Katarzyna Osiecka Politechnika Warszawska Józef Stawicki Uniwersytet Mikołaja Kopernika w Toruniu

Wielkość: px
Rozpocząć pokaz od strony:

Download "Katarzyna Osiecka Politechnika Warszawska Józef Stawicki Uniwersytet Mikołaja Kopernika w Toruniu"

Transkrypt

1 DYNAMICZNE MODELE EKONOMETRYCZNE X Oólnopolske Semnarum Naukowe, 4 6 wrześna 27 w Torunu Kaedra Ekonomer Saysyk, Unwersye Mkołaja Kopernka w Torunu Kaarzyna Osecka Polechnka Warszawska Józef Sawck Unwersye Mkołaja Kopernka w Torunu Markov Se - Chans jako narzędze analzy zman srukury wydaków ospodarsw domowych w Polsce w laach Model łańcucha Markowa jes opsem procesu sochasyczneo w dyskrenej przesrzen sanów oraz w dyskrenym czase. Podsawowa zależność określająca rozkład bezwarunkowy w chwl + 1 ma posać: x = x P +1, dze x jes wekorem rozkładu bezwarunkoweo, a P - macerzą prawdopodobeńsw warunkowych w chwl. Jeśl dla każdeo macerz P = P o proces nos nazwę jednorodneo łańcucha Markowa. Macerz prawdopodobeńsw warunkowych może zależeć od pewnych czynnków w chwl wówczas podsawową zależność można przedsawć w posac: x = x P( z ) + 1, dze z jes wekorem obserwowanych czynnków. W nnejszym referace łańcuch Markowa sanow narzędze opsu zmany srukury wydaków ospodarsw domowych rozumanej jako wekor: ( x, x, 2 x ) x =,, w kórym 1 L x r określa udzał wydaków w roku na określoną ą rupę dóbr w całośc wydaków ospodarswa domoweo spełnająceo warunk:

2 19 Kaarzyna Osecka, Józef Sawck x oraz x = 1. r = 1 W ym przypadku zjawsko ne ma charakeru procesu sochasyczneo jednowymaroweo, realzowaneo w dyskrenej przesrzen sanów. Można by rakować wekor x jako rozkład prawdopodobeńswa wydakowana przez określone ospodarswo domowe losowo wybranej jednosk penężnej na produky z jednej z rup owarowych. Obserwacja dla pojedynczeo ospodarswa domoweo mołoby sanowć realzację wspomnaneo procesu. W przypadku obserwowanych srukur wydaków dla oółu ospodarsw domowych bądź wybranych rup ze wzlędu na pewne kryerum (np. lczebnośc ospodarswa domoweo, źródła dochodów) prowadz do posłuwana sę średnm ospodarswem bądź lepej ypowym ospodarswem domowym. Brak jasnej nerpreacj procesu ne przeszkadza jednak w wykorzysanu narzędza, jakm są łańcuchy Markowa do badana zman srukury. Prose mary podobeńswa czy zróżncowana ne pozwalają na wyznaczene pronoz. Łańcuchy Markowa pozwalają uzyskać pronozę srukury. Przedzałowe łańcuchy Markowa są propozycją sprowadzena poszukwana nejednorodnośc macerzy przejść do wykorzysana przedzału macerzoweo, z kóreo pochodzą sochasyczne macerze. Modele opare o koncepcję Markov-Se Chans wprowadzł D. J. Harfel 1. Podsawą wspomnanej wyżej eor jes przyjęce założena, że macerz przejśca w każdym kroku pochodz ze zboru macerzy określoneo poprzez przedzały w jakch moą zmenać sę poszczeólne jej elemeny. Srukura wyjścowa jes określona jako przedzał wekorowy; srukury w kolejnych okresach są zboram wypukłym moą być przyblżone przedzałam wekorowym. n Przez sochasyczny przedzał wekorowy [ p, q] w przesrzen R, dze q p rozume sę zbór wekorów: n [ p, q] = { x ; p x q} R, przy czym x = 1. Sochasyczny przedzał wekorowy jes weloścanem wypukłym. W szczeólnym przypadku, dy q = p przedzał wekorowy sprowadza sę do 2 punku. W przypadku wekorów z przesrzen R jes o odcnek. Przedzał 1 Teora a zosała przedsawona w pracy Harfela (1999). W Polsce zaadnenam ym zajmowal sę A. Decewcz A. Gyczew (21). Auorzy c ne wprowadzl polskojęzyczneo odpowednka Markov-Se Chans. Termn przedzałowe łańcuchy Markowa Sawck (22). Wcześnej ermnem łańcuch przedzałam Markowa posłuwał sę w swoch pracach A. Tabeau. Słowo przedzał odnosło sę jednak do os czasu.

3 Markov Se-Chans jako narzędze analzy zman srukury wekorowy w przesrzen R jes welokąem wypukłym o maksymalne sześcu kąach. Może on być zredukowany do odcnka lub w szczeólnym przypadku do punku. Każdy sochasyczny przedzał wekorowy może być przed- p, q napęeo. Przedzał napęy sawony w posac ak zwaneo przedzału [ ] o ak przedzał wekorowy, w kórym wszyske współrzędne wekora p oraz wekora q są napęe. Dla współrzędnych ych wekorów spełnone są nasępujące warunk: p = mn x, x x [ p, q ] q j = max x. [ p, q ] j Dowolnemu przedzałow sochasycznemu odpowada równoważny mu przedzał sochasyczny napęy. W podobny sposób określa sę sochasyczne przedzały macerzowe [ P, Q], dze P = [ p j ], Q = [ q j ] są macerzam kwadraowym sopna n oraz Q P. Sochasycznym przedzałem macerzowym nazywa sę zbór macerzy: [ P Q] = { A; P A Q},, dze = [ ] A jes macerzą sochasyczną. a j Dla sochasycznych przedzałów macerzowych określa sę w podobny sposób jak dla przedzałów wekorowych napęce przedzału. Przez przedzałowy łańcuch Markowa rozume sę cą zborów macerzowych: M, M, M,..., M 2 3 k,... k dze M jes zborem macerzy sochasycznych, naomas M jes zborem określonym nasępująco: k M = { A A = A A... A }, dze A. ; 1 2 k M Symbolczne możemy o zapsać nasępującą formułę: S dze = S M 1, S 1 oznacza zbór wekorów sochasycznych orzymanych z dowolneo wekora sochasyczneo ze zboru począkoweo pomnożoneo przez dowolną macerz sochasyczną ze zboru M. Przedzałowy łańcuch Markowa jes zaem nejednorodnym łańcuchem, w kórym macerze prawdopodobeńsw przejść w kolejnych krokach są dowolnym macerzam ze zboru M. W szczeólnośc zborem M może być sochasycz- S

