ĆWICZENIE 4. PODSTAWY OPTYKI FALOWEJ. GENERACJA I ANALIZA ELEMENTARNYCH FRONTÓW FALOWYCH
|
|
- Emilia Łucja Piotrowska
- 8 lat temu
- Przeglądów:
Transkrypt
1 ĆWICZENIE 4. PODSTAWY OPTYKI FALOWEJ. GENERACJA I ANALIZA ELEMENTARNYCH FRONTÓW FALOWYCH Wstęp teoetczn Font falow Światło jest falą elektomagnetczną, zatem związana jest z nią funkcja Ψ (,t, opisująca dowolną składową wektoa pola elektcznego lub magnetcznego, któa spełnia ównanie falowe ψ ψ =, v t ( gdzie v jest pędkością światła w danm ośodku. Świetlne font falowe mogą mieć w ogólności óżne kształt i jednm oganiczeniem jest tutaj ównanie (. Z paktcznego punktu widzenia szczególnie ważne są monochomatczne fale sfeczne, płaskie i clindczne. Znajomość ich opisu a pzede wszstkim umiejętność fomowania wmienionch fontów falowch w układzie optcznm ułatwi nam powadzenie ekspementów z zakesu optki falowej. Fala sfeczna Rs..
2 W układzie współzędnch sfecznch (Rs. fala sfeczna jest opisana funkcją: A ψ (, t = cos( km ωt + ϕ (a lub w zapisie zespolonm funkcją: ψ (, t = A i e ( kmωt+ ϕ (b gdzie ϕ pzedstawia fazę początkową, jest współzędną adialną czli odległością punktu obsewacji od początku układu, k oznacza długość wektoa falowego tzn. k=π/λ, ω jest częstością kołową fali tzn. ω = πν, λ i ν są odpowiednio długością i częstością fali monochomatcznej. Powiezchnie stałej faz fali sfecznej są współśodkowmi sfeami. Faza k-ωt+ϕ we wzoach (a i (b odpowiada fali sfecznej ozbieżnej, któej źódłem jest początek układu. Faza k+ωt+ϕ opisuje falę sfeczną zbiegającą do początku układu z Rs. 6. Najefektwniejsz, paktczn sposób sfomowania fali sfecznej zapewnia układ soczewka - otwoek filtując, pzedstawion na Rs.. Rs.. Smbolem S na Rs. oznaczono soczewkę lub obiektw mikoskopow zamontowan w mogącm się obacać uchwcie U. Powższ obót umożliwia poziom pzesuw elementu S względem małego otwoka filtującego OF. Otwoek jest pzesuwan peczjnie dwoma śubami mikometcznmi. Jedna z nich M, pokazana na Rs. umożliwia uch otwoka w płaszczźnie sunku, duga w kieunku postopadłm. Kied wiązka laseowa zostanie zogniskowana dokładnie w obszaze otwoka filtującego, wówczas za otwokiem pojawia się intenswna pole świetlne, będące ealnm pzbliżeniem ozbieżnej fali sfecznej. Tpowa wielkość śednic otwoka dla światła widzialnego wnosi od kilku do kilkudziesięciu mikometów. etap: Sfomowanie fali sfecznej za pomocą układu z Rs. można podzielić na następujące Ustawienie soczewki lub obiektwu S postopadle do kieunku wiązki laseowej.
3 Znalezienie pz pomoc śub mikometcznej położenia otwoka OF, odpowiadającego największemu natężeniu światła w jego obębie. Optmalne położenie znajdujem obsewując otwoek od ston pzeciwnej do kieunku oświetlenia wiązką laseową. 3 Pzesuwanie elementu S popzez obót uchwtu U w kieunku odpowiadającm coaz intenswniejszemu oświetleniu otwoka. Jednocześnie nieznacznie pzemieszczam otwoek OF śubami mikometcznmi ab uzskać jego najbadziej optmalne położenie. UWAGA Pz pojawieniu się dużego natężenia światła w obębie otwoka nie patzm dalej weń bezpośednio a obsewujem plamkę świetlną na katce papieu umieszczonej za otwokiem. Justowanie powadzim do chwili pojawienia się na papieze możliwie najjaśniejszej plamki świetlnej. Fala płaska Monochomatczna fala płaska, popagująca się wzdłuż kieunku wektoa falowego k jest opisana funkcją: i( kmωt+ ϕ (3 ψ (, t = Ae Wekto k jest postopadł do powiezchni stałej faz, któe są w tm pzpadku płaszczznami. Wkes części zeczwistej funkcji ψ (, t = 0 wzdłuż kieunku wektoa k pz paametze ϕ = 3 π jest pokazan na Rs. 3. Rs. 3. 3
