Wyjaśnienie. linii widmowych atomów. eureka! to odkryli

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wyjaśnienie. linii widmowych atomów. eureka! to odkryli"

Transkrypt

1 TEKST TRUDNY Rodząca się powoli owoczesa mechaika kwatowa odosiła od samego początku bardzo wiele sukcesów. Za każdym razem, gdy fizyka klasycza błędie opisywała jakieś zjawisko lub zupełie ie potrafiła go wyjaśić, prawa mechaiki kwatowej wydawały się być odpowiedim lekarstwem. Postulat kwatowaia Bohra to bardzo ogóle i zarazem proste prawo mechaiki kwatowej, które wydaje się być wzięte z sufitu. Pozwoliło wytłumaczyć am dlaczego atomy istieją (wg fizyki klasyczej atomy ie mają prawa bytu), jak rówież dlaczego są tak małe i tylko tak małe. Okazuje się jedak, że z hipotezy atomistyczej Bohra moża wyciągąć jeszcze wiele ciekawych iformacji. Jedą z ich jest odpowiedź a pytaie o pochodzeie liii widmowych różych pierwiastków. Liii, które zostały odkryte jeszcze w XIX wieku w widmach różych substacji i żade ówczesy fizyk ie miał pojęcia, skąd mogłyby się oe brać (MT 05/07). Wyjaśieie Tomasz Sowiński w 005 roku skończył z wyróżieiem studia a Wydziale Fizyki Uiwersytetu Warszawskiego w zakresie fizyki teoretyczej. Obecie jest asystetem w Cetrum Fizyki Teoretyczej PAN. Z zamiłowaia zajmuje się popularyzacją auki. W roku 005 był omioway do agrody w kokursie Popularyzator Nauki orgaizowaym przez Miisterstwo Nauki i Iformatyzacji oraz Polską Agecję Prasową. Aby zrozumieć, jak model atomowy Bohra tłumaczy istieie liii widmowych atomów, będziemy potrzebowali wzoru eergetyczego, jaki wyprowadziliśmy sobie w poprzedim odciku. Jak pamiętamy, zgodie z postulatem kwatowaia Bohra, elektro w atomie może krążyć tylko po pewych wyróżioych orbitach. Są to orbity, a których długość fali de Broglie a mieści się całkowitą liczbę razy. Postulat te poprowadził as ostatio bezpośredio do wzoru a całkowitą eergię (sumę eergii kietyczej i potecjalej oddziaływaia z jądrem), jaką ma elektro a daej orbicie. Wzór te miał postać: 4 1 E = EK EP = h- gdzie jest liczbą aturalą umerującą poszczególe orbity. Nazwaliśmy ją kiedyś główą liczbą kwatową. Tomasz Sowiń ski liii widmowych atomów POZIOMY ENERGETYCZNE W ATOMIE 48 Jak pamiętamy, wzór te był wyprowadzoy przy założeiu, że eergia potecjala elektrou w ieskończoości jest rówa zeru. Tym samym eergia rówa zero odpowiada sytuacji, w której elektro jest wyrway z atomu, tz. atom jest zjoizoway (szczegóły Czytelik może zaleźć w MT 11/07). Wyliczyliśmy rówież występujący w tym wzorze współczyik, który jak widać jest zbudoway z fudametalych stałych fizyczych. Ma o wymiar eergii i wartość: h- 4, J 1,61eV

