PODSTAWOWE POJĘCIA OPTYMALIZACJI [M. Ostwald: Podstawy optymalizacji konstrukcji, Wyd. Politechniki Poznańskiej, 2005]
|
|
- Jacek Wojciechowski
- 8 lat temu
- Przeglądów:
Transkrypt
1 PODSTAWOWE POJĘCIA OPTYMALIZACJI [M. Ostwald: Podstaw optmalizacji konstrukcji, Wd. Politechniki Poznańskiej, 2005] POW Problem optmalnego wboru PWOW Problem wielokrterialnego wboru OW Optmalizacja wielokrterialna (wektorowa, polioptmalizacja) OS Optmalizacja skalarna (jednokrterialna) Struktura problemów optmalizacji Informacje dodatkowe (uzupełniające) Wmagania projektowe Zbiór wariantów Nadrzędne krterium optmalizacjne PROCES WYROBU Wariant optmaln lub satsfakcjonując Deczja Nie Tak Schemat procesu wboru Problem projektow Sstem wartości Konfrontacja Analiza Informacja Definicja Nadrzędne krterium optmalizacji Zadaniowe krterium optmalizacji Kreacja Snteza Modelowanie Optmalizacja Eksperment Ocena Zbiór wariantów Wmagania projektowe I N N E Z A D A N I A Deczja Tak Dokumentacja konstrukcjna Werfikacja doświadczalna Nie ROZWIĄZANIE Uproszczona struktura optmalnego procesu projektowania 19. Podstawowe pojęcia optmalizacji 98
2 Krteria optmalizacjne, zmienne deczjne, ograniczenia Optmalizacja jest dziedziną wiedz zajmującą się metodami wboru optmalnch działań związanch z aktwnością człowieka w sferze techniki, gospodarki itp. Optmalizacja konstrukcji zajmuje się zagadnieniami związanmi z wborem parametrów kształtu i cech fizcznch szeroko rozumianch konstrukcji. W zagadnieniach technicznch konstrukcja to pojedncz element (pręt, wał, belka), zbiór elementów, części maszn i urządzeń, maszna, zbiór maszn i urządzeń itd. Kształt konstrukcji to nie tlko wmiar geometrczne, ale właściwości fizczne, wtrzmałościowe cz odkształceniowe konstrukcji. Stąd często snonimem optmalizacji jest określenie kształtowanie wtrzmałościowe. Kształt konstrukcji jest określon za pomocą parametrów konstrukcji. Do parametrów konstrukcji należą: topologia konstrukcji (liczba i tp elementów konstrukcji), kształt przekrojów poprzecznch, wmiar przekrojów, rodzaj materiału, ciężar, właściwości fizczne, chemiczne i mechaniczne materiału, drgania konstrukcji, moc, zużcie energii, sprawność, funkcjonalność, parametr eksploatacjne, kolor, parametr ergonomiczne i wiele innch. Parametrami konstrukcji są wszstkie atrbut charakterzujące jej kształt, wmiar, moc, obrot itp. są to parametr wmierne, dające się przedstawić za pomocą abstrakcjnch pojęć matematki. Oprócz tego konstrukcja jest opisana za pomocą parametrów niewmiernch, takich jak na przkład estetka, wgląd itp., opisanch za pomocą pojęć rozmtch. Parametr mogą bć ustalone przed rozpoczęciem procesu projektowania, mogą też bć określane za pomocą procedur optmalizacjnch i wted te parametr są nazwane zmiennmi deczjnmi (zmiennmi projektowmi). KRYTERIUM OPTYMALIZACYJNE jest podstawowm pojęciem optmalizacji, za pomocą którego dokonuje się porównania poszczególnch rozwiązań. Krterium wrażone w jęzku matematki jest nazwane funkcją celu. Krterium optmalizacjne jest wbierane w początkowej fazie projektowania, musi spełniać wmogi projektowania optmalnego, może bć wbrane spośród parametrów konstrukcji, może bć kombinacją wielu parametrów. Uniwersalnm miernikiem jakości rozwiązań konstrukcjnch jest koszt konstrukcji. Problemem deczjnm jest wrażenie kosztów za pomocą parametrów. MODEL MATEMATYCZNY KONSTRUKCJI Model matematczn konstrukcji składa się z: funkcji celu (lub zbioru funkcji celów), będącej matematcznm zapisem krterium optmalizacjnego, zbioru zmiennch deczjnch oraz pozostałch parametrów opisującch konstrukcję, zbioru ograniczeń (warunków ograniczającch). Klasfikacje modeli matematcznch Ze względu na parametr zadania: Model deterministczn, gd wszstkie parametr są zdeterminowane (tzn. znane i stałe). Każdej możliwej deczji odpowiada jedna i tlko jedna wartość funkcji celu. 19. Podstawowe pojęcia optmalizacji 99
