Mechanika teoretyczna
|
|
- Justyna Łukasik
- 8 lat temu
- Przeglądów:
Transkrypt
1 Kratownica Mechanika teoretyczna Wykład nr Obiczanie sił wewnętrznych w układach rętowych. Kratownice. Układ rętów rostoiniowych, ryzmatycznych, jednorodnych: ołączenia rzegubowe w węzłach; obciążenia w ostaci sił skuionych rzyłożonych w węzłach. k k,m Konsekwencje Węzeł doznaje rzesuwu (dwie składowe), obrót jest nieistotny. W rętach dwustronnie rzegubowych, nieobciążonych orzecznie na długości, jedyna siła wewnętrzna to normana (siła osiowa). azwy rętów Pas dony (D) Pas górny (G) Krzyżuce (K) Słuki (S) G G S K S K S D D Statyczna wyznaczaność Stoień statycznej wyznaczaności ajrostsza kratownica złożona z trzech rętów ołączonych rzegubowo tworzy tarczę sztywną i jest statycznie wyznaczana. Każda kratownica budowana rzez dostawianie ó zamkniętych tworzonych za omocą koejnych dwóch rętów jest statycznie wyznaczana. Statyczna wyznaczaność: zewnętrzna możiwość oiczenia reakcji: nz r wewnętrzna możiwość oiczenia sił w rętach: n w+ w całkowita: n r+ w 6 Przykłady () Przykłady () Kratownice statycznie wyznaczane Kratownice statycznie niewyznaczane
2 Przykłady () Metody rozwiązywania Kratownice geometrycznie zmienne Metoda równoważenia węzłów. Metoda Rittera. Inne: wykreśna metoda Cremony; metoda Cumana; metoda Hanneberga (wymiany rętów). Metoda równoważenia węzłów Zaety i wady metody równoważenia węzłów Każdy z węzłów oddzieony zostaje od rętów za omocą rzekroju rzywęzłowego. W węzłach otrzymuje się układy sił zbieżnych, w których można zaisać dwa równania równowagi sumy rzutów sił na dwie osie. k k,m Zaety: łatwość zaisania równań sumy rzutów sił; kontroa wyników: ostatnie trzy równania są srawdzeniami; Wady: roagacja błędu; duży nakład racy wymagany do oiczenia siły w wybranym ręcie. Metoda Rittera () Metoda Rittera () Kratownicę naeży rzeciąć rzekrojem takim, aby można było zaisać równanie, w którym jedyną niewiadomą będzie szukana siła w ręcie (najczęściej rzez ręty, z których osie dwóch rzecinają się w jednym unkcie).,m k k k,m Otrzymany układ sił jest niezbieżny. Równanie równowagi to zazwyczaj suma momentów wzgędem unktu rzecięcia osi ozostałych rętów (czasem suma rzutów sił gdy ozostałe ręty są równoegłe).,m k H - V R k k - H V ,m R Zaety i wady metody Rittera Przykład kratownica z asami równoegłymi Zaety: do znaezienia siły w ręcie otrzebne jest zaisanie i rozwiązanie tyko jednego równania; brak roagacji błędu; Wady: konieczność zaisania równań sum momentów; brak kontroi błędów (możiwa n. za omocą metody równoważenia węzłów). k k,m 6
3 Przykład Reakcje sin cos, ( ) + ( ) sin,6 ( ) + (,m) cos,m, ( ) + (,m) X : H + k Y : V + R k k M : R 6,m k k k H V H V R,m k R 6,k,6k Przykład metoda równoważenia węzłów k H k V R Węzeł Węzeł H - - V X : H+ H k k Y : + sin,, k Y : V + V 6,k X : + cos + k k,k, 6,k Węzeł k X Y : + k : k 6,k Węzeł Y : sin + + sin ,k, k,6k,6 X : cos + cos + k +,k,,6k,,k Węzeł Węzeł Y : + sin Srawdzenie: X : + cos +, 6,k +,6k,,k,6k,6,6k - - R Srawdzenie: Y : + R Srawdzenie: X :,k + R,6 +,6
4 Przykład metoda Rittera rzekrój (z ewej) Y : V sin k k - H V M : V + k + M : H + -,m R 6,k,k, 6,k k 6,k k Przykład metoda Rittera rzekrój (z rawej) Y : R + sin k k k - H V M : R,m+ M : R 6,m k -,m R k,6k,k,,6k,m 6,k,6 6,m k k 6 Przykład metoda Rittera rzekrój Przykład Wyniki: Y : R sin k k - H V M : R,m+ M : - -,m R,6k,6k,6,6k,m 6,k k -k -6,k -6,k,k k 6,k -k k -6,k,6k -,6k,6k Przykład kratownica trójkątna Przykład reakcje,m k,m k H V R sin, ( ) + ( ) cos, ( ) + ( ) sin cos, ( ) + ( ) X : H + k H k Y : V + R V k M : R 6m k,m R k Węzeł Węzeł - - Y : sin X : + cos - - R - X : Y : R + k