2 Wykorzystując te wzór, bardzo łatwo moża wyliczyć eergię, jaką ma elektro zajdujący się a daej orbicie. W tym celu wystarczy za podstawić umer iteresującej as orbity. Np. a orbicie stau podstawowego ( =1) elektro ma eergię 1,61 ev, a a pierwszym staie wzbudzoym ok.,40 ev. Każda orbita ma jedozaczie przypisaą eergię elektrou. W związku z tym bardzo często mówi się o poziomach eergetyczych, mając a myśli dozwoloe orbity, a których zajduje się elektro. Aby lepiej zrozumieć, jaka jest struktura tych poziomów, wykreślmy sobie astępujący diagram poziomów eergetyczych: Z diagramu tego jaso widać, że odległości eergetycze pomiędzy poszczególymi poziomami stają się coraz miejsze wraz ze wzrostem liczby. Gdy rośie, to eergie poziomów zbliżają się do eergii joizacji atomu. Należy tutaj podkreślić, że choć odstęp eergetyczy pomiędzy poszczególymi poziomami jest coraz miejszy, ie ozacza to, że odległości przestrzee pomiędzy dozwoloymi orbitami są coraz miejsze. Jest wręcz przeciwie! Gdy rozważaliśmy problem rozmiarów atomów (MT 10/07), udało am się wykazać, że promieie orbit rosą wraz z kwadratem liczby. To ozacza, że promień orbity o = jest cztery razy większy, a dla = aż dziewięć razy większy iż promień orbity stau podstawowego. Moża to lepiej zrozumieć, wykreślając aalogiczy do poprzediego diagram, a którym zamiast eergii elektrou a dozwoloych orbitach wykreślilibyśmy promieie dozwoloych orbit. Diagram taki wygląda astępująco: Jak widzimy, ajmiejsze odległości pomiędzy orbitami są dla ajmiejszych, a wraz ze wzrostem główej liczby kwatowej odległości te są coraz większe. Te dwa obrazki razem mogą wydawać się a pierwszy rzut oka trochę paradoksale, ale rzeczywiście tak jest. Różice w wielkości orbit rosą wraz ze wzrostem liczby, ale maleje przy tym różica w eergiach elektrou. Należy o tym pamiętać zawsze, gdy rozważa się budowę atomu. W przeciwym razie może dochodzić do różych ieporozumień. Z tych dwóch rysuków i wszystkiego, czego już się auczyliśmy o atomie, wyika dość jasy obraz zjawiska joizacji atomu. Dla przykładu załóżmy, że elektro zajduje się a orbicie stau podstawowego ( =1). W tym przypadku joizacja polega a dostarczeiu elektroowi eergii 1,6 ev, tak aby mógł o przejść poad poziom joizacji. Odpowiada to przeiesieiu elektrou jakby a orbitę o ieskończeie dużym promieiu. Krótko mówiąc, elektro odleci gdzieś bardzo, bardzo daleko od atomu. Ze względu a fakt, że różica pomiędzy eergiami poszczególych poziomów maleje z kwadratem liczby kwatowej, wystarczy dostarczyć skończoej eergii (w tym przypadku prawie 14 ev), aby przeieść elektro ieskończeie daleko od atomu. MINI QUIZ MT CZYTAM, WIĘC WIEM Gdy elektro przechodzi z poziomu wyższego a iższy, to foto: a) jest pochłaiay b) ie jest pochłaiay c) jest emitoway TEORIA PRZEJŚĆ ATOMOWYCH Skoro elektro zajdujący się a daym poziomie eergetyczym może wydostać się z atomu pod wpływem odpowiediej porcji eergii, to wydaje się aturale sprawdzić, czy mógłby o rówież przeskakiwać pomiędzy dozwoloymi poziomami. Taka możliwość a pierwszy rzut oka wydaje się całkiem prawdopodoba, bo iby w jaki sposób miałby się elektro zaleźć a iych staach iż podstawowy, gdyby ie mógł a ie wskoczyć? Oczywiście ikt igdy elektrou w atomie ie widział własym okiem i pewie igdy ie zobaczy. Tym bardziej więc ie widział, jak o przeskakuje. Ale możemy postawić taką hipotezę i zobaczyć, co z iej mogłoby wyikać. Załóżmy, że elektro zajduje się a pewym poziomie eergetyczym 1 i otrzymuje agle z zewątrz eergię E dokładie taką, że pozwala mu oa wskoczyć a poziom. Oczywiście musi być liczbą większą iż 1, bo eergia elektrou wzrosła, a wiemy, że rośie oa wraz ze wzrostem. Oczywiś- 49