3 Model probabilistczn, gd jeden lub kilka parametrów są zmiennmi losowmi o znanm rozkładzie prawdopodobieństwa. Model statstczn, gd jeden lub kilka parametrów są zmiennmi losowmi o nieznanm rozkładzie prawdopodobieństwa lub gd jest znan rozkład parametrów w funkcji czasu (proces stochastczn). Ze względu na charakter zbioru zmiennch deczjnch: Model optmalizacji dskretnej, gd zbiór zmiennch deczjnch jest skończonm zbiorem wartości dskretnch, np. zgodnch z normami. Model optmalizacji ciągłej, bez ograniczenia zakresu zmiennch. Ze względu na liczbę funkcji celów (krteriów optmalizacjnch): Model optmalizacji skalarnej, gd zadanie wkorzstuje tlko jedną funkcję celu. Model optmalizacji wielokrterialnej (wektorowej), z kilkoma funkcjami celów. Ze względu na rodzaj funkcji celu oraz ograniczeń: Model liniow, gd zarówno funkcja celu, jak i wszstkie ograniczenia są funkcjami liniowmi. Model nieliniow, gd funkcja celu lub chociaż jedno z ograniczeń ma charakter nieliniow. Budowa modelu matematcznego optmalizacji konstrukcji jest działaniem wpisanm w proces projektowania optmalnego, stąd tworząc model, należ wkorzstwać podejście sstemowe. Budowa modelu obejmuje: 1. określenie funkcji celu, 2. określenie zmiennch deczjnch, 3. określenie obszaru dopuszczalnego (obszaru rozwiązań dopuszczalnch). Wbór procedur optmalizacjnej Jednm z ważnch etapów optmalnego projektowania konstrukcji jest wbór właściwej procedur optmalizacjnej, jako narzędzia do rozwiązania problemu inżnierskiego. Wbór ten nie jest sprawą prostą, gdż, nie ma jednej uniwersalnej metod, jednakowo efektwnej dla wszstkich problemów inżnierskich. Można tu mówić nawet o pewnej barierze pschologicznej związanej z bogactwem procedur i utrudniającej dokonanie optmalnego wboru procedur do rozwiązania zadania optmalizacji. Jest to więc przkład optmalizacji w optmalnm projektowaniu. Aspekt związane z wborem procedur: 1. Rodzaj rozpatrwanego problemu (problem liniow cz nieliniow). 2. Wielkość problemu, liczbę zmiennch deczjnch, liczbę ograniczeń. 3. Liczba krteriów optmalizacjnch (problem skalarn cz wektorow (wielokrterialn)). 4. Rodzaj zmiennch deczjnch (zmienne ciągłe cz dskretne). 5. Rodzaj ograniczeń. 6. Konieczność obliczania pochodnch funkcji celu i ograniczeń. 19. Podstawowe pojęcia optmalizacji 100
4 7. Wmagana dokładność obliczeń. 8. Wmagana niezawodność wznaczania minimum globalnego. 9. Dostęp do gotowego oprogramowania. 10. Łatwość adaptacji gotowego oprogramowania do konkretnego zadania. 11. Informacja o efektwności danej procedur w podobnch problemach inżnierskich. 12. Łatwość wprowadzania i interpretowania wników (interfejs graficzn). OPTYMALIZACJA WIELOKRYTERIALNA wielokrterialna, wektorowa, wielowmiarowa, wielowskaźnikowa, polioptmalizacja F. Y. Edgeworth (1881) Vilfredo Pareto (1896) optimum w sensie Pareto, rozwiązanie Pareto optmalne Projektowanie optmalne: 1) Projektant (decdent) ma możliwość wboru rozwiązania konstrukcjnego (wariantu, deczji) z pewnego zbioru rozwiązań (deczji) dopuszczalnch. 2) Projektant (decdent) dsponuje stworzonm przez siebie lub narzuconm z gór sstemem wartości pozwalającm na ocenę rozwiązań (deczji). 3) Projektant (decdent) potrafi orzec, prznajmniej w stosunku do niektórch par rozwiązań, które z tch par uznaje za lepsze które preferuje ze względu na przjęt sstem wartości. 4) Projektant (decdent) potrafi uzasadnić i obronić satsfakcjonując go wbór, w jego ocenie optmaln. Optmalizacja wielokrterialna: zbiór rozwiązań optmalnch o różnm stopniu kompromisu (relacji) pomiędz poszczególnmi krteriami. PREFERENCJE: (deczja) 1) wbrać jedno rozwiązanie i uznać je za najlepsze, 2) wbrać podzbiór rozwiązań ze zbioru rozwiązań optmalnch, 3) ustawić wszstkie rozwiązania w szereg od najlepszego do najgorszego, czli utworzć listę rankingową. K O M P R O M I S Kompromis niezgodn z przjętm sstemem wartości nie prowadzi do rozwiązań optmalnch. Zastosowania procedur optmalizacji wielokrterialnej w zarządzaniu 19. Podstawowe pojęcia optmalizacji 101
5 Teoria sstemów: S = (E, A, R) Optmalizacja wielokrterialna: OW = (X, F, R). X zbiór rozwiązań dopuszczalnch, F funkcja krteriów, R relacja dominowania. Optmalizacja skalarna: OW = (X, F, ). a) R n Przestrzeń zmiennch deczjnch x 6 X x 1 x 2 x 3 x 5 x 4 x 7 f : R n R 1 F 3 = min Y R 1 b) R n Przestrzeń zmiennch deczjnch Przestrzeń krterialna (funkcji celów) R q F 2 x x 1 2 x 5 x 4 x 6 f 2 max Punkt Nadira 7 Rozwiązanie antidealne x 8 x 3 x 7 f : R n R q (f :X Y) f 2 min f 1min f 1 max F 1 Modele optmalizacji: a) skalarnej, b) wielokrterialnej 19. Podstawowe pojęcia optmalizacji 102
Programowanie nieliniowe optymalizacja funkcji wielu zmiennych
Ekonomia matematczna II Ekonomia matematczna II Prowadząc ćwiczenia Programowanie nieliniowe optmalizacja unkcji wielu zmiennch Modele programowania liniowego często okazują się niewstarczające w modelowaniu
Ekstrema funkcji dwóch zmiennych
Wkład z matematki inżnierskiej Ekstrema funkcji dwóch zmiennch JJ, IMiF UTP 18 JJ (JJ, IMiF UTP) EKSTREMA 18 1 / 47 Ekstrema lokalne DEFINICJA. Załóżm, że funkcja f (, ) jest określona w pewnm otoczeniu
Podejmowanie decyzji w warunkach niepełnej informacji. Tadeusz Trzaskalik