4 W układzie optcznm falę płaską można sfomować pz użciu zjustowanego otwoka filtującego OF, umieszczonego w ognisku soczewki S tak jak to pokazano na Rs. 4. Rs. 4. Za soczewką S pojawia się wiązka świetlna, będąca pzbliżeniem fali płaskiej. Wstępne położenie soczewki S za otwokiem OF dobieam w ten sposób, że śednica wjściowej wiązki świetlnej obsewowanej na ekanie powinna bć stała niezależnie od odległości ekanu od soczewki S. Optmalne położenie soczewki egulujem obsewując pążki intefeencjne odbite od powiezchni wzocowej płtki płaskoównoległej. Optczna tansfomata Fouiea Całka dfakcjna, któa w ogólności ma fomę: e U ( xo, o d iλ ik = U ( x, K( θ dx (4 gdzie k=π/λ ; U(x 0, 0 jest amplitudą pola dfakcjnego w punkcie P 0 (x 0, 0 płaszczzn wjściowej Z = z, U(x, jest amplitudą pola padającego w punkcie P (x, płaszczzn Z=0, jest długością wektoa = P P 0, paamet K(θ opisuje cznnik kątow zależn od nachlenia wektoa do płaszczzn OX Y. Odpowiednia geometia jest pokazana na Rs.5. Rs. 5. Wekto P P 0 ma współzędne =[x0 -x, 0 -,z] i jego długość wnosi: 4
5 ( x0 x + ( 0 = z + (5 z Często pz opisie zjawisk dfakcjnch stosujem pzbliżenie pzosiowe, odpowiadające małm kątom wektoa z osią OZ, co jest ównoważne waunkowi: ( x0 x + ( 0 z MAX << (6 Wówczas pzjmujem ównież, że cznnik K(θ w całce (4 jest stał i ówn oaz ozwijam piewiastek w ównaniu (5 w szeeg Taloa, oganiczając się do dwóch piewszch członów ozwinięcia. W ten sposób otzmujem: ( x0 x + ( 0 = z + z (7 Możem zauważć, że małe zmian długości wokół watości z w mianowniku ważenia (4 nie mają istotnego znaczenia i można zastąpić iloaz e ik ik pod całką dfakcjną wielkością e. Ostatecznie zależność (7 powadzi do następującej pzosiowej fom całki z Fesnela: ikz ik e [( x0 x + ( 0 ] z U ( x, = U ( x, e dxd (8 o o iλz Wzó (8 wnika bezpośednio z waunku (6, któ z kolei zachodzi wted, gd obsza punktów obsewacji (x 0, 0 i całkowania (x, są odpowiednio oganiczone. W pzpadku punktów (x, z płaszczzn wejściowej Z=0 odpowiada to dfakcji na obiektach o oganiczonch apetuach. Jeśli nieówność (6 zachodzi mówim ównież, że znajdujem się w stefie dfakcji Fesnela. ik ( x + z Całka (8 zostanie dalej uposzczona, jeśli zaniedbam pod nią dodatkowo cznnik e. Można to uzskać na dwa sposob: a umieszczając za obiektem o amplitudzie zespolonej U(x, optczn element ik ( x + z dwuwmiaow o tansmitancji e. Jest to ównoważne pojawieniu się pod całką ik ( x + z dodatkowego cznnika e b zwiększając odległość obsewacji z, żeb bł spełnion waunek k( x + z MAX << π z >> x + λ MAX (9 W takim pzpadku ważenie (8 pzjmuje postać całki dfakcjnej Faunhohea: ikz ik ik e [ x0 + 0 ] [ x0x + 0 ] z z U ( xo, o e U ( x, e dxd iλz = (0 Definicja dwuwmiaowej tansfomat Fouiea funkcji U(x, : 5
6 F u ( f x, f [ f xx + f ] dx d iπ = U ( x, e ( waz ze wzoem (0 powadzi do wniosku, że natężenie I(x 0, 0 = U(x 0, 0 pola dfakcjnego Faunhofea jest z dokładnością do stałej natężeniową tansfomatą Fouiea funkcji U(x,, tzn: I x0 0 ( x0, 0 = Fu f x =, f = α ( λz λz gdzie α=/λ z = const. Zgodnie z naszą dskusją z punktów a i b obaz dfakcjn Faunhofea, będąc jednocześnie optczną tansfomatą Fouiea tansmitancji U(x, powstaje: Ad a w płaszczźnie ogniskowej soczewki, umieszczonej za obiektem o tansmitancji U(x,, oświetlonm falą płaską - Rs. 6. F u U ( x, Rs. 6. ik ( x + z Wnika to z tego, że funkcja e opisuje w pzbliżeniu pzosiowm Fesnela tansmitancję soczewki cienkiej o ogniskowej z. Inaczej mówiąc, gdb oświetlić falą płaską ik ( x + z obiekt z płaszczzn Z=0 mając tansmitancję e, wówczas zgodnie z pzosiową całką Fesnela (4 światło zostanie skupione za obiektem z punkcie [x 0 =0, 0 =0, Z=z] Ad b w płaszczźnie Z=const dostatecznie odległej od obiektu, dla któej spełnion jest waunek (6. Optczna tansfomata Fouiea apetua postokątna Obiekt o apetuze postokąta o bokach l x i l (pzeźoczst postokąt na czanm niepzeźoczstm tle - Rs.7 ma tansmitancję opisaną funkcją ectus x x =, ect ect lx l U ( (3 6
