Optyka geometryczna. Zwierciadªa. Marcin S. Ma kowicz. rok szk. 2009/2010. Zespóª Szkóª Ponadgimnazjalnych Nr 2 w Brzesku

Wielkość: px
Rozpocząć pokaz od strony:

Download "Optyka geometryczna. Zwierciadªa. Marcin S. Ma kowicz. rok szk. 2009/2010. Zespóª Szkóª Ponadgimnazjalnych Nr 2 w Brzesku"

Transkrypt

1 Optyka geometryczna Zespóª Szkóª Ponadgimnazjalnych Nr 2 w Brzesku rok szk. 2009/2010

2 Spis tre±ci 1 2 Jak konstuowa obraz w zwierciadle pªaskim 3 Konstrukcja obrazu w zwierciadle kulistym wkl sªym Równanie zwierciadªa Obraz w zwierciadle wkl sªym i jego cechy 4 Konstrukcja obrazu w zwierciadle kulistym wypukªym Obraz w zwierciadle wypukªym i jego cechy

3 Rodzaje zwierciadeª Zwierciadªo optyczne, to gªadka powierzchnia o nierówno±ciach mniejszych ni» dªugo± fali ±wietlnej. wykonywane s na ogóª z polerowanego metalu lub szkªa pokrytego z jednej strony warstw odbijaj c. Ze wzgl du na ksztaªt powierzchni, zwierciadªa dzieli si na: pªaskie wkl sªe (skupiaj ce) wypukªe (rozpraszaj ce) Ze wzgl du na rodzaj krzywizny zwierciadªa wkl sªe i wypukªe dzieli si na: sferyczne cylindryczne paraboliczne (paraboloidalne) hiperboliczne (hiperboloidalne)

4 Zastosowania zwierciadeª stosowane s na przykªad w aparatach tzw. lustrzankach. oraz wkl sªe stosowane s w teleskopach, obiektywach lustrzanych. mog sªu»y tak»e do odbijania promieniowania elektromagnetycznego spoza zakresu fal ±wiatªa widzialnego, tak jak ma to miejsce w przypadku anteny satelitarnej ¹ródªo:

5 Zastosowania zwierciadeª Najwi ksza w Europie elektrownia sªoneczna w Odeillo (Francja). Powstaªa w celach bada«naukowych. Znajduje si tu tzw. piec sªoneczny, skonstruowany do uzyskiwania bardzo wysokich temperatur. Badane s tu m.in. ró»nego rodzaju materialy, które w przyszªo±ci mog posªu»y do budowy elementów statków kosmicznych. ¹ródªo:

6 Jak konstuowa obraz w zwierciadle pªaskim Powstawanie obrazu w zwierciadle pªaskim

7 Jak konstuowa obraz w zwierciadle pªaskim Powstawanie obrazu w zwierciadle pªaskim

8 Jak konstuowa obraz w zwierciadle pªaskim Powstawanie obrazu w zwierciadle pªaskim

9 Jak konstuowa obraz w zwierciadle pªaskim Powstawanie obrazu w zwierciadle pªaskim

10 Jak konstuowa obraz w zwierciadle pªaskim Powstawanie obrazu w zwierciadle pªaskim

11 Jak konstuowa obraz w zwierciadle pªaskim Powstawanie obrazu w zwierciadle pªaskim

12 Jak konstuowa obraz w zwierciadle pªaskim Powstawanie obrazu w zwierciadle pªaskim

13 Jak konstuowa obraz w zwierciadle pªaskim Powstawanie obrazu w zwierciadle pªaskim

14 Jak konstuowa obraz w zwierciadle pªaskim Powstawanie obrazu w zwierciadle pªaskim

15 Jak konstuowa obraz w zwierciadle pªaskim Powstawanie obrazu w zwierciadle pªaskim

16 Jak konstuowa obraz w zwierciadle pªaskim Powstawanie obrazu w zwierciadle pªaskim

17 Jak konstuowa obraz w zwierciadle pªaskim Powstawanie obrazu w zwierciadle pªaskim

18 Cechy obrazu Jak konstuowa obraz w zwierciadle pªaskim Cechy obrazu w zwierciadle pªaskim odlegªo± ka»dego punktu przedmiotu od zwierciadªa jest równa odlegªo±ci ka»dego punktu obrazu od zwierciadªa prosty, czyli nie odwrócony pozorny, czyli zostaª utworzony przez przedªu»enia odbitych promieni ±wietlnych tej samej wielko±ci co przedmiot lewa strona obrazu jest odbiciem prawej strony przedmiotu (i na odwrót)

19 Cechy obrazu Kliknij na obrazek aby powi kszy Jak konstuowa obraz w zwierciadle pªaskim Cechy obrazu w zwierciadle pªaskim odlegªo± ka»dego punktu przedmiotu od zwierciadªa jest równa odlegªo±ci ka»dego punktu obrazu od zwierciadªa prosty, czyli nie odwrócony pozorny, czyli zostaª utworzony przez przedªu»enia odbitych promieni ±wietlnych tej samej wielko±ci co przedmiot lewa strona obrazu jest odbiciem prawej strony przedmiotu (i na odwrót)

20 Konstrukcja obrazu w zwierciadle kulistym wkl sªym Równanie zwierciadªa Obraz w zwierciadle wkl sªym i jego cechy ±rodek krzywizny zw. ±rodek geometryczny kuli, której wycinkiem jest zwierciadªo; gªowna o± optyczna o± symetrii zwierciadªa;

21 Konstrukcja obrazu w zwierciadle kulistym wkl sªym Równanie zwierciadªa Obraz w zwierciadle wkl sªym i jego cechy ±rodek krzywizny zw. ±rodek geometryczny kuli, której wycinkiem jest zwierciadªo; gªowna o± optyczna o± symetrii zwierciadªa; ±rodek zwierciadªa punkt w którym gªówna o± optyczna przebija zwierciadªo;

22 Konstrukcja obrazu w zwierciadle kulistym wkl sªym Równanie zwierciadªa Obraz w zwierciadle wkl sªym i jego cechy ±rodek krzywizny zw. ±rodek geometryczny kuli, której wycinkiem jest zwierciadªo; gªowna o± optyczna o± symetrii zwierciadªa; ±rodek zwierciadªa punkt w którym gªówna o± optyczna przebija zwierciadªo; ognisko zwierciadªa punkt, w którym przecinaj si po odbiciu od zwierciadªa kulistego promienie lub przedªu»enia promieni biegn cych równolegle do gªównej osi optycznej;

23 Konstrukcja obrazu w zwierciadle kulistym wkl sªym Równanie zwierciadªa Obraz w zwierciadle wkl sªym i jego cechy ±rodek krzywizny zw. ±rodek geometryczny kuli, której wycinkiem jest zwierciadªo; gªowna o± optyczna o± symetrii zwierciadªa; ±rodek zwierciadªa punkt w którym gªówna o± optyczna przebija zwierciadªo; ognisko zwierciadªa punkt, w którym przecinaj si po odbiciu od zwierciadªa kulistego promienie lub przedªu»enia promieni biegn cych równolegle do gªównej osi optycznej; ogniskowa odlegªo± ogniska od ±rodka zwierciadªa;

24 Konstrukcja obrazu w zwierciadle kulistym wkl sªym Równanie zwierciadªa Obraz w zwierciadle wkl sªym i jego cechy ±rodek krzywizny zw. ±rodek geometryczny kuli, której wycinkiem jest zwierciadªo; gªowna o± optyczna o± symetrii zwierciadªa; ±rodek zwierciadªa punkt w którym gªówna o± optyczna przebija zwierciadªo; ognisko zwierciadªa punkt, w którym przecinaj si po odbiciu od zwierciadªa kulistego promienie lub przedªu»enia promieni biegn cych równolegle do gªównej osi optycznej; ogniskowa odlegªo± ogniska od ±rodka zwierciadªa;

