ĆWICZENIE 4. PODSTAWY OPTYKI FALOWEJ. GENERACJA I ANALIZA ELEMENTARNYCH FRONTÓW FALOWYCH

Wielkość: px
Rozpocząć pokaz od strony:

Download "ĆWICZENIE 4. PODSTAWY OPTYKI FALOWEJ. GENERACJA I ANALIZA ELEMENTARNYCH FRONTÓW FALOWYCH"

Transkrypt

1 ĆWICZENIE 4. PODSTAWY OPTYKI FALOWEJ. GENERACJA I ANALIZA ELEMENTARNYCH FRONTÓW FALOWYCH Wstęp teoetczn Font falow Światło jest falą elektomagnetczną, zatem związana jest z nią funkcja Ψ (,t, opisująca dowolną składową wektoa pola elektcznego lub magnetcznego, któa spełnia ównanie falowe ψ ψ =, v t ( gdzie v jest pędkością światła w danm ośodku. Świetlne font falowe mogą mieć w ogólności óżne kształt i jednm oganiczeniem jest tutaj ównanie (. Z paktcznego punktu widzenia szczególnie ważne są monochomatczne fale sfeczne, płaskie i clindczne. Znajomość ich opisu a pzede wszstkim umiejętność fomowania wmienionch fontów falowch w układzie optcznm ułatwi nam powadzenie ekspementów z zakesu optki falowej. Fala sfeczna Rs..

2 W układzie współzędnch sfecznch (Rs. fala sfeczna jest opisana funkcją: A ψ (, t = cos( km ωt + ϕ (a lub w zapisie zespolonm funkcją: ψ (, t = A i e ( kmωt+ ϕ (b gdzie ϕ pzedstawia fazę początkową, jest współzędną adialną czli odległością punktu obsewacji od początku układu, k oznacza długość wektoa falowego tzn. k=π/λ, ω jest częstością kołową fali tzn. ω = πν, λ i ν są odpowiednio długością i częstością fali monochomatcznej. Powiezchnie stałej faz fali sfecznej są współśodkowmi sfeami. Faza k-ωt+ϕ we wzoach (a i (b odpowiada fali sfecznej ozbieżnej, któej źódłem jest początek układu. Faza k+ωt+ϕ opisuje falę sfeczną zbiegającą do początku układu z Rs. 6. Najefektwniejsz, paktczn sposób sfomowania fali sfecznej zapewnia układ soczewka - otwoek filtując, pzedstawion na Rs.. Rs.. Smbolem S na Rs. oznaczono soczewkę lub obiektw mikoskopow zamontowan w mogącm się obacać uchwcie U. Powższ obót umożliwia poziom pzesuw elementu S względem małego otwoka filtującego OF. Otwoek jest pzesuwan peczjnie dwoma śubami mikometcznmi. Jedna z nich M, pokazana na Rs. umożliwia uch otwoka w płaszczźnie sunku, duga w kieunku postopadłm. Kied wiązka laseowa zostanie zogniskowana dokładnie w obszaze otwoka filtującego, wówczas za otwokiem pojawia się intenswna pole świetlne, będące ealnm pzbliżeniem ozbieżnej fali sfecznej. Tpowa wielkość śednic otwoka dla światła widzialnego wnosi od kilku do kilkudziesięciu mikometów. etap: Sfomowanie fali sfecznej za pomocą układu z Rs. można podzielić na następujące Ustawienie soczewki lub obiektwu S postopadle do kieunku wiązki laseowej.

3 Znalezienie pz pomoc śub mikometcznej położenia otwoka OF, odpowiadającego największemu natężeniu światła w jego obębie. Optmalne położenie znajdujem obsewując otwoek od ston pzeciwnej do kieunku oświetlenia wiązką laseową. 3 Pzesuwanie elementu S popzez obót uchwtu U w kieunku odpowiadającm coaz intenswniejszemu oświetleniu otwoka. Jednocześnie nieznacznie pzemieszczam otwoek OF śubami mikometcznmi ab uzskać jego najbadziej optmalne położenie. UWAGA Pz pojawieniu się dużego natężenia światła w obębie otwoka nie patzm dalej weń bezpośednio a obsewujem plamkę świetlną na katce papieu umieszczonej za otwokiem. Justowanie powadzim do chwili pojawienia się na papieze możliwie najjaśniejszej plamki świetlnej. Fala płaska Monochomatczna fala płaska, popagująca się wzdłuż kieunku wektoa falowego k jest opisana funkcją: i( kmωt+ ϕ (3 ψ (, t = Ae Wekto k jest postopadł do powiezchni stałej faz, któe są w tm pzpadku płaszczznami. Wkes części zeczwistej funkcji ψ (, t = 0 wzdłuż kieunku wektoa k pz paametze ϕ = 3 π jest pokazan na Rs. 3. Rs. 3. 3

4 W układzie optcznm falę płaską można sfomować pz użciu zjustowanego otwoka filtującego OF, umieszczonego w ognisku soczewki S tak jak to pokazano na Rs. 4. Rs. 4. Za soczewką S pojawia się wiązka świetlna, będąca pzbliżeniem fali płaskiej. Wstępne położenie soczewki S za otwokiem OF dobieam w ten sposób, że śednica wjściowej wiązki świetlnej obsewowanej na ekanie powinna bć stała niezależnie od odległości ekanu od soczewki S. Optmalne położenie soczewki egulujem obsewując pążki intefeencjne odbite od powiezchni wzocowej płtki płaskoównoległej. Optczna tansfomata Fouiea Całka dfakcjna, któa w ogólności ma fomę: e U ( xo, o d iλ ik = U ( x, K( θ dx (4 gdzie k=π/λ ; U(x 0, 0 jest amplitudą pola dfakcjnego w punkcie P 0 (x 0, 0 płaszczzn wjściowej Z = z, U(x, jest amplitudą pola padającego w punkcie P (x, płaszczzn Z=0, jest długością wektoa = P P 0, paamet K(θ opisuje cznnik kątow zależn od nachlenia wektoa do płaszczzn OX Y. Odpowiednia geometia jest pokazana na Rs.5. Rs. 5. Wekto P P 0 ma współzędne =[x0 -x, 0 -,z] i jego długość wnosi: 4

