DOSTĘPNOŚĆ I NIEZAWODNOŚĆ SYSTEMÓW NAWIGACYJNYCH MODELOWANIE STRUKTUR

Wielkość: px
Rozpocząć pokaz od strony:

Download "DOSTĘPNOŚĆ I NIEZAWODNOŚĆ SYSTEMÓW NAWIGACYJNYCH MODELOWANIE STRUKTUR"

Transkrypt

1 PECHT Cezary DOTĘPOŚĆ I IEZAWODOŚĆ YTEMÓW AWIGACYJYCH MODELOWAIE TRUKTUR treszczeie Problem wyzaczaia współrzędych pozycji dla potrzeb awigacji morskiej rozwaŝay jedyie w kategoriach błęd pomiar, wydaje się jŝ w skali globalej rozwiązay. Jego realizacja, z większą lb miejszą precyzją, jest jedyie fkcją zastosowaego rozwiązaia techiczego. W tej sytacji istotego zaczeia abierają rówie waŝe, choć często pomijae, eksploatacyje charakterystyki systemów radioawigacyjych takie jak: dostępość, i iezawodość. W artykle zaprezetowao wymagaia formale stawiae systemom awigacji morskiej w zakresie dostępości oraz metody modelowaia dostępości i iezawodości systemów, których strktry mogą zawierać elemety szeregowe i rówoległe. WTĘP Zdefiijmy pojęcia dostępości i iezawodości systemów awigacyjych w oparci o dostępą literatrę temat [5]: Dostępość system awigacyjego A (t) staowi prawdopodobieństwo, Ŝe wyodrębioy elemet (lb system) zajdje się w staie zdatości (pracy) w dowolie wybraym momecie czas t iezawodość system awigacyjego R [ t, t +τ ) staowi prawdopodobieństwo bezawaryjej pracy wyodrębioego elemet (lb system) w zadaym przedziale czas [ t, t + τ ). Aby rozwaŝać systemy awigacyje a poziomie ogólym w oparci o teorię iezawodości systemów iezbędym jest ścisłe rozwaŝeie jego strktry iezawodościowej przez co aleŝy rozmieć proces szeregowo-rówoległego modelowaia występjących pomiędzy elemetami związków oraz relacji. Oszacowaie charakterystyk kaŝdego z elemetów staowić moŝe podstawę do dalszego wioskowaia o formach bardziej złoŝoych. Biorąc powyŝsze pod wagę, dla dalszych rozwaŝań iezbędym jest zdefiiowaie pojęcia elemetów strktry system awigacyjego, które moŝliwia stosowaie w stosk do ich jedakowych miar i wskaźików iezawodości. iech modelem matematyczym złoŝoego system (obiekt) awigacyjego jest porządkoway zbiór:,,...,,,ψ (1) gdzie ( ) 1 1, - są zbiorami staów iezawodości elemetów.,..., W model tym ψ ozacza fkcję reprezetjącą strktrę awigacyją określoą jako: ψ.... () : 1 TT 539

2 Fkcja ta przyporządkowje staom elemetów sta system. W rozwaŝaiach awigacyjych elemetom jak i systemom moŝemy przyporządkowaa dwa stay (biare - B) związae z ich Ŝytkowaiem: 0 ozaczający sta iezdatości elemet strktry lb system awigacyjego oraz 1 ozaczający sta jego zdatości co zapiszemy jako: { 0,1} 1 =... = = = B =. (3) Dzięki tak sformalizowaego zapisowi kaŝdy z systemów, grp lb pojedyczych elemetów moŝe być iezaleŝie modeloway i w stosk do iego dokoywać moŝa iezaleŝych oszacować iezawodości i dostępości, aŝ do pełego model system włączie. zczególie aleŝy t podkreślić, Ŝe elemetami system mogą być zarówo obiekty fizycze (rządzeia) jak rówieŝ ie strktry, a których sta wpływają czyiki ie związae bezpośredio z wyposaŝeiem techiczym. Ozacza to moŝliwość dołączaia w ramach strktr dodatkowych elemetów zaleŝych od p: lokalych warków meteorologiczych (dla systemów optyczych, radiolokacyjych) cech propagacyjych ośrodka (dla systemów radioawigacyjych, akstyczych) czy właściwości hydrologiczych. Rówie istotym jest fakt, iŝ w ramach modelowaia strktr czy system dopszczalym jest zdefiiowaie dowolych podsystemów zawierających podzbiory elemetów strktr bardziej złoŝoych. Co sprowadza się do moŝliwości rozwaŝaia kryteriów iezawodościowych (iezawodość, dostępość) a dowolym podzbiorze elemetów. a poiŝszym rysk przedstawioo trzy przykładowe strktry awigacyje odoszące się do system DGP lb jego podstrktr. Pierwsza z ich (a) to ogóla, dwelemetowa, szeregowa strktra system DGP o postaci logiczej ( x, x ) = x x = mi( x x ) ψ (4) 1 1 1, gdzie x 1, x - są staami iezawodości elemetów e 1,e odpowiedio. a/ e 1 ystem GP e ystem wspomagaia róŝicowej b/ e e 3 4 e 5 tacja referecyja Model trasmisja korekt Odbiorik MK DGP psedoodległościowych c/ e e 7 8 e 9 Odbiorik Modlator 1 adajik 1 GP 1 e 6 Kompter e 10 e 11 e 1 e 13 Atea adawcza Odbiorik GP Modlator adajik Rys. 1. Wybrae strktry awigacyje wchodzące w skład system DGP. a/ strktra ogóla system, b/ strktra trasmisji korekt psedoodległościowych, c/ strktra stacji referecyjej [5] ystem DGP jest strktrą bardzo złoŝoą stąd jego charakterystyki takie jak dostępość czy iezawodość zyskiwać moŝa jedyie a drodze aalizy statystyczej 540 TT

3 obejmjącej reprezetatywą próbę pomiarową. Ze względ a dŝą złoŝoość procesów wpływających a stay zdatości (pracy lb awarii) występjących w ob elemetach opis probabilistyczy proces pracy jest a dzień dzisiejszy praktyczie iemoŝliwy do wykoaia. Drga z przywołaych strktr (b) opisje proces trasmisji korekt psedoodległościowych w relacji stacja referecyja-odbiorik Ŝytkowika. Jest oa podstrktrą strktry (a) wchodząc w skład jej elemet e. a wagę zasłgje, iŝ elemety strktry (b) mają charakter zarówo rządzeń techiczych, których iezawodościowe charakterystyki techicze moŝliwiają wyzaczaie róŝorodych wskaźików iezawodościowych, ale zawiera oa rówieŝ elemet e5 - model trasmisji korekt psedoodległościowych ie będący tworem techiczym. W przypadk gdyby dało się w sposób aalityczy (probabilistyczy) opisać model trasmisji korekt psedoodległościowych będzie moŝliwym zyskaie w stosk do iego aalogiczych charakterystyk jak w przypadk pozostałych elemetów. W kosekwecji moŝliwi to opis matematyczy całej strktry (b). Trzecia ze strktr (c) jest typową kostrkcją szeregowo-rówoległą stacji referecyjej DGP o postaci logiczej: ψ ( x6, x7, x8, x9, x10, x11, x1, x13 ) = x6 [( x7 x8 x9 ) ( x10 x11 x1 )] x13 gdzie x 6, x7,..., x13 - są staami iezawodości elemetów e 6, e7,..., e13 odpowiedio. 1. KATEGORIE DOTĘPOŚCI YTEMÓW AWIGACJI MORKIEJ, (5) Problematyka dostępości i iezawodości systemów radioawigacyjych często porszay jest przez międzyarodowe orgaizacje działające a rzecz bezpieczeństwa a morz. Jedą z ich jest Międzyarodowe Zrzeszeie Zarządów Latari Morskich (ag.: Iteratioal Associatio of Lighthose Athorities - IALA). Zdaiem IALA racjoalym rozwiązaiem klasyfikjącym jakościowo systemy awigacji morskiej jest Ŝycie parametr dostępość i iezawodość w cel dokoywaia aalizy jakościowej i celowości wystawioych systemów awigacyjych. Z daych gromadzoych przez IALA wyika Ŝe [1, ]: główe latarie morskie, światła abieŝika, oraz światła jedostek wiy mieć dostępość większą od 99,8%, ie światła a określoych bdowlach albo dŝych pławach awigacyjych wiy mieć dostępość przewyŝszającą czasami zaczie wartość 99%, małe pławy awigacyje wiy mieć dostępość od 97% do 99,9% i jest to zaleŝioe od miejscowych warków, wymagań Ŝytkowików, sta techiczego rządzeń i typ zasilaia. Dae IALA odośie systemów radioawigacyjych przyjmowały miimalą dostępość w przybliŝei rówą 99,6%. Dostępość dla poszczególych kategorii, staloych przez IALA, powia wyosić [1,]: kategoria 1 - dostępość powyŝej 99,8%, kategoria - dostępość powyŝej 99,0%, kategoria 3 - dostępość powyŝej 95,0%. Z przedstawioego podział wyika, iŝ miimaly poziom dostępości system awigacyjego ie powiie być miejszy od 95.0%. TT 541