4 192 Kaarzyna Osecka, Józef Sawck 1, 2 S 3 ny przedzał macerzowy. Twerdzena doyczące ak rozumanych przedzałowych łańcuchów Markowa pozwalają określć zbory S S,,... w kolejnych okresach, jeśl znany jes począkowy sochasyczny przedzał wekorowy S zbór macerzy M w posac przedzału macerzoweo. Proponowane są S 1 S rzy meody wyznaczana zboru : meoda wyznaczana werzchołków, meoda H-Lo oraz symulacyjna meoda Mone Carlo 2. Meoda H-Lo pozwala w każdym kroku określć przedzał wekorowy. Prakyczna srona zaadnena sprowadza sę do określena zboru macerzy M w posac przedzału macerzoweo [ P, Q], oraz przedzału wekoroweo. Jako przedzał S można przyjąć wekor srukury charakeryzujący określone ospodarswo domowe. Pozwol o na pronozę srukury w kolejnych laach w posac przedzału wekoroweo. W omawanym zaadnenu analzy srukury wydaków ospodarsw domowych wyodrębnono czery rupy wydaków: 1. wydak na żywność, 2. wydak na arykuły neżywnoścowe (w ym: odzeż obuwe, meszkane, hena osobsa), 3. wydak na usłu (w ym: ranspor łączność, rekreacja kulura, edukacja, zdrowe), 4. pozosałe wydak. Srukura wydaków konsumpcyjnych ospodarsw domowych zależy od welu czynnków o różnym charakerze. Na podsawe danych z budżeów ospodarsw domowych bada sę srukurę wydaków ospodarsw mędzy nnym wedłu rup społeczno-ekonomcznych, do kórych e ospodarswa należą, ale równeż wedłu rup dochodowych czy lczby osób w rodzne. W laach 9-ych mały mejsce sone zmany w srukurze wydaków ospodarsw domowych. Tabela 1 zawera dane doyczące oólnej srukury wydaków ospodarsw domowych z podzałem na 4 rupy wydaków. Najwększy udzał w oóle wydaków mały wydak na zaspokojene porzeb podsawowych akch jak żywność. Chocaż udzał wydaków na żywność był najwyższy, o jednak w badanym okrese, czyl w laach , sysemayczne sę zmnejszał. Przyczyną eo była podwyżka cen podsawowych owarów, a akże komercjalzacja usłu w sferze urzymana meszkana, ochrony zdrowa, kszałcena oraz zwolnene empa wzrosu cen żywnośc w osanch laach. Na skuek wzrosu obcążena budżeów ospodarsw domowych sałym opłaam za użykowane meszkana w ym podwyżka czynszu oraz cen nośnków ener, nasępował sysemayczny, powolny wzros udzału wydaków na meszkane, a co za ym dze wzros udzału wydaków na arykuły neżywnoścowe w 2 Charakerysykę meody werzchołków oraz meody H-Lo przedsawć Harfel (op.c), Meodę symulacyjną jak równeż wcześnej wspomnane przedsawła Samuels (21).

5 Markov Se-Chans jako narzędze analzy zman srukury oóle wydaków ospodarsw. Równeż udzał wydaków na usłu (ake jak: zdrowe oraz ranspor łączność) uleał cąłemu wzrosow. Tabela 1. Srukura wydaków ospodarsw domowych w wydakach oółem w Polsce w laach (w %) Rok Arykuły żywnoścowe Arykuły neżywnoścowe Usłu Pozosałe ,5 29,9 19,24 9, ,86 3,5 19,85 9, ,71 3,75 19,6 9, ,8 31,39 2,68 1, ,4 32,13 21,9 1, ,53 32,11 22,6 14, ,2 33,2 24,46 13, ,75 31,77 26,1 13, ,89 31,57 25,6 13, ,49 32,73 25,63 14, ,24 33,36 26,32 14, ,11 32,67 27,8 14, ,8 33, 27,2 12, Źródło: Opracowane własne na podsawe danych GUS Arykuły żywnoścowe Usłu Arykuły neżywnoścowe Pozosałe Rys.1. Srukura wydaków ospodarsw domowych w Polsce w laach (udzał wydaków w %) Źródło: Opracowane własne na podsawe Tabel 1.

6 194 Kaarzyna Osecka, Józef Sawck W dalszej częśc posłużono sę obserwacjam doyczącym ospodarsw domowych z podzałem na ospodarswa pracowncze, ospodarswa pracowncze użykujących ospodarswa rolne, ospodarswa rolnków, ospodarswa emeryów rencsów, ospodarswa pracujących na własny rachunek. Obserwowane srukury doyczą wskazanych rup oółem oraz z podzałem na welkość ospodarsw domowych. Podzał en uwzlędna ospodarswa jednoosobowe aż do ospodarsw sześcoosobowych wększych. = x Dane saysyczne dosępne są w posac macerzy [ ] 13 4 przedsawającej srukury wydaków dla poszczeólnych rup społecznoekonomcznych. Wykorzysując meodę esymacj macerzy przejśca dla danych zareowanych z kryerum sumy bezwzlędnych odchyleń 3 orzymano P =. macerze przejśca dla poszczeólnych rup w posac [ ] 4 4 P Q [ Q] Macerze oraz określające przedzał p q j j { p j } { p } = mn, = max. j p j X P, defnuje sę nasępująco: W podobny sposób określony zosał przedzał wekorowy dla osaneo okresu obserwacj. Zarówno przedzał wekorowy S jak przedzał macerzowy [ P, Q] poddane zosały procedurze napnana. Pronozy wyznaczono na dwa kolejne laa wykorzysując meodę H-Lo. Ponżej przedsawone są zarówno przedzał wekorowy, przedzał macerzowy oraz przedzały macerzowe będące pronozą srukury. Pronozy e należy odneść do dowolneo ospodarswa domoweo, kóre może zmenć swoją lczebność oraz źródło dochodów. Macerz dolna dla badanych zman srukury ma posać nasępującą:,7924, P =,,211,36,7166,,59 Macerz órna ma posać:,13,37,6363,38,,,,587 S 3 Parz: Lee, Jude, Zelner (197).

7 Markov Se-Chans jako narzędze analzy zman srukury ,9562,32 Q =,1127,279,1163,9837,2578,2233,913,234,9753,1676,,139,158,9579 Przedzał wekorowy wyznaczony dla osaneo roku obserwacj w posac mnmalnych maksymalnych udzałów wydaków w badanych rupach owarowych oblczanych po wszyskch rupach społeczno-ekonomcznych ma posać nasępującą: S T [ p, ] = [( 18,91 27,38 22,38 6,26) ( 4,68 38,6 35,87 11,29) ] = q Przedzał en można przedsawć na rysunku w posac nasępującej: 5, 4, 3, 2, 1,, mn max średn Rys.2. Przedzał wekorowy srukury wydaków ospodarsw domowych w Polsce w roku 25 Źródło: opracowane własne. Jako podsawę pronozy przyjęo wekor średn, będący srukurą dla ospodarsw oółem. Pronozę na rok 26 orzymano meodą symulacj. Najperw enerowano macerz sochasyczną z przedzału macerzoweo P, Q, a nasępne wyznaczano pronozę ze wzoru: x p 26 = x 25 P s P [ ] s Z ak orzymanych pronoz, wyznaczając elemeny mnmalne maksymalne orzymano przedzał wekorowy. ST p [ p, q] [( 25,5 32,89 26,39 11,56) ( 28,65 33,58 28,71 12,96) ] + 1 = =