25 Konstrukcja obrazu w zwierciadle kulistym wkl sªym Równanie zwierciadªa Obraz w zwierciadle wkl sªym i jego cechy Jak skonstruowa obraz w zwierciadle sferycznym? Zapami taj Aby upro±ci konstukcj obrazów w zwierciadªach sferycznych bierzemy pod uwag charakterystyczne promienie: promie«równolegªy do gªównej osi optycznej promie«padaj cy na ±rodek zwierciadªa promie«przechodz cy przez ognisko promie«przechodz cy przez ±rodek krzywizny zwierciadªa

26 Konstrukcja obrazu w zwierciadle kulistym wkl sªym Równanie zwierciadªa Obraz w zwierciadle wkl sªym i jego cechy

27 Konstrukcja obrazu w zwierciadle kulistym wkl sªym Równanie zwierciadªa Obraz w zwierciadle wkl sªym i jego cechy

28 Konstrukcja obrazu w zwierciadle kulistym wkl sªym Równanie zwierciadªa Obraz w zwierciadle wkl sªym i jego cechy

29 Konstrukcja obrazu w zwierciadle kulistym wkl sªym Równanie zwierciadªa Obraz w zwierciadle wkl sªym i jego cechy

30 Równanie zwierciadªa Konstrukcja obrazu w zwierciadle kulistym wkl sªym Równanie zwierciadªa Obraz w zwierciadle wkl sªym i jego cechy Równanie zwierciadªa 1 f = 1 x + 1 y x - wspóªrz dna poªo»enia przedmiotu od zwierciadªa y - wspóªrz dna poªo»enia obrazu od zwierciadªa f - ogniskowa p = y x = H h p - powi kszenie obrazu H - wysoko± obrazu h - wysoko± przedmiotu

31 Równanie zwierciadªa Konstrukcja obrazu w zwierciadle kulistym wkl sªym Równanie zwierciadªa Obraz w zwierciadle wkl sªym i jego cechy

32 Wyprowadzenie równania zwierciadªa Konstrukcja obrazu w zwierciadle kulistym wkl sªym Równanie zwierciadªa Obraz w zwierciadle wkl sªym i jego cechy Oznaczaj c odlegªo±ci przedmiotu i obrazu od zwierciadªa odpowiednio przez x i y mo»emy napisac: p = A B = y AB x Zpodobie«stwa trójk tów ABF i LDF wynika,»e: AF = AB LD LF Skoro AF = x f, a LD = FS = f, to: = AB A B = x y x f f = x f 1 x f 1 = x y Dziel c ostatnie równanie przez x i dodaj c do obu stron 1 x, otrzymamy: 1 f = 1 x + 1 y

33 Równanie zwierciadªa Konstrukcja obrazu w zwierciadle kulistym wkl sªym Równanie zwierciadªa Obraz w zwierciadle wkl sªym i jego cechy Odlegªo± obrazu od zwierciadªa jako funkcja odlegªo±ci przedmiotu od zwierciadªa y = fx x f

34 Obraz w zwierciadle wkl sªym Konstrukcja obrazu w zwierciadle kulistym wkl sªym Równanie zwierciadªa Obraz w zwierciadle wkl sªym i jego cechy Wi zka ±wiatªa równolegªa do gªównej osi optycznej po odbiciu od zwierciadªa przecina o± w ognisku zwierciadªa. O - ±rodek krzywizny zwierciadªa, F - ognisko, S - ±rodek zwierciadªa.

35 Konstrukcja obrazu w zwierciadle kulistym wkl sªym Równanie zwierciadªa Obraz w zwierciadle wkl sªym i jego cechy Konstrukcja obrazu powstaj cego w zwierciadle kulistym wkl sªym dla x=r

36 Konstrukcja obrazu w zwierciadle kulistym wkl sªym Równanie zwierciadªa Obraz w zwierciadle wkl sªym i jego cechy Gdy przedmiot umie±cimy w ognisku zwierciadªa x = r = f, obrazu nie 2 otrzymujemy. Mówimy,»e obraz powstaje w niesko«czono±ci.

37 Konstrukcja obrazu w zwierciadle kulistym wkl sªym Równanie zwierciadªa Obraz w zwierciadle wkl sªym i jego cechy Gdy przedmiot umie±cimy w ognisku zwierciadªa x = r = f, obrazu nie 2 otrzymujemy. Mówimy,»e obraz powstaje w niesko«czono±ci.

38 Konstrukcja obrazu w zwierciadle kulistym wkl sªym Równanie zwierciadªa Obraz w zwierciadle wkl sªym i jego cechy Konstrukcja obrazu powstaj cego w zwierciadle kulistym wkl sªym dla r 2 < x < r

39 Konstrukcja obrazu w zwierciadle kulistym wkl sªym Równanie zwierciadªa Obraz w zwierciadle wkl sªym i jego cechy Gdy przedmiot umie±cimy w odlegªo±cix < r 2 otrzymujemy obraz pozorny

40 Konstrukcja obrazu w zwierciadle kulistym wkl sªym Równanie zwierciadªa Obraz w zwierciadle wkl sªym i jego cechy Gdy przedmiot umie±cimy w odlegªo±cix < r 2 otrzymujemy obraz pozorny

41 Konstrukcja obrazu w zwierciadle kulistym wkl sªym Równanie zwierciadªa Obraz w zwierciadle wkl sªym i jego cechy Gdy przedmiot umie±cimy w odlegªo±cix < r 2 otrzymujemy obraz pozorny

42 Konstrukcja obrazu w zwierciadle kulistym wkl sªym Równanie zwierciadªa Obraz w zwierciadle wkl sªym i jego cechy Gdy przedmiot umie±cimy w odlegªo±cix < r 2 otrzymujemy obraz pozorny

43 Konstrukcja obrazu w zwierciadle kulistym wkl sªym Równanie zwierciadªa Obraz w zwierciadle wkl sªym i jego cechy Gdy przedmiot umie±cimy w odlegªo±cix < r 2 otrzymujemy obraz pozorny

44 Konstrukcja obrazu w zwierciadle kulistym wkl sªym Równanie zwierciadªa Obraz w zwierciadle wkl sªym i jego cechy Gdy przedmiot umie±cimy w odlegªo±cix < r 2 otrzymujemy obraz pozorny

45 Konstrukcja obrazu w zwierciadle kulistym wkl sªym Równanie zwierciadªa Obraz w zwierciadle wkl sªym i jego cechy Gdy przedmiot umie±cimy w odlegªo±cix < r 2 otrzymujemy obraz pozorny

46 Konstrukcja obrazu w zwierciadle kulistym wkl sªym Równanie zwierciadªa Obraz w zwierciadle wkl sªym i jego cechy Gdy przedmiot umie±cimy w odlegªo±cix < r 2 otrzymujemy obraz pozorny

47 Konstrukcja obrazu w zwierciadle kulistym wkl sªym Równanie zwierciadªa Obraz w zwierciadle wkl sªym i jego cechy Gdy przedmiot umie±cimy w odlegªo±cix < r 2 otrzymujemy obraz pozorny

48 Konstrukcja obrazu w zwierciadle kulistym wypukªym Obraz w zwierciadle wypukªym i jego cechy Równanie zwierciadªa 1 = 2 = dotyczy tak»e zwierciadªa f r x y wypukªego, przy czym w zwierciadªach wypukªych: ognisko pozorne F le»y poza zwierciadªem ogniskowa f przyjmuje warto±ci ujemne promie«krzywizny przyjmuje warto±ci ujemne dla ka»dego x > 0, y < 0 i y < x

49 Konstrukcja obrazu w zwierciadle kulistym wypukªym Obraz w zwierciadle wypukªym i jego cechy Konstrukcja obrazu powstaj cego w zwierciadle kulistym wypukªym.

50 Konstrukcja obrazu w zwierciadle kulistym wypukªym Obraz w zwierciadle wypukªym i jego cechy Konstrukcja obrazu powstaj cego w zwierciadle kulistym wypukªym.

