ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
|
|
- Monika Kaczor
- 8 lat temu
- Przeglądów:
Transkrypt
1 Zadanie 51. ( pkt) Rozwi równanie 3 x 1. 1 x Zadanie 5. ( pkt) x 3y 5 Rozwi uk ad równa. x y 3 Zadanie 53. ( pkt) Rozwi nierówno x 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 54. ( pkt) 3 Rozwi równanie x x 6x 3 0. Zadanie 55. ( pkt) O funkcji liniowej f wiadomo, e f (1) oraz, e do wykresu tej funkcji nale y punkt P,3. Wyznacz wzór funkcji f. Zadanie 56. ( pkt) Oblicz miejsca zerowe funkcji x 1 dla x 0 f ( x). x dla x 0 Zadanie 57. ( pkt) Naszkicuj wykres funkcji x 1 dla x 0 f ( x). x dla x 0 Zadanie 58. ( pkt) Oblicz najmniejsz warto funkcji kwadratowej f ( x) x 6x 1 w przedziale 0, 1. Zadanie 59. ( pkt) W x axx b Wielomiany 3 i V x x x x s równe. Oblicz a i b. Zadanie 60. ( pkt) 3 x Wyra enie zapisz w postaci ilorazu dwóch wielomianów. x 3 x 1 Zadanie 61. ( pkt) Napisz równanie prostej równoleg ej do prostej o równaniu x y 11 0 i przechodz cej przez punkt P (1,). Zadanie 6. ( pkt) Wyznacz równanie okr gu stycznego do osi Oy, którego rodkiem jest punkt 3, 5 S. 8
2 Zadanie 63. ( pkt) Wyznacz równanie okr gu o rodku 3, 5 S przechodz cego przez pocz tek uk adu wspó rz dnych. Zadanie 64. ( pkt) Wyznacz równanie prostej zawieraj cej rodkow CD trójk ta ABC, którego wierzcho kami, 1 6,1 C 7,10. s punkty: A, B, Zadanie 65. ( pkt) W trójk cie prostok tnym, w którym przyprostok tne maj d ugo ci i 4, jeden z k tów ostrych ma miar. Oblicz sin cos. Zadanie 66. ( pkt) 1 K t jest ostry i sin. Oblicz 4 3 tg. Zadanie 67. ( pkt) Punkt D le y na boku BC trójk ta równoramiennego ABC, w którym AD dzieli trójk t ABC na dwa trójk ty równoramienne w taki sposób, e (patrz rysunek). Oblicz miary k tów trójk ta ABC. C AC BC. Odcinek AB AD CD D Zadanie 68. ( pkt) Oblicz pole trójk ta równoramiennego ABC, w którym AB 4 i AC BC 13. Zadanie 69. ( pkt) Liczby 4, 10, c s d ugo ciami boków trójk ta równoramiennego. Oblicz c. Zadanie 70. ( pkt) Liczby 6, 10, c s d ugo ciami boków trójk ta równoramiennego. Oblicz c. Zadanie 71. ( pkt) Liczby 6, 10, c s d ugo ciami boków trójk ta prostok tnego. Oblicz c. A Zadanie 7. ( pkt) Liczby x 1, x, 5 s d ugo ciami boków trójk ta równoramiennego. Oblicz x. B 83
3 Zadanie 73. ( pkt) Obwód czworok ta wypuk ego ABCD jest równy 50 cm. Obwód trójk ta ABD jest równy 46 cm, a obwód trójk ta BCD jest równy 36 cm. Oblicz d ugo przek tnej BD. Zadanie 74. ( pkt) Ile wyrazów ujemnych ma ci g n a okre lony wzorem a n n n 4 dla n 1? Zadanie 75. ( pkt) Liczby, x 3, 8 s w podanej kolejno ci pierwszym, drugim i czwartym wyrazem ci gu arytmetycznego. Oblicz x. Zadanie 76. ( pkt) Wyrazami ci gu arytmetycznego n 5 daj reszt. Ponadto a3 1. Oblicz a 15. a s kolejne liczby naturalne, które przy dzieleniu przez Zadanie 77. ( pkt) Ile jest liczb naturalnych czterocyfrowych takich, e w ich zapisie dziesi tnym wyst puje jedna cyfra nieparzysta i trzy cyfry parzyste? Uwaga: przypominamy, e zero jest liczb parzyst. Zadanie 78. ( pkt) Ile jest liczb naturalnych dwucyfrowych podzielnych przez 15 lub 0? Zadanie 79. ( pkt) Ile jest liczb naturalnych trzycyfrowych, w których cyfra dziesi tek jest o wi ksza od cyfry jedno ci? Zadanie 80. ( pkt) Na jednej prostej zaznaczono 3 punkty, a na drugiej 4 punkty (patrz rysunek). Ile jest wszystkich trójk tów, których wierzcho kami s trzy spo ród zaznaczonych punktów? Zadanie 81. ( pkt) rednia arytmetyczna liczb: 3, 1, 1, 0, x, 0 jest równa. Oblicz x. 84
4 Zadanie 8. ( pkt) Oblicz redni arytmetyczn danych przedstawionych na poni szym diagramie cz sto ci cz sto w % warto Zadanie 83. ( pkt) Oblicz median danych: 0, 1, 3, 3, 1, 1,, 1. Zadanie 84. ( pkt) Oblicz median danych przedstawionych w postaci tabeli liczebno ci warto liczebno Zadanie 85. ( pkt) Ze zbioru liczb {1,,3,4,5,6,7,8,9,10,11} wybieramy losowo jedn liczb. Oblicz prawdopodobie stwo otrzymania liczby podzielnej przez 3 lub przez. Zadanie 86. ( pkt) Ze zbioru liczb naturalnych dwucyfrowych wybieramy losowo jedn liczb. Oblicz prawdopodobie stwo otrzymania liczby podzielnej przez 15. Zadanie 87. ( pkt) Rzucamy dwa razy symetryczn sze cienn kostk do gry. Oblicz prawdopodobie stwo otrzymania iloczynu oczek równego 5. Zadanie 88. ( pkt) A i B s takimi zdarzeniami losowymi zawartymi w, e A B Oblicz P( A B). Zadanie 89. ( pkt) A i B s takimi zdarzeniami losowymi zawartymi w, e A B Oblicz prawdopodobie stwo ró nicy B \ A. oraz P A 0, 3 i B 0, 4 P. oraz P A 0, 3 i B 0, 7 P. 85
5 Zadanie 90. ( pkt) Przek tna sze cianu ma d ugo 9. Oblicz pole powierzchni ca kowitej tego sze cianu. 9 Zadanie 91. ( pkt) Przekrój osiowy sto ka jest trójk tem równoramiennym o podstawie d ugo ci 1. Wysoko sto ka jest równa 8. Oblicz pole powierzchni bocznej tego sto ka. 8 1 Zadanie 9. ( pkt) Oblicz sinus k ta mi dzy przek tn sze cianu a jego p aszczyzn podstawy. 86
6 Zadanie 93. ( pkt) Czworok ty ABCD i APQR s kwadratami (patrz rysunek). Udowodnij, e D C BP DR. Q R P Zadanie 94. ( pkt) Na boku BC trójk ta ABC wybrano punkt D tak, by dwusieczn k ta DAB. Udowodnij, e A C AC CE. B CAD ABC. Odcinek AE jest D E A B 87
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zad. 1 (2 pkt) Rozwiąż równanie Zad.2 (2 pkt) 2 3x 1 = 1 2x 2 Rozwiąż układ równań x +3y =5 2x y = 3 Zad.3 (2 pkt) 2 Rozwiąż nierówność x + 6x 7 0 Zad.4 (2 pkt) 3 2
Bardziej szczegółowoZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie
Bardziej szczegółowoZADANIA ZAMKNI TE. W zadaniach od 1. do 20. wybierz i zaznacz na karcie odpowiedzi jedn poprawn odpowied.
2 Przyk adowy arkusz egzaminacyjny z matematyki ZADANIA ZAMKNI TE W zadaniach od 1. do 20. wybierz i zaznacz na karcie odpowiedzi jedn poprawn odpowied. Zadanie 1. (1 pkt) Pole powierzchni ca kowitej sze
Bardziej szczegółowoEgzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNI TE. W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied.