8 196 Kaarzyna Osecka, Józef Sawck mn max Rys.3. Przedzał pronozy dla srukury wydaków ospodarsw domowych w 26 r. Źródło: opracowane własne. Należy zauważyć, że duża rozpęość udzału wydaków jes dla wydaków na żywność wynosząca 3,6, naomas udzał wydaków na arykuły neżywnoścowe jes bardzo sablny. Dużą nesablnoścą charakeryzuje sę eż udzał wydaków na usłu (2,32). Orzymane pronozy powerdzają równeż oólną endencję zman w srukurze wydaków, a manowce: spadek udzału wydaków na żywność wzros udzału wydaków na arykuły neżywnoścowe usłu w oólnej srukurze wydaków. Leraura Decewcz, A., Gyczew, A. (21), Wprowadzene do eor zasosowań Markov-Se Chans, praca nepublkowana, napsana w ramach badań sauowych SGH pod kerunkem prof. dr hab.. M. Podórskej, Warszawa. Harfel, D.J. (1999), Markov Se-Chans, Sprner, New York. Lee T.C., Jude, G.G., Zelner, A. (197), Esman he Parameers of Markov Probably Model from Areae Tme Seres Dae, Nor-Holland Publ. Co.,Amserdam. Samuels, C. L. (21), Markov Se-Chans as Models of Plan Successon, Unversy of Tennessee, Knoxvlle. Sawck, J. (22), Łańcuchy Markowa w analze rynku kapałoweo, Toruń.

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego

Bardziej szczegółowo

Modelowanie równowagi cenowej na Giełdzie Papierów Wartościowych w Warszawie w okresach przed i po wejściu Polski do Unii Europejskiej

Modelowanie równowagi cenowej na Giełdzie Papierów Wartościowych w Warszawie w okresach przed i po wejściu Polski do Unii Europejskiej Sansław Urbańsk * Modelowane równowag cenowej na Gełdze Paperów Waroścowych w Warszawe w okresach przed po wejścu Polsk do Un Europejskej Wsęp Praca nnejsza sanow konynuację badań doyczących wyceny akcj

Bardziej szczegółowo

Kier. MTR Programowanie w MATLABie Laboratorium

Kier. MTR Programowanie w MATLABie Laboratorium Ker. MTR Programowane w MATLABe Laboraorum Ćw. Zasosowane bbloecznych funkcj MATLABa do numerycznego rozwązywana równań różnczkowych. Wprowadzene Układy równań różnczkowych zwyczajnych perwszego rzędu

Bardziej szczegółowo

Prognozowanie cen detalicznych żywności w Polsce

Prognozowanie cen detalicznych żywności w Polsce Prognozowane cen dealcznych żywnośc w Polsce Marusz Hamulczuk IERGŻ - PIB Kaarzyna Herel NBP Co dlaczego prognozujemy Krókookresowe prognozy cen dealcznych Ceny dealczne (ndywdualne produky, agregay) Isone

Bardziej szczegółowo

Wykład 6. Badanie dynamiki zjawisk

Wykład 6. Badanie dynamiki zjawisk Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy

Bardziej szczegółowo

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE Janusz Sowiński, Rober Tomaszewski, Arur Wacharczyk Insyu Elekroenergeyki Poliechnika Częsochowska Aky prawne

Bardziej szczegółowo

13. DWA MODELE POTOKU RUCHU (TEORIOKOLEJKOWE)(wg Wocha,1998)

13. DWA MODELE POTOKU RUCHU (TEORIOKOLEJKOWE)(wg Wocha,1998) 3. Dwa modele pooku ruchu (eorokolejkowe) 3. DWA MODELE POTOKU RUCHU (TEORIOKOLEJKOWE)(wg Wocha,998) 3.. Model Hagha Isneje wele prac z la powojennych, w kórych wysępują próby modelowana kolejek ruchowych

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI

DYNAMIKA KONSTRUKCJI 10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej

Bardziej szczegółowo

MODELOWANIE I PROGNOZOWANIE ZAPOTRZEBOWANIA NA ENERGIĘ ELEKTRYCZNĄ W WYBRANYM REGIONIE

MODELOWANIE I PROGNOZOWANIE ZAPOTRZEBOWANIA NA ENERGIĘ ELEKTRYCZNĄ W WYBRANYM REGIONIE MODELOWANIE I PROGNOZOWANIE ZAPOTRZEBOWANIA NA ENERGIĘ ELEKTRYCZNĄ W WYBRANYM REGIONIE Marcn Zawada Kaedra Ekonomer Saysyk, Wydzał Zarządzana, Polechnka Częsochowska, Częsochowa 1 WSTĘP Proces ransformacj

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAICZNE ODELE EKONOETRYCZNE X Ogólnopolske Semnarum Naukowe, 4 6 wrześna 7 w Torunu Kaedra Ekonomer Saysyk, Unwersye kołaja Kopernka w Torunu Jacek Kwakowsk Unwersye kołaja Kopernka w Torunu odele RCA

Bardziej szczegółowo

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz Noaki do wykładu 005 Kombinowanie prognoz - dlaczego należy kombinować prognozy? - obejmowanie prognoz - podsawowe meody kombinowania prognoz - przykłady kombinowania prognoz gospodarki polskiej - zalecenia

Bardziej szczegółowo

Wykład 6. Badanie dynamiki zjawisk

Wykład 6. Badanie dynamiki zjawisk Wykład 6 Badanie dynamiki zjawisk TREND WYODRĘBNIANIE SKŁADNIKÓW SZEREGU CZASOWEGO 1. FUNKCJA TRENDU METODA ANALITYCZNA 2. ŚREDNIE RUCHOME METODA WYRÓWNYWANIA MECHANICZNEGO średnie ruchome zwykłe średnie

Bardziej szczegółowo

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp

Bardziej szczegółowo

Monika Kośko Wyższa Szkoła Informatyki i Ekonomii TWP w Olsztynie Michał Pietrzak Uniwersytet Mikołaja Kopernika w Toruniu

Monika Kośko Wyższa Szkoła Informatyki i Ekonomii TWP w Olsztynie Michał Pietrzak Uniwersytet Mikołaja Kopernika w Toruniu DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolske Semnarum Naukowe, 4 6 wrześna 007 w Torunu Kaedra Ekonomer Saysyk, Unwersye Mkołaja Kopernka w Torunu Monka Kośko Wyższa Szkoła Informayk Ekonom TWP w Olszyne

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I Pracowa IF UJ Luy 03 PODRĘCZNIKI Wsęp do aalzy błędu pomarowego Joh R. Taylor Wydawcwo Naukowe PWN Warszawa 999 I Pracowa

Bardziej szczegółowo

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,

Bardziej szczegółowo

Ekonometryczne modele nieliniowe

Ekonometryczne modele nieliniowe Ekonomeryczne modele nelnowe Wykład 5 Progowe modele regrej Leraura Hanen B. E. 997 Inference n TAR Model, Sude n Nonlnear Dynamc and Economerc,. Tek na rone nerneowej wykładu Dodakowa leraura Hanen B.