5 Węzeł k - - X :k+ cos Y : + sin k,k,,k, k Węzeł H - - V - Y : + sin + V k + k,k, X : + cos + H k,k, k Węzeł X : cos cos cos ,k,,k,, 6,k Y : sin sin + sin,k,,k,+ 6,k,,k Węzeł Srawdzenie: X : cos cos cos 6,k Y : sin sin sin 6,k, 6,k,+ k,m Węzeł Srawdzenie: Srawdzenie: X : cos + 6,k, k Y : sin,k + 6,k, Przykład metoda Rittera rzekrój (z rawej) k H M : cos + sin + R 6m - V M : R M : R sin 6m cos R k 6m, +,,k k k, 6m+,,k,m,m Przykład metoda Rittera rzekrój (z ewej) k H M : cos,m + k,m M : V H + k M : V m+ k,m+ sin m - V R k,k, k + k + k k k m k,m, m,k Przykład metoda Rittera rzekrój k H M : cos + sin + R M : R M : R 6m V R k, +, 6,k k k,k 6m 6
6 ,m Przykład metoda Rittera rzekrój k H M : cos + sin + R M : M : V m+ k,m+ sin 6m V R k, +, 6,k k m k,m, 6m 6,k Przykład wyniki:,m Przykład metoda Rittera rzekrój k H M : M : sin M : R + V R k Przykład C kratownica z asami zbieżnymi k k -k k,k k -,k -,k -6,k m 6,k -k m m k k -k k Przykład C wymiary Przykład C - reakcje m R H V k 6 x γ δ k k x m+ x x 6,66m m m m x C,m,m,m m X : H + R + k cosγ Y : V k k k sinγ M : R m+ k m+ k m+ + k sinγ m+ k cosγ m k R γ 6 sin, ( m) + ( ) sin,m,6 (,m) + ( m) cos m, (,m) + ( m) cos m, ( m) + ( ) sinγ,m,6 (,m) + ( ) cosγ, (,m) + ( ) Przykład C metoda Rittera rzekrój M :,m k cosγ,m k 6m M : cos m + H m M : V 6,66m H m sin 6,66m C sinδ m, ( m) + ( ) cosδ, ( m) + ( ) 6,k 6,k,66k m H V m k k,m m,m,m H V R Przykład C metoda Rittera rzekrój M :,m k M : cos m+ sin + k MC :,66m + k 6,66m,k,k,k,k,k 6,k 6 R k γ γ δ C R k γ γ δ - C m k,m m,m m k,m m,m H - - k,m H k,m V m 6,66m V m 6,66m
7 Przykład C wyniki: k -,k 6,k,k,k -,k,66k -,6k k,k -6,k -6,k -6,k -,k,k k Przykład D kratownica tyu K,m,m m k k,m,m m,k Przykład D reakcje k H V k 6 R X : H + k Y : V + R k M : R k k m R H V k,k,k sin,m, cos ( ) + (,m) ( ) + (,m), sin,6 cos m, ( ) + ( m) ( ) + ( m),m,m m Przykład D metoda Rittera rzekrój k H - - V k R g M : + k + k,m,k g M : + k k,m,k Przykład D metoda Rittera rzekrój Przykład D metoda równoważenia węzłów,m,m m k k H g X : sin sin k k sin H Y : cos + cos k sin k k,k sin,,k X : sin + + H V R V - k,k, k Przykład D wyniki: k -k,k -k k -,k k 6,66k,k -,6k,k -,k -6,66k -,k,k,k -,k -k 6,k -,k,k
Mechanika ogólna Obliczanie sił wewnętrznych c w układach prętowych. Kratownice. Kratownica
Mechanika ogólna Wykład nr 7 Obliczanie sił wewnętrznych w układach rętowych. Kratownice. 1 Kratownica Układ rętów w rostoliniowych: ołą łączenia rzegubowe w węzłach; w obciąż ążenia w ostaci sił skuionych
MECHANIKA OGÓLNA wykład 4
MECHNIK OGÓLN wykład 4 D R I N Ż. G T M R Y N I K Obliczanie sił wewnętrznych w układach prętowych. K R T O W N I C E KRTOWNIC UKŁD PRĘTÓW PROSTOLINIOWYCH Przegubowe połączenia w węzłach Obciążenie węzłowe
Obliczenia statyczne ustrojów prętowych statycznie wyznaczalnych. Pręty obciążone osiowo Kratownice
Tematyka wykładu 2 Obliczenia statyczne ustrojów prętowych statycznie wyznaczalnych ręty obciążone osiowo Kratownice Mechanika budowli - kratownice Kratownicą lub układem kratowym nazywamy układ prostoliniowych
KRATOWNICE 1. Definicja: konstrukcja prętowa, składająca się z prętów prostych połączonych ze sobą przegubami. pas górny.