3 cie dostarczoa eergia ie może być zupełie dowola. Aby do takiego przejścia doszło, musi być oa dokładie rówa różicy eergii elektrou a wybraych przez as orbitach. Jest to oczywiście kosekwecja zasady zachowaia eergii. Jeśli wykorzystamy asz wzór a eergię elektrou a poszczególych orbitach, to łatwo sprawdzić, że musi zachodzić związek: E = E = E 1 h- 1 Wzór te ależy rozumieć astępująco: światło, którego długość fali wyosi λ, jest strumieiem fotoów, których eergia wyosi E wyliczoe wg powyższego wzoru. Widzimy zatem, że każdej długości fali światła odpowiada foto o ściśle określoej eergii. I odwrotie: każdej eergii odpowiada ściśle określoa długość fali światła. Podsumowując, powiedzmy jeszcze raz. Elektro teoretyczie może przeskakiwać w atomie z jedego poziomu eergetyczego a iy, pod warukiem że zostaie mu dostarczoa eergia w postaci fotou o eergii rówej różicy eergii pomiędzy tymi poziomami. Oczywiście gdy elektro przechodzi z poziomu wyższego a iższy, to foto ie jest pochłaiay, ale emitoway podczas takiego przejścia. Obrazowo jest to przedstawioe a poiższym rysuku TAJEMNICA LINII WIDMOWYCH 50 Wzór te jest rówież prawidłowy w sytuacji, gdy elektro przeskakuje z poziomu wyższego a iższy. Jedya różica jest wtedy taka, że elektro zamiast eergię pochłaiać, będzie ją oddawał do otoczeia. Jak się łatwo przekoać, eergia E wyliczoa z powyższego wzoru będzie w takiej sytuacji ujema. Skoro udało am się już zaleźć eergię potrzebą do wywołaia przeskoku elektrou z jedego poziomu a iy, musimy jeszcze zaleźć mechaizm, który pozwalałby dostarczać i odbierać eergię z atomu w ściśle określoych porcjach. Naturalym kadydatem wydaje się być foto. Przypomijmy (MT 0/07), że foto to elemetara cząstka, która ma ściśle określoy pęd i eergię. Eergia ta zależy od długości fali światła związaej z tym fotoem. Jak pamiętamy, związek pomiędzy długością fali światła a eergią fotou ma postać π h E = hc h- = λ λ Założeie, że elektro ie tylko może krążyć wokół jądra a dozwoloych orbitach, ale rówież, że może pomiędzy imi przeskakiwać, emitując lub pochłaiając fotoy, ma bardzo duże kosekwecje. Okazuje się bowiem, że w te właśie sposób moża wytłumaczyć, skąd biorą się liie widmowe różych pierwiastków (MT 05/07). Przypomijmy, że liie widmowe zostały odkryte przez brytyjskiego chemika i fizyka Williama Wollastoa jeszcze w XIX wieku, a późiej zaobserwowae przez iych ojców działu fizyki, który dziś azywamy spektroskopią. Całe to odkrycie sprowadza się do faktu, że atomy różych pierwiastków, jeśli tylko zostaą odpowiedio przygotowae, emitują promieiowaie elektromagetycze, ale tylko o ściśle określoych długościach fali. Doświadczalie wygląda to tak, że w całym widmie emisyjym daego pierwiastka ie widać wszystkich kolorów tęczy, tylko bardzo szczególie wyselekcjoowae. Każdy pierwiastek ma iy zestaw tych liii i tym samym są oe czymś w rodzaju atomowych odcisków palców (MT 05/07). Jak pamiętamy, p. dla atomu wodoru widmo takie w zakresie światła widzialego wygląda astępująco: Liie te są zupełie iewytłumaczale z puktu widzeia fizyki klasyczej i zupełie ie wiadomo, skąd miałyby się brać. Wiemy atomiast, że ie są oe rozłożoe w sposób przypadkowy. Odpowiadające im długości fali spełiają pewe dziwe związki odkryte przez Balmera. Jeśli dla przykładu liie wodorowe z widma widzialego poumerujemy liczbami całkowitymi, to długości fali kolejych liii moża wyliczyć ze wzoru: λ = Λ 4 gdzie współczyik Λ= 64,6 m jest wyzaczoy a podstawie daych doświadczalych i historyczie azywa się go długością Balmera.

4 O tym wszystkim szczegółowo już sobie opowiadaliśmy i jak pamiętamy, było zupełym zaskoczeiem to, że te wzór ma taką dziwą i iezrozumiałą postać. Teraz jesteśmy gotowi, aby go wyjaśić! Jak wyika z poprzediej aszej aalizy, elektro może przeskakiwać pomiędzy poszczególymi poziomami eergetyczymi. Temu procesowi towarzyszy emisja lub pochłoięcie fotou o ściśle określoej eergii, a zatem o ściśle określoej długości fali. Te właśie proces jest źródłem powstawaia liii widmowych. Atom ie może bowiem emitować promieiowaia o dowolej długości fali, ale tylko o ściśle określoej. Każde przejście atomowe jest przecież scharakteryzowae kokretą eergią. A to ozacza, że towarzyszy mu promieiowaie o dokładie jedej długości. Tym samym położeie w widmie liii widmowych jest bezpośredią kosekwecją kwatowej budowy daego atomu; jest kosekwecją struktury poziomów eergetyczych w atomie. Wyliczmy teraz długość fali promieiowaia, jakie jest emitowae lub pochłaiae, gdy elektro przeskakuje pomiędzy poziomami eergetyczymi 1 i w atomie wodoru. W tym celu wystarczy wstawić wzór a eergię fotou do wzoru a różicę eergii pomiędzy poziomami i wykoać kilka prostych przekształceń. Ostateczie otrzymamy wzór: 4π h- h λ = 4 1 Jak widzimy, wzór te składa się z iloczyu dwóch ułamków. Pierwszy z ich jest pewą kombiacją różych uiwersalych stałych przyrody i zupełie ie zależy od umeracji poziomów eergetyczych. Drugi ułamek wręcz przeciwie jest kombiacją jedyie umerów poziomów eergetyczych i w ogóle ie zależy od iych rzeczy. Wzór te jest uiwersaly i opisuje wszystkie możliwe przejścia w atomie wodoru. Aby lepiej go zrozumieć, rozważmy teraz takie, które są przejściami z dowolego stau do stau drugiego i którym towarzyszy emisja fotou. Przejścia takie azywamy serią Balmera i zaraz będzie jase dlaczego. Przejścia te możemy zazaczyć a diagramie eergetyczym (zazaczyliśmy a im rówież ią serię związaą z przejściami a pierwszy poziom eergetyczy; azywamy ją serią Lymaa). Możliwe długości fali promieiowaia, jakie jest emitowae w serii Balmera, możemy oczywiście wyliczyć z aszego ogólego wzoru, wstawiając do iego 1 =(są to przejścia do stau ). Rozważać przy tym ależy tylko przejścia z 1 większymi od, bo ma astępować emisja fotou. Po wykoaiu tej czyości otrzymamy astępujący wzór: 16π h- λ = 4 Zauważmy, że jeśli przez Λ ozaczymy współczyik występujący w tym wzorze, to będzie miał o dokładie taką samą postać jak wzór Balmera! Przypomijmy jedak, że wzór Balmera został otrzymay jedyie a podstawie eksperymetów. My te wzór otrzymaliśmy a drodze czysto teoretyczej, opierając się jedyie a kocepcji budowy atomu zapropoowaej przez Bohra. Teoria Bohra pozwoliła am uzyskać przy tym kokrety wzór a długość Balmera Λ. Jak widać ma o postać: 16π h- Λ =