4 . MODELOWAIE MATEMATYCZE DOTĘPOŚCI I IEZAWODOŚCI YTEMÓW AWIGACYJYCH iezawodość system, przez która aleŝy rozmieć prawdopodobieństwo jego bezawaryjej pracy w określoym czasie jest fkcją związaą z iezawodościami poszczególych jego elemetów. Rodzaj tej fkcji zaleŝy od właściwości poszczególych elemetów oraz sposob orgaizacji system, przez który ozaczamy sposób połączeia jego elemetów. Wśród systemów wyróŝia się 3 podstawowe formy orgaizacji (realizacji połączeń): strktra szeregowa w której warkiem zdatości system jest zdatość wszystkich jego elemetów składowych, strktra rówoległa w której warkiem zdatości system jest zdatość co ajmiej jedego z elemetów składowych, strktra mieszaa w której występją elemety (zespoły) o strktrze szeregowej i rówoległej. ystemy rówoległe tworzoe są poprzez rezerwowaie ich elemetów, przez które rozmiemy zwielokrotieie w systemie jego elemetów pełiących tę sama fkcję (przezaczeie) moŝliwiające w przypadk awarii tego elemet wykorzystaie elemet zastępczego. Wśród systemów rówoległych, w zaleŝości od sposob realizacji rezerwowaia i aprawy, moŝa wyróŝić: rówoległy z rezerwą pasywą, bez aprawy, rówoległy z rezerwą pasywą, z aprawą, rówoległy z rezerwą aktywą, bez aprawy, rówoległy z rezerwą aktywą, z aprawą. W systemach z aktywą rezerwą rządzeie rezerwowe pomimo, ze ie wykoje fkcji decydjącej o staie pracy system przebywa w tzw. staie czwaia ozaczającym sta jego pracy. Potoczie moŝa stwierdzić, iŝ jest oo włączoe, lecz ie jest podłączoe do system. W przypadk systemów z rezerwą pasywą rządzeie rezerwowe jest wyłączoe. Uzpełieia wymaga rówieŝ pojęcie aprawy i jej brak (bez aprawy). ystem z aprawą ozacza taką strktrę iezawodościową, w której po wystąpiei szkodzeia rządzeie rezerwowe zostaie włączoe w system, a operator podejmie działaia zmierzające do aprawy szkodzoego elemet. atomiast w przypadk systemów bez aprawy operator system podejmie działaia aprawcze dopiero po szkodzei wszystkich elemetów rezerwowych strktry rówoległej..1. ystemy szeregowe ZłoŜoe systemy awigacyje składają się z wiel elemetów systemów składowych. Modelowaie ich charakterystyk iezawodościowych polega a wyzaczai miar opisjących cechy eksploatacyje dla poszczególych części składowych połączoych rówolegle w bloki. Układ, który w te sposób powstaie azywamy kładem szeregowym. Blok 1 Blok Blok 3 Rys.. ystem o iezawodościowej strktrze szeregowej 54 TT

5 Podczas ormalej pracy kaŝdy z bloków posiada określoą iezawodość i co ajistotiejsze szkodzeia poszczególych bloków są iezaleŝe od siebie. Uszkodzeie pojedyczego blok powodje awarię całego system. Czas Ŝycia system τ moŝa opisać zaleŝością [4]: τ = mi{ τ1, τ,... τ} (6) gdzie τ k = 1,,...,, określa zmieą losową ozaczającą czas Ŝycia k-tego elemet. Ozacza to, Ŝe system legie szkodzei po czasie po którym legie szkodzei elemet posiadający ajkrótszy czas Ŝycia. Fkcję iezawodości moŝa wyzaczyć przy wykorzystai fkcji itesywości szkodzeń kaŝdego z elemetów składowych postaci: λ t, k = 1,,...,, o postaci k ( ) t ( t) exp λ ( x) dx Rk = k dla k = 1,,..., 0 (7) lb w alteratywej postaci: t t R( t) = Rk ( t) = exp λk ( x) dx = exp λk ( x) dx. k = 1 k = k = 1 (8) Wartość dla system wyiesie = +,..., i p. (9).. ystemy rówoległe ystem posiada iezawodościową strktrę rówoległą jeśli jego awaria astępje w momecie szkodzeia ostatiego z jego elemetów. ystem jest w staie zdatości jeŝeli pracje co ajmiej jede z jego elemetów, a jego czas Ŝycia τ spełia zaleŝość [4]: { τ, τ,... τ } τ = max 1. (10) Istotę połączeń system rówoległego przedstawioo a poiŝszym rysk. Blok 1 Blok Blok Rys. 3. ystem o iezawodościowej strktrze rówoległej W tego typ systemach moŝe występować bloków rezerwowaia, stąd oczywistym jest Ŝe w ramach zwiększaia ich liczby wzrastają charakterystyki iezawodościowe całego TT 543

6 system, jedakŝe aleŝy mieć a wadze, Ŝe odbywa się to kosztem akładów fiasowych a system. W zawiązk z powyŝszym iezawodość system o strktrze rówoległej opiszemy jako fkcje iezawodości jego elemetów postaci: R ( t) = F( t) = 1 Fk ( t) = 1 [ 1 Rk ( t) ] k = 1 1 dla t 0. (11) k = 1 ystem rówoległy z pasywą rezerwą, bez aprawy Jeśli czasy pracy ob bloków ozaczymy odpowiedio x i oraz y i, wtedy średi czas pomiędzy szkodzeiami rówoległego system pasywego bez aprawy jest określoa rówaiem P, B 1 1 = xi i= 1 + i= 1 y i = + Y (1) gdzie: - jest całkowitą liczbą szkodzeń system, - średi czas pomiędzy szkodzeiami elemet, - średi czas pomiędzy szkodzeiami elemet Y. Y Podczas prowadzeia aaliz iezawodości takiego kład aleŝy dodatkowo jeszcze względić prawdopodobieństwo p tego, Ŝe w momecie przełączeia bloków, blok Y moŝe zadziałać iepoprawie, bądź ie zadziałać wcale. Po przekształcei rówaie przyjmje postać P,B ( p ) Y = + 1 (13) ystem rówoległy z pasywą rezerwą, z aprawą W tej strktrze iezawodościowej system składa się z dwóch bloków: i Y połączoych rówolegle. Aby system działał poprawie jede z bloków msi być w staie zdatości. JeŜeli zepsje się blok atomatyczie włączay jest blok Y zway iekiedy blokiem rezerwowym i system adal działa poprawie. W czasie pracy blok rezerwowego dokoywaa jest aprawa blok, czyiąc takie rozwiązaie z aprawą. Poddajmy aalizie oszacowaie średiego czas pomiędzy szkodzeiami takiego system. iech będzie liczbą szkodzeń blok w czasie jego Ŝytkowaia T postaci: ( ) T = + Y. (14) Blok Y zajdzie się w staie pracy, podczas sta awarii blok. Liczba awarii system moŝe być oszacowaa jako: gdzie: - liczba awarii blok, - liczba awarii system. MTTR = (15) Y 544 TT