51 Konstrukcja obrazu w zwierciadle kulistym wypukªym Obraz w zwierciadle wypukªym i jego cechy Konstrukcja obrazu powstaj cego w zwierciadle kulistym wypukªym.

52 Konstrukcja obrazu w zwierciadle kulistym wypukªym Obraz w zwierciadle wypukªym i jego cechy Konstrukcja obrazu powstaj cego w zwierciadle kulistym wypukªym.

53 Konstrukcja obrazu w zwierciadle kulistym wypukªym Obraz w zwierciadle wypukªym i jego cechy Konstrukcja obrazu powstaj cego w zwierciadle kulistym wypukªym.

54 Konstrukcja obrazu w zwierciadle kulistym wypukªym Obraz w zwierciadle wypukªym i jego cechy Konstrukcja obrazu powstaj cego w zwierciadle kulistym wypukªym.

55 Konstrukcja obrazu w zwierciadle kulistym wypukªym Obraz w zwierciadle wypukªym i jego cechy Konstrukcja obrazu powstaj cego w zwierciadle kulistym wypukªym.

56 Konstrukcja obrazu w zwierciadle kulistym wypukªym Obraz w zwierciadle wypukªym i jego cechy Konstrukcja obrazu powstaj cego w zwierciadle kulistym wypukªym.

57 Konstrukcja obrazu w zwierciadle kulistym wypukªym Obraz w zwierciadle wypukªym i jego cechy Konstrukcja obrazu powstaj cego w zwierciadle kulistym wypukªym.

58 Konstrukcja obrazu w zwierciadle kulistym wypukªym Obraz w zwierciadle wypukªym i jego cechy Konstrukcja obrazu powstaj cego w zwierciadle kulistym wypukªym.

59 Konstrukcja obrazu w zwierciadle kulistym wypukªym Obraz w zwierciadle wypukªym i jego cechy Konstrukcja obrazu powstaj cego w zwierciadle kulistym wypukªym.

60 Konstrukcja obrazu w zwierciadle kulistym wypukªym Obraz w zwierciadle wypukªym i jego cechy Konstrukcja obrazu powstaj cego w zwierciadle kulistym wypukªym.

61 Równanie zwierciadªa Konstrukcja obrazu w zwierciadle kulistym wypukªym Obraz w zwierciadle wypukªym i jego cechy Odlegªo± obrazu od zwierciadªa jako funkcja odlegªo±ci przedmiotu od zwierciadªa wypukªego y = fx x f

62 Konstrukcja obrazu w zwierciadle kulistym wypukªym Obraz w zwierciadle wypukªym i jego cechy Konstrukcja obrazu powstaj cego w zwierciadle kulistym wypukªym.

63 Konstrukcja obrazu w zwierciadle kulistym wypukªym Obraz w zwierciadle wypukªym i jego cechy Konstrukcja obrazu powstaj cego w zwierciadle kulistym wypukªym.

64 Konstrukcja obrazu w zwierciadle kulistym wypukªym Obraz w zwierciadle wypukªym i jego cechy Konstrukcja obrazu powstaj cego w zwierciadle kulistym wypukªym gdy x=f.

65 Konstrukcja obrazu w zwierciadle kulistym wypukªym Obraz w zwierciadle wypukªym i jego cechy Konstrukcja obrazu powstaj cego w zwierciadle kulistym wypukªym gdy f<x<2f.

66 Konstrukcja obrazu w zwierciadle kulistym wypukªym Obraz w zwierciadle wypukªym i jego cechy Konstrukcja obrazu powstaj cego w zwierciadle kulistym wypukªym gdy x=2f.

67 Konstrukcja obrazu w zwierciadle kulistym wypukªym Obraz w zwierciadle wypukªym i jego cechy Konstrukcja obrazu powstaj cego w zwierciadle kulistym wypukªym gdy x>2f.

68 Cechy obrazu Kliknij na obrazek aby powi kszy

Optyka geometryczna. Soczewki. Marcin S. Ma kowicz. rok szk. 2009/2010. Zespóª Szkóª Ponadgimnazjalnych Nr 2 w Brzesku

Optyka geometryczna. Soczewki. Marcin S. Ma kowicz. rok szk. 2009/2010. Zespóª Szkóª Ponadgimnazjalnych Nr 2 w Brzesku skupiaj ce rozpraszaj ce Optyka geometryczna Zespóª Szkóª Ponadgimnazjalnych Nr 2 w Brzesku rok szk. 2009/2010 skupiaj ce rozpraszaj ce Spis tre±ci 1 Wprowadzenie 2 Ciekawostki 3 skupiaj ce Konstrukcja

Bardziej szczegółowo

Materiały pomocnicze 14 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 14 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 4 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej. Zwierciadło płaskie. Zwierciadło płaskie jest najprostszym przyrządem optycznym. Jest to wypolerowana płaska powierzchnia

Bardziej szczegółowo

Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka).

Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka). Optyka geometryczna Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka). Założeniem optyki geometrycznej jest, że światło rozchodzi się jako

Bardziej szczegółowo

34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 1

34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 1 Włodzimierz Wolczyński 34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 1 ODBICIE ŚWIATŁA. ZWIERCIADŁA Do analizy obrazów w zwierciadle sferycznym polecam aplet fizyczny http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=48

Bardziej szczegółowo

Rodzaje obrazów. Obraz rzeczywisty a obraz pozorny. Zwierciadło. Zwierciadło. obraz rzeczywisty. obraz pozorny

Rodzaje obrazów. Obraz rzeczywisty a obraz pozorny. Zwierciadło. Zwierciadło. obraz rzeczywisty. obraz pozorny Rodzaje obrazów Obraz rzeczywisty a obraz pozorny cecha sposób powstania ustawienie powiększenie obraz rzeczywisty pozorny prosty odwrócony powiększony równy pomniejszony obraz rzeczywisty realna obecność

Bardziej szczegółowo

- pozorny, czyli został utworzony przez przedłużenia promieni świetlnych.

- pozorny, czyli został utworzony przez przedłużenia promieni świetlnych. Zjawisko odbicia Zgodnie z zasadą Fermata światło zawsze wybiera taką drogę między dwoma punktami, aby czas potrzebny na jej przebycie był najkrótszy (dla ścisłości: lub najdłuższy). Konsekwencją tego

Bardziej szczegółowo

Optyka geometryczna MICHAŁ MARZANTOWICZ

Optyka geometryczna MICHAŁ MARZANTOWICZ Optyka geometryczna Optyka geometryczna światło jako promień, opis uproszczony Optyka falowa światło jako fala, opis pełny Fizyka współczesna: światło jako cząstka (foton), opis pełny Optyka geometryczna

Bardziej szczegółowo

Fizyka dla Informatyków Wykªad 11 Optyka

Fizyka dla Informatyków Wykªad 11 Optyka Fizyka dla Informatyków Wykªad 11 Optyka Katedra Informatyki Stosowane P J W S T K 2 0 0 9 Spis tre±ci Dzisiaj b dziemy opowiada? o zjawiskach optycznych, a w szczególno±ci o optyce geometrycznej! Spis

Bardziej szczegółowo

Zwierciadło kuliste stanowi część gładkiej, wypolerowanej powierzchni kuli. Wyróżniamy zwierciadła kuliste:

Zwierciadło kuliste stanowi część gładkiej, wypolerowanej powierzchni kuli. Wyróżniamy zwierciadła kuliste: Fale świetlne Światło jest falą elektromagnetyczną, czyli rozchodzącymi się w przestrzeni zmiennymi i wzajemnie przenikającymi się polami: elektrycznym i magnetycznym. Szybkość światła w próżni jest największa

Bardziej szczegółowo

Optyka. Wykład X Krzysztof Golec-Biernat. Zwierciadła i soczewki. Uniwersytet Rzeszowski, 20 grudnia 2017

