Arkusz maturalny treningowy nr 7. W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.
|
|
- Gabriel Skrzypczak
- 8 lat temu
- Przeglądów:
Transkrypt
1 Czas pracy: 170 minut Liczba punktów do uzyskania: 50 Arkusz maturalny treningowy nr 7 W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Zadanie 1. (0-1) Wyrażenie (-8x 3 +12x 2-4x):2x+6 jest równe: A. -4x 3 +6x+4 B.-4x 2-6x-4 C. 4x 2 +6x+2 D.-4x 2 +6x+4 Zadanie 2. (0-1) Oblicz log100-log 28 A. -1 B. 12,5 C. -2 D. 1 Zadanie 3. (0-1) Przez 3 lata pan Kowalski lokuje w banku na początku każdego roku po 4000 zł na 5% w skali roku. Jaką sumę wypłaci pan Kowalski po 3 latach. Uwzględnij 18% podatek od dochodów kapitałowych. Wysokość odprowadzonego podatku zaokrąglij do jednej złotówki. A ,50 zł B ,16 zł C ,50 zł D ,50 zł Zadanie 4. (0-1) Rozwiązaniem równania jest: A. x= 1,25 B. x= C. D. x=
2 Zadanie 5. (0-1) Rozwiązaniem równania jest: A. B. x= C. x= D. x= Zadanie 6. (0-1) Dany jest wykres funkcji f.
3 Wykres funkcji g(x)= f(x) jest: A. symetryczny względem osi ox B. symetryczny względem osi oy C. symetryczny względem początku układu współrzednych D. jednocześnie symetryczny wzlęgem osi ox i oy. Zadanie 7. (0-1) Liczba jest równa: A. 2 B. 6 C. log 26 D. 3 Zadanie 8. (0-1) Dany jest wzór na pole trapezu Długość podstawy a trapezu określa wyrażenie:
4 A. B. C. a=2p-h D. Zadanie 9. (0-1) Miejscem zerowym funkcji o wzorze f(x)=10x+10a jest liczba 3. Parametr a wynosi: A. 4 B. -1 C. -2 D. -3 Zadanie 10. (0-1) Równanie prostej y=- x +6 zapisanej w postaci ogólnej to: A. -2x-3y-18=0 B. -3y-2x=18 C. 2x+3y-18=0 D. x-6=3y Zadanie 11. (0-1) Dla jakiej wartości parametru k punkty A=(-1,2), B=(4,3) i C=(k,6) są współliniowe? A. k=11 B. k=19 C. k=21 D. k=17
5 Zadanie 12. (0-1) Liczby log 39, 2log 216 są kolejnymi wyrazami ciągu geometrycznego (a n). Trzeci wyraz tego ciągu jest równy: A. 32 B. 24 C. 40 D. 16 Zadanie 13. (0-1) Jeżeli dwa czworokąty podobne mają pola równe 30cm 2 i 90cm 2 to skala podobieństwa tych czworokątów jest równa: A. -3 B. C. 3 D. 3 Zadanie 14. (0-1) Na rysunku przedstawiono trapez prostokątny ABCD, w którym CD =6, AE =3, kąt DAE ma miarę równą Pole trapezu ABCD wynosi: A. 7 3 B. C D. 3 3
6 Zadanie 15. (0-1) Na mapie narysowanej w skali 1: pole działki w kształcie kwadratu wynosi 4cm 2. Pole działki w rzeczywistości jest równe: A m 2 B. 4 m 2 C m 2 D. 0,04 m 2 Zadanie 16. (0-1) Oblicz wartość wyrażenia (-1) 2x + 2x - 4x -1 dla x=-1 A. 1 B. 2 C. 3 D. 4 Zadanie 17. (0-1) Na rysunku przedstawiono trójkąt równoramienny.
7 Długość boku x wynosi: A. 7 3 B. 14 C. 9 3 D Zadanie 18. (0-1) Zdarzenia A i B są zdarzeniami przestrzeni Ω oraz P(AUB)=, P(A)= i P(B ) =. Prawdopodobieństwo P(A B) wynosi: A. B. C. D. Zadanie 19. (0-1) Rzucamy trzy razy monetą. Prawdopodobieństwo, że otrzymamy dokładnie dwie reszki wynosi: A. B. C. D. Zadanie 20. (0-1) Liczba ujemnych wyrazów ciągu określonego wzorem a n=n 2-9n+14? wynosi: A. 5 B. 6 C. 3 D. 4
8 Zadanie 21. (0-2) Oblicz współrzędne punktu P symetrycznego do punktu P=(1,2) względem prostej o równaniu y=-2x+6. Odpowiedź: Zadanie 22. (0-2) Wykaż, że jeżeli dla dowolnych liczb x i y należących do zbioru liczb rzeczywistych spełnione są warunki x 2 +y 2 =89 i x+y =13 to xy=40.