5 ( x0 x + ( 0 = z + (5 z Często pz opisie zjawisk dfakcjnch stosujem pzbliżenie pzosiowe, odpowiadające małm kątom wektoa z osią OZ, co jest ównoważne waunkowi: ( x0 x + ( 0 z MAX << (6 Wówczas pzjmujem ównież, że cznnik K(θ w całce (4 jest stał i ówn oaz ozwijam piewiastek w ównaniu (5 w szeeg Taloa, oganiczając się do dwóch piewszch członów ozwinięcia. W ten sposób otzmujem: ( x0 x + ( 0 = z + z (7 Możem zauważć, że małe zmian długości wokół watości z w mianowniku ważenia (4 nie mają istotnego znaczenia i można zastąpić iloaz e ik ik pod całką dfakcjną wielkością e. Ostatecznie zależność (7 powadzi do następującej pzosiowej fom całki z Fesnela: ikz ik e [( x0 x + ( 0 ] z U ( x, = U ( x, e dxd (8 o o iλz Wzó (8 wnika bezpośednio z waunku (6, któ z kolei zachodzi wted, gd obsza punktów obsewacji (x 0, 0 i całkowania (x, są odpowiednio oganiczone. W pzpadku punktów (x, z płaszczzn wejściowej Z=0 odpowiada to dfakcji na obiektach o oganiczonch apetuach. Jeśli nieówność (6 zachodzi mówim ównież, że znajdujem się w stefie dfakcji Fesnela. ik ( x + z Całka (8 zostanie dalej uposzczona, jeśli zaniedbam pod nią dodatkowo cznnik e. Można to uzskać na dwa sposob: a umieszczając za obiektem o amplitudzie zespolonej U(x, optczn element ik ( x + z dwuwmiaow o tansmitancji e. Jest to ównoważne pojawieniu się pod całką ik ( x + z dodatkowego cznnika e b zwiększając odległość obsewacji z, żeb bł spełnion waunek k( x + z MAX << π z >> x + λ MAX (9 W takim pzpadku ważenie (8 pzjmuje postać całki dfakcjnej Faunhohea: ikz ik ik e [ x0 + 0 ] [ x0x + 0 ] z z U ( xo, o e U ( x, e dxd iλz = (0 Definicja dwuwmiaowej tansfomat Fouiea funkcji U(x, : 5

6 F u ( f x, f [ f xx + f ] dx d iπ = U ( x, e ( waz ze wzoem (0 powadzi do wniosku, że natężenie I(x 0, 0 = U(x 0, 0 pola dfakcjnego Faunhofea jest z dokładnością do stałej natężeniową tansfomatą Fouiea funkcji U(x,, tzn: I x0 0 ( x0, 0 = Fu f x =, f = α ( λz λz gdzie α=/λ z = const. Zgodnie z naszą dskusją z punktów a i b obaz dfakcjn Faunhofea, będąc jednocześnie optczną tansfomatą Fouiea tansmitancji U(x, powstaje: Ad a w płaszczźnie ogniskowej soczewki, umieszczonej za obiektem o tansmitancji U(x,, oświetlonm falą płaską - Rs. 6. F u U ( x, Rs. 6. ik ( x + z Wnika to z tego, że funkcja e opisuje w pzbliżeniu pzosiowm Fesnela tansmitancję soczewki cienkiej o ogniskowej z. Inaczej mówiąc, gdb oświetlić falą płaską ik ( x + z obiekt z płaszczzn Z=0 mając tansmitancję e, wówczas zgodnie z pzosiową całką Fesnela (4 światło zostanie skupione za obiektem z punkcie [x 0 =0, 0 =0, Z=z] Ad b w płaszczźnie Z=const dostatecznie odległej od obiektu, dla któej spełnion jest waunek (6. Optczna tansfomata Fouiea apetua postokątna Obiekt o apetuze postokąta o bokach l x i l (pzeźoczst postokąt na czanm niepzeźoczstm tle - Rs.7 ma tansmitancję opisaną funkcją ectus x x =, ect ect lx l U ( (3 6

7 l l x Rs.7 Zgodnie z analizą fouieowską funkcja natężeniowa I 0 (x 0, 0 ze wzou ( ma w tm pzpadku z dokładnością do stałej postać: lx x0 I x0, 0 = sinc sinc λz l λz 0 ( (4 gdzie sin( πx sinc( x = πx (5 Wkes funkcji (8 wzdłuż linii 0 =0 jest pokazan na Rs. 8, a zdjęcie obazu dfakcjnego Faunhofea apetu postokątnej w postaci chaaktestcznego kzża pzedstawia Rs. 9 (kontast jest zmniejszon ab uwpuklić słabe pążki. Rs. 8. 7

8 Rs. 9. Ze wzoów (4 i (5 wnika, że zea w obazie dfakcjnm (ciemne obsza, gdzie natężenie światła spada do zea mają współzędne x o λz = m m C l x wzdłuż postej 0 =0 (6 o λz = m m C l wzdłuż postej x 0 =0 (7 Optczna tansfomata Fouiea apetua kołowa Obiekt o apetuze kołowej o pomieniu R opisan jest funkcją cic( /R gdzie ( = x + - Rs. 0. Rs. 0. ma zgodnie ze wzoem następującą natężeniową tansfomatę Fouiea I ( x 0, 0 = I( 0 = kr J z kr0 z o (8 8

9 gdzie 0 = x0 + 0 oaz J oznacza funkcję Bessela piewszego odzaju i piewszego zędu. Obaz dfakcjn Faunhofea apetu kołowej posiada stuktuę pieścieniową i jest pokazan na Rs.. Rs. Z wkesu kwadatu funkcji Bessela zamieszczonego na Rs.. można znaleźć waunek odpowiadając ciemnm pieścieniom w obazie dfakcjnm, gdzie I( 0 = 0. Rs. Analiza matematczna powadzi do wniosku, że pomienie kolejnch ciemnch pieścieni opisuje ównanie: gdzie: β=,;,3; 3.4;... 0 = β λ z R (9 9