7 Jeśli charakterystyki iezawodościowe ob bloków i Y są idetycze, z czym ajczęściej mamy do czyieia wtedy: ( ) P, = + MTTR. (16) Podobie jak w poprzediej strktrze aleŝy dodatkowo rozwaŝyć prawdopodobieństwo p tego Ŝe w momecie przełączeia bloków, blok Y moŝe zadziałać iepoprawie, bądź ie zadziałać wcale. W takim przypadk otrzymamy oraz = p + ( 1 p ) MTTR Y (17) = ( + MTTR ) = p + ( 1 p ) + MTTR Y. (18) ystem rówoległy z aktywą rezerwą, bez aprawy Bloki i Y pracją w tym samym czasie pomimo tego, Ŝe aby system działał poprawie wystarczyłoby, aby pracował tylko jede z bloków. Awaria system astępje w wyik szkodzeia dwóch bloków i wtedy dopiero zostaje wykoywaa aprawa szkodzoych elemetów. Jeśli elemety i Y są idetycze wtedy fkcja iezawodości przyjmie postać: R λt λt ( t) = e e. (19) Wartość system wyiesie 3 =. (0) Uwzględiając dodatkowe prawdopodobieństwo p otrzymamy 3 p =. (1) ystem rówoległy z aktywą rezerwą, z aprawą Bloki i Y pracją w tym samym czasie pomimo tego, Ŝe aby system działał poprawie wystarczyłoby aby pracował tylko jede z bloków. Awaria system astępje w wyik szkodzeia dwóch bloków. Wartość system obliczymy jako: i MTTR = 1+ 1 () i MTTR gdzie i - liczba rówoległych elemetów. TT 545

8 PODUMOWAIE W praktyce techiczej bardzo rzadko się zdarza, Ŝe mamy do czyieia z jedolitymi strktrami: szeregową lb rówoległą. ajczęściej występjącą strktrą jest strktra mieszaą, zawierająca zarówo połączeia szeregowe jak i rówoległe. Określaie charakterystyk iezawodościowych takich systemów składa się z kilk etapów. Pierwszym z ich jest określaie elemetów o iezawodościowej strktrze rówoległej, które w dalszej kolejości moŝliwiają wyzaczeie charakterystyk całej strktry szeregowej. BIBLIOGRAFIA 1. Iteratioal Associatio Of Marie Aids To avigatio Ad Lighthose Athorities, Gide to the Availability ad Reliability of Aids to avigatio Iteratioal Associatio Of Marie Aids To avigatio Ad Lighthose Athorities, Gide to the Availability ad Reliability of Aids to avigatio - Theory ad Examples. December Iteratioal Associatio Of Marie Aids To avigatio Ad Lighthose Athorities, World Wide Radio avigatio Pla, Editio 1. ait Germai e Laye, Frace Koźiewska I., Włodarczyk M., Modele odowy, iezawodości i masowej obsłgi. Państwowe Wydawictwo akowe, Warszawa, pecht C, Availability Reliability ad Cotiity Model of Differetial GP Trasmissio. Aal of avigatio o 5/003, Gdyia 003. AVAILABILITY AD RELIABILITY OF THE AVIGATIO YTEM TRUCTURE MODELLIG Abstract The problem of fixig positio coordiates for avigatioal eeds cosidered oly i terms of measremet error seems to have already bee solved i a global scale. Its realizatio with higher or lower precisio is oly a fctio of the techical soltio adopted. Therefore, other, eqally importat, althogh ofte omitted, exploitatio parameters of avigatio systems become crcial. These are: availability ad reliability. This article attempts formal reqiremets for avigatio systems related to availability ad reliability ad theoretical isses for its mathematical modelig, where the strctre strctres are parallel or coected i series. Atorzy: prof. dr hab. iŝ. Cezary pecht Akademia Morska w Gdyi, c.specht@geodezja.pl 546 TT

ANALIZA POLA W STRUKTURZE NIEJEDNORODNEJ METODĄ ELEMENTÓW BRZEGOWYCH

ANALIZA POLA W STRUKTURZE NIEJEDNORODNEJ METODĄ ELEMENTÓW BRZEGOWYCH Bartosz WALESKA AALZA POLA W STRKTRZE EJEDORODEJ METODĄ ELEMETÓW BRZEOWYC STRESZCZEE iiejszy artykł opisje metodę elemetów brzegowych w aalizie pola w strktrze iejedorodej. Zaprezetowao algorytm rozwiązywaia

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

Chemia Teoretyczna I (6).

Chemia Teoretyczna I (6). Chemia Teoretycza I (6). NajwaŜiejsze rówaia róŝiczkowe drugiego rzędu o stałych współczyikach w chemii i fizyce cząstka w jedowymiarowej studi potecjału Cząstka w jedowymiarowej studi potecjału Przez

Bardziej szczegółowo

2. Schemat ideowy układu pomiarowego

2. Schemat ideowy układu pomiarowego 1. Wiadomości ogóle o prostowikach sterowaych Układy prostowikowe sterowae są przekształtikami sterowaymi fazowo. UmoŜliwiają płya regulację średiej wartości apięcia wyprostowaego, a tym samym średiej

Bardziej szczegółowo

ZASTOSOWANIE AKTYWNEJ SIECI GEODEZYJNEJ ASG- EUPOS W NAWIGACJI

ZASTOSOWANIE AKTYWNEJ SIECI GEODEZYJNEJ ASG- EUPOS W NAWIGACJI ZASTOSOWANIE AKTYWNEJ SIECI GEODEZYJNEJ ASG- EUPOS W NAWIGACJI Cezary SPECHT Akademia Maryarki Wojeej w Gdyi, 81-103 Gdyia, ul. iż. J. Śmidowicza 69, c.specht@geodezja.pl Streszczeie. Systemy awigacji

Bardziej szczegółowo

Matematyka finansowa 06.10.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVII Egzamin dla Aktuariuszy z 6 października 2008 r.

Matematyka finansowa 06.10.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVII Egzamin dla Aktuariuszy z 6 października 2008 r. Komisja Egzamiacyja dla Aktuariuszy XLVII Egzami dla Aktuariuszy z 6 paździerika 2008 r. Część I Matematyka fiasowa WERSJA TESTU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut . Kredytobiorca

Bardziej szczegółowo

Lista 6. Estymacja punktowa

Lista 6. Estymacja punktowa Estymacja puktowa Lista 6 Model metoda mometów, rozkład ciągły. Zadaie. Metodą mometów zaleźć estymator iezaego parametru a w populacji jedostajej a odciku [a, a +. Czy jest to estymator ieobciążoy i zgody?