Podejmowanie deczji w warunkach niepełnej informacji Tadeusz Trzaskalik 5.. Wprowadzenie Słowa kluczowe Niepełna informacja Stan natur Macierz wpłat Podejmowanie deczji w warunkach rzka Podejmowanie deczji
Blok 2: Zależność funkcyjna wielkości fizycznych
Blok : Zależność funkcjna wielkości fizcznch I. Odcztwanie informacji z wkreu co tak naprawdę na nim ię znajduje. Chcąc odcztać informacje z wkreu funkcji, muim dokładnie wiedzieć, jaka wielkość fizczna
f x f y f, jest 4, mianowicie f = f xx f xy f yx
Zestaw 14 Pochodne wŝszch rzędów Niech będzie dana funkcja x f określona w pewnm obszarze D Przpuśćm Ŝe f x istnieją pochodne cząstkowe tej funkcji x x Pochodne cząstkowe tch pochodnch jeŝeli istnieją
BADANIA OPERACYJNE Tomasz Łukaszewski
BADANIA OPERACYJNE Tomasz Łukaszewski 3.03.06 Tomasz Łukaszewski - Badania Operacjne Spis Treści WSTĘP 3 PROGRAMOWANIE LINIOWE 7. WPROWADZENIE 7.. INTERPRETACJA GEOMETRYCZNA ZADANIA PROGRAMOWANIA LINIOWEGO
OKREŚLANIE FUNKCJI CELU PRZY DOBORZE MASZYN ROLNICZYCH
InŜnieria Rolnicza 14/5 Zofia Hanusz *, Zbigniew Siarkowski **, * Katedra Zastosowań Matematki ** Katedra Maszn i Urządzeń Rolniczch Akademia Rolnicza w Lublinie OKREŚLANIE FUNKCJI CELU PRZY DOBORZE MASZYN
25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx
5. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU 5.1. Pojęcia wstępne. Klasfikacja równań i rozwiązań Rozróżniam dwa zasadnicze tp równań różniczkowch: równania różniczkowe zwczajne i równania różniczkowe cząstkowe.
Funkcje wielu zmiennych
Funkcje wielu zmiennch Wkres i warstwice funkcji wielu zmiennch. Przeglad powierzchni stopnia drugiego. Granice i ciagłość funkcji wielu zmiennch. Małgorzata Wrwas Katedra Matematki Wdział Informatki Politechnika
Ć w i c z e n i e K 2 b
Akademia Górniczo Hutnicza Wdział Inżnierii Mechanicznej i Robotki Katedra Wtrzmałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wdział Górnictwa i Geoinżnierii Grupa nr: Ocena:
x 1 x 2 x 3 x n w 1 w 2 Σ w 3 w n x 1 x 2 x 1 XOR x (x A, y A ) y A x A
Sieci neuronowe model konekcjonistczn Plan wkładu Perceptron - przpomnienie Uczenie nienadzorowane Sieci Hopfielda Perceptron w 3 Σ w n A Liniowo separowaln problem klasfikacji ( A, A ) Problem XOR 0 0
Programowanie wypukłe i kwadratowe. Tadeusz Trzaskalik
Proramowanie wpukłe i kwaratowe Taeusz Trzaskalik 6.. Wprowazenie Słowa kluczowe Zaanie proramowania nielinioweo Ekstrema lobalne i lokalne Zbior wpukłe Funkcje wklęsłe i wpukłe Zaanie proramowania wpukłeo
Warsztat pracy matematyka
Warsztat prac matematka Izabela Bondecka-Krzkowska Marcin Borkowski Jęzk matematki Teoria Jednm z podstawowch pojęc matematki jest pojęcie zbioru. Teorię opisującą zbior nazwa sie teorią mnogości. Definicja
Wykład 10. Funkcje wielu zmiennych
Wkład 1. Funkcje wielu zmiennch dr Mariusz Grządziel 6 maja 1 (ostatnie poprawki: 1 maja 1) Funkcje wielu zmiennch Przestrzeń dwuwmiarowa, oznaczana w literaturze matematcznej smbolem R, może bć utożsamiona
Wykład 4 Testy zgodności. dystrybuanta rozkładu populacji dystrybuanty rozkładów dwóch populacji rodzaj rozkładu wartości parametrów.
Wkład Test zgodności. Test zgodności służą do werikacji hipotez mówiącch, że a dstrbuanta rozkładu populacji ma określoną z gór postać unkcjną b dstrbuant rozkładów dwóch populacji nie różnią się w sposób
MES W ANALIZIE SPRĘŻYSTEJ UKŁADÓW PRĘTOWYCH
MES W ANAIZIE SPRĘŻYSEJ KŁADÓW PRĘOWYCH Przkład obliczeń Kratownice płaskie idia FEDOROWICZ Jan FEDOROWICZ Magdalena MROZEK Dawid MROZEK Gliwice r. - idia Fedorowicz Jan Fedorowicz Magdalena Mrozek Dawid
Pochodna funkcji wykład 5
Pochodna funkcji wkład 5 dr Mariusz Grządziel 8 listopada 2010 Funkcja logistczna 40 Rozważm funkcję logistczną = f 0 (t) = 1+5e 0,5t Funkcja f może bć wkorzstana np. do modelowania wzrostu mas ziaren
12. FUNKCJE WIELU ZMIENNYCH. z = x + y jest R 2, natomiast jej
1. FUNKCJE WIELU ZMIENNYCH 1.1. FUNKCJE DWÓCH ZMIENNYCH Funkcją dwóch zmiennch określoną w zbiorze D R nazwam przporządkowanie każdej parze liczb () D dokładnie jednej liczb rzeczwistej z. Piszem prz tm
OCENA JAKOŚCI PROCESU LOGISTYCZNEGO PRZEDSIĘBIORSTWA PRZEMYSŁOWEGO METODĄ UOGÓLNIONEGO PARAMETRU CZĘŚĆ I. 1. Wprowadzenie
B A D A N I A O P E R A C Y J N E I D E C Y Z J E Nr 2 2004 Anna DOBROWOLSKA* Jan MIKUŚ* OCENA JAKOŚCI PROCESU LOGISTYCZNEGO PRZEDSIĘBIORSTWA PRZEMYSŁOWEGO METODĄ UOGÓLNIONEGO PARAMETRU CZĘŚĆ I Przedstawiono
Modelowanie w ME- Kroki analizy Zakładamy, że model już jest uproszczony, zdefiniowane są materiał, obciążenie i umocowanie (krok 0).