KRTOWNIE efinicja: konstrukcja prętowa, składająca się z prętów prostych połączonych ze sobą przegubami słupki pas górny krzyżulce pas dolny Założenia: pręty są połączone w węzłach przegubami idealnymi
Sił Si y y w ewnętrzne (1)(1 Mamy my bry r łę y łę mate t r e iralną obc ob iążon ż ą u kła k de d m e si m ł si ł
echanika ogóna Wykład nr 5 Statyczna wyznaczaność układu. Siły wewnętrzne. 1 Stopień statycznej wyznaczaności Stopień zewnętrznej statycznej wyznaczaności n: Beka: n=rgrs; Rama: n=r3ogrs; rs; Kratownica:
gruparectan.pl 1. Kratownica 2. Szkic projektu 3. Ustalenie warunku statycznej niewyznaczalności układu Strona:1
1. Kratownica Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów 2. Szkic projektu 3. Ustalenie warunku statycznej niewyznaczalności układu Warunek konieczny geometrycznej
ĆWICZENIE 6 Kratownice
ĆWICZENIE 6 Kratownice definicja konstrukcja składająca się z prętów prostych połączonych przegubowo w węzłach, dla której jedynymi obciążeniami są siły skupione przyłożone w węzłach. Umowa: jeśli konstrukcja
Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów
1. Kratownica Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów 2. Szkic projektu rysunek jest w skali True 3. Ustalenie warunku statycznej niewyznaczalności układu Warunek
Mechanika Analityczna i Drgania
Mechanika naityczna i rgania Zasada prac przygotowanych dr inż. Sebastian akuła Wydział nżynierii Mechanicznej i Robotyki Katedra Mechaniki i Wibroakustyki mai: spakua@agh.edu.p dr inż. Sebastian akuła
Przykład 7.2. Belka złożona. Obciążenie poprzeczne rozłożone, trapezowe.
rzkład 7.. Beka złożona. Obciążenie orzeczne rozłożone, traezowe. a oniższej beki zaisać funkcje sił rzekrojowch i sorządzić ich wkres. α Rozwiązanie Oznaczam unkt charakterstczne, składowe reakcji i rzjmujem
Mechanika teoretyczna
Wypadkowa -metoda analityczna Mechanika teoretyczna Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Rodzaje ustrojów prętowych. Składowe poszczególnych sił układu: Składowe
Mechanika teoretyczna
Obciążenie ciągłe równoierne ecanika teoretyczna Wykład nr Wyznaczanie reakcji. eki rzegubowe. ay. Siły wewnętrzne. Obciążenie ciągłe trójkątne iara wyadkowej obciążenia rozłożonego iniowo równa jest ou
Katedra Mechaniki Konstrukcji ĆWICZENIE PROJEKTOWE NR 1 Z MECHANIKI BUDOWLI
Katedra Mechaniki Konstrukcji Wydział Budownictwa i Inżynierii Środowiska Politechniki Białostockiej... (imię i nazwisko)... (grupa, semestr, rok akademicki) ĆWICZENIE PROJEKTOWE NR Z MECHANIKI BUDOWLI
5.1. Kratownice płaskie
.. Kratownice płaskie... Definicja kratownicy płaskiej Kratownica płaska jest to układ prętowy złożony z prętów prostych, które są połączone między sobą za pomocą przegubów, Nazywamy je węzłami kratownicy.
WIADOMOŚCI WSTĘPNE, PRACA SIŁ NA PRZEMIESZCZENIACH
Część 1 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1 1.. 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1.1. Wstęp echanika budowli stanowi dział mechaniki technicznej zajmującej się statyką, dynamiką,
Mechanika teoretyczna
Inne rodzaje obciążeń Mechanika teoretyczna Obciążenie osiowe rozłożone wzdłuż pręta. Obciążenie pionowe na pręcie ukośnym: intensywność na jednostkę rzutu; intensywność na jednostkę długości pręta. Wykład
PODSTAWY STATYKI BUDOWLI POJĘCIA PODSTAWOWE
PODSTAWY STATYKI BUDOWLI POJĘCIA PODSTAWOWE Podstawy statyki budowli: Pojęcia podstawowe Model matematyczny, w odniesieniu do konstrukcji budowlanej, opisuje ją za pomocą zmiennych. Wartości zmiennych
Mechanika ogólna statyka
Mechanika ogóna statyka kierunek Budownictwo, sem. II materiały pomocnicze do ćwiczeń opracowanie: dr inż. iotr Dębski, dr inż. Irena Wagner TREŚĆ WYKŁADU ojęcia podstawowe, działy mechaniki. ojęcie punktu
METODA SIŁ KRATOWNICA
Część. METDA SIŁ - RATWNICA.. METDA SIŁ RATWNICA Sposób rozwiązywania kratownic statycznie niewyznaczalnych metodą sił omówimy rozwiązują przykład liczbowy. Zadanie Dla kratownicy przedstawionej na rys..
Spis treści. Wstęp Część I STATYKA
Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.