Bardziej szczegółowo

SYSTEM OCENY STANU NAWIERZCHNI SOSN ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI BITUMICZNYCH W SYSTEMIE OCENY STANU NAWIERZCHNI SOSN

SYSTEM OCENY STANU NAWIERZCHNI SOSN ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI BITUMICZNYCH W SYSTEMIE OCENY STANU NAWIERZCHNI SOSN ZAŁĄCZNIK B GENERALNA DYREKCJA DRÓG PUBLICZNYCH Biuro Studiów Sieci Drogowej SYSTEM OCENY STANU NAWIERZCHNI SOSN WYTYCZNE STOSOWANIA - ZAŁĄCZNIK B ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI

Bardziej szczegółowo

Ćwiczenie nr 14. Porównanie doświadczalnego rozkładu liczby zliczeń w zadanym przedziale czasu z rozkładem Poissona

Ćwiczenie nr 14. Porównanie doświadczalnego rozkładu liczby zliczeń w zadanym przedziale czasu z rozkładem Poissona Ćwiczeie r 4 Porówaie doświadczalego rozkładu liczby zliczeń w zadaym przedziale czasu z rozkładem Poissoa Studeta obowiązuje zajomość: Podstawowych zagadień z rachuku prawdopodobieństwa, Zajomość rozkładów

Bardziej szczegółowo

Wykład 11. a, b G a b = b a,

Wykład 11. a, b G a b = b a, Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada

Bardziej szczegółowo

Projekt z dnia 24.05.2012 r. Wersja 0.5 ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dnia..

Projekt z dnia 24.05.2012 r. Wersja 0.5 ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dnia.. Projekt z dia 24.05.2012 r. Wersja 0.5 ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dia.. w sprawie szczegółowego zakresu obowiązku uzyskaia i przedstawieia do umorzeia świadectw efektywości eergetyczej i uiszczaia

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elemety modelowaia matematyczego Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Modelowaie daych (ilościowe): Metody statystycze: estymacja parametrów modelu,

Bardziej szczegółowo

INWESTYCJE MATERIALNE

INWESTYCJE MATERIALNE OCENA EFEKTYWNOŚCI INWESTYCJI INWESTCJE: proces wydatkowaia środków a aktywa, z których moża oczekiwać dochodów pieiężych w późiejszym okresie. Każde przedsiębiorstwo posiada pewą liczbę możliwych projektów

Bardziej szczegółowo

D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne (wykład 6 _ZP) [1] ZAGADNIENIE PRZYDZIAŁU (ZP) (Assignment Problem)

D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne (wykład 6 _ZP) [1] ZAGADNIENIE PRZYDZIAŁU (ZP) (Assignment Problem) D. Miszczyńska, M.Miszczyński KBO UŁ, Badaia operacyje (wykład 6 _ZP) [1] ZAGADNIENIE PRZYDZIAŁU (ZP) (Assigmet Problem) Bliskim "krewiakiem" ZT (w sesie podobieństwa modelu decyzyjego) jest zagadieie

Bardziej szczegółowo

1. Granica funkcji w punkcie

1. Granica funkcji w punkcie Graica ukcji w pukcie Deiicja Sąsiedztwem o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r ( a a Deiicja Sąsiedztwem lewostroym o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r Deiicja Sąsiedztwem

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

Elementy statystyki opisowej Izolda Gorgol wyciąg z prezentacji (wykład I)

Elementy statystyki opisowej Izolda Gorgol wyciąg z prezentacji (wykład I) Elemety statystyki opisowej Izolda Gorgol wyciąg z prezetacji (wykład I) Populacja statystycza, badaie statystycze Statystyka matematycza zajmuje się opisywaiem i aalizą zjawisk masowych za pomocą metod

Bardziej szczegółowo

TESTY LOSOWOŚCI. Badanie losowości próby - test serii.

TESTY LOSOWOŚCI. Badanie losowości próby - test serii. TESTY LOSOWOŚCI Badaie losowości próby - test serii. W wielu zagadieiach wioskowaia statystyczego istotym założeiem jest losowość próby. Prostym testem do weryfikacji tej własości jest test serii. 1 Dla

Bardziej szczegółowo

Elementy nieliniowe w modelach obwodowych oznaczamy przy pomocy symboli graficznych i opisu parametru nieliniowego. C N

Elementy nieliniowe w modelach obwodowych oznaczamy przy pomocy symboli graficznych i opisu parametru nieliniowego. C N OBWODY SYGNAŁY 1 5. OBWODY NELNOWE 5.1. WOWADZENE Defiicja 1. Obwodem elektryczym ieliiowym azywamy taki obwód, w którym występuje co ajmiej jede elemet ieliiowy bądź więcej elemetów ieliiowych wzajemie

Bardziej szczegółowo

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz

Bardziej szczegółowo

MACIERZE STOCHASTYCZNE

MACIERZE STOCHASTYCZNE MACIERZE STOCHASTYCZNE p ij - prawdopodobieństwo przejścia od stau i do stau j w jedym (dowolym) kroku, [p ij ]- macierz prawdopodobieństw przejść (w jedym kroku), Własości macierzy prawdopodobieństw przejść:

Bardziej szczegółowo

LABORATORIUM MODELOWANIA I SYMULACJI. Ćwiczenie 3 MODELOWANIE SYSTEMÓW DYNAMICZNYCH METODY OPISU MODELI UKŁADÓW

LABORATORIUM MODELOWANIA I SYMULACJI. Ćwiczenie 3 MODELOWANIE SYSTEMÓW DYNAMICZNYCH METODY OPISU MODELI UKŁADÓW Wydział Elektryczy Zespół Automatyki (ZTMAiPC) ZERiA LABORATORIUM MODELOWANIA I SYMULACJI Ćwiczeie 3 MODELOWANIE SYSTEMÓW DYNAMICZNYCH METODY OPISU MODELI UKŁADÓW I. Cel ćwiczeia Celem ćwiczeia jest zapozaie

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINOWYCH

UKŁADY RÓWNAŃ LINOWYCH Ekoeergetyka Matematyka. Wykład 4. UKŁADY RÓWNAŃ LINOWYCH Defiicja (Układ rówań liiowych, rozwiązaie układu rówań) Układem m rówań liiowych z iewiadomymi,,,, gdzie m, azywamy układ rówań postaci: a a a

Bardziej szczegółowo

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów

Bardziej szczegółowo

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy

Bardziej szczegółowo

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 +

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 + Zadaia róże W tym rozdziale zajdują się zadaia ietypowe, często dotyczące łańcuchów Markowa oraz własości zmieych losowych. Pojawią się także zadaia z estymacji Bayesowskiej.. (Eg 8/) Rozważamy łańcuch

Bardziej szczegółowo

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa Matematyka fiasowa 8.05.0 r. Komisja Egzamiacyja dla Aktuariuszy LX Egzami dla Aktuariuszy z 8 maja 0 r. Część I Matematyka fiasowa WERJA EU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut

Bardziej szczegółowo

z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X

z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X Matematyka ubezpieczeń majątkowych.0.0 r. Zadaie. Mamy day ciąg liczb q, q,..., q z przedziału 0,. Rozważmy trzy zmiee losowe: o X X X... X, gdzie X i ma rozkład dwumiaowy o parametrach,q i, i wszystkie

Bardziej szczegółowo

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3:

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3: Szereg geometryczy Zad : Suma wszystkich wyrazów ieskończoego ciągu geometryczego jest rówa 4, a suma trzech początkowych wyrazów wyosi a) Zbadaj mootoiczość ciągu sum częściowych tego ciągu geometryczego

Bardziej szczegółowo

PRZEDZIAŁY UFNOŚCI. Niech θ - nieznany parametr rozkładu cechy X. Niech α będzie liczbą z przedziału (0, 1).