MES1 10 S/MCS Modelowanie w ME- Część I Kolejność postępowania w prostej analizie MES w SWS Kroki analiz Zakładam, że model już jest uproszczon, zdefiniowane są materiał, obciążenie i umocowanie (krok
Interpolacja. Układ. x exp. = y 1. = y 2. = y n
MES 07 lokaln Interpolacja. Układ Interpolacja, wprowadzenie Interpolacja: po co nam to? Ptania MES polega na wznaczaniu interesującch nas parametrów w skończonej ilości punktów. A co leż pomiędz tmi punktami?
MES polega na wyznaczaniu interesujących nas parametrów w skończonej ilości punktów. A co leży pomiędzy tymi punktami?
MES- 07 Interpolacja, wprowadzenie Interpolacja: po co nam to? Ptania MES polega na wznaczaniu interesującch nas parametrów w skończonej ilości punktów. A co leż pomiędz tmi punktami? Na razie rozpatrwaliśm
Równania różniczkowe cząstkowe
Równania różniczkowe cząstkowe Definicja Równaniem różniczkowm cząstkowm nazwam takie równanie różniczkowe w którm wstępuje co najmniej jedna pochodna cząstkowa niewiadomej funkcji dwóch lub więcej zmiennch
Scenariusz lekcji matematyki z wykorzystaniem komputera
Scenariusz lekcji matematki z wkorzstaniem komputera Temat: Wpłw współcznników a i b na położenie wkresu funkcji liniowej. (Rsowanie wkresów prz użciu arkusza kalkulacjnego EXCEL.) Czas zajęć: 9 min Cele:
INSTRUKCJA DO ĆWICZENIA NR 1
L01 ---2014/10/17 ---10:52---page1---#1 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 1 PRZEDMIOT TEMAT Wybrane zagadnienia z optymalizacji elementów
Pomiar bezpośredni przyrządem wskazówkowym elektromechanicznym
. Rodzaj poiaru.. Poiar bezpośredni (prost) W przpadku poiaru pojednczej wielkości przrząde wskalowan w jej jednostkach wartość niedokładności ± określa graniczn błąd przrządu analogowego lub cfrowego
RÓWNANIA RÓŻNICZKOWE WYKŁAD 5
RÓWNANIA RÓŻNICZKOWE WYKŁAD 5 Równania różniczkowe rzędu drugiego Równania rzędu drugiego sprowadzalne do równań rzędu pierwszego Równanie różniczkowe rzędu drugiego postaci F ( x, ', ") 0 ( nie wstępuje
Całkowanie przez podstawianie i dwa zadania
Całkowanie przez podstawianie i dwa zadania Antoni Kościelski Funkcje dwóch zmiennch i podstawianie Dla funkcji dwóch zmiennch zachodzi następując wzór na całkowanie przez podstawianie: f(x(a, b), (a,
WOJEWÓDZTWO PODKARPACKIE
WOJEWÓDZTWO PODKARPACKIE UNIA EUROPEJSKA EUROPEJSKI FUNDUSZ ROZWOJU REGIONALNEGO Załącznik nr 7 do Regulaminu konkursu LISTA SPRAWDZAJĄCA DOTYCZĄCA OCENY FORMALNEJ WNIOSKU O DOFINANSOWANIE REALIZACJI PROJEKTU
ELEMENTY TEORII ZBIORÓW ROZMYTYCH
ELEMENTY TEORII ZBIORÓW ROZMYTYCH OPRACOWAŁ: M. KWIESIELEWICZ POJĘCIA NIEPRECYZYJNE ODDZIAŁYWANIA CZŁOWIEK-OBIEKT TECHNICZNY OTOCZENIE (Hoang 990: człowieka na otoczenie, np.: ergonomiczna konstrukcja
Wydział Elektryczny. Katedra Automatyki i Elektroniki. Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: TECHNIKA CYFROWA 2 TS1C300 020
Politechnika Białostocka Wdział lektrczn Katedra Automatki i lektroniki Instrukcja do ćwiczeń laboratorjnch z przedmiotu TCHNIKA CFROWA TSC Ćwiczenie Nr CFROW UKŁAD KOMUTACJN Opracował dr inż. Walent Owieczko
Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 1-2
Stanisław Cichocki Natalia Nehreecka Zajęcia - . Model liniow Postać modelu liniowego Zapis macierzow modelu liniowego. Estmacja modelu Przkład Wartość teoretczna (dopasowana) Reszt 3. MNK - przpadek wielu
Imperfekcje globalne i lokalne
Imperfekcje globalne i lokalne Prz obliczaniu nośności i stateczności konstrukcji stalowch szczególnego znaczenia nabiera konieczność uwzględniania warunków wkonania, transportu i montażu elementów konstrukcjnch.