Podstawowe informacje o module
Podstawowe informacje o module Nazwa jednostki prowadzącej studia: Wydział Budownictwa i Inżynierii środowiska Nazwa kierunku studiów: Budownictwo Obszar : nauki techniczne Profil : ogólnoakademicki Poziom
Mechanika ogólna Kierunek: budownictwo, sem. II studia zaoczne, I stopnia inżynierskie
Mechanika ogólna Kierunek: budownictwo, sem. II studia zaoczne, I stopnia inżynierskie materiały pomocnicze do zajęć audytoryjnych i projektowych opracowanie: dr inż. Piotr Dębski, dr inż. Dariusz Zaręba
Geometria i łuku (1) Wezg z ło ł w o ia ia punkty po dpa rcia ł a uku; Klucz ( cz zwornik) najw na y jw żs ż zy z punk łuku łu ; klu kl c u z ku;
Mechanika ogóna Wykład nr 1 Pręty o osi zakrzywionej. Łuki. 1 Łuki, skepienia Łuk: : pręt o osi zakrzywionej (w stanie nieodkształconym) w płaszczyźnie działania sił i podparty na końcach w taki sposó,
5. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY
Część 2. METODA PRZEMIESZCZEŃ PRZYKŁAD LICZBOWY.. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY.. Działanie sił zewnętrznych Znaleźć wykresy rzeczywistych sił wewnętrznych w ramie o schemacie i obciążeniu podanym
Przykład 3.1. Wyznaczenie zmiany odległości między punktami ramy trójprzegubowej
Przykład Wyznaczene zmany odegłośc mędzy unktam ramy trójrzegubowej Poecene: Korzystając ze wzoru axwea-ohra wyznaczyć zmanę odegłośc mędzy unktam w onższym układze Przyjąć da wszystkch rętów EI = const
Rozciąganie i ściskanie prętów naprężenia normalne, przemieszczenia 2
Rozciąganie i ściskanie prętów naprężenia normane, przemieszczenia W przypadku rozciągania/ściskania pręta jego obciążenie stanowi zbiór sił czynnych wzdłuż osi pręta (oś x ). a rys..a przedstawiono przykład
Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści
Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, 2010 Spis treści Część I. STATYKA 1. Prawa Newtona. Zasady statyki i reakcje więzów 11 1.1. Prawa Newtona 11 1.2. Jednostki masy i
KARTA PRZEDMIOTU 1/6. Wydział Mechaniczny PWR. Nazwa w języku polskim: Mechanika I. Nazwa w języku angielskim: Mechanics I
Wydział Mechaniczny PWR KARTA PRZEDMIOTU Nazwa w języku polskim: Mechanika I Nazwa w języku angielskim: Mechanics I Kierunek studiów (jeśli dotyczy): Mechanika i Budowa Maszyn Stopień studiów i forma:
3. RÓWNOWAGA PŁASKIEGO UKŁADU SIŁ
3. ÓWNOWG PŁSKIEGO UKŁDU SIŁ Zadanie 3. elka o długości 3a jest utwierdzona w punkcie zaś w punkcie spoczywa na podporze przegubowej ruchomej, rysunek 3... by belka była statycznie wyznaczalna w punkcie
Równania różniczkowe liniowe rzędu pierwszego
Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to
PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA
POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA Dla zadanego układu należy 1) Dowolną metodą znaleźć rozkład sił normalnych
POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH. Ćwiczenie nr 4. Prowadzący: mgr inŝ. A. Kaczor
POLITECHNIKA POZNAŃKA INTYTUT KONTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli Ćwiczenie nr 4 WYZNACZANIE IŁ W PRĘTACH KRATOWNIC PŁAKICH Prowadzący: mgr inŝ. A. Kaczor Wykonał: Dariusz Włochal gr. B6 rok
2ql [cm] Przykład Obliczenie wartości obciażenia granicznego układu belkowo-słupowego
Przykład 10.. Obiczenie wartości obciażenia granicznego układu bekowo-słupowego Obiczyć wartość obciążenia granicznego gr działającego na poniższy układ. 1 1 σ p = 00 MPa = m 1-1 - - 1 8 1 [cm] Do obiczeń
Zadanie: Narysuj wykres sił normalnych dla zadanej kratownicy i policz przemieszczenie poziome węzła G. Zadanie rozwiąż metodą sił.
Zadanie: Narysuj wykres sił normalnych dla zadanej kratownicy i policz przemieszczenie poziome węzła. Zadanie rozwiąż metodą sił. P= 2kN P= 2kN Stopień statycznej niewyznaczalności: n s l r l pr 2 w 6
Dr inż. Janusz Dębiński
Wytrzymałość materiałów ćwiczenia projektowe 5. Projekt numer 5 przykład 5.. Temat projektu Na rysunku 5.a przedstawiono belkę swobodnie podpartą wykorzystywaną w projekcie numer 5 z wytrzymałości materiałów.
Uwaga: Linie wpływu w trzech prętach.