PRZEDZIAŁY UFNOŚCI. Niech θ - nieznany parametr rozkładu cechy X. Niech α będzie liczbą z przedziału (0, 1). TATYTYKA MATEMATYCZNA WYKŁAD 3 RZEDZIAŁY UFNOŚCI Niech θ - iezay parametr rozkład cechy. Niech będzie liczbą z przedział 0,. Jeśli istieją statystyki, U i U ; U U ; których rozkład zależy od θ oraz U θ

Bardziej szczegółowo

W wielu przypadkach zadanie teorii sprężystości daje się zredukować do dwóch

W wielu przypadkach zadanie teorii sprężystości daje się zredukować do dwóch Wykład 5 PŁASKI ZADANI TORII SPRĘŻYSTOŚCI Płaski sta arężeia W wielu rzyadkach zadaie teorii srężystości daje się zredukować do dwóch wymiarów Przykładem może być cieka tarcza obciążoa siłami działającymi

Bardziej szczegółowo

O liczbach naturalnych, których suma równa się iloczynowi

O liczbach naturalnych, których suma równa się iloczynowi O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE. Strona 1

KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE.  Strona 1 KURS STATYSTYKA Lekcja 3 Parametrycze testy istotości ZADANIE DOMOWE www.etrapez.pl Stroa Część : TEST Zazacz poprawą odpowiedź (tylko jeda jest prawdziwa). Pytaie Statystykę moża rozumieć jako: a) próbkę

Bardziej szczegółowo

LABORATORIUM METROLOGII

LABORATORIUM METROLOGII AKADEMIA MORSKA W SZCZECINIE Cetrum Iżyierii Ruchu Morskiego LABORATORIUM METROLOGII Ćwiczeie 5 Aaliza statystycza wyików pomiarów pozycji GNSS Szczeci, 010 Zespół wykoawczy: Dr iż. Paweł Zalewski Mgr

Bardziej szczegółowo

Jak obliczać podstawowe wskaźniki statystyczne?

Jak obliczać podstawowe wskaźniki statystyczne? Jak obliczać podstawowe wskaźiki statystycze? Przeprowadzoe egzamiy zewętrze dostarczają iformacji o tym, jak ucziowie w poszczególych latach opaowali umiejętości i wiadomości określoe w stadardach wymagań

Bardziej szczegółowo

Galwanometr lusterkowy, stabilizowany zasilacz prądu, płytka z oporami, stoper (wypożyczyć pod zastaw legitymacji w pok. 619).

Galwanometr lusterkowy, stabilizowany zasilacz prądu, płytka z oporami, stoper (wypożyczyć pod zastaw legitymacji w pok. 619). Ćwiczeie Nr 5 emat: Badaie drgań tłmioych cewki galwaometr lsterkowego I. LIERUR. R.Resick, D.Halliday Fizyka, t. I i II, PWN, W-wa.. Ćwiczeia laboratoryje z fizyki w politechice, praca zbiorowa pod red..rewaja,

Bardziej szczegółowo

ZASTOSOWANIE SILNIKÓW O DUśEJ SPRAWNOŚCI DO NAPĘDÓW WENTYLATORÓW MŁYNOWYCH

ZASTOSOWANIE SILNIKÓW O DUśEJ SPRAWNOŚCI DO NAPĘDÓW WENTYLATORÓW MŁYNOWYCH Zeszyty Problemowe Maszyy Elektrycze Nr 88/2010 135 Grzegorz Badowski, Jerzy Hickiewicz, Krystya Macek-Kamińska, Marci Kamiński Politechika Opolska, Opole Piotr Pluta, PGE Elektrowia Opole SA, Brzezie

Bardziej szczegółowo

( 0) ( 1) U. Wyznaczenie błędów przesunięcia, wzmocnienia i nieliniowości przetwornika C/A ( ) ( )

( 0) ( 1) U. Wyznaczenie błędów przesunięcia, wzmocnienia i nieliniowości przetwornika C/A ( ) ( ) Wyzaczeie błędów przesuięcia, wzmocieia i ieliiowości przetworika C/A Celem ćwiczeia jest wyzaczeie błędów przesuięcia, wzmocieia i ieliiowości przetworika C/A. Zając wartości teoretycze (omiale) i rzeczywiste

Bardziej szczegółowo

P π n π. Równanie ogólne płaszczyzny w E 3. Dane: n=[a,b,c] Wówczas: P 0 P=[x-x 0,y-y 0,z-z 0 ] Równanie (1) nazywamy równaniem ogólnym płaszczyzny

P π n π. Równanie ogólne płaszczyzny w E 3. Dane: n=[a,b,c] Wówczas: P 0 P=[x-x 0,y-y 0,z-z 0 ] Równanie (1) nazywamy równaniem ogólnym płaszczyzny Rówaie ogóle płaszczyzy w E 3. ae: P π i π o =[A,B,C] P (,y,z ) Wówczas: P P=[-,y-y,z-z ] P π PP PP= o o Rówaie () azywamy rówaiem ogólym płaszczyzy A(- )+B(y-y )+C(z-z )= ( ) A+By+Cz+= Przykład

Bardziej szczegółowo

Plan wykładu. Analiza danych Wykład 1: Statystyka opisowa. Literatura. Podstawowe pojęcia

Plan wykładu. Analiza danych Wykład 1: Statystyka opisowa. Literatura. Podstawowe pojęcia Pla wykładu Aaliza daych Wykład : Statystyka opisowa. Małgorzata Krętowska Wydział Iformatyki Politechika Białostocka. Statystyka opisowa.. Estymacja puktowa. Własości estymatorów.. Rozkłady statystyk

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych (w zakresie materiału przedstawionego na wykładzie organizacyjnym)

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych (w zakresie materiału przedstawionego na wykładzie organizacyjnym) Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych (w zakresie materiału przedstawioego a wykładzie orgaizacyjym) Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli

Bardziej szczegółowo

POLOWO-OBWODOWY ALGORYTM WYZNACZANIA STRAT MOCY W RDZENIACH Z UWZGLĘDNIENIEM HISTEREZY MAGNETYCZNEJ

POLOWO-OBWODOWY ALGORYTM WYZNACZANIA STRAT MOCY W RDZENIACH Z UWZGLĘDNIENIEM HISTEREZY MAGNETYCZNEJ Prace akowe Istytt Maszy, apędów i Pomiarów Elektryczych r 62 Politechiki Wrocławskiej r 62 Stdia i Materiały r 28 2008 Piotr SUJKA* pole elektromagetycze, straty mocy wiroprądowe i histerezowe POLOWO-OBWODOWY

Bardziej szczegółowo

Zatem przyszła wartość kapitału po 1 okresie kapitalizacji wynosi

Zatem przyszła wartość kapitału po 1 okresie kapitalizacji wynosi Zatem rzyszła wartość kaitału o okresie kaitalizacji wyosi m k m* E Z E( m r) 2 Wielkość K iterretujemy jako umowa włatę, zastęującą w rówoważy sosób, w sesie kaitalizacji rostej, m włat w wysokości E

Bardziej szczegółowo

Harmonogramowanie linii montażowej jako element projektowania cyfrowej fabryki

Harmonogramowanie linii montażowej jako element projektowania cyfrowej fabryki 52 Sławomir Herma Sławomir HERMA atedra Iżyierii Produkcji, ATH w Bielsku-Białej E mail: slawomir.herma@gmail.com Harmoogramowaie liii motażowej jako elemet projektowaia cyfrowej fabryki Streszczeie: W

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematycza dla leśików Wydział Leśy Kieruek leśictwo Studia Stacjoare I Stopia Rok akademicki 0/0 Wykład 5 Testy statystycze Ogóle zasady testowaia hipotez statystyczych, rodzaje hipotez, rodzaje

Bardziej szczegółowo

Numeryczny opis zjawiska zaniku

Numeryczny opis zjawiska zaniku FOTON 8, iosa 05 7 Numeryczy opis zjawiska zaiku Jerzy Giter ydział Fizyki U Postawieie problemu wielu zagadieiach z różych działów fizyki spotykamy się z astępującym problemem: zmiay w czasie t pewej