Elementy algebry i analizy matematycznej II
Element algebr i analiz matematcznej II Wkład 1. Ekstrema unkcji dwóch zmiennch Deinicja 1 Funkcja dwóch zmiennch, z = (, ), ma w punkcie z = (, ), maksimum lokalne, jeżeli istnieje takie otoczenie punktu
Równania różniczkowe cząstkowe
Równania różniczkowe cząstkowe Definicja: Równaniem różniczkowm cząstkowm nazwam takie równanie różniczkowe w którm wstępuje co najmniej jedna pochodna cząstkowa niewiadomej funkcji dwóch lub więcej zmiennch
Modelowanie w projektowaniu maszyn i procesów cz.5
Modelowanie w projektowaniu maszyn i procesów cz.5 Metoda Elementów Skończonych i analizy optymalizacyjne w środowisku CAD Dr hab inż. Piotr Pawełko p. 141 Piotr.Pawełko@zut.edu.pl www.piopawelko.zut.edu.pl
Rachunek różniczkowy funkcji jednej zmiennej
Rachunek różniczkow funkcji jednej zmiennej wkład z MATEMATYKI Budownictwo, studia niestacjonarne sem. I, rok ak. 2008/2009 Katedra Matematki Wdział Informatki Politechnika Białostocka 1 Iloraz różnicow
Macierze normalne. D : Dowolną macierz kwadratową można zapisać w postaci A = B + ic gdzie ( ) B = A + A B = A + A = ( A + A)
Macierze normalne Twierdzenie: Macierz można zdiagonalizować za pomocą unitarnej transformacji podobieństwa wted i tlko wted gd jest normalna (AA A A). ( ) D : Dowolną macierz kwadratową można zapisać
3.3. UKŁADY RÓWNAŃ LINIOWYCH. Równanie liniowe z dwiema niewiadomymi. Równaniem liniowym z dwiema niewiadomymi x i y nazywamy równanie postaci
.. UKŁADY RÓWNAŃ LINIOWYCH Równanie liniowe z dwiema niewiadommi Równaniem liniowm z dwiema niewiadommi i nazwam równanie postaci A B C 0, gdzie A, B, C R i A B 0 m równania z dwiema niewiadommi nazwam
RÓWNANIA RÓŻNICZKOWE WYKŁAD 3
RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 Równania różniczkowe liniowe Metoda przewidwań Metoda przewidwań całkowania równania niejednorodnego ' p( x) opiera się na następującm twierdzeniu. Twierdzenie f ( x) Suma
Wektory. P. F. Góra. rok akademicki
Wektor P. F. Góra rok akademicki 009-0 Wektor zwiazan. Wektorem zwiazanm nazwam parę punktów. Jeżeli parę tę stanowią punkt,, wektor przez nie utworzon oznaczm. Graficznie koniec wektora oznaczam strzałką.
RACHUNEK CAŁKOWY FUNKCJI DWÓCH ZMIENNYCH
RACHUNEK CAŁKOWY FUNKCJI WÓCH ZMIENNYCH einicja całki podwójnej po prostokącie einicja Podziałem prostokąta R ={ : a b c d} inaczej: R = [a b] [c d] nazwam zbiór Pn złożon z prostokątów R R... Rn które
KURS FUNKCJE WIELU ZMIENNYCH
KURS FUNKCJE WIELU ZMIENNYCH Lekcja 1 Pochodne cząstkowe ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tlko jedna jest prawdziwa). Ptanie 1 Funkcja dwóch zmiennch a)
Plan. Zakres badań teorii optymalizacji. Teoria optymalizacji. Teoria optymalizacji a badania operacyjne. Badania operacyjne i teoria optymalizacji
Badania operacyjne i teoria optymalizacji Instytut Informatyki Poznań, 2011/2012 1 2 3 Teoria optymalizacji Teoria optymalizacji a badania operacyjne Teoria optymalizacji zajmuje się badaniem metod optymalizacji
11. 11. OPTYMALIZACJA KONSTRUKCJI
11. OPTYMALIZACJA KONSTRUKCJI 1 11. 11. OPTYMALIZACJA KONSTRUKCJI 11.1. Wprowadzenie 1. Optymalizacja potocznie i matematycznie 2. Przykład 3. Kryterium optymalizacji 4. Ograniczenia w zadaniach optymalizacji
Podstawy Automatyki. Człowiek- najlepsza inwestycja. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Podstaw Automatki Człowiek- najlepsza inwestcja Projekt współfinansowan przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Politechnika Warszawska Insttut Automatki i Robotki Dr inż. Wieńczsław
3.2. Podstawowe własności funkcji. Funkcje cyklometryczne, hiperboliczne. Definicję funkcji f o dziedzinie X i przeciwdziedzinie Y mamy w 3A5.
WYKŁAD 7 3 Podstawowe własności unkcji Funkcje cklometrczne, hiperboliczne Deinicję unkcji o dziedzinie X i przeciwdziedzinie Y mam w 3A5 3A37 (Uwaga: dziedzina naturalna) Często się zdarza, że unkcja
Plan wyk y ł k adu Mózg ludzki a komputer Komputer Mózg Jednostki obliczeniowe Jednostki pami Czas operacji Czas transmisji Liczba aktywacji/s
Sieci neuronowe model konekcjonistczn Plan wkładu Mózg ludzki a komputer Modele konekcjonistcze Sieć neuronowa Sieci Hopfielda Mózg ludzki a komputer Twój mózg to komórek, 3 2 kilometrów przewodów i (biliard)
Np.:
INTELIGENTNE TECHNIKI KOMPUTEROWE wkład STEROWNIKI ROZMYTE TAKAGISUGENO aza reguł sterownika ma charakter rozmt tlko w części IF. W części THEN wstępują zależności funkcjne. Np.: R () : IF prędkość is
Spis treści 377 379 WSTĘP... 9
Spis treści 377 379 Spis treści WSTĘP... 9 ZADANIE OPTYMALIZACJI... 9 PRZYKŁAD 1... 9 Założenia... 10 Model matematyczny zadania... 10 PRZYKŁAD 2... 10 PRZYKŁAD 3... 11 OPTYMALIZACJA A POLIOPTYMALIZACJA...