Zestaw nr 1 Imię i nazwisko zadanie 1 2 3 4 5 6 7 Razem punkty Zad.1 (5p.). Narysować wykresy linii wpływu sił wewnętrznych w przekrojach K i L oraz reakcji w podporze R. Zad.2 (5p.). Narysować i napisać
C = 0,8 2. W obliczeniach załoŝono, Ŝe obciąŝenie to będzie przykładane do górnych pasów dźwigarów. ObciąŜenia w programie Robot.
ZAŁĄCZNIK 1. OBLICZENIA STATYCZNE ELEMENTÓW PRĘTOWYCH KONSTRUKCJI DACHU W NAWACH O ROZPIĘTOŚCI 30 m i 24 m Z1.1. Zestawienie obciąŝeń ObciąŜenia stałe Zestawienie obciąŝeń na 1m 2 dachu od warstw okrycia:
ĆWICZENIE 7 Wykresy sił przekrojowych w ustrojach złożonych USTROJE ZŁOŻONE. A) o trzech reakcjach podporowych N=3
ĆWICZENIE 7 Wykresy sił przekrojowych w ustrojach złożonych USTROJE ZŁOŻONE A) o trzech reakcjach podporowych N=3 B) o liczbie większej niż 3 - reakcjach podporowych N>3 A) wyznaczanie reakcji z równań
KARTA PRZEDMIOTU WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI CELE PRZEDMIOTU
Wydział Mechaniczny PWR KARTA PRZEDMIOTU Nazwa w języku polskim: Mechanika I Nazwa w języku angielskim: Mechanics I Kierunek studiów (jeśli dotyczy): Mechanika i Budowa Maszyn Stopień studiów i forma:
Z poprzedniego wykładu:
Z orzedniego wykładu: Człon: Ciało stałe osiadające możliwość oruszania się względem innych członów Para kinematyczna: klasy I, II, III, IV i V (względem liczby stoni swobody) Niższe i wyższe ary kinematyczne
DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli LINIE WPŁYWOWE SIŁ W UKŁADACH STATYCZNIE WYZNACZALNYCH
POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli ĆWICZENIE nr 1 LINIE WPŁYWOWE SIŁ W UKŁADACH STATYCZNIE WYZNACZALNYCH Prowadzący: mgr inż. A. Kaczor STUDIUM ZAOCZNE, II
Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym
Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez
Tra r n a s n fo f rm r a m c a ja a na n p a rę r ż ę eń e pomi m ę i d ę zy y uk u ł k a ł d a am a i m i obr b ó r cony n m y i m
Wytrzymałość materiałów Naprężenia główne na przykładzie płaskiego stanu naprężeń 1 Tensor naprężeń Naprężenia w stanie przestrzennym: τ τxz τ yx τ yz τzx τzy zz Układ współrzędnych jest zwykle wybrany
Z1/7. ANALIZA RAM PŁASKICH ZADANIE 3
Z1/7. NLIZ RM PŁSKIH ZNI 3 1 Z1/7. NLIZ RM PŁSKIH ZNI 3 Z1/7.1 Zadanie 3 Narysować wykresy sił przekrojowych w ramie wspornikowej przedstawionej na rysunku Z1/7.1. Następnie sprawdzić równowagę sił przekrojowych
Mechanika. Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Wyznaczanie reakcji.
Mechanika Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Wyznaczanie reakcji. Przyłożenie układu zerowego (układ sił równoważących się, np. dwie siły o takiej samej mierze,
Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III
KATEDRA MECHANIKI MATERIAŁÓW POLITECHNIKA ŁÓDZKA DEPARTMENT OF MECHANICS OF MATERIALS TECHNICAL UNIVERSITY OF ŁÓDŹ Al.Politechniki 6, 93-590 Łódź, Poland, Tel/Fax (48) (42) 631 35 51 Mechanika Budowli
Ć w i c z e n i e K 2 a Wyznaczanie siły krytycznej pręta o przekroju prostokątnym posiadającego krzywiznę początkową.
Akademia Górniczo Hutnicza Wdział Inżnierii Mechanicznej i Robotki Katedra Wtrzmałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wdział Górnictwa i Geoinżnierii Grua nr: Ocena:
WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204
WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 1 DZIAŁ PROGRAMOWY V. PODSTAWY STATYKI I WYTRZYMAŁOŚCI MATERIAŁÓW
Przykłady (twierdzenie A. Castigliano)
23 Przykłady (twierdzenie A. Castigiano) Zadanie 8.4.1 Obiczyć maksymane ugięcie beki przedstawionej na rysunku (8.2). Do obiczeń przyjąć następujące dane: q = 1 kn m, = 1 [m], E = 2 17 [Pa], d = 4 [cm],
10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI.
0. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI. 0.0. Podstawy hydrodynamiki. Podstawowe ojęcia z hydrostatyki Ciśnienie: F N = = Pa jednostka raktyczna (atmosfera fizyczna): S m Ciśnienie hydrostatyczne:
Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1. MECHANIKA OGÓLNA - lista zadań 2016/17
Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1 MECHANIKA OGÓLNA - lista zadań 2016/17 Część 1 analiza kinematyczna układów płaskich Przeprowadzić analizę kinematyczną układu. Odpowiednią
Mechanika teoretyczna
Siła skupiona Mechanika teoretyczna Wykłady nr 5 Obliczanie sił wewnętrznych w belkach przykłady 1 2 Moment skupiony Obciążenie ciągłe równomierne 3 4 Obciążenie ciągłe liniowo zmienne Obciążenie ciągłe
Wykresy momentów gnących: belki i proste ramy płaskie Praca domowa
ODSTAWY WYTRZYMAŁOŚCI MATERIAŁÓW (OWYM) Wykresy momentów gnących: beki i proste ramy płaskie raca domowa Automatyka i Robotyka, sem. 3. Dr inŝ.. Anna Dąbrowska-Tkaczyk LITERATURA 1. Lewiński J., Wiczyński
KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: Podstawowa wiedza i umiejętności z zakresu matematyki oraz fizyki. Znajomość jednostek układu SI
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Wytrzymałość 2. KIERUNEK: Mechanika i Budowa Maszyn 3. POZIOM STUDIÓW: I Stopnia 4. ROK/ SEMESTR STUDIÓW: II/ 3 5. LICZBA PUNKTÓW ECTS: 4 6. LICZBA GODZIN: 30 w, 15
Wprowadzenie do WK1 Stan naprężenia
Wytrzymałość materiałów i konstrukcji 1 Wykład 1 Wprowadzenie do WK1 Stan naprężenia Płaski stan naprężenia Dr inż. Piotr Marek Wytrzymałość Konstrukcji (Wytrzymałość materiałów, Mechanika konstrukcji)
gruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów:
1. Metor Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: węzeł 1 x=[0.000][m], y=[0.000][m] węzeł 2 x=[2.000][m], y=[0.000][m] węzeł 3 x=[2.000][m], y=[2.000][m]
OBLICZANIE RAM METODĄ PRZEMIESZCZEŃ WERSJA KOMPUTEROWA
POLECHNA POZNAŃSA WYDZAŁ BUDOWNCWA NŻYNER ŚRODOWSA NSYU ONSRUCJ BUDOWLANYCH ZAŁAD ECHAN BUDOWL OBLCZANE RA EODĄ PRZEESZCZEŃ WERSJA OPUEROWA Ćwiczenie projektowe nr z echani budowli Wykonał: aciej BYCZYŃS
WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELCE
POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli ĆWICZENIE nr 2 WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELCE Prowadzący: mgr inŝ. A. Kaczor STUDIA DZIENNE MAGISTERSKIE, I ROK Wykonał:
Statyka. Rozdział Twierdzenie o trzech siłach. Twierdzenie dotyczy równowagi płaskiego zbieżnego układu sił.
Rozdział 1 Statyka 1.1 Twierdzenie o trzech siłach Twierdzenie dotyczy równowagi płaskiego zbieżnego układu sił. Twierdzenie 1 (Twierdzenie o trzech siłach) Aby trzy nierównoległe dosiebiesiły działajace
Przykład 7.3. Belka jednoprzęsłowa z dwoma wspornikami
Przykład.. eka jednoprzęsłowa z dwoma wspornikami Narysować wykresy sił przekrojowych da poniższej beki. α Rozwiązanie Rozwiązywanie zadania rozpocząć naeży od oznaczenia punktów charakterystycznych, składowych
Mechanika ogólna. Łuki, sklepienia. Zalety łuków (1) Zalety łuków (2) Geometria łuku (2) Geometria łuku (1) Kształt osi łuku (1) Kształt osi łuku (2)
Łuki, skepienia Mechanika ogóna Wykład n Pęty o osi zakzywionej. Łuki. Łuk: pęt o osi zakzywionej (w stanie nieodkształconym) w płaszczyźnie działania sił i podpaty na końcach w taki sposó, że podpoy nie
2kN/m Zgodnie z wyznaczonym zadaniem przed rozpoczęciem obliczeń dobieram wstępne przekroje prętów.