Egzamin maturalny z matematyki ZADANIA ZAMKNI TE W zadaniach od 1. do 5. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied. Zadanie 1. (1 pkt) Cen nart obni ono o 0%, a po miesi cu now cen obni ono
Bardziej szczegółowoArkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu.
pobrano z www.sqlmedia.pl Uk ad graficzny CKE 00 KOD Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. WPISUJE ZDAJ CY PESEL Miejsce na naklejk
Bardziej szczegółowoPRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. s podane 4 odpowiedzi:
Bardziej szczegółowoODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM ROZSZERZONY. S x 3x y. 1.5 Podanie odpowiedzi: Poszukiwane liczby to : 2, 6, 5.
Nr zadania Nr czynno ci... ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Etapy rozwi zania zadania Wprowadzenie oznacze : x, x, y poszukiwane liczby i zapisanie równania: x y lub: zapisanie
Bardziej szczegółowoPRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. s podane 4 odpowiedzi:
Bardziej szczegółowoEGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2008 Czas pracy 120 minut Instrukcja
Bardziej szczegółowoEGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2008 Czas pracy 120 minut Instrukcja
Bardziej szczegółowoArkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu.
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 010 KOD WPISUJE ZDAJ CY PESEL Miejsce na naklejk z kodem dysleksja EGZAMIN
Bardziej szczegółowoEGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50. Miejsce na naklejk z kodem
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 2010 KOD WPISUJE ZDAJ CY PESEL Miejsce na naklejk z kodem EGZAMIN MATURALNY
Bardziej szczegółowoARKUSZ WICZENIOWY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50
pobrano z www.sqlmedia.pl Centralna Komisja Egzaminacyjna ARKUSZ WICZENIOWY Z MATEMATYKI MARZEC 01 POZIOM PODSTAWOWY 1. Sprawd, czy arkusz wiczeniowy zawiera strony (zadania 1 ).. Rozwi zania zada i odpowiedzi
Bardziej szczegółowoZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZNI OTWRTE KRÓTKIEJ OPOWIEZI Zadanie 54. ( pkt)
Bardziej szczegółowoEGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-092 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2009 Czas pracy 120 minut Instrukcja
Bardziej szczegółowoZadanie 1. (0-1 pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D) p < 43,(4)% C) 5 3 A) B) C) D)
W ka dym z zada.-24. wybierz i zaznacz jedn poprawn odpowied. Zadanie. (0- pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D) p < 43,(4)% Zadanie 2. (0- pkt) Wyra enie
Bardziej szczegółowoEGZAMIN MATURALNY Z MATEMATYKI
pobrano z www.sqlmedia.pl ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-092 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2009 Czas
Bardziej szczegółowoZBIÓR PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI POZIOM PODSTAWOWY ZADANIA ZAMKNIĘTE
ZBIÓR PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI POZIOM PODSTAWOWY ZADANIA ZAMKNIĘTE Zad.1. (1p) Liczba 3 30 9 90 jest równa: A. 3 210 B. 3 300 C. 9 120 D. 27 2700 Zad.2. (1p) Liczba 3 8 3 3 9 2 jest równa: A. 3
Bardziej szczegółowoArkusz maturalny treningowy nr 7. W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.