Metody prognozowania: Jakość prognoz Wprowadzenie (1) 6. Oszacowanie przypuszczalnej trafności prognozy
Metod prognozowania: Jakość prognoz Dr inż. Sebastian Skoczpiec ver. 03.2012 Wprowadzenie (1) 1. Sformułowanie zadania prognostcznego: 2. Określenie przesłanek prognostcznch: 3. Zebranie danch 4. Określenie
lim = 0, gdzie d n oznacza najdłuższą przekątną prostokątów
9. CAŁKA POWÓJNA 9.. Całka podwójna w prostokącie Niech P będzie prostokątem opisanm na płaszczźnie OXY nierównościami: a < < b, c < < d, a f(,) funkcją określoną i ograniczoną w tm prostokącie. Prostokąt
SRL-sem6-W5-IRL3ab - Cykl eksploatacyjny statków powietrznych w lotnictwie komunikacyjnym - rotacje
SRL-sem6-W5-IRL3ab - Ckl eksploatacjn statków powietrznch w lotnictwie komunikacjnm - rotacje Metod szeregowania zadań Metod nieformalne Metod formalne początkowo harmonogram Gantta Johnson S. M.: Optimal
Opis efektów kształcenia dla programu kształcenia (kierunkowe efekty kształcenia) WIEDZA. rozumie cywilizacyjne znaczenie matematyki i jej zastosowań
TABELA ODNIESIEŃ EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA PROGRAMU KSZTAŁCENIA DO EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA OBSZARU KSZTAŁCENIA I PROFILU STUDIÓW PROGRAM KSZTAŁCENIA: POZIOM KSZTAŁCENIA: PROFIL KSZTAŁCENIA:
Ćwiczenie 361 Badanie układu dwóch soczewek
Nazwisko... Data... Wdział... Imię... Dzień tg.... Godzina... Ćwiczenie 36 Badanie układu dwóch soczewek Wznaczenie ogniskowch soczewek metodą Bessela Odległość przedmiotu od ekranu (60 cm 0 cm) l Soczewka
Model mapowania aktywności i kompetencji w projektach IKT
XXI Autumn Meeting of Polish Information Processing Societ ISBN 83-9646--6 Conference Proceedings, pp.59-7 5 PIPS Model mapowania aktwności i kompetencji w projektach IKT Kazimierz Frączkowski Insttut
Spis treści Przedmowa
Spis treści Przedmowa 1. Wprowadzenie do problematyki konstruowania - Marek Dietrich (p. 1.1, 1.2), Włodzimierz Ozimowski (p. 1.3 -i-1.7), Jacek Stupnicki (p. l.8) 1.1. Proces konstruowania 1.2. Kryteria
Nieliniowe PCA kernel PCA
Monitorowanie i Diagnostka w Sstemach Sterowania na studiach II stopnia specjalności: Sstem Sterowania i Podejmowania Deczji Nieliniowe PCA kernel PCA na podstawie: Nowicki A. Detekcja i lokalizacja uszkodzeń
Systemy przetwarzania sygnałów
Sstem przetwarzania sgnałów x(t) (t)? x(t) Sstem przetwarzania sgnałów (t) Sstem przetwarzania sgnałów sgnał ciągł x(t) (t)=h(x(t)) Sstem czasu ciągłego (t) np. megafon - wzmacniacz analogow sgnał dskretn
WOJEWÓDZTWO PODKARPACKIE
WOJEWÓDZTWO PODKARPACKIE UNIA EUROPEJSKA EUROPEJSKI FUNDUSZ ROZWOJU Załącznik nr 7 do Regulaminu Konkursu LISTA SPRAWDZAJĄCA DOTYCZĄCA OCENY FORMALNEJ WNIOSKU O DOFINANSOWANIE REALIZACJI PROJEKTU ZE ŚRODKÓW
Zmienne losowe typu ciągłego. Parametry zmiennych losowych. Izolda Gorgol wyciąg z prezentacji (wykład III)
Zmienne losowe tpu ciągłego. Parametr zmiennch losowch. Izolda Gorgol wciąg z prezentacji (wkład III) Zmienna losowa tpu ciągłego Zmienna losowa X o ciągłej dstrbuancie F nazwa się zmienną losową tpu ciągłego,
Spis treści. Przedmowa 11
Podstawy konstrukcji maszyn. T. 1 / autorzy: Marek Dietrich, Stanisław Kocańda, Bohdan Korytkowski, Włodzimierz Ozimowski, Jacek Stupnicki, Tadeusz Szopa ; pod redakcją Marka Dietricha. wyd. 3, 2 dodr.
L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 4 ZADANIA - ZESTAW 4
ZADANIA - ZESTAW 4 Zadanie 4. 0-0,4 c 0 0, 0, Wznacz c. Wznacz rozkład brzegowe. Cz, są niezależne? (odp. c = 0,3 Zadanie 4.- 0-0,4 0,3 0 0, 0, Wznaczć macierz kowariancji i korelacji. Cz, są skorelowane?