10 Zadania do wkonania ( Piewsze zajęcia z cklu - 4 h: Sfomowanie fali sfecznej ozbieżnej pz pomoc pinholi. Sfomowanie fali płaskiej (ustawiam układ tak, ab śednica ufomowanej wiązki nie zmieniała się na odcinku kilku metów. 3 Intefeencjna kontola jakości fali płaskiej. 4 Obsewacja obazu dfakcjnego Faunhofea bez pomoc soczewki. Oświetlam apetu falą płaską i wkonujem odpowiednie pomia obazów dfakcjnch w dalekiej płaszczźnie wjściowej, leżącej w stefie Faunhofea ( w naszm pzpadku z > m. Znając długość fali światła λ, obliczam długość boków apetu postokątnch i pomienie apetu kołowch ze wzoów (6, (7 i (9. 5 Obsewacja obazu dfakcjnego Faunhofea. Oświetlam apetu falą płaską i wkonujem odpowiednie pomia obazów dfakcjnch. Obaz ejestujem na mozaice CCD. Znając długość fali światła λ, obliczam długość boków apetu postokątnch i pomienie apetu kołowch. 6 Wznaczenie długości boków apetu postokątnch i pomieni apetu kołowch na podstawie pomiau pod mikoskopem. 7 Obsewacja widma Fouiea obiektu powielonego. Obaz ejestujem na mozaice CCD. 8 Obsewacja widma obiektu póbkowanego. Obaz ejestujem na mozaice CCD. UWAGA Należ chonić ocz pzed pomieniowaniem laseowm. W pzpadku lasea agonowego należ także uważać na odblaski, któe powstają na poszczególnch elementach układu optcznego. Pacownia Infomatki Optcznej WF PW Mazec 008 0

Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego.

Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego. Ćwiczenie 6 Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego. Interferometr Macha-Zehndera Interferometr Macha-Zehndera jest często wykorzystywany

Bardziej szczegółowo

Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne

Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Podstawy Działanie obrazujące soczewek lub układu soczewek

Bardziej szczegółowo

11. DYNAMIKA RUCHU DRGAJĄCEGO

11. DYNAMIKA RUCHU DRGAJĄCEGO 11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie

Bardziej szczegółowo

Hologram gruby (objętościowy)

Hologram gruby (objętościowy) Hologram gruby (objętościowy) Wprowadzenie teoretyczne Holografia jest bardzo rozległą dziedziną optyki i na pewno nie dziwi fakt, że istnieją hologramy różnego typu. W zależności od metody zapisu hologramu,

Bardziej szczegółowo

Rys. 1 Pole dyfrakcyjne obiektu wejściowego. Rys. 2 Obiekt quasi-periodyczny.

Rys. 1 Pole dyfrakcyjne obiektu wejściowego. Rys. 2 Obiekt quasi-periodyczny. Ćwiczenie 7 Samoobrazowanie obiektów periodycznych Wprowadzenie teoretyczne Jeśli płaski obiekt optyczny np. przezrocze z czarno-białym wzorem (dokładniej mówiąc z przeźroczysto-nieprzeźroczystym wzorem)

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 17, Mateusz Winkowski, Łukasz Zinkiewicz

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 17, Mateusz Winkowski, Łukasz Zinkiewicz Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 17, 01.12.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 16 - przypomnienie

Bardziej szczegółowo

Ćwiczenie 361 Badanie układu dwóch soczewek

Ćwiczenie 361 Badanie układu dwóch soczewek Nazwisko... Data... Wdział... Imię... Dzień tg.... Godzina... Ćwiczenie 36 Badanie układu dwóch soczewek Wznaczenie ogniskowch soczewek metodą Bessela Odległość przedmiotu od ekranu (60 cm 0 cm) l Soczewka

Bardziej szczegółowo

Wyznaczanie promienia krzywizny soczewki płasko-wypukłej metodą pierścieni Newtona

Wyznaczanie promienia krzywizny soczewki płasko-wypukłej metodą pierścieni Newtona Wyznaczanie poienia kzywizny soczewki płasko-wypukłej etodą pieścieni Newtona I. Cel ćwiczenia: zapoznanie ze zjawiskie intefeencji światła, poia poienia soczewki płasko-wypukłej. II. Pzyządy: lapa sodowa,

Bardziej szczegółowo

II.6. Wahadło proste.

II.6. Wahadło proste. II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia

Bardziej szczegółowo

PROPAGACJA PROMIENIOWANIA PRZEZ UKŁAD OPTYCZNY W UJĘCIU FALOWYM. TRANSFORMACJE FAZOWE I SYGNAŁOWE

PROPAGACJA PROMIENIOWANIA PRZEZ UKŁAD OPTYCZNY W UJĘCIU FALOWYM. TRANSFORMACJE FAZOWE I SYGNAŁOWE PROPAGACJA PROMIENIOWANIA PRZEZ UKŁAD OPTYCZNY W UJĘCIU FALOWYM. TRANSFORMACJE FAZOWE I SYGNAŁOWE prof. dr hab. inż. Krzysztof Patorski Przedmiotem tej części wykładu są podstawowe transformacje fazowe

Bardziej szczegółowo

Fizyka elektryczność i magnetyzm

Fizyka elektryczność i magnetyzm Fizyka elektryczność i magnetyzm W5 5. Wybrane zagadnienia z optyki 5.1. Światło jako część widma fal elektromagnetycznych. Fale elektromagnetyczne, które współczesny człowiek potrafi wytwarzać, i wykorzystywać

Bardziej szczegółowo

Mikroskop teoria Abbego

Mikroskop teoria Abbego Zastosujmy teorię dyfrakcji do opisu sposobu powstawania obrazu w mikroskopie: Oświetlacz typu Köhlera tworzy równoległą wiązkę światła, padającą na obserwowany obiekt (płaszczyzna 0 ); Pole widzenia ograniczone

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 17, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 17, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 17, 0.04.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 16 - przypomnienie dyfrakcja

Bardziej szczegółowo

WSTĘP DO OPTYKI FOURIEROWSKIEJ

WSTĘP DO OPTYKI FOURIEROWSKIEJ 1100-4BW1, rok akademicki 018/19 WSTĘP DO OPTYKI FOURIEROWSKIEJ dr hab. Rafał Kasztelanic Wykład 4 Przestrzeń swobodna jako filtr częstości przestrzennych Załóżmy, że znamy rozkład pola na fale monochromatyczne

Bardziej szczegółowo

GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r.

GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r. GRAWITACJA Pawo powszechnego ciążenia (pawo gawitacji) Dwa punkty mateialne o masach m 1 i m pzyciągają się wzajemnie siłą popocjonalną do iloczynu ich mas i odwotnie popocjonalną do kwadatu ich odległości.

Bardziej szczegółowo

L(x, 0, y, 0) = x 2 + y 2 (3)

L(x, 0, y, 0) = x 2 + y 2 (3) 0. Małe dgania Kótka notatka o małych dganiach wyjasniające możliwe niejasności. 0. Poszukiwanie punktów ównowagi Punkty ównowagi wyznaczone są waunkami x i = 0, ẋi = 0 ( Pochodna ta jest ówna pochodnej

Bardziej szczegółowo

ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL

ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL X L Rys. 1 Schemat układu doświadczalnego. Fala elektromagnetyczna (światło, mikrofale) po przejściu przez dwie blisko położone (odległe o d) szczeliny

Bardziej szczegółowo

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii.

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii. Wykład: paca siły, pojęcie enegii potencjalnej. Zasada zachowania enegii. Uwaga: Obazki w tym steszczeniu znajdują się stonie www: http://www.whfeeman.com/tiple/content /instucto/inde.htm Pytanie: Co to

Bardziej szczegółowo

Ćwiczenie 1. Część teoretyczna

Ćwiczenie 1. Część teoretyczna Ćwiczenie 1 Formowanie elementarnych frontów falowych. Zapoznanie się z podstawowymi elementami optycznymi i źródłami światła, które będą wykorzystywane podczas zajęć laboratoryjnych. Część teoretyczna

Bardziej szczegółowo

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017 Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne

Bardziej szczegółowo

OPTYKA FALOWA. W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę

OPTYKA FALOWA. W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę OPTYKA FALOWA W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę falową. W roku 8 Thomas Young wykonał doświadczenie, które pozwoliło wyznaczyć długość fali światła.

Bardziej szczegółowo

Moment pędu fali elektromagnetycznej

Moment pędu fali elektromagnetycznej napisał Michał Wierzbicki Moment pędu fali elektromagnetycznej Definicja momentu pędu pola elektromagnetycznego Gęstość momentu pędu pola J w elektrodynamice definuje się za pomocą wzoru: J = r P = ɛ 0

Bardziej szczegółowo

Ćwiczenie 1. Rys. 1. W układzie współrzędnych sferycznych (Rys.1) fala sferyczna jest opisana funkcją: A (2a)

Ćwiczenie 1. Rys. 1. W układzie współrzędnych sferycznych (Rys.1) fala sferyczna jest opisana funkcją: A (2a) Ćwiczenie 1 Regulacja pinholi. Generacja fali płaskiej i sferycznej. Badanie jakości fali płaskiej na etalonie. Interferometr Michelsona. Doświadczenie Younga Część teoretyczna Światło jest falą elektromagnetyczną,

Bardziej szczegółowo

Modelowanie przepływu cieczy przez ośrodki porowate Wykład III

Modelowanie przepływu cieczy przez ośrodki porowate Wykład III Modelowanie pzepływu cieczy pzez ośodki poowate Wykład III 6 Ogólne zasady ozwiązywania ównań hydodynamicznego modelu pzepływu. Metody ozwiązania ównania Laplace a. Wpowadzenie wielkości potencjału pędkości

Bardziej szczegółowo

Materiały pomocnicze dla studentów I roku do wykładu Wstęp do fizyki I Wykład 1

Materiały pomocnicze dla studentów I roku do wykładu Wstęp do fizyki I Wykład 1 Mateiał pomocnicze dla studentów I oku do wkładu Wstęp do fizki I Wkład 1 I. Skala i Wekto. Skala: Jest to wielkość, któą można jednoznacznie okeślić za pomocą liczb i jednostek; a więc mająca jednie watość,

Bardziej szczegółowo

MECHANIKA OGÓLNA (II)

MECHANIKA OGÓLNA (II) MECHNIK GÓLN (II) Semest: II (Mechanika I), III (Mechanika II), ok akademicki 2017/2018 Liczba godzin: sem. II*) - wykład 30 godz., ćwiczenia 30 godz. sem. III*) - wykład 30 godz., ćwiczenia 30 godz. (dla

Bardziej szczegółowo

Ćwiczenie 1. Część teoretyczna Światło jest falą elektromagnetyczną, zatem związana jest z nią funkcja ( r, t)

Ćwiczenie 1. Część teoretyczna Światło jest falą elektromagnetyczną, zatem związana jest z nią funkcja ( r, t) Ćwiczenie 1 Formowanie elementarnych frontów falowych. Zapoznanie się z podstawowymi elementami optycznymi i źródłami światła, które będą wykorzystywane podczas zajęć laboratoryjnych. Część teoretyczna

Bardziej szczegółowo

ODWZOROWANIE W OŚWIETLENIU KOHERENTNYM

ODWZOROWANIE W OŚWIETLENIU KOHERENTNYM ODWZOROWANIE W OŚWIETLENIU KOHERENTNYM prof. dr hab. inż. Krzysztof Patorski Przedmiotem tej części wykładu jest model matematyczny procesu formowania obrazu przez pojedynczy układ optyczny w oświetleniu

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 5, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 5, Radosław Chrapkiewicz, Filip Ozimek Podstaw Fizki IV Optka z elementami fizki współczesnej wkład 5, 27.02.2012 wkład: pokaz: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wkład 4 - przpomnienie dielektrki

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania (3.7), pomimo swojej prostoty, nie posiadają poza nielicznymi przypadkami ścisłych rozwiązań,

Bardziej szczegółowo

Promieniowanie dipolowe

Promieniowanie dipolowe Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A

Bardziej szczegółowo

Laboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 2. Dyfrakcja światła w polu bliskim i dalekim

Laboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 2. Dyfrakcja światła w polu bliskim i dalekim Laboratorium optycznego przetwarzania informacji i holografii Ćwiczenie. Dyfrakcja światła w polu bliskim i dalekim Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdańska Gdańsk

Bardziej szczegółowo

Rys. 1 Interferencja dwóch fal sferycznych w punkcie P.