9 Pokaż analizę tego zadania Zadanie 23. (0-2) Oblicz objętość czworościanu foremnego o krawędzi długości 10 cm. Odpowiedź Zadanie 24. (0-2) Wiedząc, że kąt α jest kątem ostrym wykaż, że.
10 Pokaż analizę tego zadania Zadanie 25. (0-3) Sporządź wykres funkcji y=2x-1. Podaj miejsce zerowe oraz współrzędne punktu przecięcia wykresu z osią OY. Podaj dla jakich argumentów funkcja przyjmuje wartości dodatnie i ujemne. Określ jaką wartość przyjmuje funkcja dla argumentu równego 1. Odpowiedź:... Zadanie 26. (0-2) Średnia zarobków pięciu osób to 2400 zł, trzy spośród tych osób zarabiają po 2800 zł. Oblicz zarobek czwartej i piątej osoby, jeżeli zarobek czwartej osoby jest mniejszy od zarobku piątej osoby o 500 zł.
11 Odpowiedź: Zadanie 27. (0-4) W prostopadłościanie przekątna ściany bocznej o długości 10 jest nachylona do płaszczyzny podstawy pod kątem 45 0, a przekątna prostopadłościanu tworzy z płaszczyzną podstawy kąt Oblicz objętość prostopadłościanu. Odpowiedź:... Zadanie 28. (0-4) Spośród punktów o współrzędnych (x,y) gdzie x {-3,-2,-1,0,1, 2,3,6} i y {0,1,2,3,5,6,-9} losowo wybrano dwa różne punkty. Oblicz
12 prawdopodobieństwo zdarzenia, że wybrane punkty leżą na prostej o równaniu y=3x. Odpowiedź:... Zadanie 29. (0-4) Wierzchołkami trójkąta ABC są punkty A=(2,4), B=(1,3) i C=(-6,4). Wyznacz współrzędne środka S okręgu opisanego na trójkącie ABC. Odpowiedź:... Zadanie 30. (0-5) Pole powierzchni bocznej stożka jest 3 razy większe od pola jego podstawy. Oblicz tangens kąta nachylenia tworzącej stożka do płaszczyzny podstawy.
13 Odpowiedź:... Interesują Cię analizy zadań w Kategorii Arkusze maturalne kliknij tutaj
14 MATEMATYKA MOJA PASJA prawa autorskie zastrzeżone Analizy zadań: EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy: 170 minut Liczba punktów do uzyskania: 50 Arkusz maturalny treningowy NR 7 W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Zadanie 1. (0-1) Wyrażenie (-8x 3 +12x 2-4x):2x+6 jest równe: A. -4x 3 +6x+4 B.-4x 2-6x-4 C. 4x 2 +6x+2 D.-4x 2 +6x+4 Zadanie 2. (0-1) Oblicz log100-log 28 A. -1 B. 12,5 C. -2 D. 1 Zadanie 3. (0-1) Przez 3 lata pan Kowalski lokuje w banku na początku każdego roku po 4000 zł na 5% w skali roku. Jaką sumę wypłaci pan Kowalski po 3 latach. Uwzględnij 18% podatek od dochodów kapitałowych. Wysokość odprowadzonego podatku zaokrąglij do jednej złotówki. A ,50 zł B ,16 zł C ,50 zł D ,50 zł
15 Zadanie 4. (0-1) Rozwiązaniem równania jest: A. x= 1,25 B. x= C. D. x= Zadanie 5. (0-1) Rozwiązaniem równania jest: A. B. x= C. x= D. x= Zadanie 6. (0-1) Dany jest wykres funkcji f.
16 Wykres funkcji g(x)= f(x) jest: A. symetryczny względem osi ox B. symetryczny względem osi oy C. symetryczny względem początku układu współrzednych D. jednocześnie symetryczny wzlęgem osi ox i oy. Zadanie 7. (0-1) Liczba jest równa: A. 2 B. 6 C. log 26 D. 3 Zadanie 8. (0-1) Dany jest wzór na pole trapezu Długość podstawy a trapezu określa wyrażenie: A. B. C. a=2p-h D.