WOJEWÓDZTWO PODKARPACKIE
WOJEWÓDZTWO PODKARPACKIE UNIA EUROPEJSKA EUROPEJSKI FUUSZ ROZWOJU REGIONALNEGO Załącznik nr 7 do Regulaminu konkursu LISTA SPRAWDZAJĄCA DOTYCZĄCA OCENY FORMALNEJ WNIOSKU O DOFINANSOWANIE REALIZACJI PROJEKTU
OBLICZENIA EWOLUCYJNE
OPTYMALIZACJA WIELOMODALNA OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. EVOLUTIONARY OPERATORS
RAPORT. Gryfów Śląski
RAPORT z realizacji projektu Opracowanie i rozwój systemu transportu fluidalnego w obróbce horyzontalnej elementów do układów fotogalwanicznych w zakresie zadań Projekt modelu systemu Projekt automatyki
matematyka Matura próbna
Gazeta Edukacja Sprawdź, cz zdasz! Egzamin maturaln matematka MTEMTYK zas prac: minut Matura próbna Maturzsto! Po raz pierwsz napiszesz obowiązkową maturę z matematki na poziomie podstawowm Rozwiąż zadania
MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 1. Czas pracy 150 minut
Miejsce na naklejkę z kodem szkoł OKE ŁÓDŹ CKE MATEMATYKA POZIOM ROZSZERZONY MARZEC ROK 008 PRZYKŁADOWY ZESTAW ZADAŃ NR Czas prac 0 minut Instrukcja dla zdającego. Sprawdź, cz arkusz egzaminacjn zawiera
Róniczka. f x. V Vx. Zadanie 4. Znale maksymalny błd bezwzgldny i wzgldny powstały przy obliczaniu objtoci stoka, jeli promie podstawy wynosi
Róniczka Wraenie d nazwa si róniczk pierwszego rzdu czci liniow przrostu wartoci unkcji Zastosowanie róniczki do oblicze przblionch: Zadanie Za pomoc róniczki oblicz przblion warto liczb Wkorzstam wzór
UKŁADY JEDNOWYMIAROWE. Część III UKŁADY NIELINIOWE
UKŁADY JEDNOWYMIAROWE Część III UKŁADY NIELINIOWE 1 15. Wprowadzenie do części III Układ nieliniowe wkazją czter właściwości znacznie różniące je od kładów liniowch: 1) nie spełniają zasad sperpozcji,
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY MARCA 0 CZAS PRACY: 70 MINUT Zadania zamknięte ZADANIE ( PKT.) Stężenie roztworu poczatkowo wzrosło
11. CZWÓRNIKI KLASYFIKACJA, RÓWNANIA
OBWODY SYGNAŁY Wkład : Czwórniki klasfikacja, równania. CZWÓRNK KLASYFKACJA, RÓWNANA.. WELOBEGNNK A WELOWROTNK CZWÓRNK Definicja. Jeśli: wielobiegunnik posiada parzstą liczbę zacisków (tzn. mn) zgrupowanch
Podstawy Konstrukcji Maszyn. Wykład nr. 1_01
Podstawy Konstrukcji Maszyn Wykład nr. 1_01 Zaliczenie: Kolokwium na koniec semestru obejmujące : - część teoretyczną - obliczenia (tylko inż. i zarz.) Minimum na ocenę dostateczną 55% - termin zerowy
1.11. RÓWNANIE RÓŻNICZKOWE OSI UGIĘTEJ
.. RÓWNANIE RÓŻNICZKOWE OSI UGIĘTEJ od płem obciążenia prostolinioa oś podłużna belki staje się krzolinioa. Zakrzioną oś belki nazam linią ugięcia (osią ugiętą), przemieszczenie pionoe ( x) tej osi nazam
Minimalizacja kosztów
Minimalizacja kosztów 1. (na wkładzie) Firma genealogiczna Korzenie produkuje dobro korzstając z jednego nakładu x użwając funkcji produkcji f(x) = x. (a) Ile jednostek x jest potrzebnch do wprodukowania
Programowanie celowe #1
Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem
Wentylacja Podwieszenia ka n ałów wentylacyj nych blaszanych. cięgna 400 mm: 3.l. Główne
UKD 6979225 INSTALACJE PRZEMY SŁOWE N O R M A B R A N Ż O WA BN-6? Wentlacja 8865-26 Podwieszenia ka n ałów wentlacj nch blaszanch Grupa katalogowa 0724 l. WSTĘP Przedmiotem norm są podwieszenia kanałów
X Wrocławski Konkurs Matematyczny dla uczniów klas I-III gimnazjów. Etap II
X rocławski Konkurs Matematczn dla uczniów klas I-III gimnazjów rok szkoln 04/05 Etap II Zadanie Uczniowie otrzmali z prac klasowej ocen,, 4 i 5. Ocen, i 5 ło tle samo, a czwórek ło więcej niż wszstkich
Przedziały ufności i testy parametrów. Przedziały ufności dla średniej odpowiedzi. Interwały prognoz (dla przyszłych obserwacji)
Wkład 1: Prosta regresja liniowa Statstczn model regresji liniowej Dane dla prostej regresji liniowej Przedział ufności i test parametrów Przedział ufności dla średniej odpowiedzi Interwał prognoz (dla
Analiza Matematyczna II.1, kolokwium rozwiazania 9 stycznia 2015, godz. 16:15 19:15
Analiza Matematczna II., kolokwium rozwiazania 9 stcznia 05, godz. 6:5 9:5 0. Podać definicj e zbioru miar 0. Udowodnić, że jeśli A = {(x,, z) : (x )(x + + z ) = 0}, to l (A) = 0. Zbiorem miar zero jest
14. Grupy, pierścienie i ciała.
4. Grup, pierścienie i ciała. Definicja : Zbiór A nazwam grupą jeśli jest wposaŝon w działanie wewnętrzne łączne, jeśli to działanie posiada element neutraln i kaŝd element zbioru A posiada element odwrotn.
SZEREG CZASOWY Y zjawisko badane w różnych okresach lub momentach czasu. Dynamika zjawiska to zmiana zjawiska w czasie. Przykład. Y średni kurs akcji
SZEREG CZASOWY Y zjawisko badane w różnch okresach lub momentach czasu. Dnamika zjawiska to zmiana zjawiska w czasie. Przkład. Y średni kurs akcji firm OPTMUS na giełdzie Okres: notowania od 1.03.2010
Optymalizacja konstrukcji
Optymalizacja konstrukcji Optymalizacja konstrukcji to bardzo ważny temat, który ma istotne znaczenie praktyczne. Standardowy proces projektowy wykorzystuje możliwości optymalizacji w niewielkim stopniu.