Rys. 1 Interferencja dwóch fal sferycznych w punkcie P. Ćwiczenie 4 Doświadczenie interferencyjne Younga Wprowadzenie teoretyczne Charakterystyczną cechą fal jest ich zdolność do interferencji. Światło jako fala elektromagnetyczna również może interferować.

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w popzednim odcinku 1 Zasady dynamiki Newtona I II Każde ciało twa w stanie spoczynku lub pousza się uchem postoliniowym i jednostajnym, jeśli siły pzyłożone nie zmuszają ciała do zmiany tego stanu Zmiana

Bardziej szczegółowo

GEOMETRIA PŁASZCZYZNY

GEOMETRIA PŁASZCZYZNY GEOMETRIA PŁASZCZYZNY. Oblicz pole tapezu ównoamiennego, któego podstawy mają długość cm i 0 cm, a pzekątne są do siebie postopadłe.. Dany jest kwadat ABCD. Punkty E i F są śodkami boków BC i CD. Wiedząc,

Bardziej szczegółowo

OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach.

OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach. OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach. Zagadnienia, które należy znać przed wykonaniem ćwiczenia: Dyfrakcja światła to zjawisko fizyczne zmiany kierunku rozchodzenia

Bardziej szczegółowo

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne. Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować

Bardziej szczegółowo

Równania Maxwella. Wstęp E B H J D

Równania Maxwella. Wstęp E B H J D Równania Maxwella E B t, H J D t, D, B 0 Równania materiałowe B 0 H M, D 0 E P, J E, gdzie: 0 przenikalność elektryczną próżni ( 0 8854 10 1 As/Vm), 0 przenikalność magetyczną próżni ( 0 4 10 7 Vs/Am),

Bardziej szczegółowo

Geodezja fizyczna. Siła grawitacji. Potencjał grawitacyjny Ziemi. Modele geopotencjału. Dr inż. Liliana Bujkiewicz. 23 października 2018

Geodezja fizyczna. Siła grawitacji. Potencjał grawitacyjny Ziemi. Modele geopotencjału. Dr inż. Liliana Bujkiewicz. 23 października 2018 Geodezja fizyczna Siła gawitacji. Potencjał gawitacyjny iemi. Modele geopotencjału. D inż. Liliana Bujkiewicz 23 paździenika 2018 D inż. Liliana Bujkiewicz Geodezja fizyczna 23 paździenika 2018 1 / 24

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz

Bardziej szczegółowo

Zjawisko interferencji fal

Zjawisko interferencji fal Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich

Bardziej szczegółowo

Ruch obrotowy. Wykład 6. Wrocław University of Technology

Ruch obrotowy. Wykład 6. Wrocław University of Technology Wykład 6 Wocław Univesity of Technology Oboty - definicje Ciało sztywne to ciało któe obaca się w taki sposób, że wszystkie jego części są związane ze sobą dzięki czemu kształt ciała nie ulega zmianie.

Bardziej szczegółowo

Ruch dwu i trójwymiarowy

Ruch dwu i trójwymiarowy Wkład z fizki. Piot Posmkiewicz 1 W Y K Ł A D Ruch dwu i tójwmiaow 3-1 Wekto pzemieszczenia. JeŜeli uch odbwa się w dwu lub tzech wmiaach, to pzemieszczenie ma okeśloną zaówno watość, jak i kieunek w pzestzeni.

Bardziej szczegółowo

Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym

Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym 1.Wpowadzenie Wyznaczanie pofilu pędkości płynu w uociągu o pzekoju kołowym Dla ustalonego, jednokieunkowego i uwastwionego pzepływu pzez uę o pzekoju kołowym ównanie Naviea-Stokesa upaszcza się do postaci

Bardziej szczegółowo

podsumowanie (E) E l Eds 0 V jds

podsumowanie (E) E l Eds 0 V jds e-8.6.7 fale podsumowanie () Γ dl 1 ds ρ d S ε V D ds ρ d S ( ϕ ) 1 ρ ε D ρ D ρ V D ( D εε ) εε S jds V ρ d t j ρ t j σ podsumowanie (H) Bdl Γ μ S jds B μ j S Bds B ( B A) Hdl Γ S jds H j ( B μμ H ) ε

Bardziej szczegółowo

A r A r. r = , 2. + r r + r sr. Interferencja. Dwa źródła punktowe: Dla : Dla dużych 1,r2. błąd: 3D. W wyniku interferencji:

A r A r. r = , 2. + r r + r sr. Interferencja. Dwa źródła punktowe: Dla : Dla dużych 1,r2. błąd: 3D. W wyniku interferencji: -- G:\AA_Wyklad \FIN\DOC\Inte.doc Intefeencja. Dwa źódła punktowe: (, t) A( ) ( k ω t) U cos (, t) A( ) ( k ω t) U cos Dla : 3D ( ) Dla : A D ( ) A Dla dużych, d, A A : A ( ) A( ) A A( ) błąd: 3D % ~ U

Bardziej szczegółowo

Rys. 1 Geometria układu.