7 l l x Rs.7 Zgodnie z analizą fouieowską funkcja natężeniowa I 0 (x 0, 0 ze wzou ( ma w tm pzpadku z dokładnością do stałej postać: lx x0 I x0, 0 = sinc sinc λz l λz 0 ( (4 gdzie sin( πx sinc( x = πx (5 Wkes funkcji (8 wzdłuż linii 0 =0 jest pokazan na Rs. 8, a zdjęcie obazu dfakcjnego Faunhofea apetu postokątnej w postaci chaaktestcznego kzża pzedstawia Rs. 9 (kontast jest zmniejszon ab uwpuklić słabe pążki. Rs. 8. 7
8 Rs. 9. Ze wzoów (4 i (5 wnika, że zea w obazie dfakcjnm (ciemne obsza, gdzie natężenie światła spada do zea mają współzędne x o λz = m m C l x wzdłuż postej 0 =0 (6 o λz = m m C l wzdłuż postej x 0 =0 (7 Optczna tansfomata Fouiea apetua kołowa Obiekt o apetuze kołowej o pomieniu R opisan jest funkcją cic( /R gdzie ( = x + - Rs. 0. Rs. 0. ma zgodnie ze wzoem następującą natężeniową tansfomatę Fouiea I ( x 0, 0 = I( 0 = kr J z kr0 z o (8 8
9 gdzie 0 = x0 + 0 oaz J oznacza funkcję Bessela piewszego odzaju i piewszego zędu. Obaz dfakcjn Faunhofea apetu kołowej posiada stuktuę pieścieniową i jest pokazan na Rs.. Rs. Z wkesu kwadatu funkcji Bessela zamieszczonego na Rs.. można znaleźć waunek odpowiadając ciemnm pieścieniom w obazie dfakcjnm, gdzie I( 0 = 0. Rs. Analiza matematczna powadzi do wniosku, że pomienie kolejnch ciemnch pieścieni opisuje ównanie: gdzie: β=,;,3; 3.4;... 0 = β λ z R (9 9
10 Zadania do wkonania ( Piewsze zajęcia z cklu - 4 h: Sfomowanie fali sfecznej ozbieżnej pz pomoc pinholi. Sfomowanie fali płaskiej (ustawiam układ tak, ab śednica ufomowanej wiązki nie zmieniała się na odcinku kilku metów. 3 Intefeencjna kontola jakości fali płaskiej. 4 Obsewacja obazu dfakcjnego Faunhofea bez pomoc soczewki. Oświetlam apetu falą płaską i wkonujem odpowiednie pomia obazów dfakcjnch w dalekiej płaszczźnie wjściowej, leżącej w stefie Faunhofea ( w naszm pzpadku z > m. Znając długość fali światła λ, obliczam długość boków apetu postokątnch i pomienie apetu kołowch ze wzoów (6, (7 i (9. 5 Obsewacja obazu dfakcjnego Faunhofea. Oświetlam apetu falą płaską i wkonujem odpowiednie pomia obazów dfakcjnch. Obaz ejestujem na mozaice CCD. Znając długość fali światła λ, obliczam długość boków apetu postokątnch i pomienie apetu kołowch. 6 Wznaczenie długości boków apetu postokątnch i pomieni apetu kołowch na podstawie pomiau pod mikoskopem. 7 Obsewacja widma Fouiea obiektu powielonego. Obaz ejestujem na mozaice CCD. 8 Obsewacja widma obiektu póbkowanego. Obaz ejestujem na mozaice CCD. UWAGA Należ chonić ocz pzed pomieniowaniem laseowm. W pzpadku lasea agonowego należ także uważać na odblaski, któe powstają na poszczególnch elementach układu optcznego. Pacownia Infomatki Optcznej WF PW Mazec 008 0
Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego.
Ćwiczenie 6 Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego. Interferometr Macha-Zehndera Interferometr Macha-Zehndera jest często wykorzystywany
Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne
Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Podstawy Działanie obrazujące soczewek lub układu soczewek
11. DYNAMIKA RUCHU DRGAJĄCEGO
11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie
Hologram gruby (objętościowy)
Hologram gruby (objętościowy) Wprowadzenie teoretyczne Holografia jest bardzo rozległą dziedziną optyki i na pewno nie dziwi fakt, że istnieją hologramy różnego typu. W zależności od metody zapisu hologramu,
Rys. 1 Pole dyfrakcyjne obiektu wejściowego. Rys. 2 Obiekt quasi-periodyczny.