Czas pracy: 170 minut Liczba punktów do uzyskania: 50 Arkusz maturalny treningowy nr 7 W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Zadanie 1. (0-1) Wyrażenie (-8x 3
Bardziej szczegółowoMATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI
MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI LUTY 01 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz zawiera strony (zadania 1 ).. Arkusz zawiera 4 zadania zamknięte i 9
Bardziej szczegółowoMATEMATYKA POZIOM ROZSZERZONY PRZYK ADOWY ZESTAW ZADA NR 2. Miejsce na naklejk z kodem szko y CKE MARZEC ROK Czas pracy 150 minut
Miejsce na naklejk z kodem szko y CKE MATEMATYKA POZIOM ROZSZERZONY MARZEC ROK 2008 PRZYK ADOWY ZESTAW ZADA NR 2 Czas pracy 150 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera
Bardziej szczegółowoEGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
Bardziej szczegółowopobrano z (A1) Czas GRUDZIE
EGZAMIN MATURALNY OD ROKU SZKOLNEGO 014/015 MATEMATYKA POZIOM ROZSZERZONY PRZYK ADOWY ZESTAW ZADA (A1) W czasie trwania egzaminu zdaj cy mo e korzysta z zestawu wzorów matematycznych, linijki i cyrkla
Bardziej szczegółowoLICZBY I DZIAŁANIA - POZIOM PODSTAWOWY
LICZBY I DZIAŁANIA - POZIOM PODSTAWOWY Zadanie 1. (1 pkt) Liczba 3 30 9 90 jest równa A. 3 210 B. 3 300 C. 9 120 D. 27 2700 Zadanie 2. (1 pkt) Liczba 2 40 4 20 jest równa A. 4 40 B. 4 50 C. 8 60 D. 8 800
Bardziej szczegółowoEGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50. pobrano z
Uk ad graficzny CKE 010 KOD Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. WPISUJE ZDAJ CY PESEL Miejsce na naklejk z kodem dysleksja EGZAMIN
Bardziej szczegółowoPRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 16 stron.. W zadaniach od 1. do 5. s podane 4 odpowiedzi:
Bardziej szczegółowoARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 014 Czas pracy: 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 1
Bardziej szczegółowoARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI
ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI Styczeń 2013 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron. 2. W zadaniach od 1. do 25. są
Bardziej szczegółowoVIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH
VIII. ZIÓR PRZYKŁDOWYCH ZDŃ MTURLNYCH ZDNI ZMKNIĘTE Zadanie. ( pkt) 0 90 Liczba 9 jest równa 0.. 00 C. 0 9 D. 700 7 Zadanie. 8 ( pkt) Liczba 9 jest równa.. 9 C. D. 5 Zadanie. ( pkt) Liczba log jest równa.
Bardziej szczegółowoCzas pracy 170 minut
ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 013 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od
Bardziej szczegółowoEGZAMIN MATURALNY Z MATEMATYKI MAJ 2014 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50. pobrano z
Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 2013 WPISUJE ZDAJ CY KOD PESEL Miejsce na naklejk z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI MAJ 2014
Bardziej szczegółowoArkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu.
entralna Komisja Egzaminacyjna rkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny KE 00 KO WPISUJE ZJ Y PESEL Miejsce na naklejk z kodem EGZMIN MTURLNY Z MTEMTYKI
Bardziej szczegółowoEGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 007 Czas pracy 180 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny
Bardziej szczegółowoEGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-R1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 2008 Czas pracy 180 minut Instrukcja
Bardziej szczegółowoPRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM
PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM Zad.1. (0-1) Liczba 3 8 3 3 9 2 A. 3 3 Zad.2. (0-1) jest równa: Liczba log24 jest równa: B. 3 32 9 C. 3 4 D. 3 5 A. 2log2 + log20 B. log6 + 2log2
Bardziej szczegółowoEGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9
Bardziej szczegółowoEGZAMIN MATURALNY Z MATEMATYKI MAJ 2011 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50. Miejsce na naklejk z kodem
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 2010 KOD WPISUJE ZDAJ CY PESEL Miejsce na naklejk z kodem EGZAMIN MATURALNY
Bardziej szczegółowoCzas pracy 170 minut
ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI DLA UCZNIÓW LICEUM MARZEC ROK 015 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron..
Bardziej szczegółowoPrzyk³adowe zdania. Wydawnictwo Szkolne OMEGA. Zadanie 1. Zadanie 2. Zadanie 3. Zadanie 4. Zadanie 5. Zadanie 6. Zadanie 7. Zadanie 8. Zadanie 9.
Zadanie. Przyk³adowe zdania Napisz równanie prostej przechodz¹cej przez punkty A (, ) i B (, 4 ). Zadanie. Napisz równanie prostej, której wspó³czynnik kierunkowy równy jest, wiedz¹c, e przechodzi ona
Bardziej szczegółowoPrzykładowe zadania z matematyki na poziomie podstawowym. Zadanie 1. (0 1) Liczba A. 3. Zadanie 2. (0 1) Liczba log 24 jest równa
Przykładowe zadania z rozwiązaniami: poziom podstawowy 1. Przykładowe zadania z matematyki na poziomie podstawowym Zadanie 1. (0 1) Liczba 8 3 3 2 3 9 jest równa A. 3 3 B. 32 3 9 C. 3 D. 5 3 Zadanie 2.