Bardziej szczegółowo

Testowanie hipotez. H 1 : µ 15 lub H 1 : µ < 15 lub H 1 : µ > 15

Testowanie hipotez. H 1 : µ 15 lub H 1 : µ < 15 lub H 1 : µ > 15 Testowaie hipotez ZałoŜeia będące przedmiotem weryfikacji azywamy hipotezami statystyczymi. KaŜde przypuszczeie ma swoją alteratywę. Jeśli postawimy hipotezę, Ŝe średica pia jedoroczych drzew owej odmiay

Bardziej szczegółowo

Wykład 3 : Podstawowe prawa, twierdzenia i reguły Teorii Obwodów

Wykład 3 : Podstawowe prawa, twierdzenia i reguły Teorii Obwodów OBWODY SYNAŁY Wyład 3 : Podstawowe prawa, twierdzeia i reguły Teorii Obwodów 3. PODSTAWOWE PAWA TWEDZENA TEO OBWODÓW 3.. SCHEMAT DEOWY OBWOD Schematem ideowym obwodu (siecią) azywamy graficze przedstawieie

Bardziej szczegółowo

Integrity level verification for safety-related functions Weryfikacja poziomu nienaruszalności funkcji związanych

Integrity level verification for safety-related functions Weryfikacja poziomu nienaruszalności funkcji związanych SSARS 20 Summer Safety ad Reliability Semiars, Lipiec 03-09, 20, Gdańsk-Sopot, Polska Śliwiński Marci Politechika Gdańska, Gdańsk, Polska Itegrity level verificatio for safety-related fuctios Weryfikaca

Bardziej szczegółowo

Lista 5. Odp. 1. xf(x)dx = xdx = 1 2 E [X] = 1. Pr(X > 3/4) E [X] 3/4 = 2 3. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym

Lista 5. Odp. 1. xf(x)dx = xdx = 1 2 E [X] = 1. Pr(X > 3/4) E [X] 3/4 = 2 3. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym Lista 5 Zadaia a zastosowaie ierówosci Markowa i Czebyszewa. Zadaie 1. Niech zmiea losowa X ma rozkład jedostajy a odciku [0, 1]. Korzystając z ierówości Markowa oszacować od góry prawdopodobieństwo, że

Bardziej szczegółowo

40:5. 40:5 = 500000υ5 5p 40, 40:5 = 500000 5p 40.

40:5. 40:5 = 500000υ5 5p 40, 40:5 = 500000 5p 40. Portfele polis Poieważ składka jest ustalaa jako wartość oczekiwaa rzeczywistego, losowego kosztu ubezpieczeia, więc jest tym bliższa średiej wydatków im większa jest liczba ubezpieczoych Polisy grupuje

Bardziej szczegółowo

LABORATORIUM MODELOWANIA I SYMULACJI. Ćwiczenie 5

LABORATORIUM MODELOWANIA I SYMULACJI. Ćwiczenie 5 Wydział Elektryczy Zespół Automatyki (ZTMAiPC) ZERiA LABORATORIUM MODELOWANIA I SYMULACJI Ćwiczeie 5 ANALIZA WŁASNOŚCI DYNAMICZNYCH WYBRANEGO OBIEKTU FIZYCZNEGO 1. Opis właściwości dyamiczych obiektu Typowym

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych w zakresie materiału przedstawioego a wykładzie orgaizacyjym Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli doświadczeie,

Bardziej szczegółowo

obie z mocy ustawy. owego.

obie z mocy ustawy. owego. Kwartalik Prawo- o-ekoomia 3/015 Aa Turczak Separacja po faktycza lub prawa obie z mocy ustawy cza, ie ozacza defiitywego owego 1 75 1 61 3 Art 75 88 Kwartalik Prawo- o-ekoomia 3/015 zaspokajaia usp iedostatku

Bardziej szczegółowo

Wykład. Inwestycja. Inwestycje. Inwestowanie. Działalność inwestycyjna. Inwestycja

Wykład. Inwestycja. Inwestycje. Inwestowanie. Działalność inwestycyjna. Inwestycja Iwestycja Wykład Celowo wydatkowae środki firmy skierowae a powiększeie jej dochodów w przyszłości. Iwestycje w wyiku użycia środków fiasowych tworzą lub powiększają majątek rzeczowy, majątek fiasowy i

Bardziej szczegółowo

POMIARY KIERUNKÓW I WYZNACZENIE KĄTÓW POZIOMYCH

POMIARY KIERUNKÓW I WYZNACZENIE KĄTÓW POZIOMYCH POMIARY KIERUNKÓW I WYZNACZENIE KĄTÓW POZIOMYCH KĄT POZIOMY Defiicja kąt poziomy wyzaczay jest przez ślady przecięcia dwóch płaszczyz pioowych przechodzących przez oś celową i obserwowae pukty z poziomą

Bardziej szczegółowo

ZASTOSOWANIE PROGRAMOWANIA CAŁKOWITOLICZBOWEGO W UTRZYMANIU POJAZDÓW I MASZYN. Paweł Mikołajczak

ZASTOSOWANIE PROGRAMOWANIA CAŁKOWITOLICZBOWEGO W UTRZYMANIU POJAZDÓW I MASZYN. Paweł Mikołajczak MOTROL, 007, 9, ZASTOSOWANE PROGRAMOWANA AŁKOWTOLZBOWEGO W UTRZMANU POJAZDÓW MASZN Katedra Budowy, Eksploatacji Pojazdów i Maszy Uiwersytet Warmińsko-Mazurski w Olsztyie Streszczeie. W artykule przedstawioo

Bardziej szczegółowo

ZADANIA - ZESTAW 2. Zadanie 2.1. Wyznaczyć m (n)

ZADANIA - ZESTAW 2. Zadanie 2.1. Wyznaczyć m (n) ZADANIA - ZESTAW Zadaie.. Wyzaczyć m (), D ( ) dla procesu symetryczego (p = q =,) błądzeia przypadkowego. Zadaie.. Narysuj graf łańcucha Markowa symetrycze (p = q =,) błądzeie przypadkowe z odbiciem.

Bardziej szczegółowo

TRANSFORMACJA DO UKŁADU 2000 A PROBLEM ZGODNOŚCI Z PRG

TRANSFORMACJA DO UKŁADU 2000 A PROBLEM ZGODNOŚCI Z PRG Tomasz ŚWIĘTOŃ 1 TRANSFORMACJA DO UKŁADU 2000 A ROBLEM ZGODNOŚCI Z RG Na mocy rozporządzeia Rady Miistrów w sprawie aństwowego Systemu Odiesień rzestrzeych już 31 grudia 2009 roku upływa termi wykoaia

Bardziej szczegółowo

Wykład 2. Kombinacje. Twierdzenie. (Liczba k elementowych podzbiorów zbioru n-elementowego) C(n,k) =, gdzie symbol oznacza liczbę i n k.