Bardziej szczegółowo

PROBLEM ODWROTNY DLA RÓWNANIA PARABOLICZNEGO W PRZESTRZENI NIESKOŃCZENIE WYMIAROWEJ THE INVERSE PARABOLIC PROBLEM IN THE INFINITE DIMENSIONAL SPACE

PROBLEM ODWROTNY DLA RÓWNANIA PARABOLICZNEGO W PRZESTRZENI NIESKOŃCZENIE WYMIAROWEJ THE INVERSE PARABOLIC PROBLEM IN THE INFINITE DIMENSIONAL SPACE JAN KOOŃSKI POBLEM ODWOTNY DLA ÓWNANIA PAABOLICZNEGO W PZESTZENI NIESKOŃCZENIE WYMIAOWEJ THE INVESE PAABOLIC POBLEM IN THE INFINITE DIMENSIONAL SPACE S r e s z c z e n e A b s r a c W arykule skonsruowano

Bardziej szczegółowo

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych. Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 2

Stanisław Cichocki Natalia Nehrebecka. Wykład 2 Sansław Cchock Naala Nehrebecka Wykład 2 1 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 2 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 3 Szereg czasowy jes pojedynczą realzacją pewnego

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 2

Stanisław Cichocki Natalia Nehrebecka. Wykład 2 Sansław Cchock Naala Nehrebecka Wykład 2 1 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 4. Zmenne znegrowane 2 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 4. Zmenne znegrowane 3 Szereg

Bardziej szczegółowo

Ewa Dziawgo Uniwersytet Mikołaja Kopernika w Toruniu. Analiza wrażliwości modelu wyceny opcji złożonych

Ewa Dziawgo Uniwersytet Mikołaja Kopernika w Toruniu. Analiza wrażliwości modelu wyceny opcji złożonych DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 7 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika w Toruniu

Bardziej szczegółowo

XXXV Konferencja Statystyka Matematyczna

XXXV Konferencja Statystyka Matematyczna XXXV Konferencja Saysyka Maeayczna MODEL OTOWOŚCI SYSTEMU TECHNICZNEO Karol J. ANDRZEJCZAK karol.andrzejczak@pu.poznan.pl Polechnka Poznańska hp://www.pu.poznan.pl/ PRORAM REERATU 1. WPROWADZENIE 2. ORMALIZACJA

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

Karolina Kluth Uniwersytet Mikołaja Kopernika w Toruniu. Konwergencja gospodarcza w zakresie kryteriów Traktatu z Maastricht analiza ekonometryczna

Karolina Kluth Uniwersytet Mikołaja Kopernika w Toruniu. Konwergencja gospodarcza w zakresie kryteriów Traktatu z Maastricht analiza ekonometryczna DYAMICZE MODELE EKOOMETRYCZE X Ogólnopolske Semnarum aukowe, 4 6 wrześna 007 w Torunu Kaedra Ekonomer Saysyk, Unwersye Mkołaja Kopernka w Torunu Karolna Kluh Unwersye Mkołaja Kopernka w Torunu Konwergencja

Bardziej szczegółowo

Struktura sektorowa finansowania wydatków na B+R w krajach strefy euro

Struktura sektorowa finansowania wydatków na B+R w krajach strefy euro Rozdział i. Srukura sekorowa finansowania wydaków na B+R w krajach srefy euro Rober W. Włodarczyk 1 Sreszczenie W arykule podjęo próbę oceny srukury sekorowej (sekor przedsiębiorsw, sekor rządowy, sekor

Bardziej szczegółowo

HIPOTEZA STOPY NATURALNEJ. MIĘDZY EKONOMETRIĄ A HISTORIĄ MYŚLI EKONOMICZNEJ.

HIPOTEZA STOPY NATURALNEJ. MIĘDZY EKONOMETRIĄ A HISTORIĄ MYŚLI EKONOMICZNEJ. Jacek Wallusch Akadema Ekonomczna w Poznanu HIPOTEZA STOPY NATURALNEJ. MIĘDZY EKONOMETRIĄ A HISTORIĄ MYŚLI EKONOMICZNEJ. Dazu brauche ch ene Besazung de mmach dam alles klapp. Wenn se mmachen soll dann

Bardziej szczegółowo

tor ruchu ruch prostoliniowy ruch krzywoliniowy

tor ruchu ruch prostoliniowy ruch krzywoliniowy KINEMATYKA Klasyfkacja ruchów Ruch jednosajny prosolnowy Ruch jednosajne zmenny Spadek swobodny Rzu ponowy w dół w órę Rzu pozomy rzu ukośny Ruch jednosajny po okręu Welkośc kąowe Polechnka Opolska Opole

Bardziej szczegółowo

Rozdział 2. Zasady budowy prognoz

Rozdział 2. Zasady budowy prognoz Rozdzał. Zasady budowy prognoz Rozdzał. Zasady budowy prognoz (z ksążk A. Mankowsk, Z. arapaa, Prognozowane symulacja rozwoju przedsęborsw, Warszawa 00) Kopowane za zgodą auorów.. Rodzaje prognoz... Klasyfkacje

Bardziej szczegółowo

Analiza obwodów elektrycznych

Analiza obwodów elektrycznych Analza obwodów elerycznych Oreślene mnmalneo zboru funcj obwodowych F o { u, } Analza Wyznaczene nnych welośc charaeryzujących obwód; np. moce, sprawnośc p. Obwód eleryczny Wyznaczene warośc paramerów

Bardziej szczegółowo

Procedura normalizacji

Procedura normalizacji Metody Badań w Geograf Społeczno Ekonomcznej Procedura normalzacj Budowane macerzy danych geografcznych mgr Marcn Semczuk Zakład Przedsęborczośc Gospodark Przestrzennej Instytut Geograf Unwersytet Pedagogczny

Bardziej szczegółowo

Prognozowanie średniego miesięcznego kursu kupna USD

Prognozowanie średniego miesięcznego kursu kupna USD Prognozowanie średniego miesięcznego kursu kupna USD Kaarzyna Halicka Poliechnika Białosocka, Wydział Zarządzania, Kaedra Informayki Gospodarczej i Logisyki, e-mail: k.halicka@pb.edu.pl Jusyna Godlewska

Bardziej szczegółowo

Regulamin. udzielania pomocy materialnej o charakterze socjalnym dla uczniów zamieszkaùych na terenie Gminy Wolbórz

Regulamin. udzielania pomocy materialnej o charakterze socjalnym dla uczniów zamieszkaùych na terenie Gminy Wolbórz Zaù¹cznk Nr 1 uchwaùy Nr XXVIII/167/2005 Rady Gmny Wolbórz z dna 30 marca 2005 r. Regulamn udzelana pomocy maeralnej o charakerze socjalnym dla ucznów zameszkaùych na erene Gmny Wolbórz I. Sposób usalana

Bardziej szczegółowo

HSC Research Report. Principal Components Analysis in implied volatility modeling (Analiza składowych głównych w modelowaniu implikowanej zmienności)

HSC Research Report. Principal Components Analysis in implied volatility modeling (Analiza składowych głównych w modelowaniu implikowanej zmienności) HSC Research Repor HSC/04/03 Prncpal Componens Analyss n mpled volaly modelng (Analza składowych głównych w modelowanu mplkowanej zmennośc) Rafał Weron* Sławomr Wójck** * Hugo Senhaus Cener, Wrocław Unversy