Ćwiczenie 7 Samoobrazowanie obiektów periodycznych Wprowadzenie teoretyczne Jeśli płaski obiekt optyczny np. przezrocze z czarno-białym wzorem (dokładniej mówiąc z przeźroczysto-nieprzeźroczystym wzorem)
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 17, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 17, 01.12.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 16 - przypomnienie
Ćwiczenie 361 Badanie układu dwóch soczewek
Nazwisko... Data... Wdział... Imię... Dzień tg.... Godzina... Ćwiczenie 36 Badanie układu dwóch soczewek Wznaczenie ogniskowch soczewek metodą Bessela Odległość przedmiotu od ekranu (60 cm 0 cm) l Soczewka
Wyznaczanie promienia krzywizny soczewki płasko-wypukłej metodą pierścieni Newtona
Wyznaczanie poienia kzywizny soczewki płasko-wypukłej etodą pieścieni Newtona I. Cel ćwiczenia: zapoznanie ze zjawiskie intefeencji światła, poia poienia soczewki płasko-wypukłej. II. Pzyządy: lapa sodowa,
II.6. Wahadło proste.
II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia
PROPAGACJA PROMIENIOWANIA PRZEZ UKŁAD OPTYCZNY W UJĘCIU FALOWYM. TRANSFORMACJE FAZOWE I SYGNAŁOWE
PROPAGACJA PROMIENIOWANIA PRZEZ UKŁAD OPTYCZNY W UJĘCIU FALOWYM. TRANSFORMACJE FAZOWE I SYGNAŁOWE prof. dr hab. inż. Krzysztof Patorski Przedmiotem tej części wykładu są podstawowe transformacje fazowe
Fizyka elektryczność i magnetyzm
Fizyka elektryczność i magnetyzm W5 5. Wybrane zagadnienia z optyki 5.1. Światło jako część widma fal elektromagnetycznych. Fale elektromagnetyczne, które współczesny człowiek potrafi wytwarzać, i wykorzystywać
Mikroskop teoria Abbego
Zastosujmy teorię dyfrakcji do opisu sposobu powstawania obrazu w mikroskopie: Oświetlacz typu Köhlera tworzy równoległą wiązkę światła, padającą na obserwowany obiekt (płaszczyzna 0 ); Pole widzenia ograniczone
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 17, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 17, 0.04.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 16 - przypomnienie dyfrakcja
WSTĘP DO OPTYKI FOURIEROWSKIEJ
1100-4BW1, rok akademicki 018/19 WSTĘP DO OPTYKI FOURIEROWSKIEJ dr hab. Rafał Kasztelanic Wykład 4 Przestrzeń swobodna jako filtr częstości przestrzennych Załóżmy, że znamy rozkład pola na fale monochromatyczne
GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r.
GRAWITACJA Pawo powszechnego ciążenia (pawo gawitacji) Dwa punkty mateialne o masach m 1 i m pzyciągają się wzajemnie siłą popocjonalną do iloczynu ich mas i odwotnie popocjonalną do kwadatu ich odległości.
L(x, 0, y, 0) = x 2 + y 2 (3)
0. Małe dgania Kótka notatka o małych dganiach wyjasniające możliwe niejasności. 0. Poszukiwanie punktów ównowagi Punkty ównowagi wyznaczone są waunkami x i = 0, ẋi = 0 ( Pochodna ta jest ówna pochodnej
ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL
ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL X L Rys. 1 Schemat układu doświadczalnego. Fala elektromagnetyczna (światło, mikrofale) po przejściu przez dwie blisko położone (odległe o d) szczeliny
Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii.
Wykład: paca siły, pojęcie enegii potencjalnej. Zasada zachowania enegii. Uwaga: Obazki w tym steszczeniu znajdują się stonie www: http://www.whfeeman.com/tiple/content /instucto/inde.htm Pytanie: Co to
Ćwiczenie 1. Część teoretyczna
Ćwiczenie 1 Formowanie elementarnych frontów falowych. Zapoznanie się z podstawowymi elementami optycznymi i źródłami światła, które będą wykorzystywane podczas zajęć laboratoryjnych. Część teoretyczna
Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017
Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne
OPTYKA FALOWA. W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę
OPTYKA FALOWA W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę falową. W roku 8 Thomas Young wykonał doświadczenie, które pozwoliło wyznaczyć długość fali światła.