5 Pozostaje zatem sprawdzić, jaka jest teoretycza wartość tej wielkości. Jak widać, aby ją wyliczyć, potrzebujemy tylko kilku podstawowych stałych przyrody. Po podstawieiu odpowiedich liczb (co pozostawiam Czytelikowi jako ćwiczeie) teoretycza wartość długości Balmera to w przybliżeiu Λ 64,6 m!!! Dokładie tyle, ile wyszło Balmerowi w XIX wieku a podstawie pomiarów. To ozacza i miej, i więcej tylko tyle, że teoria Bohra aprawdę dobrze opisuje mikroskopowy świat (przyajmiej jeśli chodzi o atom wodoru), a liie, które wykrył Balmer (i sprytie je poumerował), ależą do jedej serii dozwoloych przejść w atomie. Dlatego właśie azywa się ją serią Balmera. INNE SERIE ATOMOWE Oczywiście istieją ie możliwe serie przejść w atomie. Jedą z ich już zazaczyliśmy a diagramie. Jest to seria Lymaa i odpowiadają jej przejścia a pierwszą dozwoloą orbitę (czyli a sta podstawowy). Jak widać, emitowae fotoy mają w tym przypadku większą eergię i tym samym odpowiada im fala o krótszej długości. To promieiowaie ie jest widocze dla ludzkiego oka, ale może być wykrywae iymi metodami. Serię tę jako pierwszy odkrył w latach Theodore Lyma i stąd pochodzi jej azwa. Przejście a trzeci poziom atomowy związae jest z serią Paschea, a czwarty z serią Bracketta. I moża tak dalej ciągąć te serie. Im wyższą serię rozważamy, tym eergie fotoów są miejsze, bo jak już mówiliśmy, różice eergii pomiędzy wyższymi poziomami są miejsze iż pomiędzy iższymi. ATOM BOHRA TRIUMFUJE Teoria Bohra budowy atomu oparta a bardzo prostym, aczkolwiek sprzeczym z fizyką klasyczą założeiu pozwoliła przewidzieć zarówo rozmiary atomów, jak i strukturę ich poziomów eergetyczych. To doprowadziło as do przewidzeia powstawaia liii widmowych, których długości wyzaczyliśmy w sposób całkowicie teoretyczy. Jest to iewątpliwy sukces tej teorii, bo pozwoliła oa wytłumaczyć istiejące i przewidzieć owe wyiki eksperymetów. Wyiki, które doskoale zgadzają się z doświadczeiem! Czy zatem teoria Bohra jest doskoała? Czy może są eksperymety sprzecze z przewidywaiami tej teorii? 5

Model Bohra atomu wodoru

Model Bohra atomu wodoru Model Bohra atomu wodoru Widma liiowe pierwiastków. wodór hel eo tle węgiel azot sód Ŝelazo Aby odpowiedzieć a pytaie dlaczego wodór i ie pierwiastki ie emitują wszystkich częstotliwości fal elektromagetyczych

Bardziej szczegółowo

Fundamentalna tabelka atomu. eureka! to odkryli. p R = nh -

Fundamentalna tabelka atomu. eureka! to odkryli. p R = nh - TEKST TRUDNY Postulat kwatowaia Bohra, czyli założoy ad hoc związek pomiędzy falą de Broglie a a geometryczymi własościami rozważaego problemu, pozwolił bez większych trudości teoretyczie przewidzieć rozmiary

Bardziej szczegółowo

Wykład 19: Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok

Wykład 19: Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok Wykład 9: Atom Dr iż. Zbigiew Szklarski Katedra Elektroiki, paw. C-, pok.3 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Wczese modele atomu Grecki filozof Demokryt rozpoczął poszukiwaia opisu

Bardziej szczegółowo

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy

Bardziej szczegółowo

Kolorowanie Dywanu Sierpińskiego. Andrzej Szablewski, Radosław Peszkowski

Kolorowanie Dywanu Sierpińskiego. Andrzej Szablewski, Radosław Peszkowski olorowaie Dywau ierpińskiego Adrzej zablewski, Radosław Peszkowski pis treści stęp... Problem kolorowaia... Róże rodzaje kwadratów... osekwecja atury fraktalej...6 zory rekurecyje... Przekształcaie rekurecji...