17 Zadanie 9. (0-1) Miejscem zerowym funkcji o wzorze f(x)=10x+10a jest liczba 3. Parametr a wynosi: A. 4 B. -1 C. -2 D. -3 Zadanie 10. (0-1) Równanie prostej y=- x +6 zapisanej w postaci ogólnej to: A. -2x-3y-18=0 B. -3y-2x=18 C. 2x+3y-18=0 D. x-6=3y Zadanie 11. (0-1) Dla jakiej wartości parametru k punkty A=(-1,2), B=(4,3) i C=(k,6) są współliniowe? A. k=11 B. k=19 C. k=21 D. k=17 Zadanie 12. (0-1) Liczby log 39, 2log 216 są kolejnymi wyrazami ciągu geometrycznego (a n). Trzeci wyraz tego ciągu jest równy: A. 32 B. 24 C. 40 D. 16 Zadanie 13. (0-1)
18 Jeżeli dwa czworokąty podobne mają pola równe 30cm 2 i 90cm 2 to skala podobieństwa tych czworokątów jest równa: A. -3 B. C. 3 D. 3 Zadanie 14. (0-1) Na rysunku przedstawiono trapez prostokątny ABCD, w którym CD =6, AE =3, kąt DAE ma miarę równą Pole trapezu ABCD wynosi: A. 7 3 B. C D. 3 3 Zadanie 15. (0-1) Na mapie narysowanej w skali 1: pole działki w kształcie kwadratu wynosi 4cm 2. Pole działki w rzeczywistości jest równe: A m 2 B. 4 m 2 C m 2 D. 0,04 m 2
19 Zadanie 16. (0-1) Oblicz wartość wyrażenia (-1) 2x + 2x - 4x -1 dla x=-1 A. 1 B. 2 C. 3 D. 4 Zadanie 17. (0-1) Na rysunku przedstawiono trójkąt równoramienny. Długość boku x wynosi: A. 7 3 B. 14 C. 9 3 D Zadanie 18. (0-1)
20 Zdarzenia A i B są zdarzeniami przestrzeni Ω oraz P(AUB)=, P(A)= i P(B ) =. Prawdopodobieństwo P(A B) wynosi: A. B. C. D. Zadanie 19. (0-1) Rzucamy trzy razy monetą. Prawdopodobieństwo, że otrzymamy dokładnie dwie reszki wynosi: A. B. C. D. Zadanie 20. (0-1) Liczba ujemnych wyrazów ciągu określonego wzorem a n=n 2-9n+14? wynosi: A. 5 B. 6 C. 3 D. 4 Zadanie 21. (0-2) Oblicz współrzędne punktu P symetrycznego do punktu P=(1,2) względem prostej o równaniu y=-2x+6.
21 Odpowiedź: Zadanie 22. (0-2) Wykaż, że jeżeli dla dowolnych liczb x i y należących do zbioru liczb rzeczywistych spełnione są warunki x 2 +y 2 =89 i x+y =13 to xy=40. Odpowiedź.. Zadanie 23. (0-2) Oblicz objętość czworościanu foremnego o krawędzi długości 10 cm.
22 Odpowiedź Zadanie 24. (0-2) Wiedząc, że kąt α jest kątem ostrym wykaż, że. Odpowiedź:... Zadanie 25. (0-3) Sporządź wykres funkcji y=2x-1. Podaj miejsce zerowe oraz współrzędne punktu przecięcia wykresu z osią OY. Podaj dla jakich argumentów funkcja przyjmuje wartości dodatnie i ujemne. Określ jaką wartość przyjmuje funkcja dla argumentu równego 1.
23 Odpowiedź:... Zadanie 26. (0-2) Średnia zarobków pięciu osób to 2400 zł, trzy spośród tych osób zarabiają po 2800 zł. Oblicz zarobek czwartej i piątej osoby, jeżeli zarobek czwartej osoby jest mniejszy od zarobku piątej osoby o 500 zł. Odpowiedź: Zadanie 27. (0-4) W prostopadłościanie przekątna ściany bocznej o długości 10 jest nachylona do płaszczyzny podstawy pod kątem 45 0, a przekątna prostopadłościanu tworzy z płaszczyzną podstawy kąt Oblicz objętość prostopadłościanu.
24 Odpowiedź:... Zadanie 28. (0-4) Spośród punktów o współrzędnych (x,y) gdzie x {-3,-2,-1,0,1, 2,3,6} i y {0,1,2,3,5,6,-9} losowo wybrano dwa różne punkty. Oblicz prawdopodobieństwo zdarzenia, że wybrane punkty leżą na prostej o równaniu y=3x. Odpowiedź:... Zadanie 29. (0-4) Wierzchołkami trójkąta ABC są punkty A=(2,4), B=(1,3) i C=(-6,4). Wyznacz współrzędne środka S okręgu opisanego na trójkącie ABC.
25 Odpowiedź:... Zadanie 30. (0-5) Pole powierzchni bocznej stożka jest 3 razy większe od pola jego podstawy. Oblicz tangens kąta nachylenia tworzącej stożka do płaszczyzny podstawy. Odpowiedź:...