Optyka. Wykład X Krzysztof Golec-Biernat. Zwierciadła i soczewki. Uniwersytet Rzeszowski, 20 grudnia 2017 Optyka Wykład X Krzysztof Golec-Biernat Zwierciadła i soczewki Uniwersytet Rzeszowski, 20 grudnia 2017 Wykład X Krzysztof Golec-Biernat Optyka 1 / 20 Plan Tworzenie obrazów przez zwierciadła Równanie zwierciadła

Bardziej szczegółowo

Krzywe i powierzchnie stopnia drugiego

Krzywe i powierzchnie stopnia drugiego Krzywe i powierzchnie stopnia drugiego Iwona Malinowska, Zbigniew Šagodowski 25 maja 2015 I. Malinowska, Z. Lagodowski Geometria 25 maja 2015 1 / 30 Rozwa»my dwie proste przecinaj ce si pod k tem α, 0

Bardziej szczegółowo

POMIARY OPTYCZNE 1. Wykład 1. Dr hab. inż. Władysław Artur Woźniak

POMIARY OPTYCZNE 1. Wykład 1.  Dr hab. inż. Władysław Artur Woźniak POMIARY OPTYCZNE Wykład Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej Pokój 8/ bud. A- http://www.if.pwr.wroc.pl/~wozniak/ OPTYKA GEOMETRYCZNA Codzienne obserwacje: światło

Bardziej szczegółowo

17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D.

17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D. OPTYKA - ĆWICZENIA 1. Promień światła padł na zwierciadło tak, że odbił się od niego tworząc z powierzchnią zwierciadła kąt 30 o. Jaki był kąt padania promienia na zwierciadło? A. 15 o B. 30 o C. 60 o

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 33 OPTYKA GEOMETRYCZNA. CZĘŚĆ 1. ZWIERCIADŁA

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 33 OPTYKA GEOMETRYCZNA. CZĘŚĆ 1. ZWIERCIADŁA autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 33 OPTYKA GEOMETRYCZNA. CZĘŚĆ 1. ZWIERCIADŁA Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania TEST JEDNOKROTNEGO WYBORU

Bardziej szczegółowo

Optyka geometryczna - 2 Tadeusz M.Molenda Instytut Fizyki, Uniwersytet Szczeciński. Zwierciadła niepłaskie

Optyka geometryczna - 2 Tadeusz M.Molenda Instytut Fizyki, Uniwersytet Szczeciński. Zwierciadła niepłaskie Optyka geometryczna - 2 Tadeusz M.Molenda Instytut Fizyki, Uniwersytet Szczeciński Zwierciadła niepłaskie Obrazy w zwierciadłach niepłaskich Obraz rzeczywisty zwierciadło wklęsłe Konstrukcja obrazu w zwierciadłach

Bardziej szczegółowo

- 1 - OPTYKA - ĆWICZENIA

- 1 - OPTYKA - ĆWICZENIA - 1 - OPTYKA - ĆWICZENIA 1. Promień światła padł na zwierciadło tak, że odbił się od niego tworząc z powierzchnią zwierciadła kąt 30 o. Jaki był kąt padania promienia na zwierciadło? A. 15 o B. 30 o C.

Bardziej szczegółowo

ŚWIATŁO I JEGO ROLA W PRZYRODZIE

ŚWIATŁO I JEGO ROLA W PRZYRODZIE ŚWIATŁO I JEGO ROLA W PRZYRODZIE I. Optyka geotermalna W tym rozdziale poznasz właściwości światła widzialnego, prawa rządzące jego rozchodzeniem się w przestrzeni oraz sposoby wykorzystania tych praw

Bardziej szczegółowo

1 a + b 1 = 1 a + 1 b 1. (a + b 1)(a + b ab) = ab, (a + b)(a + b ab 1) = 0, (a + b)[a(1 b) + (b 1)] = 0,

1 a + b 1 = 1 a + 1 b 1. (a + b 1)(a + b ab) = ab, (a + b)(a + b ab 1) = 0, (a + b)[a(1 b) + (b 1)] = 0, XIII Warmi«sko-Mazurskie Zawody Matematyczne. Olsztyn 2015 Rozwi zania zada«dla szkóª ponadgimnazjalnych ZADANIE 1 Zakªadamy,»e a, b 0, 1 i a + b 1. Wykaza,»e z równo±ci wynika,»e a = -b 1 a + b 1 = 1

Bardziej szczegółowo

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki.

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. 1. Równanie soczewki i zwierciadła kulistego. Z podobieństwa trójkątów ABF i LFD (patrz rysunek powyżej) wynika,

Bardziej szczegółowo

Prawa optyki geometrycznej

Prawa optyki geometrycznej Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)

Bardziej szczegółowo

Optyka. Wykład IX Krzysztof Golec-Biernat. Optyka geometryczna. Uniwersytet Rzeszowski, 13 grudnia 2017

Optyka. Wykład IX Krzysztof Golec-Biernat. Optyka geometryczna. Uniwersytet Rzeszowski, 13 grudnia 2017 Optyka Wykład IX Krzysztof Golec-Biernat Optyka geometryczna Uniwersytet Rzeszowski, 13 grudnia 2017 Wykład IX Krzysztof Golec-Biernat Optyka 1 / 16 Plan Dyspersja chromatyczna Przybliżenie optyki geometrycznej

Bardziej szczegółowo

SCENARIUSZ LEKCJI Temat lekcji: Soczewki i obrazy otrzymywane w soczewkach

SCENARIUSZ LEKCJI Temat lekcji: Soczewki i obrazy otrzymywane w soczewkach Scenariusz lekcji : Soczewki i obrazy otrzymywane w soczewkach Autorski konspekt lekcyjny Słowa kluczowe: soczewki, obrazy Joachim Hurek, Publiczne Liceum Ogólnokształcące z Oddziałami Dwujęzycznymi w

Bardziej szczegółowo

Załamanie na granicy ośrodków

Załamanie na granicy ośrodków Załamanie na granicy ośrodków Gdy światło napotyka na granice dwóch ośrodków przezroczystych ulega załamaniu tak jak jest to przedstawione na rysunku obok. Dla każdego ośrodka przezroczystego istnieje

Bardziej szczegółowo

XVII Warmi«sko-Mazurskie Zawody Matematyczne

XVII Warmi«sko-Mazurskie Zawody Matematyczne 1 XVII Warmi«sko-Mazurskie Zawody Matematyczne Kategoria: klasa VIII szkoªy podstawowej i III gimnazjum Olsztyn, 16 maja 2019r. Zad. 1. Udowodnij,»e dla dowolnych liczb rzeczywistych x, y, z speªniaj cych

Bardziej szczegółowo

Optyka geometryczna i falowa

Optyka geometryczna i falowa Pojęcie podstawowe: promień świetlny. Optyka geometryczna i alowa Podstawowa obserwacja: jeżeli promień świetlny pada na granicę dwóch ośrodków to: ulega odbiciu na powierzchni granicznej za!amaniu przy

Bardziej szczegółowo

Optyka 12/15. Andrzej Kapanowski ufkapano/ Instytut Fizyki, Uniwersytet Jagiello«ski, Kraków. A.

Optyka 12/15. Andrzej Kapanowski   ufkapano/ Instytut Fizyki, Uniwersytet Jagiello«ski, Kraków. A. Optyka 12/15 Andrzej Kapanowski http://users.uj.edu.pl/ ufkapano/ Instytut Fizyki, Uniwersytet Jagiello«ski, Kraków 2018 Fale ±wietlne Promieniowanie elektromagnetyczne o dªugo±ciach fali zawieraj cych

Bardziej szczegółowo

Arkusz maturalny. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne

Arkusz maturalny. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne Arkusz maturalny Šukasz Dawidowski Powtórki maturalne 25 kwietnia 2016r. Odwrotno±ci liczby rzeczywistej 1. 9 8 2. 0, (1) 3. 8 9 4. 0, (8) 3 4 4 4 1 jest liczba Odwrotno±ci liczby rzeczywistej 3 4 4 4

Bardziej szczegółowo

Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową.

Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową. Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową. Lekcja organizacyjna. Omówienie programu nauczania i przypomnienie wymagań przedmiotowych Tytuł rozdziału

Bardziej szczegółowo

LABORATORIUM OPTYKI GEOMETRYCZNEJ

LABORATORIUM OPTYKI GEOMETRYCZNEJ LABORATORIUM OPTYKI GEOMETRYCZNEJ POMIAR OGNISKOWYCH SOCZEWEK CIENKICH 1. Cel dwiczenia Zapoznanie z niektórymi metodami badania ogniskowych soczewek cienkich. 2. Zakres wymaganych zagadnieo: Prawa odbicia

Bardziej szczegółowo

Najprostszą soczewkę stanowi powierzchnia sferyczna stanowiąca granicę dwóch ośr.: powietrza, o wsp. załamania n 1. sin θ 1. sin θ 2.

Najprostszą soczewkę stanowi powierzchnia sferyczna stanowiąca granicę dwóch ośr.: powietrza, o wsp. załamania n 1. sin θ 1. sin θ 2. Ia. OPTYKA GEOMETRYCZNA wprowadzenie Niemal każdy system optoelektroniczny zawiera oprócz źródła światła i detektora - co najmniej jeden element optyczny, najczęściej soczewkę gdy system służy do analizy

Bardziej szczegółowo

35 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2

35 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2 Włodzimierz Wolczyński Załamanie światła 35 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2 ZAŁAMANIE ŚWIATŁA. SOCZEWKI sin sin Gdy v 1 > v 2, więc gdy n 2 >n 1, czyli gdy światło wchodzi do ośrodka gęstszego optycznie,

Bardziej szczegółowo

Wykªad 4. Funkcje wielu zmiennych.

Wykªad 4. Funkcje wielu zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 4. Funkcje wielu zmiennych. Zbiory na pªaszczy¹nie i w przestrzeni.

Bardziej szczegółowo

Soczewki konstrukcja obrazu. Krótkowzroczność i dalekowzroczność.

Soczewki konstrukcja obrazu. Krótkowzroczność i dalekowzroczność. Soczewki konstrukcja obrazu Krótkowzroczność i dalekowzroczność. SOCZEWKA jest to przezroczyste ciało ograniczone powierzchniami kulistymi Soczewki mogą być Wypukłe Wklęsłe i są najczęściej skupiające

Bardziej szczegółowo

Wykład 11 Elementy optyki geometrycznej Widmo i natura światła

Wykład 11 Elementy optyki geometrycznej Widmo i natura światła Wykład Elementy optyki geometrycznej Widmo i natura światła Optyka to nauka o falach elektromagnetycznych, ich wytwarzaniu, rozchodzeniu się w różnych ośrodkach, i oddziaływaniu z tymi ośrodkami. Różnice

Bardziej szczegółowo

ZAGADNIENIA na egzamin klasyfikacyjny z fizyki klasa III (IIIA) rok szkolny 2013/2014 semestr II

ZAGADNIENIA na egzamin klasyfikacyjny z fizyki klasa III (IIIA) rok szkolny 2013/2014 semestr II ZAGADNIENIA na egzamin klasyfikacyjny z fizyki klasa III (IIIA) rok szkolny 2013/2014 semestr II Piotr Ludwikowski XI. POLE MAGNETYCZNE Lp. Temat lekcji Wymagania konieczne i podstawowe. Uczeń: 43 Oddziaływanie

Bardziej szczegółowo

Stereometria (geometria przestrzenna)

Stereometria (geometria przestrzenna) Stereometria (geometria przestrzenna) Wzajemne poªo»enie prostych w przestrzeni Stereometria jest dziaªem geometrii, którego przedmiotem bada«s bryªy przestrzenne oraz ich wªa±ciwo±ci. Na pocz tek omówimy

Bardziej szczegółowo

Równania Maxwella. prawo Faraday a. I i uogólnione prawo Ampera. prawo Gaussa. D ds = q. prawo Gaussa dla magnetyzmu. si la Lorentza E + F = q( Fizyka

Równania Maxwella. prawo Faraday a. I i uogólnione prawo Ampera. prawo Gaussa. D ds = q. prawo Gaussa dla magnetyzmu. si la Lorentza E + F = q( Fizyka Równania Maxwella L L S S Φ m E dl = t Φ e H dl = + t D ds = q B ds = 0 prawo Faraday a n I i uogólnione prawo Ampera i=1 prawo Gaussa prawo Gaussa dla magnetyzmu F = q( E + v B) si la Lorentza 1 Równania

Bardziej szczegółowo

FIZYKA KLASA III GIMNAZJUM

FIZYKA KLASA III GIMNAZJUM 2016-09-01 FIZYKA KLASA III GIMNAZJUM SZKOŁY BENEDYKTA Treści nauczania Tom III podręcznika Tom trzeci obejmuje następujące punkty podstawy programowej: 5. Magnetyzm 6. Ruch drgający i fale 7. Fale elektromagnetyczne

Bardziej szczegółowo

+OPTYKA 3.stacjapogody.waw.pl K.M.

+OPTYKA 3.stacjapogody.waw.pl K.M. Zwierciadło płaskie, prawo odbicia. +OPTYKA.stacjapogody.waw.pl K.M. Promień padający, odbity i normalna leżą w jednej płaszczyźnie, prostopadłej do płaszczyzny zwierciadła Obszar widzialności punktu w

Bardziej szczegółowo

OPTYKA GEOMETRYCZNA I INSTRUMENTALNA

OPTYKA GEOMETRYCZNA I INSTRUMENTALNA 1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Rafał Kasztelanic Wykład 3 Pryzmat Pryzmaty w aparatach fotograficznych en.wikipedia.org/wiki/pentaprism luminous-landscape.com/understanding-viewfinders

Bardziej szczegółowo

Wykład FIZYKA II. 7. Optyka geometryczna. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 7. Optyka geometryczna.   Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 7. Optyka geometryczna Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ WSPÓŁCZYNNIK ZAŁAMANIA Współczynnik załamania ośrodka opisuje zmianę prędkości fali

Bardziej szczegółowo

Optyka. Wykład XI Krzysztof Golec-Biernat. Równania zwierciadeł i soczewek. Uniwersytet Rzeszowski, 3 stycznia 2018

Optyka. Wykład XI Krzysztof Golec-Biernat. Równania zwierciadeł i soczewek. Uniwersytet Rzeszowski, 3 stycznia 2018 Optyka Wykład XI Krzysztof Golec-Biernat Równania zwierciadeł i soczewek Uniwersytet Rzeszowski, 3 stycznia 2018 Wykład XI Krzysztof Golec-Biernat Optyka 1 / 16 Plan Równanie zwierciadła sferycznego i

Bardziej szczegółowo

Zasada Fermata mówi o tym, że promień światła porusza się po drodze najmniejszego czasu.

Zasada Fermata mówi o tym, że promień światła porusza się po drodze najmniejszego czasu. Pokazy 1. 2. 3. 4. Odbicie i załamanie światła laser, tarcza Kolbego. Ognisko w zwierciadle parabolicznym: dwa metalowe zwierciadła paraboliczne, miernik temperatury, żarówka 250 W. Obrazy w zwierciadłach:

Bardziej szczegółowo

Plan wynikowy (propozycja)

Plan wynikowy (propozycja) Plan wynikowy (propozycja) 2. Optyka (co najmniej 12 godzin lekcyjnych, w tym 1 2 godzin na powtórzenie materiału i sprawdzian bez treści rozszerzonych) Zagadnienie (tematy lekcji) Światło i jego właściwości

Bardziej szczegółowo

Dodatek 1. C f. A x. h 1 ( 2) y h x. powrót. xyf

Dodatek 1. C f. A x. h 1 ( 2) y h x. powrót. xyf B Dodatek C f h A x D y E G h Z podobieństwa trójkątów ABD i DEG wynika z h x a z trójkątów DC i EG ' ' h h y ' ' to P ( ) h h h y f to ( 2) y h x y x y f ( ) i ( 2) otrzymamy to yf xy xf f f y f h f yf

Bardziej szczegółowo

Nauka o œwietle. (optyka)

Nauka o œwietle. (optyka) Nauka o œwietle (optyka) 11 Nauka o œwietle (optyka) 198 Prostopad³oœcienne pude³ka, wykonane z tektury, posiadaj¹ z boku po cztery okienka (,, C, D). Do okienek kierujemy równoleg³e wi¹zki promieni. Zauwa

Bardziej szczegółowo

Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje.

Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Działanie obrazujące soczewek lub układu soczewek wygodnie

Bardziej szczegółowo

Szczegółowe kryteria oceniania z fizyki w gimnazjum. kl. III

Szczegółowe kryteria oceniania z fizyki w gimnazjum. kl. III Szczegółowe kryteria oceniania z fizyki w gimnazjum kl. III Semestr I Drgania i fale Rozpoznaje ruch drgający Wie co to jest fala Wie, że w danym ośrodku fala porusza się ze stałą szybkością Zna pojęcia:

Bardziej szczegółowo

Przyroda, która stworzyła najpiękniejsze góry świata nie poskąpiła nam też innych doznań, które nie istotne w zwykłej szarej codzienności, nabierają

Przyroda, która stworzyła najpiękniejsze góry świata nie poskąpiła nam też innych doznań, które nie istotne w zwykłej szarej codzienności, nabierają Projekt edukacyjny Przyroda, która stworzyła najpiękniejsze góry świata nie poskąpiła nam też innych doznań, które nie istotne w zwykłej szarej codzienności, nabierają innego wymiaru. Na co dzień możemy

Bardziej szczegółowo

r = x x2 2 + x2 3.

r = x x2 2 + x2 3. Przestrze«aniczna Def. 1. Przestrzeni aniczn zwi zan z przestrzeni liniow V nazywamy dowolny niepusty zbiór P z dziaªaniem ω : P P V (które dowolnej parze elementów zbioru P przyporz dkowuje wektor z przestrzeni

Bardziej szczegółowo

Elementy geometrii analitycznej w przestrzeni

Elementy geometrii analitycznej w przestrzeni Wykªad 3 Elementy geometrii analitycznej w przestrzeni W wykªadzie tym wi kszy nacisk zostaª poªo»ony raczej na intuicyjne rozumienie deniowanych poj, ni» ±cisªe ich zdeniowanie. Dlatego niniejszy wykªad

Bardziej szczegółowo

Przedmiotowy system oceniania do części 2 podręcznika Klasy 3 w roku szkolnym 2013-2014 sem I

Przedmiotowy system oceniania do części 2 podręcznika Klasy 3 w roku szkolnym 2013-2014 sem I Przedmiotowy system oceniania do części 2 podręcznika Klasy 3 w roku szkolnym 2013-2014 sem I Tabela wymagań programowych i kategorii celów poznawczych Temat lekcji w podręczniku 22. Ruch drgający podać

Bardziej szczegółowo

Optyka 2012/13 powtórzenie

Optyka 2012/13 powtórzenie strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Słońce w ciągu dnia przemieszcza się na niebie ze wschodu na zachód. W którym kierunku obraca się Ziemia? Zadanie 2. Na rysunku przedstawiono

Bardziej szczegółowo

2 Liczby rzeczywiste - cz. 2

2 Liczby rzeczywiste - cz. 2 2 Liczby rzeczywiste - cz. 2 W tej lekcji omówimy pozostaªe tematy zwi zane z liczbami rzeczywistymi. 2. Przedziaªy liczbowe Wyró»niamy nast puj ce rodzaje przedziaªów liczbowych: (a) przedziaªy ograniczone:

Bardziej szczegółowo

Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne

Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Podstawy Działanie obrazujące soczewek lub układu soczewek

Bardziej szczegółowo

Wyznaczanie ogniskowej soczewki za pomocą ławy optycznej

Wyznaczanie ogniskowej soczewki za pomocą ławy optycznej POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI Wyznaczanie ogniskowej soczewki za pomocą ławy optycznej Wstęp Jednym z najprostszych urządzeń optycznych

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015 Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Mechaniczny obowiązuje studentów rozpoczynających studia w roku akademickim 014/015 Kierunek studiów: Inżynieria Wzornictwa Przemysłowego

Bardziej szczegółowo

Wykład XI. Optyka geometryczna

Wykład XI. Optyka geometryczna Wykład XI Optyka geometryczna Jak widzimy? Aby przedmiot był widoczny, musi wysyłać światło w wielu kierunkach. Na podstawie światła zebranego przez oko mózg lokalizuje położenie obiektu. Niekiedy promienie

Bardziej szczegółowo

Optyka geometryczna. Podręcznik zeszyt ćwiczeń dla uczniów

Optyka geometryczna. Podręcznik zeszyt ćwiczeń dla uczniów Podręcznik zeszyt ćwiczeń dla uczniów Optyka geometryczna Politechnika Gdańska, Wydział Fizyki Technicznej i Matematyki Stosowanej ul. Narutowicza 11/12, 80-233 Gdańsk, tel. +48 58 348 63 70 http://e-doswiadczenia.mif.pg.gda.pl

Bardziej szczegółowo

Uwzględniając związek między okresem fali i jej częstotliwością T = prędkość fali można obliczyć z zależności:

Uwzględniając związek między okresem fali i jej częstotliwością T = prędkość fali można obliczyć z zależności: 1. Fale elektromagnetyczne. Światło. Fala elektromagnetyczna to zaburzenie pola elektromagnetycznego rozprzestrzeniające się w przestrzeni ze skończoną prędkością i unoszące energię. Fale elektromagnetyczne

Bardziej szczegółowo

Scenariusz lekcji Zwierciadła i obrazy w zwierciadłach

Scenariusz lekcji Zwierciadła i obrazy w zwierciadłach Scenariusz lekcji. Temat lekcji: Zwierciadła i obraz w zwierciadłach 2. Cele: a) Cele poznawcze: Uczeń wie: - co to jest promień świetln, - Ŝe światło rozchodzi się prostoliniowo, - na czm polega zjawisko

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej. LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.. Wprowadzenie Soczewką nazywamy ciało przezroczyste ograniczone

Bardziej szczegółowo

TEST nr 1 z działu: Optyka

TEST nr 1 z działu: Optyka Grupa A Testy sprawdzające TEST nr 1 z działu: Optyka imię i nazwisko W zadaniach 1. 17. wstaw krzyżyk w kwadracik obok wybranej odpowiedzi. klasa data 1 Gdy światło rozchodzi się w próżni, jego prędkć

Bardziej szczegółowo

Elementy geometrii w przestrzeni R 3

Elementy geometrii w przestrzeni R 3 Elementy geometrii w przestrzeni R 3 Z.Šagodowski Politechnika Lubelska 29 maja 2016 Podstawowe denicje Wektorem nazywamy uporz dkowan par punktów (A,B) z których pierwszy nazywa si pocz tkiem a drugi

Bardziej szczegółowo

ZAJĘCIA WYRÓWNAWCZE, CZĘSTOCHOWA, 2010/2011 Ewa Mandowska, Instytut Fizyki AJD, Częstochowa e.mandowska@ajd.czest.pl

ZAJĘCIA WYRÓWNAWCZE, CZĘSTOCHOWA, 2010/2011 Ewa Mandowska, Instytut Fizyki AJD, Częstochowa e.mandowska@ajd.czest.pl 1 ZAJĘCIA WYRÓWNAWCZE, CZĘSTOCHOWA, 2010/2011 Ewa Mandowska, Instytut Fizyki AJD, Częstochowa e.mandowska@ajd.czest.pl DZIAŁ 3 Optyka geometryczna i elementy optyki falowej. Budowa materii. 3.1. Optyka