Moment pędu fali elektromagnetycznej
napisał Michał Wierzbicki Moment pędu fali elektromagnetycznej Definicja momentu pędu pola elektromagnetycznego Gęstość momentu pędu pola J w elektrodynamice definuje się za pomocą wzoru: J = r P = ɛ 0
Ćwiczenie 1. Rys. 1. W układzie współrzędnych sferycznych (Rys.1) fala sferyczna jest opisana funkcją: A (2a)
Ćwiczenie 1 Regulacja pinholi. Generacja fali płaskiej i sferycznej. Badanie jakości fali płaskiej na etalonie. Interferometr Michelsona. Doświadczenie Younga Część teoretyczna Światło jest falą elektromagnetyczną,
Modelowanie przepływu cieczy przez ośrodki porowate Wykład III
Modelowanie pzepływu cieczy pzez ośodki poowate Wykład III 6 Ogólne zasady ozwiązywania ównań hydodynamicznego modelu pzepływu. Metody ozwiązania ównania Laplace a. Wpowadzenie wielkości potencjału pędkości
Materiały pomocnicze dla studentów I roku do wykładu Wstęp do fizyki I Wykład 1
Mateiał pomocnicze dla studentów I oku do wkładu Wstęp do fizki I Wkład 1 I. Skala i Wekto. Skala: Jest to wielkość, któą można jednoznacznie okeślić za pomocą liczb i jednostek; a więc mająca jednie watość,
MECHANIKA OGÓLNA (II)
MECHNIK GÓLN (II) Semest: II (Mechanika I), III (Mechanika II), ok akademicki 2017/2018 Liczba godzin: sem. II*) - wykład 30 godz., ćwiczenia 30 godz. sem. III*) - wykład 30 godz., ćwiczenia 30 godz. (dla
Ćwiczenie 1. Część teoretyczna Światło jest falą elektromagnetyczną, zatem związana jest z nią funkcja ( r, t)
Ćwiczenie 1 Formowanie elementarnych frontów falowych. Zapoznanie się z podstawowymi elementami optycznymi i źródłami światła, które będą wykorzystywane podczas zajęć laboratoryjnych. Część teoretyczna
ODWZOROWANIE W OŚWIETLENIU KOHERENTNYM
ODWZOROWANIE W OŚWIETLENIU KOHERENTNYM prof. dr hab. inż. Krzysztof Patorski Przedmiotem tej części wykładu jest model matematyczny procesu formowania obrazu przez pojedynczy układ optyczny w oświetleniu
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 5, Radosław Chrapkiewicz, Filip Ozimek
Podstaw Fizki IV Optka z elementami fizki współczesnej wkład 5, 27.02.2012 wkład: pokaz: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wkład 4 - przpomnienie dielektrki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania (3.7), pomimo swojej prostoty, nie posiadają poza nielicznymi przypadkami ścisłych rozwiązań,
Promieniowanie dipolowe
Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A
Laboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 2. Dyfrakcja światła w polu bliskim i dalekim
Laboratorium optycznego przetwarzania informacji i holografii Ćwiczenie. Dyfrakcja światła w polu bliskim i dalekim Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdańska Gdańsk
Rys. 1 Interferencja dwóch fal sferycznych w punkcie P.
Ćwiczenie 4 Doświadczenie interferencyjne Younga Wprowadzenie teoretyczne Charakterystyczną cechą fal jest ich zdolność do interferencji. Światło jako fala elektromagnetyczna również może interferować.
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 Zasady dynamiki Newtona I II Każde ciało twa w stanie spoczynku lub pousza się uchem postoliniowym i jednostajnym, jeśli siły pzyłożone nie zmuszają ciała do zmiany tego stanu Zmiana
GEOMETRIA PŁASZCZYZNY
GEOMETRIA PŁASZCZYZNY. Oblicz pole tapezu ównoamiennego, któego podstawy mają długość cm i 0 cm, a pzekątne są do siebie postopadłe.. Dany jest kwadat ABCD. Punkty E i F są śodkami boków BC i CD. Wiedząc,
OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach.
OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach. Zagadnienia, które należy znać przed wykonaniem ćwiczenia: Dyfrakcja światła to zjawisko fizyczne zmiany kierunku rozchodzenia
Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.
Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować
Równania Maxwella. Wstęp E B H J D
Równania Maxwella E B t, H J D t, D, B 0 Równania materiałowe B 0 H M, D 0 E P, J E, gdzie: 0 przenikalność elektryczną próżni ( 0 8854 10 1 As/Vm), 0 przenikalność magetyczną próżni ( 0 4 10 7 Vs/Am),
Geodezja fizyczna. Siła grawitacji. Potencjał grawitacyjny Ziemi. Modele geopotencjału. Dr inż. Liliana Bujkiewicz. 23 października 2018
Geodezja fizyczna Siła gawitacji. Potencjał gawitacyjny iemi. Modele geopotencjału. D inż. Liliana Bujkiewicz 23 paździenika 2018 D inż. Liliana Bujkiewicz Geodezja fizyczna 23 paździenika 2018 1 / 24
LASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz
Zjawisko interferencji fal
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich
Ruch obrotowy. Wykład 6. Wrocław University of Technology
Wykład 6 Wocław Univesity of Technology Oboty - definicje Ciało sztywne to ciało któe obaca się w taki sposób, że wszystkie jego części są związane ze sobą dzięki czemu kształt ciała nie ulega zmianie.
Ruch dwu i trójwymiarowy
Wkład z fizki. Piot Posmkiewicz 1 W Y K Ł A D Ruch dwu i tójwmiaow 3-1 Wekto pzemieszczenia. JeŜeli uch odbwa się w dwu lub tzech wmiaach, to pzemieszczenie ma okeśloną zaówno watość, jak i kieunek w pzestzeni.
Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym
1.Wpowadzenie Wyznaczanie pofilu pędkości płynu w uociągu o pzekoju kołowym Dla ustalonego, jednokieunkowego i uwastwionego pzepływu pzez uę o pzekoju kołowym ównanie Naviea-Stokesa upaszcza się do postaci
podsumowanie (E) E l Eds 0 V jds
e-8.6.7 fale podsumowanie () Γ dl 1 ds ρ d S ε V D ds ρ d S ( ϕ ) 1 ρ ε D ρ D ρ V D ( D εε ) εε S jds V ρ d t j ρ t j σ podsumowanie (H) Bdl Γ μ S jds B μ j S Bds B ( B A) Hdl Γ S jds H j ( B μμ H ) ε
A r A r. r = , 2. + r r + r sr. Interferencja. Dwa źródła punktowe: Dla : Dla dużych 1,r2. błąd: 3D. W wyniku interferencji:
-- G:\AA_Wyklad \FIN\DOC\Inte.doc Intefeencja. Dwa źódła punktowe: (, t) A( ) ( k ω t) U cos (, t) A( ) ( k ω t) U cos Dla : 3D ( ) Dla : A D ( ) A Dla dużych, d, A A : A ( ) A( ) A A( ) błąd: 3D % ~ U
Rys. 1 Geometria układu.
Ćwiczenie 9 Hologram Fresnela Wprowadzenie teoretyczne Holografia umożliwia zapis pełnej informacji o obiekcie optycznym, zarówno amplitudowej, jak i fazowej. Dzięki temu można m.in. odtwarzać trójwymiarowe
Zjawisko interferencji fal
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich
POLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął
POLE MAGNETYCZNE W PÓŻNI W oku 8 Oested zaobsewował oddziaływanie pzewodnika, w któym płynął pąd, na igłę magnetyczną Dopowadziło to do wniosku, że pądy elektyczne są pzyczyną powstania pola magnetycznego
Wyznaczanie współczynnika sztywności drutu metodą dynamiczną.
Ćwiczenie M- Wyznaczanie współczynnika sztywności dutu metodą dynamiczną.. Ce ćwiczenia: pomia współczynnika sztywności da stai metodą dgań skętnych.. Pzyządy: dwa kążki metaowe, statyw, dut staowy, stope,
Prawa optyki geometrycznej
Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)
Na skutek takiego przemieszcznia ładunku, energia potencjalna układu pole-ładunek zmienia się o:
E 0 Na ładunek 0 znajdujący się w polu elektycznym o natężeniu E działa siła elektostatyczna: F E 0 Paca na pzemieszczenie ładunku 0 o ds wykonana pzez pole elektyczne: dw Fds 0E ds Na skutek takiego pzemieszcznia
9.1 POMIAR PRĘDKOŚCI NEUTRINA W CERN
91 POMIAR PRĘDKOŚCI NEUTRINA W CERN Rozdział należy do teoii pt "Teoia Pzestzeni" autostwa Daiusza Stanisława Sobolewskiego http: wwwtheoyofspaceinfo Z uwagi na ozważania nad pojęciem czasu 1 możemy pzyjąć,
Wykład 17: Optyka falowa cz.1.
Wykład 17: Optyka falowa cz.1. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza
Fizyka 10. Janusz Andrzejewski
Fizyka 10 Pawa Keplea Nauki Aystotelesa i Ptolemeusza: wszystkie planety i gwiazdy pouszają się wokół Ziemi po skomplikowanych toach( będących supepozycjami uchów Ppo okęgach); Mikołaj Kopenik(1540): planety
Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne
Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Podstawy Działanie obrazujące soczewek lub układu soczewek
Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje.
Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Działanie obrazujące soczewek lub układu soczewek wygodnie
lim = 0, gdzie d n oznacza najdłuższą przekątną prostokątów
9. CAŁKA POWÓJNA 9.. Całka podwójna w prostokącie Niech P będzie prostokątem opisanm na płaszczźnie OXY nierównościami: a < < b, c < < d, a f(,) funkcją określoną i ograniczoną w tm prostokącie. Prostokąt
Energia w geometrii Schwarzshilda
Enegia w geometii Schwazshilda Doga po jakiej pousza się cząstka swobodna pomiędzy dwoma zdazeniami w czasopzestzeni jest taka aby czas zmiezony w układzie cząstki był maksymalny. Rozważmy cząstkę spadającą
Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej
Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło widzialne jest to promieniowanie elektromagnetyczne (zaburzenie poła elektromagnetycznego rozchodzące
falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich
IV.2. Efekt Coriolisa.