Rys. 1 Geometria układu. Ćwiczenie 9 Hologram Fresnela Wprowadzenie teoretyczne Holografia umożliwia zapis pełnej informacji o obiekcie optycznym, zarówno amplitudowej, jak i fazowej. Dzięki temu można m.in. odtwarzać trójwymiarowe

Bardziej szczegółowo

Zjawisko interferencji fal

Zjawisko interferencji fal Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich

Bardziej szczegółowo

POLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął

POLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął POLE MAGNETYCZNE W PÓŻNI W oku 8 Oested zaobsewował oddziaływanie pzewodnika, w któym płynął pąd, na igłę magnetyczną Dopowadziło to do wniosku, że pądy elektyczne są pzyczyną powstania pola magnetycznego

Bardziej szczegółowo

Wyznaczanie współczynnika sztywności drutu metodą dynamiczną.

Wyznaczanie współczynnika sztywności drutu metodą dynamiczną. Ćwiczenie M- Wyznaczanie współczynnika sztywności dutu metodą dynamiczną.. Ce ćwiczenia: pomia współczynnika sztywności da stai metodą dgań skętnych.. Pzyządy: dwa kążki metaowe, statyw, dut staowy, stope,

Bardziej szczegółowo

Prawa optyki geometrycznej

Prawa optyki geometrycznej Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)

Bardziej szczegółowo

Na skutek takiego przemieszcznia ładunku, energia potencjalna układu pole-ładunek zmienia się o:

Na skutek takiego przemieszcznia ładunku, energia potencjalna układu pole-ładunek zmienia się o: E 0 Na ładunek 0 znajdujący się w polu elektycznym o natężeniu E działa siła elektostatyczna: F E 0 Paca na pzemieszczenie ładunku 0 o ds wykonana pzez pole elektyczne: dw Fds 0E ds Na skutek takiego pzemieszcznia

Bardziej szczegółowo

9.1 POMIAR PRĘDKOŚCI NEUTRINA W CERN

9.1 POMIAR PRĘDKOŚCI NEUTRINA W CERN 91 POMIAR PRĘDKOŚCI NEUTRINA W CERN Rozdział należy do teoii pt "Teoia Pzestzeni" autostwa Daiusza Stanisława Sobolewskiego http: wwwtheoyofspaceinfo Z uwagi na ozważania nad pojęciem czasu 1 możemy pzyjąć,

Bardziej szczegółowo

Wykład 17: Optyka falowa cz.1.

Wykład 17: Optyka falowa cz.1. Wykład 17: Optyka falowa cz.1. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza

Bardziej szczegółowo

Fizyka 10. Janusz Andrzejewski

Fizyka 10. Janusz Andrzejewski Fizyka 10 Pawa Keplea Nauki Aystotelesa i Ptolemeusza: wszystkie planety i gwiazdy pouszają się wokół Ziemi po skomplikowanych toach( będących supepozycjami uchów Ppo okęgach); Mikołaj Kopenik(1540): planety

Bardziej szczegółowo

Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne

Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Podstawy Działanie obrazujące soczewek lub układu soczewek

Bardziej szczegółowo

Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje.

Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Działanie obrazujące soczewek lub układu soczewek wygodnie

Bardziej szczegółowo

lim = 0, gdzie d n oznacza najdłuższą przekątną prostokątów

lim = 0, gdzie d n oznacza najdłuższą przekątną prostokątów 9. CAŁKA POWÓJNA 9.. Całka podwójna w prostokącie Niech P będzie prostokątem opisanm na płaszczźnie OXY nierównościami: a < < b, c < < d, a f(,) funkcją określoną i ograniczoną w tm prostokącie. Prostokąt

Bardziej szczegółowo

Energia w geometrii Schwarzshilda

Energia w geometrii Schwarzshilda Enegia w geometii Schwazshilda Doga po jakiej pousza się cząstka swobodna pomiędzy dwoma zdazeniami w czasopzestzeni jest taka aby czas zmiezony w układzie cząstki był maksymalny. Rozważmy cząstkę spadającą

Bardziej szczegółowo

Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej

Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło widzialne jest to promieniowanie elektromagnetyczne (zaburzenie poła elektromagnetycznego rozchodzące

Bardziej szczegółowo

falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi

falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich

Bardziej szczegółowo

IV.2. Efekt Coriolisa.

IV.2. Efekt Coriolisa. IV.. Efekt oiolisa. Janusz B. Kępka Ruch absolutny i względny Załóżmy, że na wiującej taczy z pędkością kątową ω = constant ciało o masie m pzemieszcza się ze stałą pędkością = constant od punktu 0 wzdłuż

Bardziej szczegółowo

Zjawisko interferencji fal

Zjawisko interferencji fal Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich

Bardziej szczegółowo

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony Modele odpowiedzi do akusza Póbnej Matuy z OPERONEM Matematyka Poziom ozszezony Listopad 00 W kluczu są pezentowane pzykładowe pawidłowe odpowiedzi. Należy ównież uznać odpowiedzi ucznia, jeśli są inaczej

Bardziej szczegółowo

Wykład I Krzysztof Golec-Biernat Optyka 1 / 16

Wykład I Krzysztof Golec-Biernat Optyka 1 / 16 Optyka Wykład I Krzysztof Golec-Biernat Fale 1 Uniwersytet Rzeszowski, 4 października 2017 Wykład I Krzysztof Golec-Biernat Optyka 1 / 16 Uwagi wstępne 30 h wykładu wykład przy pomocy transparencji lub

Bardziej szczegółowo

18 K A T E D R A F I ZYKI STOSOWAN E J

18 K A T E D R A F I ZYKI STOSOWAN E J 18 K A T E D R A F I ZYKI STOSOWAN E J P R A C O W N I A F I Z Y K I Ćw. 18. Wyznaczanie długości fal świetlnych diody laserowej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło jest promieniowaniem

Bardziej szczegółowo

DODATEK 6. Pole elektryczne nieskończenie długiego walca z równomiernie rozłożonym w nim ładunkiem objętościowym. Φ = = = = = π

DODATEK 6. Pole elektryczne nieskończenie długiego walca z równomiernie rozłożonym w nim ładunkiem objętościowym. Φ = = = = = π DODATEK 6 Pole elektycne nieskońcenie długiego walca ównomienie ołożonym w nim ładunkiem objętościowym Nieskońcenie długi walec o pomieniu jest ównomienie naładowany ładunkiem objętościowym o stałej gęstości

Bardziej szczegółowo

FIZYKA 2. Janusz Andrzejewski

FIZYKA 2. Janusz Andrzejewski FIZYKA 2 wykład 8 Janusz Andrzejewski Fale przypomnienie Fala -zaburzenie przemieszczające się w przestrzeni i w czasie. y(t) = Asin(ωt- kx) A amplituda fali kx ωt faza fali k liczba falowa ω częstość

Bardziej szczegółowo

Rejestracja i rekonstrukcja fal optycznych. Hologram zawiera pełny zapis informacji o fali optycznej jej amplitudzie i fazie.