26
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9
SPRAWDZIANY Z MATEMATYKI
SPRAWDZIANY Z MATEMATYKI dla klasy III gimnazjum dostosowane do programu Matematyka z Plusem opracowała mgr Marzena Mazur LICZBY I WYRAŻENIA ALGEBRAICZNE Grupa I Zad.1. Zapisz w jak najprostszej postaci
Czas pracy 170 minut
ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 013 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
Zadanie 51. ( pkt) Rozwi równanie 3 x 1. 1 x Zadanie 5. ( pkt) x 3y 5 Rozwi uk ad równa. x y 3 Zadanie 53. ( pkt) Rozwi nierówno x 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 54. ( pkt) 3 Rozwi
MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI
MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI LUTY 01 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz zawiera strony (zadania 1 ).. Arkusz zawiera 4 zadania zamknięte i 9
Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNI TE. W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied.
Egzamin maturalny z matematyki ZADANIA ZAMKNI TE W zadaniach od 1. do 5. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied. Zadanie 1. (1 pkt) Cen nart obni ono o 0%, a po miesi cu now cen obni ono
EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu.
pobrano z www.sqlmedia.pl Uk ad graficzny CKE 00 KOD Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. WPISUJE ZDAJ CY PESEL Miejsce na naklejk
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 014 Czas pracy: 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 1
Czas pracy 170 minut
ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI DLA UCZNIÓW LICEUM MARZEC ROK 015 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron..
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dyskalkulia dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY
ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI
ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI Styczeń 2013 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron. 2. W zadaniach od 1. do 25. są
Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu.
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 010 KOD WPISUJE ZDAJ CY PESEL Miejsce na naklejk z kodem dysleksja EGZAMIN
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-092 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2009 Czas pracy 120 minut Instrukcja
EGZAMIN MATURALNY Z MATEMATYKI
pobrano z www.sqlmedia.pl ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-092 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2009 Czas
ZADANIA ZAMKNI TE. W zadaniach od 1. do 20. wybierz i zaznacz na karcie odpowiedzi jedn poprawn odpowied.
2 Przyk adowy arkusz egzaminacyjny z matematyki ZADANIA ZAMKNI TE W zadaniach od 1. do 20. wybierz i zaznacz na karcie odpowiedzi jedn poprawn odpowied. Zadanie 1. (1 pkt) Pole powierzchni ca kowitej sze
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 16 stron.. W zadaniach od 1. do 5. s podane 4 odpowiedzi:
nie zdałeś naszej próbnej matury z matematyki?
Szanowny Maturzysto, nie zdałeś naszej próbnej matury z matematyki? To prawie niemożliwe, ale jeżeli jednak tak, to Pewnie sądzisz, że przyczyna tkwi w bardzo trudnym arkuszu! Zobaczmy, jak to wygląda
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014 KOD UCZNIA Etap: Data: Czas pracy: rejonowy 8 stycznia 2014 r. 120 minut Informacje dla
ARKUSZ WICZENIOWY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50
pobrano z www.sqlmedia.pl Centralna Komisja Egzaminacyjna ARKUSZ WICZENIOWY Z MATEMATYKI MARZEC 01 POZIOM PODSTAWOWY 1. Sprawd, czy arkusz wiczeniowy zawiera strony (zadania 1 ).. Rozwi zania zada i odpowiedzi
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2008 Czas pracy 120 minut Instrukcja
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2008 Czas pracy 120 minut Instrukcja
NUMER IDENTYFIKATORA:
Społeczne Liceum Ogólnokształcące z Maturą Międzynarodową im. Ingmara Bergmana IB WORLD SCHOOL 53 ul. Raszyńska, 0-06 Warszawa, tel./fax 668 54 5 www.ib.bednarska.edu.pl / e-mail: liceum.ib@rasz.edu.pl
Arkusz maturalny. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne
Arkusz maturalny Šukasz Dawidowski Powtórki maturalne 25 kwietnia 2016r. Odwrotno±ci liczby rzeczywistej 1. 9 8 2. 0, (1) 3. 8 9 4. 0, (8) 3 4 4 4 1 jest liczba Odwrotno±ci liczby rzeczywistej 3 4 4 4
Kurs z matematyki - zadania
Kurs z matematyki - zadania Miara łukowa kąta Zadanie Miary kątów wyrażone w stopniach zapisać w radianach: a) 0, b) 80, c) 90, d), e) 0, f) 0, g) 0, h), i) 0, j) 70, k), l) 80, m) 080, n), o) 0 Zadanie
Matematyka z plusemdla szkoły ponadgimnazjalnej WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM. KATEGORIA B Uczeń rozumie:
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca P - podstawowy ocena dostateczna (dst.) R - rozszerzający ocena dobra (db.) D
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. s podane 4 odpowiedzi:
Zadanie 1. (0-1 pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D) p < 43,(4)% C) 5 3 A) B) C) D)
W ka dym z zada.-24. wybierz i zaznacz jedn poprawn odpowied. Zadanie. (0- pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D) p < 43,(4)% Zadanie 2. (0- pkt) Wyra enie
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50. pobrano z
Uk ad graficzny CKE 010 KOD Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. WPISUJE ZDAJ CY PESEL Miejsce na naklejk z kodem dysleksja EGZAMIN
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. s podane 4 odpowiedzi:
KURS GEOMETRIA ANALITYCZNA
KURS GEOMETRIA ANALITYCZNA Lekcja 1 Działania na wektorach bez układu współrzędnych. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 007 Czas pracy 180 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny
Zadania zamknięte. A) 3 pierwiastki B) 1 pierwiastek C) 4 pierwiastki D) 2 pierwiastki. C) a 4 = 2 3
Zadania zamknięte ZADANIE 1 (1 PKT) Równanie x2 3x+2 = 0 ma: x 2 4 A) 3 pierwiastki B) 1 pierwiastek C) 4 pierwiastki D) 2 pierwiastki ZADANIE 2 (1 PKT) Liczba b jest 3 razy większa od liczby a. Wtedy
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-R1A1P-061 POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 12
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50. Miejsce na naklejk z kodem
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 2010 KOD WPISUJE ZDAJ CY PESEL Miejsce na naklejk z kodem EGZAMIN MATURALNY
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-R1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 2008 Czas pracy 180 minut Instrukcja
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM ROZSZERZONY. S x 3x y. 1.5 Podanie odpowiedzi: Poszukiwane liczby to : 2, 6, 5.
Nr zadania Nr czynno ci... ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Etapy rozwi zania zadania Wprowadzenie oznacze : x, x, y poszukiwane liczby i zapisanie równania: x y lub: zapisanie
Zadanie 2. Funkcja jest funkcją kwadratową. Zbiorem wszystkich rozwiązań nierówności f x jest przedział
Zadanie. Na początku roku akademickiego mężczyźni stanowili 40% wszystkich studentów. Na koniec roku liczba wszystkich studentów zmalała o 0% i wówczas okazało się, że mężczyźni stanowią % wszystkich studentów.
MATEMATYKA POZIOM ROZSZERZONY PRZYK ADOWY ZESTAW ZADA NR 2. Miejsce na naklejk z kodem szko y CKE MARZEC ROK Czas pracy 150 minut
Miejsce na naklejk z kodem szko y CKE MATEMATYKA POZIOM ROZSZERZONY MARZEC ROK 2008 PRZYK ADOWY ZESTAW ZADA NR 2 Czas pracy 150 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera
pobrano z (A1) Czas GRUDZIE
EGZAMIN MATURALNY OD ROKU SZKOLNEGO 014/015 MATEMATYKA POZIOM ROZSZERZONY PRZYK ADOWY ZESTAW ZADA (A1) W czasie trwania egzaminu zdaj cy mo e korzysta z zestawu wzorów matematycznych, linijki i cyrkla
jest wierzchołkiem kąta prostego. Przeciwprostokątna AB jest zawarta w prostej o równaniu 3 x y + 2 = 0. Oblicz współrzędne punktów A i B.
Zadanie PP-GA-1. W trójkącie równoramiennym prostokątnym punkt C = ( 3, 1) jest wierzchołkiem kąta prostego. Przeciwprostokątna AB jest zawarta w prostej o równaniu 3 x y + 2 = 0. Oblicz współrzędne punktów
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja MMA-P1_1P-072 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2007 Czas pracy 120 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny
KLASA 3 GIMNAZJUM. 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1. 2. System dziesiątkowy 2-4. 3. System rzymski 5-6
KLASA 3 GIMNAZJUM TEMAT LICZBA GODZIN LEKCYJNYCH 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1 2. System dziesiątkowy 2-4 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 2008 R.
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 16 stron (zadania
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013 KOD UCZNIA Etap: Data: Czas pracy: wojewódzki 4 marca 2013 r. 120 minut Informacje dla
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2014 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50. pobrano z
Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 2013 WPISUJE ZDAJ CY KOD PESEL Miejsce na naklejk z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI MAJ 2014
Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1
Temat: Funkcje. Własności ogólne A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Kody kolorów: pojęcie zwraca uwagę * materiał nieobowiązkowy A n n a R a
Analiza wyników egzaminu gimnazjalnego. Test matematyczno-przyrodniczy matematyka. Test GM-M1-122,
Analiza wyników egzaminu gimnazjalnego Test matematyczno-przyrodniczy Test GM-M1-122, Zestaw zadań z zakresu matematyki posłużył w dniu 25 kwietnia 2012 r. do sprawdzenia, u uczniów kończących trzecią
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-P1A1P-061 POZIOM PODSTAWOWY Czas pracy 10 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 1 stron.