IV.. Efekt oiolisa. Janusz B. Kępka Ruch absolutny i względny Załóżmy, że na wiującej taczy z pędkością kątową ω = constant ciało o masie m pzemieszcza się ze stałą pędkością = constant od punktu 0 wzdłuż
Zjawisko interferencji fal
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich
Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony
Modele odpowiedzi do akusza Póbnej Matuy z OPERONEM Matematyka Poziom ozszezony Listopad 00 W kluczu są pezentowane pzykładowe pawidłowe odpowiedzi. Należy ównież uznać odpowiedzi ucznia, jeśli są inaczej
Wykład I Krzysztof Golec-Biernat Optyka 1 / 16
Optyka Wykład I Krzysztof Golec-Biernat Fale 1 Uniwersytet Rzeszowski, 4 października 2017 Wykład I Krzysztof Golec-Biernat Optyka 1 / 16 Uwagi wstępne 30 h wykładu wykład przy pomocy transparencji lub
18 K A T E D R A F I ZYKI STOSOWAN E J
18 K A T E D R A F I ZYKI STOSOWAN E J P R A C O W N I A F I Z Y K I Ćw. 18. Wyznaczanie długości fal świetlnych diody laserowej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło jest promieniowaniem
DODATEK 6. Pole elektryczne nieskończenie długiego walca z równomiernie rozłożonym w nim ładunkiem objętościowym. Φ = = = = = π
DODATEK 6 Pole elektycne nieskońcenie długiego walca ównomienie ołożonym w nim ładunkiem objętościowym Nieskońcenie długi walec o pomieniu jest ównomienie naładowany ładunkiem objętościowym o stałej gęstości
FIZYKA 2. Janusz Andrzejewski
FIZYKA 2 wykład 8 Janusz Andrzejewski Fale przypomnienie Fala -zaburzenie przemieszczające się w przestrzeni i w czasie. y(t) = Asin(ωt- kx) A amplituda fali kx ωt faza fali k liczba falowa ω częstość
Rejestracja i rekonstrukcja fal optycznych. Hologram zawiera pełny zapis informacji o fali optycznej jej amplitudzie i fazie.
HOLOGRAFIA prof dr hab inŝ Krzysztof Patorski Krzysztof Rejestracja i rekonstrukcja fal optycznych Hologram zawiera pełny zapis informacji o fali optycznej jej amplitudzie i fazie a) Laser b) odniesienia
Ćwiczenie H2. Hologram Fresnela
Pracownia Informatyki Optycznej Wydział Fizyki PW Ćwiczenie H Hologram Fresnela 1. Wprowadzenie Holografia jest metodą zapisu całkowitej informacji o oświetlonym obiekcie. ejestracja informacji niesionej
Dualizm korpuskularno falowy
Dualizm korpuskularno falowy Fala elektromagnetyczna o długości λ w pewnych zjawiskach zachowuje się jak cząstka (foton) o pędzie p=h/λ i energii E = h = h. c/λ p Cząstki niosą pęd p Cząstce o pędzie p
KURS CAŁKI WIELOKROTNE
KURS CAŁKI WIELOKROTNE Lekcja Całki potójne ZADANIE DOMOWE www.etapez.pl Stona 1 Częśd 1: TEST Zaznacz popawną odpowiedź (tylko jedna jest pawdziwa). Pytanie 1 Obszaem całkowania w całce potójnej jest:
Wykład III. Interferencja fal świetlnych i zasada Huygensa-Fresnela
Wykład III Interferencja fal świetlnych i zasada Huygensa-Fresnela Interferencja fal płaskich Na kliszy fotograficznej, leżącej na płaszczyźnie z=0 rejestrujemy interferencję dwóch fal płaskich, o tej
Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej.
POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej. Wprowadzenie Przy opisie zjawisk takich
Optyka 2. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Optka Projekt współinansowan przez Unię Europejską w ramach Europejskiego Funuszu Społecznego Optka II Promień świetln paając na powierzchnię zwierciała obija się zgonie z prawem obicia omówionm w poprzeniej
KOOF Szczecin: Komitet Główny Olimpiady Fizycznej. Andrzej Wysmołek Komitet Główny Olimpiady Fizycznej, IFD UW.
LVII OLIMPIADA FIZYCZNA (007/008). Stopień III, zadanie doświadczalne D Źódło: Auto: Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej. Andzej Wysmołek Komitet Główny Olimpiady
Równanie Schrödingera
Równanie Schrödingera Maciej J. Mrowiński 29 lutego 2012 Zadanie RS1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = 0 ma następującą postać: A(a Ψ(x,0) = 2 x 2 ) gdy x [ a,a] 0 gdy x / [ a,a]
Laboratorium Optyki Falowej
Marzec 2019 Laboratorium Optyki Falowej Instrukcja do ćwiczenia pt: Filtracja optyczna Opracował: dr hab. Jan Masajada Tematyka (Zagadnienia, które należy znać przed wykonaniem ćwiczenia): 1. Obraz fourierowski
Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] - częstotliwość.
Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali
Fizyka Laserów wykład 5. Czesław Radzewicz
Fizyka Laserów wykład 5 Czesław Radzewicz rezonatory optyczne, optyczne wnęki rezonansowe rezonatory otwarte: Fabry-Perot E t E 0 R 0.99 T 1 0 E r R R R 0. R 0.9 E t = TE 0 e iδφ R 0.5 R 0.9 E t Gires-Tournois
A. POMIARY FOTOMETRYCZNE Z WYKORZYSTANIEM FOTOOGNIWA SELENOWEGO
10.X.010 ĆWCZENE NR 70 A. POMARY FOTOMETRYCZNE Z WYKORZYSTANEM FOTOOGNWA SELENOWEGO. Zestaw pzyządów 1. Ogniwo selenowe.. Źódło światła w obudowie 3. Zasilacz o wydajności pądowej min. 5A 4. Ampeomiez
Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki.
Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. 1. Równanie soczewki i zwierciadła kulistego. Z podobieństwa trójkątów ABF i LFD (patrz rysunek powyżej) wynika,
POMIAR PRĘDKOŚCI DŹWIĘKU METODĄ REZONANSU I METODĄ SKŁADANIA DRGAŃ WZAJEMNIE PROSTOPADŁYCH
Ćwiczenie 5 POMIR PRĘDKOŚCI DŹWIĘKU METODĄ REZONNSU I METODĄ SKŁDNI DRGŃ WZJEMNIE PROSTOPDŁYCH 5.. Wiadomości ogólne 5... Pomiar prędkości dźwięku metodą rezonansu Wyznaczanie prędkości dźwięku metodą
Badanie liniowego efektu elektrooptycznego
Badanie liniowego efektu elektrooptcznego Wstęp Rozwój telekomunikacji optcznej oraz techniki laserowej spowodował zapotrzebowanie na materiał i urządzenia, za pomocą którch można sterować wiązką świetlną.
INTERFERENCJA WIELOPROMIENIOWA
INTERFERENCJA WIELOPROMIENIOWA prof. dr hab. inż. Krzysztof Patorski W tej części wykładu rozważymy przypadek koherentnej superpozycji większej liczby wiązek niż dwie. Najważniejszym interferometrem wielowiązkowym
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania optyki półklasycznej Posłużymy się teraz równaniem (2.4), i Ψ t = ĤΨ ażeby wyprowadzić
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą
Wyznaczenie długości fali świetlnej metodą pierścieni Newtona
Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. Termin: 23 III 2009 Nr. ćwiczenia: 412 Temat ćwiczenia: Wyznaczenie długości fali świetlnej metodą pierścieni Newtona Nr.
ĆWICZENIE 5. HOLOGRAM KLASYCZNY TYPU FRESNELA
ĆWICZENIE 5. HOLOGAM KLASYCZNY TYP FESNELA Wstęp teoretyczny Wprowadzenie Holografia jest metodą zapisu całkowitej informacji o oświetlonym obiekcie. ejestracja informacji niesionej przez falę elektromagnetyczną
Geodezja fizyczna i geodynamika
Geodezja fizyczna i geodynamika Wstęp. Potencjał gawitacyjny iemi. Modele geopotencjału. D inż. Liliana Bujkiewicz 27 maca 2017 D inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 27 maca 2017 1
ĆWICZENIE 7 OBRAZOWANIE
Komputerowe Metod Optki lab. Wdział Fizki, Politechnika Warszawska ĆWICZENIE 7 OBRAZOWANIE Celem ćwiczenia jest zasmulowanie działania układów obrazującch w świetle monochromatcznm oraz przeprowadzenie
PODSTAWY DYFRAKCJI WYBRANE ZAGADNIENIA DYFRAKCJI FRAUNHOFERA Krzysztof
PODSTAWY DYFRAKCJI WYBRANE ZAGADNIENIA DYFRAKCJI FRAUNHOFERA prof. dr hab. inż. Krzysztof Patorski Krzysztof Niniejsza część wykładu obejmuje wprowadzenie do dyfrakcji, opis matematyczny z wykorzystaniem
Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] -częstotliwość.
Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali
Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu
Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi
9. 1. KOŁO. Odcinki w okręgu i kole
9.. KOŁO Odcinki w okęgu i kole Cięciwa okęgu (koła) odcinek łączący dwa dowolne punkty okęgu d Śednica okęgu (koła) odcinek łączący dwa dowolne punkty okęgu pzechodzący pzez śodek okęgu (koła) Pomień
Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie
napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 Zasada zachowania pędu p Δp i 0 p i const. Zasady zachowania: pęd W układzie odosobnionym całkowity pęd (suma pędów wszystkich ciał) jest wielkością stałą. p 1p + p p + = p 1k + p
Optyka Fourierowska. Wykład 7 Filtracja przestrzenna
Optka Fourierowska Wkład 7 Filtracja przestrzenna Optczna obróbka inormacji Układ liniowe są bardzo użteczne w analizie układów obrazującch Koncepcja ta pozwala na analizę pól optcznch w dziedzinie częstości
Dyfrakcja światła na otworze kołowym, czyli po co fizykowi całkowanie numeryczne?
FOTON 117, Lato 01 35 Dyfrakcja światła na otworze kołowym, czyli po co fizykowi całkowanie numeryczne? Jerzy Ginter Uniwersytet Warszawski Postawienie problemu Światło ma naturę falową, ulega więc dyfrakcji.
Wykład 27 Dyfrakcja Fresnela i Fraunhofera
Wykład 7 Dyfrakcja Fresnela i Fraunhofera Zjawisko dyfrakcji (ugięcia) światła odkrył Grimaldi (XVII w). Polega ono na uginaniu się promieni świetlnych przechodzących w pobliżu przeszkody (np. brzeg szczeliny).