WPŁYW PROCESU ZAOPATRZENIA NA SZACOWANIE KOSZTÓW PRODUKCJI ELEMENTÓW MASZYN
ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2016 Seria: ORGANIZACJA I ZARZĄDZANIE z. 99 Nr kol. 1968 Dorota WIĘCEK Akademia Techniczno-Humanistczna w Bielsku-Białej Wdział Budow Maszn i Informatki Katedra Inżnierii
REGULAMIN RAMOWY MISTRZOSTW STREFY POLSKI CENTRALNEJ W MOTOCROSSIE
REGULAMIN RAMOWY MISTRZOSTW STREFY POLSKI CENTRALNEJ W MOTOCROSSIE.. Cel. Zachęnie zawodników i amatorów do uprawiania sportów motocklowch podczas imprez zorganizowanch oraz przgotowanie ich do rwalizacji
Założenia prognostyczne WPF
Załącznik nr 3 do Uchwał o Wieloletniej Prognozie Finansowej Założenia prognostczne WPF Wieloletnia Prognoza Finansowa opiera się na długoterminowej prognozie nadwżki operacjnej, która obrazują zdolność
Dydaktycy matematyki w różny sposób formułują cele nauczania przedmiotu,
"!$# %'& ( )"*,+ - # %'%.-/# - %.01*,# 02%.3546%7*,8 9 3 %7*,# 02%.9':;9 A@$BCC(D E2"%.= = %?46%GF,"
ĆWICZENIE 8 i 9. Zginanie poprzeczne z wykładową częścią
ĆWICZENIE 8 i 9 Zginanie poprzeczne z wkładową częścią z z QzS J b z Dskusja wzoru na naprężenia stczne. Uśrednione naprężenie stczne, J bz Qz x S z jest funkcją dwóch zmiennch: x- położenia przekroju
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki
Grafika 2D. Przekształcenia geometryczne 2D. opracowanie: Jacek Kęsik
Grafika 2D Przekształcenia geometrczne 2D opracowanie: Jacek Kęsik Wkład obejmuje podstawowe przekształcenia geometrczne stosowane w grafice komputerowej. Opisane są w nim również współrzędne jednorodne
7. Obciążenia ekwiwalentne dla elementu prętowego
7. Obciążenia ekwiwalentne dla elementu prętowego 7.. Obciążenia ekwiwalentne dla elementu prętowego rozciąganego lub ściskanego q() d p = q d u = q N u e d 0 0 p = u e q N d 0 Q Q e = Q u e Q = Q Q u
Optymalizacja. doc. dr inż. Tadeusz Zieliński r. ak. 2013/14. Metody komputerowe w inżynierii komunikacyjnej. ograniczenie kosztów budowy.
koszty optimum ograniczenie kosztów budowy Metody komputerowe w inżynierii komunikacyjnej Optymalizacja koszty całkowite koszty budowy koszty eksploatacji zła jakość rozwiązania dobra doc. dr inż. Tadeusz
Wiadomości uzupełniające
Rozdział 3 Wiadomości uzupełniające (Fragment z książki: I. Sobol. Metoda Monte Carlo. Moskwa, Nauka, 985.). O liczbach pseudolosowch Większość algortmów otrzmwania liczb pseudolosowch jest postaci γ k+
2. Wstęp do analizy wektorowej
2. Wstęp do analiz wektorowej 2.1. Pojęcia podstawowe Wielkości wektorowe (1) Wektorem (P) w punkcie P trójwmiarowej przestrzeni euklidesowej nazwam uporządkowan zbiór trzech liczb (skalarów, składowch
Jacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa
Jacek Skorupski pok. 251 tel. 234-7339 jsk@wt.pw.edu.pl http://skorupski.waw.pl/mmt prezentacje ogłoszenia konsultacje: poniedziałek 16 15-18, sobota zjazdowa 9 40-10 25 Udział w zajęciach Kontrola wyników
Podstawy programowania obiektowego
Podstaw programowania obiektowego wkład 5 klas i obiekt namespace ConsoleApplication1 // współrzędne punktu int, ; Jak, korzstając z dotchczasowej wiedz, zdefiniować w programie punkt? = 3; = 2; Może tak?
Miary nierówności społecznych podstawy metodologiczne
PIOTR JABKOWSKI Miar nierówności społecznch podstaw metodologiczne Artkuł stanowi próbę przedstawienia metodologicznch podstaw najbardziej znanch i najczęściej stosowanch w badaniach nad nierównościami
Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka
Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka Poznań, 16.05.2012r. Raport z promocji projektu Nowa generacja energooszczędnych
Klucz odpowiedzi i schemat punktowania do próbnego zestawu egzaminacyjnego z zakresu przedmiotów matematyczno-przyrodniczych
Klucz odpowiedzi i schemat punktowania do próbnego zestawu egzaminacjnego z zakresu przedmiotów matematczno-przrodniczch Z a d a n i a z a m k n i ę t e Numer zadania 3 4 5 6 7 8 9 0 3 4 5 6 7 8 9 0 3
POLITECHNIKA ŚLĄSKA. WYDZIAŁ ORGANIZACJI I ZARZĄDZANIA. Katedra Podstaw Systemów Technicznych - Mechanika Stosowana. y P 1. Śr 1 (x 1,y 1 ) P 2
POLITECHNIKA ŚLĄSKA. WYDZIAŁ ORGANIZACI I ZARZĄDZANIA. Katedra Podstaw Sstemów Technicznch Płaska geometria mas c c 3c Dla zadanego pola przekroju wznaczć: - połoŝenie środka cięŝkości S( s, s ) - moment