2kN/m -20 C D 5kN 0,006m A B 0,004m +0 +20 0,005rad E 4 2 4 [m] Układ prętów ma dwie tarcze i osiem reakcji w podporach. Stopień statycznej niewyznaczalności SSN= 2, ponieważ, przy dwóch tarczach powinno
OBLICZENIE PRZEMIESZCZEŃ W KRATOWNICY PŁASKIEJ
WYZNACZANIE PRZEMIESZCZEŃ - kratownica obciążenie iłami 070 OBLICZENIE PRZEMIESZCZEŃ W KRATOWNICY PŁASKIEJ DANE WYJŚCIOWE DO OBLICZEŃ Dana jet kratownica jak na runku Zaprojektować wtępnie przekroje prętów
Rozwiązywanie ram płaskich wyznaczanie reakcji i wykresów sił przekrojowych 7
ozwiązwanie ram płaskich wznaczanie reakcji i wkresów sił przekrojowch 7 Obciążenie ram płaskiej, podobnie jak w przpadku beek rozdział 6, mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe
MECHANIKA BUDOWLI 11
Oga Kopacz, Adam Łodygowski, Wojciech awłowski, Michał łotkowiak, Krzysztof Tymper Konsutacje naukowe: prof. dr hab. JERZY RAKOWSKI oznań / MECHANIKA BUDOWLI rzykład iczbowy: Dana beka, po której porusza
PROJEKT NR 1 METODA PRZEMIESZCZEŃ
POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 1 METODA PRZEMIESZCZEŃ Jakub Kałużny Ryszard Klauza Grupa B3 Semestr
Mechanika Analityczna
Mechanika Analityczna Wykład 2 - Zasada prac przygotowanych i ogólne równanie dynamiki Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej 29 lutego 2016 Plan wykładu
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy przedmiot podstawowy Rodzaj zajęć: Wykład, Ćwiczenia I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Uzyskanie przez
1. Silos Strona:1 Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu ...
1. Silos Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu... Przyjęto przekrój podstawowy: I= 3060[cm4] E= 205[GPa] Globalne EI= 6273[kNm²] Globalne EA= 809750[kN] Strona:1 2. Ustalenie stopnia
Pierwsze prawo Kirchhoffa
Pierwsze rawo Kirchhoffa Pierwsze rawo Kirchhoffa dotyczy węzłów obwodu elektrycznego. Z oczywistej właściwości węzła, jako unktu obwodu elektrycznego, który: a) nie może być zbiornikiem ładunku elektrycznego
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw udowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2017/2018
wszystkie elementy modelu płaskiego są w jednej płaszczyźnie, zwanej płaszczyzną modelu
Schemat statyczny zawiera informacje, takie jak: geometria i połoŝenie tarcz (ciał sztywnych), połączenia tarcz z fundamentem i ze sobą, rodzaj, połoŝenie i wartość obciąŝeń czynnych. wszystkie elementy
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki
Karta (sylabus) przedmiotu Mechanika i Budowa Maszyn Studia I stopnia o profilu: A P
WM Karta (sylabus) przedmiotu Mechanika i Budowa Maszyn Studia I stopnia o profilu: A P Przedmiot: Wytrzymałość Materiałów I Kod ECTS Status przedmiotu: obowiązkowy MBM 1 S 0 3 37-0_0 Język wykładowy:
SPORZĄDZANIE LINII WPŁYWU WIELKOŚCI STATYCZNYCH SPOSOBEM KINEMATYCZNYM
LINIE WŁYWU przykład sposób kinematyczny SORZĄDZNIE LINII WŁYWU WIELKOŚCI STTYCZNYCH SOSOBEM KINEMTYCZNYM Sposób kinematyczny sporządzania linii wpływu wielkości statycznych polega na wykorzystaniu twierdzenia
Przykład 1.9. Wyznaczanie obciąŝenia granicznego metodą kinematyczną
Przykład.9. Wyznaczanie obciąŝenia granicznego metodą kinematyczną Anaizując równowagę układu w stanie granicznym wyznaczyć obciąŝenie graniczne da zadanych wartości przekrojów prętów A [m ] i napręŝeń
Treści programowe przedmiotu
WM Karta (sylabus) przedmiotu Zarządzanie i Inżynieria Produkcji Studia stacjonarne pierwszego stopnia o profilu: ogólnoakademickim A P Przedmiot: Mechanika techniczna z wytrzymałością materiałów I Status
Analityczne metody kinematyki mechanizmów
J Buśkiewicz Analityczne Metoy Kinematyki w Teorii Mechanizmów Analityczne metoy kinematyki mechanizmów Spis treści Współrzęne opisujące położenia ogniw pary kinematycznej Mechanizm korowo-wozikowy (crank-slier
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy przedmiot podstawowy Rodzaj zajęć: Wykład, Ćwiczenia I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1.
NOŚNOŚĆ GRANICZNA
4. NOŚNOŚĆ GRANICZNA 4. 4. NOŚNOŚĆ GRANICZNA 4.. Wstęp Nośność graniczna wartość obciążenia, przy którym konstrukcja traci zdoność do jego przenoszenia i staje się układem geometrycznie zmiennym. Zastosowanie
Karta (sylabus) przedmiotu Kierunek studiów Mechatronika Studia pierwszego stopnia. Mechanika Techniczna Rodzaj przedmiotu: Podstawowy Kod przedmiotu:
Karta (sylabus) przedmiotu Kierunek studiów Mechatronika Studia pierwszego stopnia Przedmiot: Mechanika Techniczna Rodzaj przedmiotu: Podstawowy Kod przedmiotu: MT 1 S 0 2 14-0_1 Rok: I Semestr: II Forma
Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym
Przykład 4.1. Ściag stalowy Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym rysunku jeśli naprężenie dopuszczalne wynosi 15 MPa. Szukana siła P przyłożona jest
Przykład Łuk ze ściągiem, obciążenie styczne. D A
Przykład 1.4. Łuk ze ściągiem, obciążenie styczne. Rysunek przedstawia łuk trójprzegubowy, kołowy, ze ściągiem. Łuk obciążony jest obciążeniem stycznym do łuku, o stałej gęstości na jednostkę długości
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł kierunkowy ogólny Rodzaj zajęć: Wykład, Ćwiczenia MECHANIKA Mechanics Forma studiów: studia stacjonarne Poziom kwalifikacji:
UTRATA STATECZNOŚCI. O charakterze układu decyduje wielkośćobciążenia. powrót do pierwotnego położenia. stabilnego do stanu niestabilnego.