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Maemayka ubezpeczeń mająkowych 7.05.00 r. Zadane. Pewne ryzyko generuje jedną szkodę z prawdopodobeńswem q, zaś zero szkód z prawdopodobeńswem ( q). Ubezpeczycel pokrywa nadwyżkę szkody ponad udzał własny

Bardziej szczegółowo

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja) Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz

Bardziej szczegółowo

Systemy nawigacji satelitarnej. Przemysław Bartczak

Systemy nawigacji satelitarnej. Przemysław Bartczak Sysemy nawgacj saelarnej Przemysław Barczak Częsolwość nośna Wszyske saely GPS emują neprzerwane sygnały na dwóch częsolwoścach nośnych L1 L2 z pograncza mkrofalowych fal L S, kóre z punku wdzena nazemnego

Bardziej szczegółowo

Analiza rynku projekt

Analiza rynku projekt Analiza rynku projek A. Układ projeku 1. Srona yułowa Tema Auor 2. Spis reści 3. Treść projeku 1 B. Treść projeku 1. Wsęp Po co? Na co? Dlaczego? Dlaczego robię badania? Jakimi meodami? Dla Kogo o jes

Bardziej szczegółowo

PODSTAWOWE MIERNIKI DYNAMIKI ZJAWISK

PODSTAWOWE MIERNIKI DYNAMIKI ZJAWISK PODSTAWOWE MIERNIKI DYNAMIKI ZJAWISK Założena Nech oznacza ozom (warość) badanego zjawska (zmennej) w kolejnch momenach czasu T0, gdze T 0 0,1,..., n 1 oznacza worz szereg czasow. zbór numerów czasu. Cąg

Bardziej szczegółowo

STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15

STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Sebasian Koko ANALIZA ZMIAN W STRUKTURZE UDZIAŁU DOCHODÓW ZWIĄZANYCH Z OPODATKOWANIEM NIERUCHOMOŚCI W BUDŻETACH GMIN WOJEWÓDZTWA ZACHODNIOPOMORSKIEGO

Bardziej szczegółowo

Ocena płynności wybranymi metodami szacowania osadu 1

Ocena płynności wybranymi metodami szacowania osadu 1 Bogdan Ludwiczak Wprowadzenie Ocena płynności wybranymi meodami szacowania osadu W ubiegłym roku zaszły znaczące zmiany doyczące pomiaru i zarządzania ryzykiem bankowym. Są one konsekwencją nowowprowadzonych

Bardziej szczegółowo

licencjat Pytania teoretyczne:

licencjat Pytania teoretyczne: Plan wykładu: 1. Wiadomości ogólne. 2. Model ekonomeryczny i jego elemeny 3. Meody doboru zmiennych do modelu ekonomerycznego. 4. Szacownie paramerów srukuralnych MNK. Weryfikacja modelu KMNK 6. Prognozowanie

Bardziej szczegółowo

PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH

PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Barbara Baóg Iwona Foryś PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH Wsęp Koszy dosarczenia wody

Bardziej szczegółowo

Jerzy Czesław Ossowski Katedra Ekonomii i Zarzdzania Przedsibiorstwem Wydział Zarzdzania i Ekonomii Politechnika Gdaska

Jerzy Czesław Ossowski Katedra Ekonomii i Zarzdzania Przedsibiorstwem Wydział Zarzdzania i Ekonomii Politechnika Gdaska Jerzy Czesław Ossowsk Kaedra Ekonom Zarzdzana Przedsborswem Wydzał Zarzdzana Ekonom Polechnka Gdaska IX Ogólnoposke Semnarum Naukowe n. Dynamczne modele ekonomeryczne, Kaedra Ekonomer Saysyk, Unwersye

Bardziej szczegółowo

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.

Bardziej szczegółowo

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof. Ruch płaski Ruchem płaskim nazywamy ruch, podczas kórego wszyskie punky ciała poruszają się w płaszczyznach równoległych do pewnej nieruchomej płaszczyzny, zwanej płaszczyzną kierującą. Punky bryły o jednakowych

Bardziej szczegółowo

Prognoza scenariuszowa poziomu oraz struktury sektorowej i zawodowej popytu na pracę w województwie łódzkim na lata

Prognoza scenariuszowa poziomu oraz struktury sektorowej i zawodowej popytu na pracę w województwie łódzkim na lata Projek Kapiał ludzki i społeczny jako czynniki rozwoju regionu łódzkiego współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Prognoza scenariuszowa poziomu oraz srukury

Bardziej szczegółowo

Metody badania wpływu zmian kursu walutowego na wskaźnik inflacji

Metody badania wpływu zmian kursu walutowego na wskaźnik inflacji Agnieszka Przybylska-Mazur * Meody badania wpływu zmian kursu waluowego na wskaźnik inflacji Wsęp Do oceny łącznego efeku przenoszenia zmian czynników zewnęrznych, akich jak zmiany cen zewnęrznych (szoki

Bardziej szczegółowo

DOKUMENT ROBOCZY KOMISJI

DOKUMENT ROBOCZY KOMISJI RADA UNII ROPEJSKIEJ Bruksela, 23 maja 2007 r. (25.05) (OR. en) Międzyinsyucjonalny numer referencyjny: 2006/0039 (CNS) 9851/07 ADD 2 FIN 239 RESPR 5 CADREFIN 32 ADDENDUM 2 DO NOTY DO PUNKTU I/A Od: Sekrearia

Bardziej szczegółowo

(estymator asymptotycznej macierzy kowariancji estymatora nieliniowej MNK w MNRN)

(estymator asymptotycznej macierzy kowariancji estymatora nieliniowej MNK w MNRN) W ypowym zadanu z regresj nelnowej mamy nasępujące eapy: Esymacja (uzyskane ocen punkowych paramerów), w ym: 1. Dobór punków sarowych.. Kolejne eracje algorymu Gaussa Newona. 3. Zakończene algorymu Gaussa

Bardziej szczegółowo

DOKUMENT ROBOCZY KOMISJI

DOKUMENT ROBOCZY KOMISJI KOMISJA ROPEJSKA Bruksela, dnia 14.5.2014 r. COM(2014) 271 final DOKUMENT ROBOCZY KOMISJI w sprawie obliczania, finansowania, płaności i zapisywania w budżecie koreky nierównowagi budżeowej na rzecz Zjednoczonego

Bardziej szczegółowo

SZACOWANIE MODELU RYNKOWEGO CYKLU ŻYCIA PRODUKTU

SZACOWANIE MODELU RYNKOWEGO CYKLU ŻYCIA PRODUKTU B A D A N I A O P E R A C J N E I D E C Z J E Nr 2 2006 Bogusław GUZIK* SZACOWANIE MODELU RNKOWEGO CKLU ŻCIA PRODUKTU Przedsawiono zasadnicze podejścia do saysycznego szacowania modelu rynkowego cyklu