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 15 stron (zadania
ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych Numer zadania 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 Odpowiedź A B B C C D C B B C
MATEMATYKA. Zadania maturalne poziom rozszerzony.
MATEMATYKA Zadania maturalne poziom rozszerzony I Liczby, zbiory, wartość bezwzględna b Porównaj liczby a oraz Rozw: b a b a [MRI009/pkt] 8 a, b 7 9 a b, gdzie 69, : cos0 5 6 Uzasadnij, że 6 8 [MR/pkt]
Odpowiedzi i schematy oceniania Arkusz 23 Zadania zamknięte. Wskazówki do rozwiązania. Iloczyn dwóch liczb ujemnych jest liczbą dodatnią, zatem
Odpowiedzi i schematy oceniania Arkusz Zadania zamknięte Numer zadania Poprawna odpowiedź Wskazówki do rozwiązania B W ( ) + 8 ( ) 8 W ( 7) ( 7) ( 7 ) 8 ( 7) ( 8) 8 ( 8) Iloczyn dwóch liczb ujemnych jest
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Czas pracy 10 minut Instrukcja dla zdaj cego 1. Prosz sprawdzi, czy arkusz egzaminacyjny zawiera 9 stron. Ewentualny brak nale
Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu.
entralna Komisja Egzaminacyjna rkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny KE 00 KO WPISUJE ZJ Y PESEL Miejsce na naklejk z kodem EGZMIN MTURLNY Z MTEMTYKI
UZUPEŁNIA ZDAJ CY miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJ CY
Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. MMA 017 KOD UZUPEŁNIA ZDAJ CY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: czerwca 017 r.
Kurs wyrównawczy dla kandydatów i studentów UTP
Kurs wyrównawczy dla kandydatów i studentów UTP Część III Funkcja wymierna, potęgowa, logarytmiczna i wykładnicza Magdalena Alama-Bućko Ewa Fabińska Alfred Witkowski Grażyna Zachwieja Uniwersytet Technologiczno
Matematyka wykaz umiejętności wymaganych na poszczególne oceny zakres rozszerzony KLASA II
Matematyka wykaz umiejętności wymaganych na poszczególne oceny zakres rozszerzony KLASA II 1.Uzupełnienie treści ujętych w działach klasy I. 1.Rozwiązywanie prostych równań i nierówności z wartością bezwzględną
'()(*+,-./01(23/*4*567/8/23/*98:)2(!."/+)012+3$%-4#"4"$5012#-4#"4-6017%*,4.!"#$!"#%&"!!!"#$%&"#'()%*+,-+
'()(*+,-./01(23/*4*567/8/23/*98:)2(!."/+)012+3$%-4#"4"$5012#-4#"4-6017%*,4.!"#$!"#%&"!!!"#$%&"#'()%*+,-+ Ucze interpretuje i tworzy teksty o charakterze matematycznym, u ywa j zyka matematycznego do opisu
Rozkład materiału klasa 1BW
Rozkład materiału klasa BW wg podręcznika Matematyka kl. wyd. Nowa Era 2h x 38 tyg. = 76h lekcyjnych LICZBYRZECZYWISTE (7 godz.). Zapoznanie z programem nauczania, wymaganiami edukacyjnymi, zasadami BHP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 D A D A A B A B B C B D C C C D B C C B. Schemat oceniania zadań otwartych.
Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych LICEUM Klucz odpowiedzi do zadań zamkniętych 6 7 8 9 0 6 7 8 9 0 D A D A A B A B B C B D C C C D B C C B Zadanie. (pkt) Rozwiąż
K P K P R K P R D K P R D W
KLASA III TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i
LICZBY I DZIAŁANIA - POZIOM PODSTAWOWY
LICZBY I DZIAŁANIA - POZIOM PODSTAWOWY Zadanie 1. (1 pkt) Liczba 3 30 9 90 jest równa A. 3 210 B. 3 300 C. 9 120 D. 27 2700 Zadanie 2. (1 pkt) Liczba 2 40 4 20 jest równa A. 4 40 B. 4 50 C. 8 60 D. 8 800
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem (Wpisuje zdaj cy przed rozpocz ciem pracy) KOD ZDAJ CEGO MMA-RG1P-01 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 10 minut ARKUSZ II MAJ ROK 00 Instrukcja dla
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2011 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50. Miejsce na naklejk z kodem
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 2010 KOD WPISUJE ZDAJ CY PESEL Miejsce na naklejk z kodem EGZAMIN MATURALNY
KOD UCZNIA PESEL EGZAMIN. jedna. zadaniach. 5. W niektórych. Czas pracy: do. 135 minut T N. miejsce. Powodzeni GM-M7-132. z kodem. egzaminu.