Bardziej szczegółowo

PODSUMOWANIE SPRAWDZIANU

PODSUMOWANIE SPRAWDZIANU PODSUMOWANIE SPRAWDZIANU AGNIESZKA JASTRZĘBSKA NAZWA TESTU SPRAWDZIAN NR 1 GRUPY A, B, C LICZBA ZADAŃ 26 CZAS NA ROZWIĄZANIE A-62, B-62, C-59 MIN POZIOM TRUDNOŚCI MIESZANY CAŁKOWITA LICZBA PUNKTÓW 39 SEGMENT

Bardziej szczegółowo

Wymagania programowe R - roz sze rza jąc e Kategorie celów poznawczych A. Zapamiętanie B. Rozumienie C. Stosowanie wiadomości w sytuacjach typowych

Wymagania programowe R - roz sze rza jąc e Kategorie celów poznawczych A. Zapamiętanie B. Rozumienie C. Stosowanie wiadomości w sytuacjach typowych Temat lekcji w podręczniku Wiadomości K + P - konieczne + podstawowe Wymagania programowe R - roz sze rza jąc e Kategorie celów poznawczych Umiejętności A. Zapamiętanie B. Rozumienie C. Stosowanie wiadomości

Bardziej szczegółowo

POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK

POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK ĆWICZENIE 77 POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK Cel ćwiczenia: 1. Poznanie zasad optyki geometrycznej, zasad powstawania i konstrukcji obrazów w soczewkach cienkich. 2. Wyznaczanie odległości ogniskowych

Bardziej szczegółowo

Soczewki. Ćwiczenie 53. Cel ćwiczenia

Soczewki. Ćwiczenie 53. Cel ćwiczenia Ćwiczenie 53 Soczewki Cel ćwiczenia Pomiar ogniskowych soczewki skupiającej i układu soczewek (skupiająca i rozpraszająca), obliczenie ogniskowej soczewki rozpraszającej. Obserwacja i pomiar wad odwzorowań

Bardziej szczegółowo

klasy: 3A, 3B nauczyciel: Tadeusz Suszyło

klasy: 3A, 3B nauczyciel: Tadeusz Suszyło Przedmiotowy system oceniania z fizyki w roku szkolnym 2018/2019 klasy: 3A, 3B nauczyciel: Tadeusz Suszyło Zasady ogólne: 1. Na podstawowym poziomie wymagań uczeń powinien wykonać zadania obowiązkowe (łatwe

Bardziej szczegółowo

Ćwiczenie 53. Soczewki

Ćwiczenie 53. Soczewki Ćwiczenie 53. Soczewki Małgorzata Nowina-Konopka, Andrzej Zięba Cel ćwiczenia Pomiar ogniskowych soczewki skupiającej i układu soczewek (skupiająca i rozpraszająca), obliczenie ogniskowej soczewki rozpraszającej.

Bardziej szczegółowo

Podstawy fizyki wykład 8

Podstawy fizyki wykład 8 Podstawy fizyki wykład 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Optyka geometryczna Polaryzacja Odbicie zwierciadła Załamanie soczewki Optyka falowa Interferencja Dyfrakcja światła D.

Bardziej szczegółowo

OPTYKA GEOMETRYCZNA I INSTRUMENTALNA

OPTYKA GEOMETRYCZNA I INSTRUMENTALNA 1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Raał Kasztelanic Wykład 4 Obliczenia dla zwierciadeł Równanie zwierciadła 1 1 2 1 s s r s s 2 Obliczenia dla zwierciadeł

Bardziej szczegółowo

Wymagania programowe na poszczególne oceny. Maria Majewska. Ocena niedostateczna: uczeń nie opanował wymagań na ocenę dopuszczającą.

Wymagania programowe na poszczególne oceny. Maria Majewska. Ocena niedostateczna: uczeń nie opanował wymagań na ocenę dopuszczającą. Wymagania programowe na poszczególne oceny klasa III Maria Majewska Ocena niedostateczna: uczeń nie opanował wymagań na ocenę dopuszczającą. Ocena dopuszczająca [1] - zna pojęcia: położenie równowagi,

Bardziej szczegółowo

Korekcja wad wzroku. zmiana położenia ogniska. Aleksandra Pomagier Zespół Szkół nr1 im KEN w Szczecinku, klasa 1BLO

Korekcja wad wzroku. zmiana położenia ogniska. Aleksandra Pomagier Zespół Szkół nr1 im KEN w Szczecinku, klasa 1BLO Korekcja wad wzroku zmiana położenia ogniska Aleksandra Pomagier Zespół Szkół nr im KEN w Szczecinku, klasa BLO OKULISTYKA Dział medycyny zajmujący się budową oka, rozpoznawaniem i leczeniem schorzeń oczu.

Bardziej szczegółowo

1. Wektory E i B są zawsze prostopadłe do kierunku rozchodzenia się fali. 2. Wektor natężenia pola elektrycznego jest zawsze prostopadły do wektora indukcja pola magnetycznego. 3. Iloczyn wektorowy E x

Bardziej szczegółowo

Rozkład materiału dla klasy 8 szkoły podstawowej (2 godz. w cyklu nauczania) 2 I. Wymagania przekrojowe.

Rozkład materiału dla klasy 8 szkoły podstawowej (2 godz. w cyklu nauczania) 2 I. Wymagania przekrojowe. Rozkład materiału dla klasy 8 szkoły podstawowej (2 godz. w cyklu nauczania) Temat Proponowa na liczba godzin Elektrostatyka 8 Wymagania szczegółowe, przekrojowe i doświadczalne z podstawy programowej

Bardziej szczegółowo

Ćwiczenie: "Zagadnienia optyki"

Ćwiczenie: Zagadnienia optyki Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.

Bardziej szczegółowo

1 Trochoidalny selektor elektronów

1 Trochoidalny selektor elektronów 1 Trochoidalny selektor elektronów W trochoidalnym selektorze elektronów TEM (Trochoidal Electron Monochromator) stosuje si skrzy»owane i jednorodne pola: elektryczne i magnetyczne. Jako pierwsi taki ukªad

Bardziej szczegółowo

Szczegółowe wymagania na poszczególne stopnie (oceny) z fizyki dla klasy 8 -semestr II

Szczegółowe wymagania na poszczególne stopnie (oceny) z fizyki dla klasy 8 -semestr II Szczegółowe wymagania na poszczególne stopnie (oceny) z fizyki dla klasy 8 -semestr II opisuje ruch okresowy wahadła; wskazuje położenie równowagi i amplitudę tego ruchu; podaje przykłady ruchu okresowego

Bardziej szczegółowo

Zaznacz prawdziwą odpowiedź: Fale elektromagnetyczne do rozchodzenia się... ośrodka materialnego A. B.

Zaznacz prawdziwą odpowiedź: Fale elektromagnetyczne do rozchodzenia się... ośrodka materialnego A. B. Imię i nazwisko Pytanie 1/ Zaznacz właściwą odpowiedź: Fale elektromagnetyczne są falami poprzecznymi podłużnymi Pytanie 2/ Zaznacz prawdziwą odpowiedź: Fale elektromagnetyczne do rozchodzenia się... ośrodka

Bardziej szczegółowo

1 Poj cia pomocnicze. Przykªad 1. A A d

1 Poj cia pomocnicze. Przykªad 1. A A d Poj cia pomocnicze Otoczeniem punktu x nazywamy dowolny zbiór otwarty zawieraj cy punkt x. Najcz ±ciej rozwa»amy otoczenia kuliste, tj. kule o danym promieniu ε i ±rodku x. S siedztwem punktu x nazywamy

Bardziej szczegółowo

Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela.

Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela. Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela. I LO im. Stefana Żeromskiego w Lęborku 20 luty 2012 Stolik optyczny

Bardziej szczegółowo

WYMAGANIA ZGODNIE Z PROGRAMEM NAUCZANIA G-11/09/10 Osiągnięcia konieczne Osiągnięcia podstawowe Osiągnięcia rozszerzone Osiągnięcia dopełniające

WYMAGANIA ZGODNIE Z PROGRAMEM NAUCZANIA G-11/09/10 Osiągnięcia konieczne Osiągnięcia podstawowe Osiągnięcia rozszerzone Osiągnięcia dopełniające WYMAGANIA ZGODNIE Z PROGRAMEM NAUCZANIA G-11/09/10 Osiągnięcia konieczne Osiągnięcia podstawowe Osiągnięcia rozszerzone Osiągnięcia dopełniające zna pojęcia położenia równowagi, wychylenia, amplitudy;

Bardziej szczegółowo

Zasady konstrukcji obrazu z zastosowaniem płaszczyzn głównych

Zasady konstrukcji obrazu z zastosowaniem płaszczyzn głównych Moc optyczna (właściwa) układu soczewek Płaszczyzny główne układu soczewek: - płaszczyzna główna przedmiotowa - płaszczyzna główna obrazowa Punkty kardynalne: - ognisko przedmiotowe i obrazowe - punkty

Bardziej szczegółowo

Badamy jak światło przechodzi przez soczewkę - obrazy. tworzone przez soczewki.

Badamy jak światło przechodzi przez soczewkę - obrazy. tworzone przez soczewki. 1 Badamy jak światło przechodzi przez soczewkę - obrazy tworzone przez soczewki. Czas trwania zajęć: 2h Określenie wiedzy i umiejętności wymaganej u uczniów przed przystąpieniem do realizacji zajęć: Uczeń:

Bardziej szczegółowo

SCENARIUSZ LEKCJI Z WYKORZYSTANIEM TIK

SCENARIUSZ LEKCJI Z WYKORZYSTANIEM TIK SCENARIUSZ LEKCJI Z WYKORZYSTANIEM TIK Temat: Soczewki. Zdolność skupiająca soczewki. Prowadzący: Karolina Górska Czas: 45min Wymagania szczegółowe podstawy programowej (cytat): 7.5) opisuje (jakościowo)

Bardziej szczegółowo

Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne

Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Podstawy Działanie obrazujące soczewek lub układu soczewek

Bardziej szczegółowo

Optyka geometryczna. Podręcznik metodyczny dla nauczycieli

Optyka geometryczna. Podręcznik metodyczny dla nauczycieli Podręcznik metodyczny dla nauczycieli Optyka geometryczna Politechnika Gdańska, Wydział Fizyki Technicznej i Matematyki Stosowanej ul. Narutowicza 11/12, 80-233 Gdańsk, tel. +48 58 348 63 70 http://e-doswiadczenia.mif.pg.gda.pl

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z FIZYKI KLASA III

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z FIZYKI KLASA III WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z FIZYKI KLASA III I. Drgania i fale R treści nadprogramowe Ocena dopuszczająca dostateczna dobra bardzo dobra wskazuje w otaczającej rzeczywistości przykłady

Bardziej szczegółowo

I Rok LOGISTYKI: wykªad 2 Pochodna funkcji. iloraz ró»nicowy x y x

I Rok LOGISTYKI: wykªad 2 Pochodna funkcji. iloraz ró»nicowy x y x I Rok LOGISTYKI: wykªad 2 Pochodna funkcji Niech f jest okre±lona w Q(x 0, δ) i x Q(x 0, δ). Oznaczenia: x = x x 0 y = y y 0 = f(x 0 + x) f(x 0 ) y x = f(x 0 + x) f(x 0 ) iloraz ró»nicowy x y x = tgβ,

Bardziej szczegółowo

Publiczne Gimnazjum im. Jana Deszcza w Miechowicach Wielkich. Opracowanie: mgr Michał Wolak

Publiczne Gimnazjum im. Jana Deszcza w Miechowicach Wielkich. Opracowanie: mgr Michał Wolak 1. Drgania i fale R treści nadprogramowe Stopień dopuszczający Stopień dostateczny Stopień dobry Stopień bardzo dobry wskazuje w otaczającej rzeczywistości przykłady ruchu drgającego opisuje przebieg i

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z przedmiotu fizyka dla klasy III gimnazjum, rok szkolny 2017/2018

Szczegółowe wymagania edukacyjne z przedmiotu fizyka dla klasy III gimnazjum, rok szkolny 2017/2018 Szczegółowe wymagania edukacyjne z przedmiotu fizyka dla klasy III gimnazjum, rok szkolny 2017/2018 1. Drgania i fale R treści nadprogramowe Stopień dopuszczający Stopień dostateczny Stopień dobry Stopień

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 FIZYKA I ASTRONOMIA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1.1 Narysowanie toru ruchu cia a w rzucie uko nym. Narysowanie wektora si y dzia aj cej na cia o w

Bardziej szczegółowo

WYMAGANIA Z FIZYKI KLASA 3 GIMNAZJUM. 1. Drgania i fale R treści nadprogramowe

WYMAGANIA Z FIZYKI KLASA 3 GIMNAZJUM. 1. Drgania i fale R treści nadprogramowe WYMAGANIA Z FIZYKI KLASA 3 GIMNAZJUM 1. Drgania i fale R treści nadprogramowe Stopień dopuszczający Stopień dostateczny Stopień dobry Stopień bardzo dobry wskazuje w otaczającej rzeczywistości przykłady

Bardziej szczegółowo

Przedmiotowy system oceniania z fizyki w klasie 3

Przedmiotowy system oceniania z fizyki w klasie 3 Przedmiotowy system oceniania z fizyki w klasie 3 Szczegółowe wymagania na poszczególne stopnie (oceny) 1. Drgania i fale R treści nadprogramowe Stopień dopuszczający Stopień dostateczny Stopień dobry

Bardziej szczegółowo

Wymagania edukacyjne na dana ocenę z fizyki dla klasy III do serii Spotkania z fizyką wydawnictwa Nowa Era

Wymagania edukacyjne na dana ocenę z fizyki dla klasy III do serii Spotkania z fizyką wydawnictwa Nowa Era Wymagania edukacyjne na dana ocenę z fizyki dla klasy III do serii Spotkania z fizyką wydawnictwa Nowa Era 1. Drgania i fale Stopień dopuszczający Stopień dostateczny Stopień dobry Stopień bardzo dobry

Bardziej szczegółowo

PLAN WYNIKOWY Z FIZYKI KLASA III GIMNAZJUM ROK SZKOLNY 2013/2014

PLAN WYNIKOWY Z FIZYKI KLASA III GIMNAZJUM ROK SZKOLNY 2013/2014 PLAN WYNIKOWY Z FIZYKI KLASA III GIMNAZJUM ROK SZKOLNY 2013/2014 Liczba godzin do realizacji: 34 Realizujący: Anna Wojtak XI. ELEKTROMAGNETYZM 1. Temat lekcji: Magnesy i ich oddziaływanie. Bieguny magnesów

Bardziej szczegółowo

Fizyka program nauczania gimnazjum klasa III 2014/2015

Fizyka program nauczania gimnazjum klasa III 2014/2015 Fizyka program nauczania gimnazjum klasa III 2014/2015 Roman Grzybowski wydawnictwo OPERON Program nauczania do nowej podstawy programowej Treści nauczania i osiągnięcia szczegółowe ucznia Fale mechaniczne

Bardziej szczegółowo

Rys.2 N = H (N cos = N) : (1) H y = q x2. y = q x2 2 H : (3) Warto± siªy H, która mo»e by uto»samiana z siª naci gu kabla, jest równa: z (3) przy

Rys.2 N = H (N cos = N) : (1) H y = q x2. y = q x2 2 H : (3) Warto± siªy H, która mo»e by uto»samiana z siª naci gu kabla, jest równa: z (3) przy XXXV OLIMPIADA WIEDZY TECHNICZNEJ Zawody III stopnia Rozwi zania zada«dla grupy mechaniczno-budowlanej Rozwi zanie zadania Tzw. maªy zwis, a wi c cos. W zwi zku z tym mo»na przyj,»e Rys. N H (N cos N)

Bardziej szczegółowo