Bardziej szczegółowo

Lekcja Efekt fotoelektryczny str

Lekcja Efekt fotoelektryczny str Lekcja 18-19. Efekt fotoelektryczy str. 10-109 Nawiązaie do gimazjum Pojęcie fali, fali elektromagetyczej przykłady. Pojęcia opisujące fale (λ, ν, T, c) i związki między imi. Pojęcie prądu i wielkości

Bardziej szczegółowo

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic).

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic). Materiały dydaktycze Aaliza Matematycza Wykład Ciągi liczbowe i ich graice. Graice ieskończoe. Waruek Cauchyego. Działaia arytmetycze a ciągach. Podstawowe techiki obliczaia graic ciągów. Istieie graic

Bardziej szczegółowo

PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,,

PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,, PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA Ruch cząstki ieograiczoy z klasyczego puktu widzeia W tym przypadku V = cost, przejmiemy V ( x ) = 0, cząstka porusza się wzdłuż osi x. Rozwiązujemy

Bardziej szczegółowo

Wykład Budowa atomu 1

Wykład Budowa atomu 1 Wykład 30. 11. 2016 Budowa atomu 1 O atomach Trochę historii i wprowadzenie w temat Promieniowanie i widma Doświadczenie Rutherforda i odkrycie jądra atomowego Model atomu wodoru Bohra sukcesy i ograniczenia

Bardziej szczegółowo

Temat: Promieniowanie atomu wodoru (teoria)

Temat: Promieniowanie atomu wodoru (teoria) Temat: Promieniowanie atomu wodoru (teoria) Zgodnie z drugim postulatem Bohra elektron poruszając się po dozwolonej orbicie nie wypromieniowuje energii. Promieniowanie zostaje wyemitowane, gdy elektron

Bardziej szczegółowo

Wykład 18: Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok

Wykład 18: Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok Wykład 18: Atom Dr iż. Zbigiew Szklarski Katedra Elektroiki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Wczese modele atomu Grecki filozof Demokryt rozpoczął poszukiwaia

Bardziej szczegółowo

Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a

Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a Modele atomu wodoru Modele atomu wodoru Thomson'a Rutherford'a Bohr'a Demokryt: V w. p.n.e najmniejszy, niepodzielny metodami chemicznymi składnik materii. atomos - niepodzielny Co to jest atom? trochę

Bardziej szczegółowo

I. Podzielność liczb całkowitych

I. Podzielność liczb całkowitych I Podzielość liczb całkowitych Liczba a = 57 przy dzieleiu przez pewą liczbę dodatią całkowitą b daje iloraz k = 3 i resztę r Zaleźć dzieik b oraz resztę r a = 57 = 3 b + r, 0 r b Stąd 5 r b 8, 3 więc

Bardziej szczegółowo

O liczbach naturalnych, których suma równa się iloczynowi

O liczbach naturalnych, których suma równa się iloczynowi O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą

Bardziej szczegółowo

VII MIĘDZYNARODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretyczne T3.

VII MIĘDZYNARODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretyczne T3. KOOF Szczeci: www.of.szc.pl VII MIĘDZYNAODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretycze T3. Źródło: Komitet Główy Olimpiady Fizyczej; Olimpiada Fizycza XXIII XXIV, WSiP Warszawa 1977 Autor: Waldemar Gorzkowski

Bardziej szczegółowo

Model Bohra budowy atomu wodoru - opis matematyczny

Model Bohra budowy atomu wodoru - opis matematyczny Model Bohra budowy atomu wodoru - opis matematyczny Uwzględniając postulaty kwantowe Bohra, można obliczyć promienie orbit dozwolonych, energie elektronu na tych orbitach, wartość prędkości elektronu na

Bardziej szczegółowo

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim.