Rejestracja i rekonstrukcja fal optycznych. Hologram zawiera pełny zapis informacji o fali optycznej jej amplitudzie i fazie. HOLOGRAFIA prof dr hab inŝ Krzysztof Patorski Krzysztof Rejestracja i rekonstrukcja fal optycznych Hologram zawiera pełny zapis informacji o fali optycznej jej amplitudzie i fazie a) Laser b) odniesienia

Bardziej szczegółowo

Ćwiczenie H2. Hologram Fresnela

Ćwiczenie H2. Hologram Fresnela Pracownia Informatyki Optycznej Wydział Fizyki PW Ćwiczenie H Hologram Fresnela 1. Wprowadzenie Holografia jest metodą zapisu całkowitej informacji o oświetlonym obiekcie. ejestracja informacji niesionej

Bardziej szczegółowo

Dualizm korpuskularno falowy

Dualizm korpuskularno falowy Dualizm korpuskularno falowy Fala elektromagnetyczna o długości λ w pewnych zjawiskach zachowuje się jak cząstka (foton) o pędzie p=h/λ i energii E = h = h. c/λ p Cząstki niosą pęd p Cząstce o pędzie p

Bardziej szczegółowo

KURS CAŁKI WIELOKROTNE

KURS CAŁKI WIELOKROTNE KURS CAŁKI WIELOKROTNE Lekcja Całki potójne ZADANIE DOMOWE www.etapez.pl Stona 1 Częśd 1: TEST Zaznacz popawną odpowiedź (tylko jedna jest pawdziwa). Pytanie 1 Obszaem całkowania w całce potójnej jest:

Bardziej szczegółowo

Wykład III. Interferencja fal świetlnych i zasada Huygensa-Fresnela

Wykład III. Interferencja fal świetlnych i zasada Huygensa-Fresnela Wykład III Interferencja fal świetlnych i zasada Huygensa-Fresnela Interferencja fal płaskich Na kliszy fotograficznej, leżącej na płaszczyźnie z=0 rejestrujemy interferencję dwóch fal płaskich, o tej

Bardziej szczegółowo

Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej.

Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej. POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej. Wprowadzenie Przy opisie zjawisk takich

Bardziej szczegółowo

Optyka 2. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Optyka 2. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Optka Projekt współinansowan przez Unię Europejską w ramach Europejskiego Funuszu Społecznego Optka II Promień świetln paając na powierzchnię zwierciała obija się zgonie z prawem obicia omówionm w poprzeniej

Bardziej szczegółowo

KOOF Szczecin: Komitet Główny Olimpiady Fizycznej. Andrzej Wysmołek Komitet Główny Olimpiady Fizycznej, IFD UW.

KOOF Szczecin:   Komitet Główny Olimpiady Fizycznej. Andrzej Wysmołek Komitet Główny Olimpiady Fizycznej, IFD UW. LVII OLIMPIADA FIZYCZNA (007/008). Stopień III, zadanie doświadczalne D Źódło: Auto: Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej. Andzej Wysmołek Komitet Główny Olimpiady

Bardziej szczegółowo

Równanie Schrödingera

Równanie Schrödingera Równanie Schrödingera Maciej J. Mrowiński 29 lutego 2012 Zadanie RS1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = 0 ma następującą postać: A(a Ψ(x,0) = 2 x 2 ) gdy x [ a,a] 0 gdy x / [ a,a]

Bardziej szczegółowo

Laboratorium Optyki Falowej

Laboratorium Optyki Falowej Marzec 2019 Laboratorium Optyki Falowej Instrukcja do ćwiczenia pt: Filtracja optyczna Opracował: dr hab. Jan Masajada Tematyka (Zagadnienia, które należy znać przed wykonaniem ćwiczenia): 1. Obraz fourierowski

Bardziej szczegółowo

Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] - częstotliwość.

Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] - częstotliwość. Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali

Bardziej szczegółowo

Fizyka Laserów wykład 5. Czesław Radzewicz

Fizyka Laserów wykład 5. Czesław Radzewicz Fizyka Laserów wykład 5 Czesław Radzewicz rezonatory optyczne, optyczne wnęki rezonansowe rezonatory otwarte: Fabry-Perot E t E 0 R 0.99 T 1 0 E r R R R 0. R 0.9 E t = TE 0 e iδφ R 0.5 R 0.9 E t Gires-Tournois

Bardziej szczegółowo

A. POMIARY FOTOMETRYCZNE Z WYKORZYSTANIEM FOTOOGNIWA SELENOWEGO

A. POMIARY FOTOMETRYCZNE Z WYKORZYSTANIEM FOTOOGNIWA SELENOWEGO 10.X.010 ĆWCZENE NR 70 A. POMARY FOTOMETRYCZNE Z WYKORZYSTANEM FOTOOGNWA SELENOWEGO. Zestaw pzyządów 1. Ogniwo selenowe.. Źódło światła w obudowie 3. Zasilacz o wydajności pądowej min. 5A 4. Ampeomiez

Bardziej szczegółowo

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki.