Bardziej szczegółowo

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak MAKROEKONOMIA 2 Wykład 3. Dynamiczny model DAD/DAS, część 2 Dagmara Mycielska Joanna Siwińska - Gorzelak 2 Plan wykładu Zakłócenia w modelu DAD/DAS: Wzros produkcji poencjalnej; Zakłócenie podażowe o sile

Bardziej szczegółowo

Modele reprezentatywnych podmiotów gospodarczych jako narzędzie analizy w nowej syntezie neoklasycznej

Modele reprezentatywnych podmiotów gospodarczych jako narzędzie analizy w nowej syntezie neoklasycznej Bank i Kredy 47(6), 26, 553-584 Modele reprezenaywnych podmioów ospodarczych jako narzędzie analizy w nowej synezie neoklasycznej Przemysław Włodarczyk* Nadesłany: 3 czerwca 26 r. Zaakcepowany: 2 września

Bardziej szczegółowo

Badanie funktorów logicznych TTL - ćwiczenie 1

Badanie funktorów logicznych TTL - ćwiczenie 1 adanie funkorów logicznych TTL - ćwiczenie 1 1. Cel ćwiczenia Zapoznanie się z podsawowymi srukurami funkorów logicznych realizowanych w echnice TTL (Transisor Transisor Logic), ich podsawowymi paramerami

Bardziej szczegółowo

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:

Bardziej szczegółowo

Rys.1. Podstawowa klasyfikacja sygnałów

Rys.1. Podstawowa klasyfikacja sygnałów Kaedra Podsaw Sysemów echnicznych - Podsawy merologii - Ćwiczenie 1. Podsawowe rodzaje i ocena sygnałów Srona: 1 1. CEL ĆWICZENIA Celem ćwiczenia jes zapoznanie się z podsawowymi rodzajami sygnałów, ich

Bardziej szczegółowo

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków

Bardziej szczegółowo

MODEL DWUMIANOWY II RZĘDU I SKOŚNY ROZKŁAD STUDENTA W ANALIZIE RYZYKA KREDYTOWEGO *

MODEL DWUMIANOWY II RZĘDU I SKOŚNY ROZKŁAD STUDENTA W ANALIZIE RYZYKA KREDYTOWEGO * Jacek Osewalsk, Jerzy Marzec, Kaedra Ekonomer Badań Operacyjnych, Unwersye Ekonomczny w Krakowe MODEL DWUMIANOWY II RZĘDU I SKOŚNY ROZKŁAD STUDENTA W ANALIZIE RYZYKA KREDYTOWEGO * Jacek Osewalsk e-mal:

Bardziej szczegółowo

Elżbieta Szulc Uniwersytet Mikołaja Kopernika w Toruniu. Modelowanie zależności między przestrzennoczasowymi procesami ekonomicznymi

Elżbieta Szulc Uniwersytet Mikołaja Kopernika w Toruniu. Modelowanie zależności między przestrzennoczasowymi procesami ekonomicznymi DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyk Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika w Toruniu

Bardziej szczegółowo

Substytucja między kredytem kupieckim i bankowym w polskich przedsiębiorstwach wyniki empiryczne na podstawie danych panelowych

Substytucja między kredytem kupieckim i bankowym w polskich przedsiębiorstwach wyniki empiryczne na podstawie danych panelowych Bank Kredy 43 6, 01, 9 56 www.bankkredy.nbp.pl www.bankandcred.nbp.pl Subsyucja mędzy kredyem kupeckm bankowym w polskch przedsęborswach wynk empryczne na podsawe danych panelowych Jerzy Marzec*, Małgorzaa

Bardziej szczegółowo

Dendrochronologia Tworzenie chronologii

Dendrochronologia Tworzenie chronologii Dendrochronologia Dendrochronologia jes nauką wykorzysującą słoje przyrosu rocznego drzew do określania wieku (daowania) obieków drewnianych (budynki, przedmioy). Analizy różnych paramerów słojów przyrosu

Bardziej szczegółowo

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych Poliechnika Częsochowska Wydział Inżynierii Mechanicznej i Informayki Sprawozdanie #2 z przedmiou: Prognozowanie w sysemach mulimedialnych Andrzej Siwczyński Andrzej Rezler Informayka Rok V, Grupa IO II

Bardziej szczegółowo

BADANIE WYBRANYCH STRUKTUR NIEZAWODNOŚCIOWYCH

BADANIE WYBRANYCH STRUKTUR NIEZAWODNOŚCIOWYCH ZAKŁAD EKSPLOATACJI SYSTEMÓW ELEKTOICZYCH ISTYTUT SYSTEMÓW ELEKTOICZYCH WYDZIAŁ ELEKTOIKI WOJSKOWA AKADEMIA TECHICZA ---------------------------------------------------------------------------------------------------------------

Bardziej szczegółowo

Różnica bilansowa dla Operatorów Systemów Dystrybucyjnych na lata (którzy dokonali z dniem 1 lipca 2007 r. rozdzielenia działalności)

Różnica bilansowa dla Operatorów Systemów Dystrybucyjnych na lata (którzy dokonali z dniem 1 lipca 2007 r. rozdzielenia działalności) Różnica bilansowa dla Operaorów Sysemów Dysrybucyjnych na laa 2016-2020 (kórzy dokonali z dniem 1 lipca 2007 r. rozdzielenia działalności) Deparamen Rynków Energii Elekrycznej i Ciepła Warszawa 201 Spis

Bardziej szczegółowo

CHEMIA KWANTOWA Jacek Korchowiec Wydział Chemii UJ Zakład Chemii Teoretycznej Zespół Chemii Kwantowej Grupa Teorii Reaktywności Chemicznej

CHEMIA KWANTOWA Jacek Korchowiec Wydział Chemii UJ Zakład Chemii Teoretycznej Zespół Chemii Kwantowej Grupa Teorii Reaktywności Chemicznej CHEMI KWTOW CHEMI KWTOW Jacek Korchowiec Wydział Chemii UJ Zakład Chemii Teoreycznej Zespół Chemii Kwanowej Grupa Teorii Reakywności Chemicznej LITERTUR R. F. alewajski, Podsawy i meody chemii kwanowej:

Bardziej szczegółowo

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar.

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar. EKONOMERIA wykład Prof. dr hab. Eugeniusz Ganar eganar@mail.wz.uw.edu.pl Przedziały ufności Dla paramerów srukuralnych modelu: P bˆ j S( bˆ z prawdopodobieńswem parameru b bˆ S( bˆ, ( m j j j, ( m j b

Bardziej szczegółowo

PROPOZYCJA NOWEJ METODY OKREŚLANIA ZUŻYCIA TECHNICZNEGO BUDYNKÓW

PROPOZYCJA NOWEJ METODY OKREŚLANIA ZUŻYCIA TECHNICZNEGO BUDYNKÓW Udosępnione na prawach rękopisu, 8.04.014r. Publikacja: Knyziak P., "Propozycja nowej meody określania zuzycia echnicznego budynków" (Proposal Of New Mehod For Calculaing he echnical Deerioraion Of Buildings),