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim. Damia Doroba Ciągi. Graice, z których korzystamy. k. q.. 5. dla k > 0 dla k 0 0 dla k < 0 dla q > 0 dla q, ) dla q Nie istieje dla q ) e a, a > 0. Opis. Pierwsza z graic powia wydawać się oczywista. Jako

Bardziej szczegółowo

Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik

Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik Pierwiastki z liczby zespoloej Autorzy: Agieszka Kowalik 09 Pierwiastki z liczby zespoloej Autor: Agieszka Kowalik DEFINICJA Defiicja : Pierwiastek z liczby zespoloej Niech będzie liczbą aturalą. Pierwiastkiem

Bardziej szczegółowo

5. Zasada indukcji matematycznej. Dowody indukcyjne.

5. Zasada indukcji matematycznej. Dowody indukcyjne. Notatki do lekcji, klasa matematycza Mariusz Kawecki, II LO w Chełmie 5. Zasada idukcji matematyczej. Dowody idukcyje. W rozdziale sformułowaliśmy dla liczb aturalych zasadę miimum. Bezpośredią kosekwecją

Bardziej szczegółowo

Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy

Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy T_atom-All 1 Nazwisko i imię klasa Stałe : h=6,626 10 34 Js h= 4,14 10 15 evs 1eV=1.60217657 10-19 J Zaznacz zjawiska świadczące o falowej naturze światła a) zjawisko fotoelektryczne b) interferencja c)

Bardziej szczegółowo

Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a

Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a Modele atomu wodoru Modele atomu wodoru Thomson'a Rutherford'a Bohr'a Demokryt: V w. p.n.e najmniejszy, niepodzielny metodami chemicznymi składnik materii. atomos - niepodzielny Co to jest atom? trochę

Bardziej szczegółowo

ĆWICZENIE NR 72B (Teoria)

ĆWICZENIE NR 72B (Teoria) * ĆWICZENIE NR 7B (Teoria) N. Mirowska WYZNACZANIE STAŁEJ RYDBERGA I MASY ZREDUKOWANEJ ELEKTRONU ZA POMOCĄ SPEKTROSKOPU Cel ćwiczeia: pozaie zasady działaia spektroskopu oraz metody wyzaczaia stałej Rydberga

Bardziej szczegółowo

a 1, a 2, a 3,..., a n,...

a 1, a 2, a 3,..., a n,... III. Ciągi liczbowe. 1. Defiicja ciągu liczbowego. Defiicja 1.1. Ciągiem liczbowym azywamy fukcję a : N R odwzorowującą zbiór liczb aturalych N w zbiór liczb rzeczywistych R i ozaczamy przez { }. Używamy

Bardziej szczegółowo

Analiza matematyczna. Robert Rałowski

Analiza matematyczna. Robert Rałowski Aaliza matematycza Robert Rałowski 6 paździerika 205 2 Spis treści 0. Liczby aturale.................................... 3 0.2 Liczby rzeczywiste.................................... 5 0.2. Nierówości...................................

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

BUDOWA I PROMIENIOWANIE ATOMÓW

BUDOWA I PROMIENIOWANIE ATOMÓW BUDOWA I PROMIENIOWANIE ATOMÓW FALE ELEKTROMAGNEYCZNE WIDMO FAL ELEKTROMAGNETYCZNYCH Teoria orpusulara foto hν E hν, p c hc E, E ~ stała Placa h 6,6 0-34 J s J 0,6 9 ev Prędość fal świetlych w próżi c

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINOWYCH

UKŁADY RÓWNAŃ LINOWYCH Ekoeergetyka Matematyka. Wykład 4. UKŁADY RÓWNAŃ LINOWYCH Defiicja (Układ rówań liiowych, rozwiązaie układu rówań) Układem m rówań liiowych z iewiadomymi,,,, gdzie m, azywamy układ rówań postaci: a a a

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16 Egzami,.9.6, godz. :-5: Zadaie. ( puktów) Wyzaczyć wszystkie rozwiązaia rówaia z 4 = 4 w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej (bez używaia fukcji trygoometryczych)

Bardziej szczegółowo

Rysunek 3-23 Hipotetyczne widmo ciągłe atomu Ernesta Rutherforda oraz rzeczywiste widmo emisyjne wodoru w zakresie światła widzialnego

Rysunek 3-23 Hipotetyczne widmo ciągłe atomu Ernesta Rutherforda oraz rzeczywiste widmo emisyjne wodoru w zakresie światła widzialnego 3.5. Model Bohra-Sommerfelda Przeciw modelowi atomu zaproponowanego przez Ernesta Rutherforda przemawiały także wyniki badań spektroskopowych pierwiastków. Jeśli elektrony, jak wynika z teorii Maxwella,

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrówawcze z fizyki -Zestaw 5 -Teoria Optyka geometrycza i optyka falowa. Prawo odbicia i prawo załamaia światła, Bieg promiei świetlych w pryzmacie, soczewki i zwierciadła. Zjawisko dyfrakcji

Bardziej szczegółowo

Geometrycznie o liczbach

Geometrycznie o liczbach Geometryczie o liczbach Geometryczie o liczbach Łukasz Bożyk Dodatią liczbę całkowitą moża iterpretować jako pole pewej figury składającej się z kwadratów jedostkowych Te prosty pomysł pozwala w aturaly

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy 12. Dowieść, że istieje ieskończeie wiele par liczb aturalych k < spełiających rówaie ( ) ( ) k. k k +1 Stosując wzór a wartość współczyika dwumiaowego otrzymujemy ( ) ( )!! oraz k k! ( k)! k +1 (k +1)!