Metody obiczeniowe w biomechanice UTRATA STATECZNOŚCI STATECZNOŚĆ odpornośćna małe zaburzenia. Układ stabiny po małym odchyeniu od stanu równowagi powrót do pierwotnego położenia. Układ niestabiny po małym
R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y
Przykład 1 Dane są trzy siły: P 1 = 3i + 4j, P 2 = 2i 5j, P 3 = 7i + 3j (składowe sił wyrażone są w niutonach), przecinające się w punkcie A (1, 2). Wyznaczyć wektor wypadkowej i jej wartość oraz kąt α
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia Mechanika teoretyczna Informacje ogólne 2 Nazwa jednostki prowadzącej moduł Państwowa Szkoła Wyższa im. Papieża Jana Pawła II,Katedra Nauk Technicznych,
1. Wstęp. 2. Analiza teoretyczna
Problem dwóch kul Dwie kule umieszczone w pochyłej rynnie i stykające się z sobą nie zawsze się staczają. Wyjaśnij to zjawisko i znajdź warunki, w jakich ono zachodzi.. Wstęp W niniejszym artykule spróbujemy
Zadanie 1. Dla ramy przestrzennej przedstawionej na rys. 1 wyznaczyć reakcje i sporządzić wykresy sił wewnętrznych. DANE
4. Obiczanie sił wewnętrznych w ramach płaskich i przestrzennych. Sporządzanie wykresów 4.1 Zadanie 1. Da ramy przestrzennej przedstawionej na rys. 1 wyznaczyć reakcje i sporządzić wykresy sił wewnętrznych.
Mechanika Techniczna I Engineering Mechanics I. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
gruparectan.pl 1. Silos 2. Ustalenie stopnia statycznej niewyznaczalności układu SSN Strona:1 Dla danego układu wyznaczyć MTN metodą sił
1. Silos Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu Przyjęto przekrój podstawowy: I= 3060[cm4] E= 205[GPa] Globalne EI= 6273[kNm²] Globalne EA= 809750[kN] 2. Ustalenie stopnia statycznej
MECHANIKA I WYTRZYMAŁOŚĆ MATERIAŁÓW - OBLICZANIE SIŁ WEWNĘTRZNYCH W BELKACH
ECHANIKA I WYTRZYAŁOŚĆ ATERIAŁÓW - OBLICZANIE SIŁ WEWNĘTRZNYCH W BELKACH ZAD. 1. OBLICZYĆ SIŁY TNĄCE ORAZ OENTY ZGINAJĄCE W BELCE ORAZ NARYSOWAĆ WYKRESY TYCH SIŁ Wyznaczamy siły reakcji. Obciążenie ciągłe
TENSOMETRIA ZARYS TEORETYCZNY
TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej badanej konstrukcji. Aby wyznaczyć stan naprężenia trzeba
DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH
Część 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH... 5. 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH 5.. Wprowadzenie Rozwiązywanie zadań z zaresu dynamii budowli sprowadza
Analiza matematyczna dla informatyków 3 Zajęcia 14
Analiza matematyczna dla informatyków 3 Zajęcia 14 Metoda rozwiązywania (Jednorodne równanie różniczkowe liniowe rzędu n o stałych współczynnikach). gdzie a 0,..., a n 1 C. Wielomian charakterystyczny:
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw udowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2016/2017
Olga Kopacz, Adam Łodygowski, Krzysztof Tymber, Michał Płotkowiak, Wojciech Pawłowski Poznań 2002/2003 MECHANIKA BUDOWLI 1
Olga Kopacz, Adam Łodygowski, Krzysztof Tymber, ichał Płotkowiak, Wojciech Pawłowski Poznań 00/003 ECHANIKA UDOWLI WSTĘP. echanika budowli stanowi dział mechaniki technicznej, zajmujący się statyką, statecznością
Metody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 8 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład
Laboratorium z Krystalografii. 2 godz.
Uniwersytet Śląski - Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 132, 40-006 Katowice tel. 0323591627, e-mail: ewa.malicka@us.edu.pl opracowanie: dr Ewa Malicka Laboratorium z Krystalografii