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE - zadania powtórzeniowe

PROGNOZOWANIE I SYMULACJE - zadania powtórzeniowe PROGNOZOWANIE I SYMULACJE - zadana powórzenowe Zadana I. Na podsawe danych z la 88- zbudowano model: y = + 3, 5 s = szuk, R =,3 opsujcy lczb sprzedawanych arówek w yscach szuk w pewnej frme. Wyznaczy prognoz

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH 1 Test zgodnośc χ 2 Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład o dystrybuance F). Hpoteza alternatywna H1( Cecha X populacj

Bardziej szczegółowo

KURS EKONOMETRIA. Lekcja 1 Wprowadzenie do modelowania ekonometrycznego ZADANIE DOMOWE. Strona 1

KURS EKONOMETRIA. Lekcja 1 Wprowadzenie do modelowania ekonometrycznego ZADANIE DOMOWE.   Strona 1 KURS EKONOMETRIA Lekcja 1 Wprowadzenie do modelowania ekonomerycznego ZADANIE DOMOWE www.erapez.pl Srona 1 Część 1: TEST Zaznacz poprawną odpowiedź (ylko jedna jes prawdziwa). Pyanie 1 Kóre z poniższych

Bardziej szczegółowo

Zbigniew Palmowski. Analiza Przeżycia

Zbigniew Palmowski. Analiza Przeżycia Zbgnew Palmowsk Analza Przeżyca Wrocław 9 Zbgnew Palmowsk Docendo dscmus (Ucząc nnych, sam sę uczymy) Seneka Mos of he me I fnd myself workng n heorecal problems, because I am neresed n applcaons. I also

Bardziej szczegółowo

Wykład 5 Elementy teorii układów liniowych stacjonarnych odpowiedź na dowolne wymuszenie

Wykład 5 Elementy teorii układów liniowych stacjonarnych odpowiedź na dowolne wymuszenie Wykład 5 Elemeny eorii układów liniowych sacjonarnych odpowiedź na dowolne wymuszenie Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska

Bardziej szczegółowo

PARAMETRY ELEKTRYCZNE CYFROWYCH ELEMENTÓW PÓŁPRZEWODNIKOWYCH

PARAMETRY ELEKTRYCZNE CYFROWYCH ELEMENTÓW PÓŁPRZEWODNIKOWYCH ARAMETRY ELEKTRYZNE YFROWYH ELEMENTÓW ÓŁRZEWODNIKOWYH SZYBKOŚĆ DZIAŁANIA wyrażona maksymalną częsolwoścą racy max MO OBIERANA WSÓŁZYNNIK DOBROI D OBIĄŻALNOŚĆ ELEMENTÓW N MAKSYMALNA LIZBA WEJŚĆ M ODORNOŚĆ

Bardziej szczegółowo

ZASTOSOWANIE ZMODYFIKOWANEJ METODY NAJBLIŻSZYCH SĄSIADÓW DO PROGNOZOWANIA CHAOTYCZNYCH SZEREGÓW CZASOWYCH

ZASTOSOWANIE ZMODYFIKOWANEJ METODY NAJBLIŻSZYCH SĄSIADÓW DO PROGNOZOWANIA CHAOTYCZNYCH SZEREGÓW CZASOWYCH Kaarzyna Zeug-Żebro Unwersye Ekonomczny w Kaowcach ZASTOSOWANIE ZMODYFIKOWANEJ METODY NAJBLIŻSZYCH SĄSIADÓW DO PROGNOZOWANIA CHAOTYCZNYCH SZEREGÓW CZASOWYCH Wprowazene Deermnzm ukłaów chaoycznych wskazuje

Bardziej szczegółowo

WYBRANE ASPEKTY HARMONOGRAMOWANIA PROCESU MAGAZYNOWEGO

WYBRANE ASPEKTY HARMONOGRAMOWANIA PROCESU MAGAZYNOWEGO PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ z. 64 Transpor 28 Tomasz AMBROZIAK, Konrad LEWCZUK Wydzał Transporu Polechnk Warszawske Zakład Logsyk Sysemów Transporowych ul. Koszykowa 75, -662 Warszawa am@.pw.edu.pl;

Bardziej szczegółowo

Spis treści ZASTOSOWANIE PAKIETU MATLAB W OBLICZENIACH ZAGADNIEŃ ELEKTRYCZNYCH I41

Spis treści ZASTOSOWANIE PAKIETU MATLAB W OBLICZENIACH ZAGADNIEŃ ELEKTRYCZNYCH I41 Ćwiczenie I4 Poliechnika Białosocka Wydział Elekryczny Kaedra Elekroechniki Teoreycznej i Merologii Spis reści Insrukcja do pracowni specjalisycznej INFORMTYK Kod zajęć ESC 9 Tyuł ćwiczenia ZSTOSOWNIE

Bardziej szczegółowo

Automatyzacja Statku

Automatyzacja Statku Polechnka Gdańska ydzał Oceanoechnk Okręowncwa S. nż. I sopna sem. IV kerunek: Oceanoechnka Specjalnośc Okręowe Auomayzacja Saku 3 ZAKŁÓCENIA RUCHU SAKU M. H. Ghaem Marzec 7 Podsawy auomayzacj okręu 3.

Bardziej szczegółowo

Natalia Iwaszczuk, Piotr Drygaś, Piotr Pusz, Radosław Pusz PROGNOZOWANIE GOSPODARCZE

Natalia Iwaszczuk, Piotr Drygaś, Piotr Pusz, Radosław Pusz PROGNOZOWANIE GOSPODARCZE Naalia Iwaszczuk, Pior Drygaś, Pior Pusz, Radosław Pusz PROGNOZOWANIE GOSPODARCZE Wyd-wo, Rzeszów 03 dr hab., prof. nadzw. Naalia Iwaszczuk, AGH Akademia Górniczo-Hunicza im. Sanisława Saszica w Krakowie

Bardziej szczegółowo

Weryfikacja hipotez dla wielu populacji

Weryfikacja hipotez dla wielu populacji Weryfkacja hpotez dla welu populacj Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Parametryczne testy stotnośc w

Bardziej szczegółowo

INFORMACJA O REALIZACJI WAŻNIEJSZYCH ZADAŃ SPOŁECZNO - GOSPODARCZYCH W WOJEWÓDZTWIE BIELSKIM

INFORMACJA O REALIZACJI WAŻNIEJSZYCH ZADAŃ SPOŁECZNO - GOSPODARCZYCH W WOJEWÓDZTWIE BIELSKIM WOJEWÓDZK URZĄD STATYSTYCZNY W BELSKU-BAŁEJ Ecaemplarz Bezpłany NFORMACJA O REALZACJ WAŻNEJSZYCH ZADAŃ SPOŁECZNO - GOSPODARCZYCH W WOJEWÓDZTWE BELSKM r Opracowano 990 - - 09 naíqx- ZNAK OUOWNS Kr b k *.

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka matematyczna. Estymacja przedziałowa parametrów strukturalnych zbiorowości generalnej

Rachunek prawdopodobieństwa i statystyka matematyczna. Estymacja przedziałowa parametrów strukturalnych zbiorowości generalnej Rachek prawdopodobeńswa saysyka maemaycza Esymacja przedzałowa paramerów srkralych zborowośc geeralej Częso zachodz syacja, że koecze jes zbadae ogół poplacj pod pewym kąem p. średa oce z pewego przedmo.