Wykład 2. Kombinacje. Twierdzenie. (Liczba k elementowych podzbiorów zbioru n-elementowego) C(n,k) =, gdzie symbol oznacza liczbę i n k. Wykład 2. Krzyś wiedział a pewo, Ŝe to miejsce jest zaczarowae, bo igdy ikt ie mógł się doliczyć, ile rosło tam drzew, sześćdziesiąt trzy czy sześćdziesiąt cztery, awet kiedy po przeliczeiu przywiązywało

Bardziej szczegółowo

Artykuł techniczny CVM-NET4+ Zgodny z normami dotyczącymi efektywności energetycznej

Artykuł techniczny CVM-NET4+ Zgodny z normami dotyczącymi efektywności energetycznej 1 Artykuł techiczy Joatha Azañó Dział ds. Zarządzaia Eergią i Jakości Sieci CVM-ET4+ Zgody z ormami dotyczącymi efektywości eergetyczej owy wielokaałowy aalizator sieci i poboru eergii Obeca sytuacja Obece

Bardziej szczegółowo

Algorytmy I Struktury Danych Prowadząca: dr Hab. inż. Małgorzata Sterna. Sprawozdanie do Ćwiczenia 3 Algorytmy grafowe ( )

Algorytmy I Struktury Danych Prowadząca: dr Hab. inż. Małgorzata Sterna. Sprawozdanie do Ćwiczenia 3 Algorytmy grafowe ( ) Poiedziałki 11.45 Grupa I3 Iformatyka a wydziale Iformatyki Politechika Pozańska Algorytmy I Struktury Daych Prowadząca: dr Hab. iż. Małgorzata Stera Sprawozdaie do Ćwiczeia 3 Algorytmy grafowe (26.03.12)

Bardziej szczegółowo

Miary położenia (tendencji centralnej) to tzw. miary przeciętne charakteryzujące średni lub typowy poziom wartości cechy.

Miary położenia (tendencji centralnej) to tzw. miary przeciętne charakteryzujące średni lub typowy poziom wartości cechy. MIARY POŁOŻENIA I ROZPROSZENIA WYNIKÓW SERII POMIAROWYCH Miary położeia (tedecji cetralej) to tzw. miary przecięte charakteryzujące średi lub typowy poziom wartości cechy. Średia arytmetycza: X i 1 X i,

Bardziej szczegółowo

SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY

SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY Weryfikacja hipotez statystyczych WNIOSKOWANIE STATYSTYCZNE Wioskowaie statystycze, to proces uogóliaia wyików uzyskaych a podstawie próby a całą

Bardziej szczegółowo

Konica Minolta Optimized Print Services (OPS) Oszczędzaj czas. Poprawiaj efektywność. Stabilizuj koszty. OPS firmy Konica Minolta

Konica Minolta Optimized Print Services (OPS) Oszczędzaj czas. Poprawiaj efektywność. Stabilizuj koszty. OPS firmy Konica Minolta Koica Miolta Optimized Prit Services (OPS) Oszczędzaj czas. Poprawiaj efektywość. Stabilizuj koszty. OPS firmy Koica Miolta Optimized Prit Services OPS Najlepszą metodą przewidywaia przyszłości jest jej

Bardziej szczegółowo

Ochrona przeciwporażeniowa poprzez zastosowanie izolacji ochronnej

Ochrona przeciwporażeniowa poprzez zastosowanie izolacji ochronnej Marci Adrzej SULKOWSKI Politechika Białostocka, Wydział Elektryczy Ochroa przeciwporażeiowa poprzez zastosowaie izolacji ochroej Streszczeie. W artykule przedstawioo aalizę iezawodości środka ochroy przeciwporażeiowej

Bardziej szczegółowo

PODSTAWOWE ZAGADNIENIA METODOLOGICZNE

PODSTAWOWE ZAGADNIENIA METODOLOGICZNE PODSTAWOWE ZAGADNIENIA METODOLOGICZNE. Wprowadzeie W ekoomii i aukach o zarządzaiu obserwuje się tedecję do ilościowego opisu zależości miedzy zjawiskami ekoomiczymi. Umożliwia to - zobiektywizowaie i

Bardziej szczegółowo

500 1,1. b) jeŝeli w kolejnych latach stopy procentowe wynoszą odpowiednio 10%, 9% i 8%, wówczas wartość obecna jest równa: - 1 -

500 1,1. b) jeŝeli w kolejnych latach stopy procentowe wynoszą odpowiednio 10%, 9% i 8%, wówczas wartość obecna jest równa: - 1 - Zdyskotowae pzepływy pieięŝe - Pzepływy pieięŝe płatości ozłoŝoe w czasie - Pzepływy występujące w kilku óŝych okesach ie są poówywale z uwagi a zmiaę watość pieiądza w czasie - śeby poówywać pzepływy

Bardziej szczegółowo

ANALIZA WPŁYWU ROZMIESZCZENIA I LICZBY PUNKTÓW KOLOKACJI NA DOKŁADNOŚĆ METODY PURC DLA ZAGADNIEŃ TEORII SPRĘŻYSTOŚCI W OBSZARACH WIELOŚCIENNYCH 3D

ANALIZA WPŁYWU ROZMIESZCZENIA I LICZBY PUNKTÓW KOLOKACJI NA DOKŁADNOŚĆ METODY PURC DLA ZAGADNIEŃ TEORII SPRĘŻYSTOŚCI W OBSZARACH WIELOŚCIENNYCH 3D MODELOWANIE INŻYNIERSKIE r 46 ISSN 896-77X ANALIZA WPŁYWU ROZMIESZCZENIA I LICZBY PUNKÓW KOLOKACJI NA DOKŁADNOŚĆ MEODY PURC DLA ZAGADNIEŃ EORII SPRĘŻYSOŚCI W OBSZARACH WIELOŚCIENNYCH D Egeisz Zieik a Krzysztof

Bardziej szczegółowo

STATYSTYKA I ANALIZA DANYCH

STATYSTYKA I ANALIZA DANYCH TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica

Bardziej szczegółowo

ANALIZA DANYCH DYSKRETNYCH

ANALIZA DANYCH DYSKRETNYCH ZJAZD ESTYMACJA Jest to metoda wioskowaia statystyczego. Umożliwia oa oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej estymatorem,

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 1 (MAP 1024) LISTY ZADAŃ

ANALIZA MATEMATYCZNA 1 (MAP 1024) LISTY ZADAŃ ANALIZA MATEMATYCZNA (MAP 0) LISTY ZADAŃ Listy zadań przezaczoe są dla studetów którzy program matematyki szkoły poadgimazjalej zają jedyie a poziomie podstawowym Obejmują iezbęde do dalszej auki zagadieia

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 1 i 2

STATYSTYKA OPISOWA WYKŁAD 1 i 2 STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest

Bardziej szczegółowo

Konstruowanie macierzy unitarnych dla kwantowego algorytmu decyzyjnego

Konstruowanie macierzy unitarnych dla kwantowego algorytmu decyzyjnego BILETYN INSTYTT SYSTEMÓW INFORMATYCZNYCH 59-65 (8) Kostrowaie macierzy itarych dla kwatowego algorytm decyzyjego J. WINIEWSKA e-mail: joaa.wisiewska@wat.ed.pl Istytt Systemów Iformatyczych Wydzia Cyberetyki

Bardziej szczegółowo

Składka ubezpieczeniowa

Składka ubezpieczeniowa Przychody zakładów ubezpieczeń Przychody i wydatki zakładów ubezpieczeń Składka ubezpieczeiowa 60-95 % Przychody z lokat 5-15 % Przychody z reasekuracji 5-30 % Wydatki zakładów ubezpieczeń Odszkodowaia

Bardziej szczegółowo

WYBRANE METODY DOSTĘPU DO DANYCH

WYBRANE METODY DOSTĘPU DO DANYCH WYBRANE METODY DOSTĘPU DO DANYCH. WSTĘP Coraz doskoalsze, szybsze i pojemiejsze pamięci komputerowe pozwalają gromadzić i przetwarzać coraz większe ilości iformacji. Systemy baz daych staowią więc jedo

Bardziej szczegółowo

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA Mamy populację geeralą i iteresujemy się pewą cechą X jedostek statystyczych, a dokładiej pewą charakterystyką liczbową θ tej cechy (p. średią wartością

Bardziej szczegółowo

Struktura czasowa stóp procentowych (term structure of interest rates)