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 2011 UZUPE NIA ZESPÓ NADZORUJ CY KOD UCZNIA PESEL miejsce na naklejk z kodem
MATEMATYKA. 1 Podstawowe informacje dotyczące zadań. 2 Zasady poprawnego zapisu odpowiedzi TEST DYDAKTYCZNY
MATEMATYKA Poziom wyższy TEST DYDAKTYCZNY Maksymalna ilość punktów: 50 Próg zaliczenia: 33 % 1 Podstawowe informacje dotyczące zadań Test dydaktyczny zawiera 23 zadania. Czas pracy oznaczono w kartach
MATEMATYKA 4 INSTYTUT MEDICUS FUNKCJA KWADRATOWA. Kurs przygotowawczy na studia medyczne. Rok szkolny 2010/2011. tel. 0501 38 39 55 www.medicus.edu.
INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne Rok szkolny 00/0 tel. 050 38 39 55 www.medicus.edu.pl MATEMATYKA 4 FUNKCJA KWADRATOWA Funkcją kwadratową lub trójmianem kwadratowym nazywamy funkcję
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-R1A1P-062 POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 14
KOŃCOWOROCZNE KRYTERIA OCENIANIA Z MATEMATYKI W ROKU SZKOLNYM 2014/2015 DLA KLAS III przygotowały mgr Magdalena Murawska i mgr Agnieszka Łukaszyk
KOŃCOWOROCZNE KRYTERIA OCENIANIA Z MATEMATYKI W ROKU SZKOLNYM 2014/2015 DLA KLAS III przygotowały mgr Magdalena Murawska i mgr Agnieszka Łukaszyk Ocenę dopuszczającą otrzymuje uczeń, który: definiuje notację
Zadania. SiOD Cwiczenie 1 ;
1. Niech A będzie zbiorem liczb naturalnych podzielnych przez 6 B zbiorem liczb naturalnych podzielnych przez 2 C będzie zbiorem liczb naturalnych podzielnych przez 5 Wyznaczyć zbiory A B, A C, C B, A
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-P1A1P-062 POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 14 stron
EGZAMIN MATURALNY MATEMATYKA Poziom rozszerzony ZBIÓR ZADAŃ. Materiały pomocnicze dla uczniów i nauczycieli
EGZAMIN MATURALNY MATEMATYKA Poziom rozszerzony ZBIÓR ZADAŃ Materiały pomocnicze dla uczniów i nauczycieli Centralna Komisja Egzaminacyjna 05 Publikacja opracowana przez zespół koordynowany przez Renatę
Matematyka z plusem dla szkoły ponadgimnazjalnej
1 ZAŁOŻENIA DO PLANU REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy) Program nauczania: Matematyka z plusem, numer dopuszczenia DKW-4015-37/01. Liczba godzin nauki w tygodniu:
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA TRZECIA GIMNAZJUM PIERWSZY OKRES
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA TRZECIA GIMNAZJUM PIERWSZY OKRES I. LICZBY I WYRAŻENIA ALGEBRAICZNE Ocenę dopuszczającą otrzymuje uczeń, który: 1. Zna pojęcie notacji wykładniczej. 2. Zna sposób
Dział Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra trójkąty prostokątne. Wielokąty i okręgi
Dział Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra trójkąty prostokątne Wielokąty i okręgi zna twierdzenie Pitagorasa rozumie potrzebę stosowania twierdzenia Pitagorasa umie obliczyć
Wymagania na poszczególne oceny klasa 4
Wymagania na poszczególne oceny klasa 4 a) Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których uczeń nie jest w stanie zrozumieć
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
WPISUJE ZDAJ CY KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY PRZED MATUR MAJ 2012 1. SprawdŸ, czy arkusz egzaminacyjny zawiera 16 stron (zadania 1 11). Ewentualny brak zg³oœ przewodnicz¹cemu
BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA
BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-RZYRODNICZA MATEMATYKA TEST 4 Zadanie 1 Dane są punkty A = ( 1, 1) oraz B = (3, 2). Jaką długość ma odcinek AB? Wybierz odpowiedź
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2011 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
dysleksja Miejsce na identyfikacj szko y ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY Czas pracy 120 minut LISTOPAD ROK 2008 Instrukcja dla zdajàcego 1. Sprawdê, czy arkusz egzaminacyjny
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 80 minut Instrukcja dla zdaj¹cego. SprawdŸ, czy arkusz egzaminacyjny zawiera stron (zadania 0). Ewentualny brak zg³oœ przewodnicz¹cemu
XIII KONKURS MATEMATYCZNY
XIII KONKURS MTMTYZNY L UZNIÓW SZKÓŁ POSTWOWYH organizowany przez XIII Liceum Ogólnokształcace w Szczecinie FINŁ - 19 lutego 2013 Test poniższy zawiera 25 zadań. Za poprawne rozwiązanie każdego zadania
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
ARKUSZ 0 MATURA 00 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 70 minut. Sprawdê, czy arkusz zawiera stron.. W zadaniach od. do 5. sà podane 4 odpowiedzi:
EGZAMIN MATURALNY 2013 MATEMATYKA
entralna Komisja Egzaminacyjna EGZMIN MTURLNY 0 MTEMTYK POZIOM PODSTWOWY Kryteria oceniania odpowiedzi MJ 0 Egzamin maturalny z matematyki Zadanie (0 ) Obszar standardów Zadanie (0 ) Opis wymagań pojęcia
Załącznik nr 4 do PSO z matematyki
Załącznik nr 4 do PSO z matematyki Wymagania na poszczególne oceny szkolne z matematyki na poziomie rozszerzonym Charakterystyka wymagań na poszczególne oceny: Wymagania na ocenę dopuszczającą dotyczą
Konkurs Matematyczny OMEGA organizowany przez Zespół Szkół Nr 1 im. Stefana Garczyńskiego w Zbąszyniu. http://omegamat.w.interia.