Bardziej szczegółowo

Analiza taksonomiczna porównania przyspieszenia rozwoju społeczeństwa informacyjnego wybranych krajów

Analiza taksonomiczna porównania przyspieszenia rozwoju społeczeństwa informacyjnego wybranych krajów Ekonomiczne Problemy Usług nr 1/2017 (126),. 1 ISSN: 1896-382X www.wnus.edu.pl/epu DOI: 10.18276/epu.2017.126/1-08 srony: 71 79 Anna Janiga-Ćmiel Uniwersye Ekonomiczny w Kaowicach Wydział Zarządzania Kaedra

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( )

Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( ) Zadanie. Zmienna losowa: X = Y +... + Y N ma złożony rozkład Poissona. W abeli poniżej podano rozkład prawdopodobieńswa składnika sumy Y. W ejże abeli podano akże obliczone dla k = 0... 4 prawdopodobieńswa

Bardziej szczegółowo

5. OPTYMALIZACJA GRAFOWO-SIECIOWA

5. OPTYMALIZACJA GRAFOWO-SIECIOWA . OPTYMALIZACJA GRAFOWO-SIECIOWA Defncja grafu Pod pojęcem grafu G rozumemy następującą dwójkę uporządkowaną (defncja grafu Berge a): (.) G W,U gdze: W zbór werzchołków grafu, U zbór łuków grafu, U W W,

Bardziej szczegółowo

1.1. Bezpośrednie transformowanie napięć przemiennych

1.1. Bezpośrednie transformowanie napięć przemiennych Rozdział Wprowadzenie.. Bezpośrednie ransformowanie napięć przemiennych Bezpośrednie ransformowanie napięć przemiennych jes formą zmiany paramerów wielkości fizycznych charakeryzujących energię elekryczną

Bardziej szczegółowo

Piotr Fiszeder Uniwersytet Mikołaja Kopernika w Toruniu Juliusz Preś Politechnika Szczecińska

Piotr Fiszeder Uniwersytet Mikołaja Kopernika w Toruniu Juliusz Preś Politechnika Szczecińska DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolske Semnarum Naukowe, 4 6 wrześna 2007 w Torunu Kaedra Ekonomer Saysyk, Unwersye Mkołaa Kopernka w Torunu Por Fszeder Unwersye Mkołaa Kopernka w Torunu Julusz

Bardziej szczegółowo

POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE

POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE Anea Kłodzińska, Poliechnika Koszalińska, Zakład Ekonomerii POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE Sopy procenowe w analizach ekonomicznych Sopy procenowe

Bardziej szczegółowo

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015 Sudia Ekonomiczne. Zeszyy Naukowe Uniwersyeu Ekonomicznego w Kaowicach ISSN 2083-86 Nr 29 205 Alicja Ganczarek-Gamro Uniwersye Ekonomiczny w Kaowicach Wydział Informayki i Komunikacji Kaedra Demografii

Bardziej szczegółowo

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTTUTU TECHNIKI CIEPLNEJ WDZIAŁ INŻNIERII ŚRODOWISKA I ENERGETKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORJNA Tema ćwiczenia: WZNACZANIE WSPÓŁCZNNIKA PRZEWODZENIA CIEPŁA CIAŁ STAŁCH METODĄ STANU UPORZĄDKOWANEGO

Bardziej szczegółowo

Daniel Papla Akademia Ekonomiczna we Wrocławiu. Wykorzystanie modelu DCC-MGARCH w analizie zmian zależności wybranych akcji GPW w Warszawie

Daniel Papla Akademia Ekonomiczna we Wrocławiu. Wykorzystanie modelu DCC-MGARCH w analizie zmian zależności wybranych akcji GPW w Warszawie DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 27 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Akademia Ekonomiczna we Wrocławiu Wykorzysanie

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 5 listopada 2013 Czas 90 minut

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 5 listopada 2013 Czas 90 minut Wojewódzki Konkurs Maemayczny dla uczniów gimnazjów. Eap szkolny 5 lisopada 2013 Czas 90 minu ZADANIA ZAMKNIĘTE Zadanie 1. (1 punk) Liczby A = 0, 99, B = 0, 99 2, C = 0, 99 3, D = 0, 99, E=0, 99 1 usawiono

Bardziej szczegółowo

Planowanie eksperymentu pomiarowego I

Planowanie eksperymentu pomiarowego I POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak

Bardziej szczegółowo

EKONOMETRIA Wykład 2: Metoda Najmniejszych Kwadratów

EKONOMETRIA Wykład 2: Metoda Najmniejszych Kwadratów EKONOMERIA Wkład : Meoda Najmnejszch Kwadraów dr Doroa Cołek Kaedra Ekonomer Wdzał Zarządzana UG hp://wzr.pl/dc doroa.colek@ug.edu.pl Lnow model ekonomerczn:... zmenna endogenczna, 0 k k u zmenne objaśnające,

Bardziej szczegółowo

System Przeciwdziałania Powstawaniu Bezrobocia na Terenach Słabo Zurbanizowanych SPRAWOZDANIE Z BADAŃ Autor: Joanna Wójcik

System Przeciwdziałania Powstawaniu Bezrobocia na Terenach Słabo Zurbanizowanych SPRAWOZDANIE Z BADAŃ   Autor: Joanna Wójcik Opracowane w ramach projektu System Przecwdzałana Powstawanu Bezroboca na Terenach Słabo Zurbanzowanych ze środków Europejskego Funduszu Społecznego w ramach Incjatywy Wspólnotowej EQUAL PARTNERSTWO NA

Bardziej szczegółowo

ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH

ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH Pior KISIELEWSKI, Łukasz SOBOTA ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH W arykule przedsawiono zasosowanie eorii masowej obsługi do analizy i modelowania wybranych sysemów

Bardziej szczegółowo

NAPRAWY GWARANCYJNE I POGWARANCYJNE CIĄGNIKÓW ROLNICZYCH JAKO POTRANSAKCYJNE ELEMENTY LOGISTYCZNEJ OBSŁUGI KLIENTA

NAPRAWY GWARANCYJNE I POGWARANCYJNE CIĄGNIKÓW ROLNICZYCH JAKO POTRANSAKCYJNE ELEMENTY LOGISTYCZNEJ OBSŁUGI KLIENTA Inżynieria Rolnicza 2(100)/2008 NAPRAWY GWARANCYJNE I POGWARANCYJNE CIĄGNIKÓW ROLNICZYCH JAKO POTRANSAKCYJNE ELEMENTY LOGISTYCZNEJ OBSŁUGI KLIENTA Sławomir Juściński Kaedra Energeyki i Pojazdów Uniwersye

Bardziej szczegółowo

METODY KOMPUTEROWE 10

METODY KOMPUTEROWE 10 MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE Poechnka Poznańska Mchał Płokowak Adam Łodgowsk Mchał PŁOKOWIAK Adam ŁODYGOWSKI Konsace nakowe dr nż. Wod Kąko Poznań 00/00 MEODY KOMPUEROWE 0 RÓWNANIA RÓŻNICZKOWE

Bardziej szczegółowo