Struktura czasowa stóp procentowych (term structure of interest rates) Struktura czasowa stóp procetowych (term structure of iterest rates) Wysokość rykowych stóp procetowych Na ryku istieje wiele różorodych stóp procetowych. Poziom rykowej stopy procetowej (lub omialej stopy,

Bardziej szczegółowo

Wykład 5 Przedziały ufności. Przedział ufności, gdy znane jest σ. Opis słowny / 2

Wykład 5 Przedziały ufności. Przedział ufności, gdy znane jest σ. Opis słowny / 2 Wykład 5 Przedziały ufości Zwykle ie zamy parametrów populacji, p. Chcemy określić a ile dokładie y estymuje Kostruujemy przedział o środku y, i taki, że mamy 95% pewości, że zawiera o Nazywamy go 95%

Bardziej szczegółowo

EA3 Silnik komutatorowy uniwersalny

EA3 Silnik komutatorowy uniwersalny Akademia Góriczo-Huticza im.s.staszica w Krakowie KAEDRA MASZYN ELEKRYCZNYCH EA3 Silik komutatorowy uiwersaly Program ćwiczeia 1. Oględziy zewętrze 2. Pomiar charakterystyk mechaiczych przy zasilaiu: a

Bardziej szczegółowo

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej 3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi

Bardziej szczegółowo

Statystyka i Opracowanie Danych. W7. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407

Statystyka i Opracowanie Danych. W7. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407 Statystyka i Opracowaie Daych W7. Estymacja i estymatory Dr Aa ADRIAN Paw B5, pok407 ada@agh.edu.pl Estymacja parametrycza Podstawowym arzędziem szacowaia iezaego parametru jest estymator obliczoy a podstawie

Bardziej szczegółowo

Wprowadzenie. metody elementów skończonych

Wprowadzenie. metody elementów skończonych Metody komputerowe Wprowadzeie Podstawy fizycze i matematycze metody elemetów skończoych Literatura O.C.Ziekiewicz: Metoda elemetów skończoych. Arkady, Warszawa 972. Rakowski G., acprzyk Z.: Metoda elemetów

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi. Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe

Bardziej szczegółowo

Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień.

Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień. Metoda aalizy hierarchii Saaty ego Ważym problemem podejmowaia decyzji optymalizowaej jest często występująca hierarchiczość zagadień. Istieje wiele heurystyczych podejść do rozwiązaia tego problemu, jedak

Bardziej szczegółowo

Ć wiczenie 17 BADANIE SILNIKA TRÓJFAZOWEGO KLATKOWEGO ZASILANEGO Z PRZEMIENNIKA CZĘSTOTLIWOŚCI

Ć wiczenie 17 BADANIE SILNIKA TRÓJFAZOWEGO KLATKOWEGO ZASILANEGO Z PRZEMIENNIKA CZĘSTOTLIWOŚCI Ć wiczeie 7 BADANIE SILNIKA TRÓJFAZOWEGO KLATKOWEGO ZASILANEGO Z RZEIENNIKA CZĘSTOTLIWOŚCI Wiadomości ogóle Rozwój apędów elektryczych jest ściśle związay z rozwojem eergoelektroiki Współcześie a ogół

Bardziej szczegółowo

DZIENNIK URZĘDOWY URZĘDU KOMUNIKACJI ELEKTRONICZNEJ

DZIENNIK URZĘDOWY URZĘDU KOMUNIKACJI ELEKTRONICZNEJ DZIENNIK URZĘDOWY URZĘDU KOMUNIKACJI ELEKTRONICZNEJ Warszawa, dia 19 maja 2015 r. Poz. 41 Zarządzeie Nr 12 Prezesa Urzędu Komuikacji Elektroiczej z dia 18 maja 2015 r. 1) w sprawie plau zagospodarowaia

Bardziej szczegółowo

Funkcje tworzące - przypomnienie

Funkcje tworzące - przypomnienie Zadaia z ćwiczeń # (po. marca) Matematyka Dyskreta Fukcje tworzące - przypomieie Fukcje tworzące są początkowo trude do przełkięcia, ale stosuje się je dość automatyczie i potrafimy je policzyć dla praktyczie

Bardziej szczegółowo

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii O pewych zastosowaiach rachuku różiczkowego fukcji dwóch zmieych w ekoomii 1 Wielkość wytwarzaego dochodu arodowego D zależa jest od wielkości produkcyjego majątku trwałego M i akładów pracy żywej Z Fukcję

Bardziej szczegółowo

TRANZYSTORY POLOWE JFET I MOSFET

TRANZYSTORY POLOWE JFET I MOSFET POLTECHNKA RZEZOWKA Kaedra Podsaw Elekroiki srukcja Nr5 F 00/003 sem. lei TRANZYTORY POLOWE JFET MOFET Cel ćwiczeia: Pomiar podsawowych charakerysyk i wyzaczeie paramerów określających właściwości razysora

Bardziej szczegółowo

Aplikacyjne aspekty metody Six Sigma w kwalitatywnej ocenie funkcjonowania systemów logistycznych

Aplikacyjne aspekty metody Six Sigma w kwalitatywnej ocenie funkcjonowania systemów logistycznych Aplikacyje aspekty metody Six Sigma w kwalitatywej oceie fukcjoowaia systemów logistyczych Applicatio aspects of the Six Sigma method i qualitative ratig of the workig of logistic systems Moika Dopytalska*,

Bardziej szczegółowo

Analiza wyników symulacji i rzeczywistego pomiaru zmian napięcia ładowanego kondensatora

Analiza wyników symulacji i rzeczywistego pomiaru zmian napięcia ładowanego kondensatora Aaliza wyików symulacji i rzeczywistego pomiaru zmia apięcia ładowaego kodesatora Adrzej Skowroński Symulacja umożliwia am przeprowadzeie wirtualego eksperymetu. Nie kostruując jeszcze fizyczego urządzeia

Bardziej szczegółowo

L A B O R A T O R I U M T E C H N I K I C Y F R O W E J

L A B O R A T O R I U M T E C H N I K I C Y F R O W E J Paweł OSTASZEWSKI 55566 25.11.2002 Piotr PAWLICKI 55567 L A B O R A T O R I U M T E C H N I K I C Y F R O W E J Ćwiczeie r 2 Temat: B A D A N I E P R Z E R Z U T N I K Ó W Treść ćwiczeia: Obserwacja a

Bardziej szczegółowo

(1) gdzie I sc jest prądem zwarciowym w warunkach normalnych, a mnożnik 1,25 bierze pod uwagę ryzyko 25% wzrostu promieniowania powyżej 1 kw/m 2.

(1) gdzie I sc jest prądem zwarciowym w warunkach normalnych, a mnożnik 1,25 bierze pod uwagę ryzyko 25% wzrostu promieniowania powyżej 1 kw/m 2. Katarzya JARZYŃSKA ABB Sp. z o.o. PRODUKTY NISKONAPIĘCIOWE W INSTALACJI PV Streszczeie: W ormalych warukach pracy każdy moduł geeruje prąd o wartości zbliżoej do prądu zwarciowego I sc, który powiększa

Bardziej szczegółowo

PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,,

PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,, PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA Ruch cząstki ieograiczoy z klasyczego puktu widzeia W tym przypadku V = cost, przejmiemy V ( x ) = 0, cząstka porusza się wzdłuż osi x. Rozwiązujemy

Bardziej szczegółowo

Ekonomia matematyczna 2-2

Ekonomia matematyczna 2-2 Ekoomia matematycza - Fukcja produkcji Defiicja Efektywym przekształceiem techologiczym azywamy odwzorowaie (iekiedy wielowartościowe), które kazdemu wektorowi akładów R przyporządkowuje zbiór wektorów

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM RACHUNEK EKONOMICZNY W ELEKTROENERGETYCE INSTRUKCJA DO ĆWICZENIA

Bardziej szczegółowo