Aleksandra Zalejko Konkurs Matematyczny OMEGA organizowany przez Zespół Szkół Nr im. Stefana Garczyńskiego w Zbąszyniu. http://omegamat.w.interia.pl Organizacja kolejnych edycji Konkursu Matematycznego
MATERIA DIAGNOSTYCZNY Z MATEMATYKI
dysleksja MATERIA DIAGNOSTYCZNY Z MATEMATYKI Arkusz II POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla ucznia 1. Sprawd, czy arkusz zawiera 12 ponumerowanych stron. Ewentualny brak zg o przewodnicz
PLANIMETRIA. Poziom podstawowy
LANIMETRIA oziom podstawowy Zadanie ( pkt) W prostokątnym trójkącie ABC dana jest długość przyprostokątnej AC = Na przeciwprostokątnej AB wybrano punkt D, a na przyprostokątnej BC punkt E w taki sposób,
Temat: Co to jest optymalizacja? Maksymalizacja objętości naczynia prostopadłościennego za pomocą arkusza kalkulacyjngo.
Konspekt lekcji Przedmiot: Informatyka Typ szkoły: Gimnazjum Klasa: II Nr programu nauczania: DKW-4014-87/99 Czas trwania zajęć: 90min Temat: Co to jest optymalizacja? Maksymalizacja objętości naczynia
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
ARKUSZ 11 MATURA 2010 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 170 minut 1. Sprawdê, czy arkusz zawiera 11 stron. 2. W zadaniach od 1. do 21.
1. Rozwiązać układ równań { x 2 = 2y 1
Dzień Dziecka z Matematyką Tomasz Szymczyk Piotrków Trybunalski, 4 czerwca 013 r. Układy równań szkice rozwiązań 1. Rozwiązać układ równań { x = y 1 y = x 1. Wyznaczając z pierwszego równania zmienną y,
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
ARKUSZ 8 MATURA 010 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 170 minut 1. Sprawdê, czy arkusz zawiera 11 stron.. W zadaniach od 1. do. sà podane
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. PESEL
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 0 KOD UCZNIA UZUPE NIA ZESPÓ NADZORUJ CY PESEL miejsce na naklejk z kodem
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
ARKUSZ 7 MATURA 2010 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 170 minut 1. Sprawdê, czy arkusz zawiera 11 stron. 2. W zadaniach od 1. do 21.
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WG PROGRAMU MATEMATYKA Z PLUSEM w roku szkolnym 2013/2014
WMG DUKCJ Z MTMTK W KLS TRZCJ GMZJUM WG PROGRMU MTMTK Z PLUSM w roku szkolnym 2013/2014 L C Z B OC DOPUSZCZJĄC DOSTTCZ DOBR BRDZO DOBR CLUJĄC zna pojęcie liczby naturalnej, zna pojęcie notacji wykładniczej
14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe.
Matematyka 4/ 4.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. I. Przypomnij sobie:. Wiadomości z poprzedniej lekcji... Że przy rozwiązywaniu zadań tekstowych wykorzystujących
MATEMATYKA POZIOM PODSTAWOWY PRZYK ADOWY ZESTAW ZADA NR 1. Miejsce na naklejk z kodem szko y OKE ÓD CKE MARZEC ROK Czas pracy 120 minut
Miejsce na naklejk z kodem szko y OKE ÓD CKE MATEMATYKA POZIOM PODSTAWOWY MARZEC ROK 2008 PRZYK ADOWY ZESTAW ZADA NR 1 Czas pracy 120 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny