pocz tku ukªadu wspóªprzednych, wzgl dm

Bardziej szczegółowo

Prosta i płaszczyzna w przestrzeni

Prosta i płaszczyzna w przestrzeni Prosta i płaszczyzna w przestrzeni Wybrane wzory i informacje Równanie prostej przechodzącej przez punkt P 0 = (x 0, y 0, z 0 ) o wektorze wodzącym r 0 i równoległej do wektora v = [a, b, c] : postać parametrycznego

Bardziej szczegółowo