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1

2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1 Tekst a iebiesko jest kometarzem lub treścią zadaia. Zadaie 1. Zbadaj mootoiczość i ograiczoość ciągów. a = + 3 + 1 Ciąg jest mootoiczie rosący i ieograiczoy poieważ różica kolejych wyrazów jest dodatia.

Bardziej szczegółowo

Zasada indukcji matematycznej. Dowody indukcyjne.

Zasada indukcji matematycznej. Dowody indukcyjne. Zasada idukcji matematyczej Dowody idukcyje Z zasadą idukcji matematyczej i dowodami idukcyjymi sytuacja jest ajczęściej taka, że podaje się w szkole treść zasady idukcji matematyczej, a astępie omawia,

Bardziej szczegółowo

Wczesne modele atomu

Wczesne modele atomu Wczesne modele atomu Wczesne modele atomu Demokryt (400 p.n.e.) Grecki filozof Demokryt rozpoczął poszukiwania opisu materii około 2400 lat temu. Postawił pytanie: Czy materia może być podzielona na mniejsze

Bardziej szczegółowo

Struktura czasowa stóp procentowych (term structure of interest rates)

Struktura czasowa stóp procentowych (term structure of interest rates) Struktura czasowa stóp procetowych (term structure of iterest rates) Wysokość rykowych stóp procetowych Na ryku istieje wiele różorodych stóp procetowych. Poziom rykowej stopy procetowej (lub omialej stopy,

Bardziej szczegółowo

I kolokwium z Analizy Matematycznej

I kolokwium z Analizy Matematycznej I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi. Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe

Bardziej szczegółowo

a n 7 a jest ciągiem arytmetycznym.

a n 7 a jest ciągiem arytmetycznym. ZADANIA MATURALNE - CIĄGI LICZBOWE - POZIOM PODSTAWOWY Opracowała mgr Dauta Brzezińska Zad.1. ( pkt) Ciąg a określoy jest wzorem 5.Wyzacz liczbę ujemych wyrazów tego ciągu. Zad.. ( 6 pkt) a Day jest ciąg

Bardziej szczegółowo

Niepewności pomiarowe

Niepewności pomiarowe Niepewości pomiarowe Obserwacja, doświadczeie, pomiar Obserwacja zjawisk fizyczych polega a badaiu ych zjawisk w warukach auralych oraz a aalizie czyików i waruków, od kórych zjawiska e zależą. Waruki

Bardziej szczegółowo

Ćwiczenie nr 14. Porównanie doświadczalnego rozkładu liczby zliczeń w zadanym przedziale czasu z rozkładem Poissona

Ćwiczenie nr 14. Porównanie doświadczalnego rozkładu liczby zliczeń w zadanym przedziale czasu z rozkładem Poissona Ćwiczeie r 4 Porówaie doświadczalego rozkładu liczby zliczeń w zadaym przedziale czasu z rozkładem Poissoa Studeta obowiązuje zajomość: Podstawowych zagadień z rachuku prawdopodobieństwa, Zajomość rozkładów

Bardziej szczegółowo

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem 9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 14 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy

Bardziej szczegółowo

p.n.e. Demokryt z Abdery. Wszystko jest zbudowane z niewidzialnych cząstek - atomów (atomos ->niepodzielny)

p.n.e. Demokryt z Abdery. Wszystko jest zbudowane z niewidzialnych cząstek - atomów (atomos ->niepodzielny) O atomie 460-370 p.n.e. Demokryt z Abdery Wszystko jest zbudowane z niewidzialnych cząstek - atomów (atomos ->niepodzielny) 1808 John Dalton teoria atomistyczna 1. Pierwiastki składają się z małych, niepodzielnych

Bardziej szczegółowo

Energetyka Jądrowa. Wykład 28 lutego Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Energetyka Jądrowa. Wykład 28 lutego Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Energetyka Jądrowa Wykład 8 lutego 07 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Model atomu. Promieniowanie atomów 8.II.07 EJ - Wykład / r

Bardziej szczegółowo

Statystyka opisowa - dodatek

Statystyka opisowa - dodatek Statystyka opisowa - dodatek. *Jak obliczyć statystyki opisowe w dużych daych? Liczeie statystyk opisowych w dużych daych może sprawiać problemy. Dla przykładu zauważmy, że aiwa implemetacja średiej arytmetyczej

Bardziej szczegółowo

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA Mamy populację geeralą i iteresujemy się pewą cechą X jedostek statystyczych, a dokładiej pewą charakterystyką liczbową θ tej cechy (p. średią wartością

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17 Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo

Bardziej szczegółowo

MODELE MATEMATYCZNE W UBEZPIECZENIACH. 1. Renty

MODELE MATEMATYCZNE W UBEZPIECZENIACH. 1. Renty MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 2: RENTY. PRZEPŁYWY PIENIĘŻNE. TRWANIE ŻYCIA 1. Rety Retą azywamy pewie ciąg płatości. Na razie będziemy je rozpatrywać bez żadego związku z czasem życiem człowieka.