Bardziej szczegółowoArkusz maturalny. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne
Arkusz maturalny Šukasz Dawidowski Powtórki maturalne 25 kwietnia 2016r. Odwrotno±ci liczby rzeczywistej 1. 9 8 2. 0, (1) 3. 8 9 4. 0, (8) 3 4 4 4 1 jest liczba Odwrotno±ci liczby rzeczywistej 3 4 4 4
Bardziej szczegółowoMATERIA DIAGNOSTYCZNY Z MATEMATYKI
dysleksja MATERIA DIAGNOSTYCZNY Z MATEMATYKI Arkusz II POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla ucznia 1. Sprawd, czy arkusz zawiera 12 ponumerowanych stron. Ewentualny brak zg o przewodnicz
Bardziej szczegółowoEGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-R1A1P-061 POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 12
Bardziej szczegółowoEGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dyskalkulia dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY
Bardziej szczegółowoZadanie 2. Funkcja jest funkcją kwadratową. Zbiorem wszystkich rozwiązań nierówności f x jest przedział
Zadanie. Na początku roku akademickiego mężczyźni stanowili 40% wszystkich studentów. Na koniec roku liczba wszystkich studentów zmalała o 0% i wówczas okazało się, że mężczyźni stanowią % wszystkich studentów.
Bardziej szczegółowoEGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja MMA-P1_1P-072 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2007 Czas pracy 120 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny
Bardziej szczegółowoMATEMATYKA. Zadania maturalne poziom rozszerzony.
MATEMATYKA Zadania maturalne poziom rozszerzony I Liczby, zbiory, wartość bezwzględna b Porównaj liczby a oraz Rozw: b a b a [MRI009/pkt] 8 a, b 7 9 a b, gdzie 69, : cos0 5 6 Uzasadnij, że 6 8 [MR/pkt]
Bardziej szczegółowoWojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013 KOD UCZNIA Etap: Data: Czas pracy: wojewódzki 4 marca 2013 r. 120 minut Informacje dla
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 15 stron (zadania
Bardziej szczegółowo'()(*+,-./01(23/*4*567/8/23/*98:)2(!."/+)012+3$%-4#"4"$5012#-4#"4-6017%*,4.!"#$!"#%&"!!!"#$%&"#'()%*+,-+
'()(*+,-./01(23/*4*567/8/23/*98:)2(!."/+)012+3$%-4#"4"$5012#-4#"4-6017%*,4.!"#$!"#%&"!!!"#$%&"#'()%*+,-+ Ucze interpretuje i tworzy teksty o charakterze matematycznym, u ywa j zyka matematycznego do opisu
Bardziej szczegółowoSPRAWDZIANY Z MATEMATYKI
SPRAWDZIANY Z MATEMATYKI dla klasy III gimnazjum dostosowane do programu Matematyka z Plusem opracowała mgr Marzena Mazur LICZBY I WYRAŻENIA ALGEBRAICZNE Grupa I Zad.1. Zapisz w jak najprostszej postaci
Bardziej szczegółowoZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A01 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba log 1 3 3 27 jest równa:
Bardziej szczegółowonie zdałeś naszej próbnej matury z matematyki?
Szanowny Maturzysto, nie zdałeś naszej próbnej matury z matematyki? To prawie niemożliwe, ale jeżeli jednak tak, to Pewnie sądzisz, że przyczyna tkwi w bardzo trudnym arkuszu! Zobaczmy, jak to wygląda
Bardziej szczegółowoROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych Numer zadania 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 Odpowiedź A B B C C D C B B C
Bardziej szczegółowoEGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
Bardziej szczegółowoKurs z matematyki - zadania
Kurs z matematyki - zadania Miara łukowa kąta Zadanie Miary kątów wyrażone w stopniach zapisać w radianach: a) 0, b) 80, c) 90, d), e) 0, f) 0, g) 0, h), i) 0, j) 70, k), l) 80, m) 080, n), o) 0 Zadanie
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkê z kodem szko³y dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Przed matur¹ MAJ 2011 r. Czas pracy 180 minut Instrukcja dla zdaj¹cego 1. SprawdŸ, czy arkusz egzaminacyjny
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY (TECHNIKUM) 7 MARCA 2015 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) ( 5 Liczba
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 15 MARCA 2014 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 43256232a2 jest
Bardziej szczegółowoZadania zamknięte. A) 3 pierwiastki B) 1 pierwiastek C) 4 pierwiastki D) 2 pierwiastki. C) a 4 = 2 3
Zadania zamknięte ZADANIE 1 (1 PKT) Równanie x2 3x+2 = 0 ma: x 2 4 A) 3 pierwiastki B) 1 pierwiastek C) 4 pierwiastki D) 2 pierwiastki ZADANIE 2 (1 PKT) Liczba b jest 3 razy większa od liczby a. Wtedy
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 16 stron (zadania
Bardziej szczegółowojest wierzchołkiem kąta prostego. Przeciwprostokątna AB jest zawarta w prostej o równaniu 3 x y + 2 = 0. Oblicz współrzędne punktów A i B.
Zadanie PP-GA-1. W trójkącie równoramiennym prostokątnym punkt C = ( 3, 1) jest wierzchołkiem kąta prostego. Przeciwprostokątna AB jest zawarta w prostej o równaniu 3 x y + 2 = 0. Oblicz współrzędne punktów
Bardziej szczegółowoKURS GEOMETRIA ANALITYCZNA
KURS GEOMETRIA ANALITYCZNA Lekcja 1 Działania na wektorach bez układu współrzędnych. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie
Bardziej szczegółowoNUMER IDENTYFIKATORA:
Społeczne Liceum Ogólnokształcące z Maturą Międzynarodową im. Ingmara Bergmana IB WORLD SCHOOL 53 ul. Raszyńska, 0-06 Warszawa, tel./fax 668 54 5 www.ib.bednarska.edu.pl / e-mail: liceum.ib@rasz.edu.pl
Bardziej szczegółowoMATEMATYKA POZIOM PODSTAWOWY PRZYK ADOWY ZESTAW ZADA NR 1. Miejsce na naklejk z kodem szko y OKE ÓD CKE MARZEC ROK Czas pracy 120 minut
Miejsce na naklejk z kodem szko y OKE ÓD CKE MATEMATYKA POZIOM PODSTAWOWY MARZEC ROK 2008 PRZYK ADOWY ZESTAW ZADA NR 1 Czas pracy 120 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny
Bardziej szczegółowoEGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-R1A1P-062 POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 14
Bardziej szczegółowoPrzykładowy zestaw zadań nr 2 z matematyki Odpowiedzi i schemat punktowania poziom rozszerzony
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Nr zadania Nr czynności Etapy rozwiązania zadania Liczba punktów Uwagi... Wprowadzenie oznaczeń: x, x, y poszukiwane liczby i zapisanie równania:
Bardziej szczegółowoEGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem (Wpisuje zdaj cy przed rozpocz ciem pracy) KOD ZDAJ CEGO MMA-RG1P-01 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 10 minut ARKUSZ II MAJ ROK 00 Instrukcja dla
Bardziej szczegółowoWymagania na poszczególne oceny klasa 4
Wymagania na poszczególne oceny klasa 4 a) Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których uczeń nie jest w stanie zrozumieć
Bardziej szczegółowoWojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014 KOD UCZNIA Etap: Data: Czas pracy: rejonowy 8 stycznia 2014 r. 120 minut Informacje dla
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 80 minut Instrukcja dla zdaj¹cego. SprawdŸ, czy arkusz egzaminacyjny zawiera stron (zadania 0). Ewentualny brak zg³oœ przewodnicz¹cemu
Bardziej szczegółowoZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A04 2 Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba π spełnia nierówność: A. + 1 > 5 B. 1 < 2 C. + 2 3 4
Bardziej szczegółowoUZUPEŁNIA ZDAJ CY miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJ CY
Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. MMA 017 KOD UZUPEŁNIA ZDAJ CY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: czerwca 017 r.
Bardziej szczegółowoDZYSZKOLNE ZAWODY MATEMATYCZNE. Eliminacje rejonowe. Czas trwania zawodów: 150 minut
XLIII MIE DZYSZKOLNE ZAWODY MATEMATYCZNE Eliminacje rejonowe Czas trwania zawodów: 150 minut Każdy uczeń rozwia zuje dwadzieścia cztery zadania testowe, w których podano za lożenia oraz trzy (niekoniecznie
Bardziej szczegółowoPRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
ARKUSZ 8 MATURA 010 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 170 minut 1. Sprawdê, czy arkusz zawiera 11 stron.. W zadaniach od 1. do. sà podane
Bardziej szczegółowoV. WYMAGANIA EGZAMINACYJNE
V. WYMAGANIA EGZAMINACYJNE Standardy wymaga egzaminacyjnych Zdaj cy posiada umiej tno ci w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny
Bardziej szczegółowoRysunek przedstawia wykres funkcji y f x. Wska rysunek, na którym jest przedstawiony wykres funkcji y f x 1. A. B. Zadanie 3.
VII ZIÓR PRZYKAOWYH ZAA MATURALNYH ZAANIA ZAMKNITE Zadanie ( pkt) Liczba 0 90 9 jest równa 0 00 0 9 7 700 Zadanie ( pkt) Liczba 8 9 jest równa 9 Zadanie ( pkt) Liczba log jest równa log log 0 log 6 log
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 24 MARCA 202 CZAS PRACY: 70 MINUT Zadania zamknięte ZADANIE ( PKT.) Liczba 3 3 3 jest równa A)
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Czas pracy 10 minut Instrukcja dla zdaj cego 1. Prosz sprawdzi, czy arkusz egzaminacyjny zawiera 9 stron. Ewentualny brak nale
Bardziej szczegółowoPlanimetria VII. Wymagania egzaminacyjne:
Wymagania egzaminacyjne: a) korzysta ze związków między kątem środkowym, kątem wpisanym i kątem między styczną a cięciwą okręgu, b) wykorzystuje własności figur podobnych w zadaniach, w tym umieszczonych
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 5 LUTEGO 017 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba x jest przybliżeniem
Bardziej szczegółowoPRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
ARKUSZ 6 MATURA 00 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 70 minut. Sprawdê, czy arkusz zawiera stron.. W zadaniach od. do. sà podane 4 odpowiedzi:
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
WPISUJE ZDAJ CY KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY PRZED MATUR MAJ 2012 1. SprawdŸ, czy arkusz egzaminacyjny zawiera 16 stron (zadania 1 11). Ewentualny brak zg³oœ przewodnicz¹cemu
Bardziej szczegółowoEGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 2 CZERWCA 2015. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 013 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM
Bardziej szczegółowoKLASA 3 GIMNAZJUM. 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1. 2. System dziesiątkowy 2-4. 3. System rzymski 5-6
KLASA 3 GIMNAZJUM TEMAT LICZBA GODZIN LEKCYJNYCH 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1 2. System dziesiątkowy 2-4 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 2008 R.
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 5 KWIETNIA 2014 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Która z liczb jest
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 14 KWIETNIA 2018 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 5 30 2 3 5
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 17 MARCA 2012 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Który z zaznaczonych
Bardziej szczegółowoBADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA
BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-RZYRODNICZA MATEMATYKA TEST 4 Zadanie 1 Dane są punkty A = ( 1, 1) oraz B = (3, 2). Jaką długość ma odcinek AB? Wybierz odpowiedź
Bardziej szczegółowoEGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-P1A1P-062 POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 14 stron
Bardziej szczegółowoEGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY
KOD UZUPE NIA ZDAJ CY PESEL Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. miejsce na naklejk MMA 05 dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 5 maja
Bardziej szczegółowoARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY MARZEC 019 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Czas pracy 150 minut ARKUSZ II STYCZE ROK 2005 Instrukcja dla zdaj cego 1. Prosz sprawdzi, czy arkusz egzaminacyjny zawiera 10
Bardziej szczegółowoARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 2018 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 10 MARCA 2018 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 4 7 8 25 0, 5
Bardziej szczegółowoZad. 1 Liczba jest równa A B C D. Zad. 2 Liczba log16 jest równa A 3log2 + log8 B log4 + 2log3 C 3log4 log4 D log20 log4
Zad. 1 Liczba jest równa A B C D Zad. Liczba log16 jest równa A 3log + log8 B log4 + log3 C 3log4 log4 D log0 log4 Zad. 3 Rozwiązaniem równania jest liczba A B 18 C 1, D 6 Zad. 4 Większą z dwóch liczb
Bardziej szczegółowo