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. 1. Równanie soczewki i zwierciadła kulistego. Z podobieństwa trójkątów ABF i LFD (patrz rysunek powyżej) wynika,

Bardziej szczegółowo

POMIAR PRĘDKOŚCI DŹWIĘKU METODĄ REZONANSU I METODĄ SKŁADANIA DRGAŃ WZAJEMNIE PROSTOPADŁYCH

POMIAR PRĘDKOŚCI DŹWIĘKU METODĄ REZONANSU I METODĄ SKŁADANIA DRGAŃ WZAJEMNIE PROSTOPADŁYCH Ćwiczenie 5 POMIR PRĘDKOŚCI DŹWIĘKU METODĄ REZONNSU I METODĄ SKŁDNI DRGŃ WZJEMNIE PROSTOPDŁYCH 5.. Wiadomości ogólne 5... Pomiar prędkości dźwięku metodą rezonansu Wyznaczanie prędkości dźwięku metodą

Bardziej szczegółowo

Badanie liniowego efektu elektrooptycznego

Badanie liniowego efektu elektrooptycznego Badanie liniowego efektu elektrooptcznego Wstęp Rozwój telekomunikacji optcznej oraz techniki laserowej spowodował zapotrzebowanie na materiał i urządzenia, za pomocą którch można sterować wiązką świetlną.

Bardziej szczegółowo

INTERFERENCJA WIELOPROMIENIOWA

INTERFERENCJA WIELOPROMIENIOWA INTERFERENCJA WIELOPROMIENIOWA prof. dr hab. inż. Krzysztof Patorski W tej części wykładu rozważymy przypadek koherentnej superpozycji większej liczby wiązek niż dwie. Najważniejszym interferometrem wielowiązkowym

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania optyki półklasycznej Posłużymy się teraz równaniem (2.4), i Ψ t = ĤΨ ażeby wyprowadzić

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą

Bardziej szczegółowo

Wyznaczenie długości fali świetlnej metodą pierścieni Newtona

Wyznaczenie długości fali świetlnej metodą pierścieni Newtona Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. Termin: 23 III 2009 Nr. ćwiczenia: 412 Temat ćwiczenia: Wyznaczenie długości fali świetlnej metodą pierścieni Newtona Nr.

Bardziej szczegółowo

ĆWICZENIE 5. HOLOGRAM KLASYCZNY TYPU FRESNELA

ĆWICZENIE 5. HOLOGRAM KLASYCZNY TYPU FRESNELA ĆWICZENIE 5. HOLOGAM KLASYCZNY TYP FESNELA Wstęp teoretyczny Wprowadzenie Holografia jest metodą zapisu całkowitej informacji o oświetlonym obiekcie. ejestracja informacji niesionej przez falę elektromagnetyczną

Bardziej szczegółowo

Geodezja fizyczna i geodynamika

Geodezja fizyczna i geodynamika Geodezja fizyczna i geodynamika Wstęp. Potencjał gawitacyjny iemi. Modele geopotencjału. D inż. Liliana Bujkiewicz 27 maca 2017 D inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 27 maca 2017 1

Bardziej szczegółowo

ĆWICZENIE 7 OBRAZOWANIE

ĆWICZENIE 7 OBRAZOWANIE Komputerowe Metod Optki lab. Wdział Fizki, Politechnika Warszawska ĆWICZENIE 7 OBRAZOWANIE Celem ćwiczenia jest zasmulowanie działania układów obrazującch w świetle monochromatcznm oraz przeprowadzenie

Bardziej szczegółowo

PODSTAWY DYFRAKCJI WYBRANE ZAGADNIENIA DYFRAKCJI FRAUNHOFERA Krzysztof

PODSTAWY DYFRAKCJI WYBRANE ZAGADNIENIA DYFRAKCJI FRAUNHOFERA Krzysztof PODSTAWY DYFRAKCJI WYBRANE ZAGADNIENIA DYFRAKCJI FRAUNHOFERA prof. dr hab. inż. Krzysztof Patorski Krzysztof Niniejsza część wykładu obejmuje wprowadzenie do dyfrakcji, opis matematyczny z wykorzystaniem

Bardziej szczegółowo

Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] -częstotliwość.

Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] -częstotliwość. Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali

Bardziej szczegółowo

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi

Bardziej szczegółowo

9. 1. KOŁO. Odcinki w okręgu i kole

9. 1. KOŁO. Odcinki w okręgu i kole 9.. KOŁO Odcinki w okęgu i kole Cięciwa okęgu (koła) odcinek łączący dwa dowolne punkty okęgu d Śednica okęgu (koła) odcinek łączący dwa dowolne punkty okęgu pzechodzący pzez śodek okęgu (koła) Pomień

Bardziej szczegółowo

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w popzednim odcinku 1 Zasada zachowania pędu p Δp i 0 p i const. Zasady zachowania: pęd W układzie odosobnionym całkowity pęd (suma pędów wszystkich ciał) jest wielkością stałą. p 1p + p p + = p 1k + p

Bardziej szczegółowo

Optyka Fourierowska. Wykład 7 Filtracja przestrzenna

Optyka Fourierowska. Wykład 7 Filtracja przestrzenna Optka Fourierowska Wkład 7 Filtracja przestrzenna Optczna obróbka inormacji Układ liniowe są bardzo użteczne w analizie układów obrazującch Koncepcja ta pozwala na analizę pól optcznch w dziedzinie częstości

Bardziej szczegółowo

Dyfrakcja światła na otworze kołowym, czyli po co fizykowi całkowanie numeryczne?

Dyfrakcja światła na otworze kołowym, czyli po co fizykowi całkowanie numeryczne? FOTON 117, Lato 01 35 Dyfrakcja światła na otworze kołowym, czyli po co fizykowi całkowanie numeryczne? Jerzy Ginter Uniwersytet Warszawski Postawienie problemu Światło ma naturę falową, ulega więc dyfrakcji.

Bardziej szczegółowo

Wykład 27 Dyfrakcja Fresnela i Fraunhofera

Wykład 27 Dyfrakcja Fresnela i Fraunhofera Wykład 7 Dyfrakcja Fresnela i Fraunhofera Zjawisko dyfrakcji (ugięcia) światła odkrył Grimaldi (XVII w). Polega ono na uginaniu się promieni świetlnych przechodzących w pobliżu przeszkody (np. brzeg szczeliny).

Bardziej szczegółowo