Bardziej szczegółowo

Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Rekursja Materiały pomocicze do wykładu wykładowca: dr Magdalea Kacprzak Rozwiązywaie rówań rekurecyjych Jedorode liiowe rówaia rekurecyje Twierdzeie Niech k będzie ustaloą liczbą aturalą dodatią i iech

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 39 ATOM WODORU. PROMIENIOWANIE. WIDMA TEST JEDNOKROTNEGO WYBORU

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 39 ATOM WODORU. PROMIENIOWANIE. WIDMA TEST JEDNOKROTNEGO WYBORU autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 39 ATOM WODORU. PROMIENIOWANIE. WIDMA Zadanie 1 1 punkt TEST JEDNOKROTNEGO WYBORU Moment pędu elektronu znajdującego się na drugiej orbicie w atomie

Bardziej szczegółowo

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów

Bardziej szczegółowo

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa Matematyka fiasowa 8.05.0 r. Komisja Egzamiacyja dla Aktuariuszy LX Egzami dla Aktuariuszy z 8 maja 0 r. Część I Matematyka fiasowa WERJA EU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut

Bardziej szczegółowo

Fizyka 3.3 WYKŁAD II

Fizyka 3.3 WYKŁAD II Fizyka 3.3 WYKŁAD II Promieniowanie elektromagnetyczne Dualizm korpuskularno-falowy światła Fala elektromagnetyczna Strumień fotonów o energii E F : E F = hc λ c = 3 10 8 m/s h = 6. 63 10 34 J s Światło

Bardziej szczegółowo

Metoda łączona. Wykład 7 Dwie niezależne próby. Standardowy błąd dla różnicy dwóch średnich. Metoda zwykła (niełączona) n2 2

Metoda łączona. Wykład 7 Dwie niezależne próby. Standardowy błąd dla różnicy dwóch średnich. Metoda zwykła (niełączona) n2 2 Wykład 7 Dwie iezależe próby Często porówujemy wartości pewej zmieej w dwóch populacjach. Przykłady: Grupa zabiegowa i kotrola Lekarstwo a placebo Pacjeci biorący dwa podobe lekarstwa Mężczyźi a kobiety

Bardziej szczegółowo

Rysunek 1: Fale stojące dla struny zamocowanej na obu końcach; węzły są zaznaczone liniami kropkowanymi, a strzałki przerywanymi

Rysunek 1: Fale stojące dla struny zamocowanej na obu końcach; węzły są zaznaczone liniami kropkowanymi, a strzałki przerywanymi Aaliza fal złożoych Autorzy: Zbigiew Kąkol, Bartek Wiedlocha Przyjrzyjmy się drgaiu poprzeczemu struy. Jeżeli strua zamocowaa a obu końcach zostaie ajpierw wygięta, a astępie puszczoa, to wzdłuż struy

Bardziej szczegółowo

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO Agieszka Jakubowska ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO. Wstęp Skąplikowaie współczesego życia gospodarczego powoduje, iż do sterowaia procesem zarządzaia

Bardziej szczegółowo

Wykład 17: Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok

Wykład 17: Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok Wykład 17: Atom Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Wczesne modele atomu Grecki filozof Demokryt rozpoczął poszukiwania

Bardziej szczegółowo

Budowa i zasada działania lasera

Budowa i zasada działania lasera Budowa i zasada działaia lasera Budowa atomu Demokryt (460 370 p..e.) materia składa się z iepodzielych elemetów; (atom, gr. atomos - iepodziely). Sta wiedzy o atomie w drugiej połowie XIX stulecia: Atom

Bardziej szczegółowo

Metody badania zbieżności/rozbieżności ciągów liczbowych

Metody badania zbieżności/rozbieżności ciągów liczbowych Metody badaia zbieżości/rozbieżości ciągów liczbowych Ryszard Rębowski 14 grudia 2017 1 Wstęp Kluczowe pytaie odoszące się do zagadieia badaia zachowaia się ciągu liczbowego sprowadza się do sposobu opisu

Bardziej szczegółowo

Algorytmy I Struktury Danych Prowadząca: dr Hab. inż. Małgorzata Sterna. Sprawozdanie do Ćwiczenia 3 Algorytmy grafowe ( )

Algorytmy I Struktury Danych Prowadząca: dr Hab. inż. Małgorzata Sterna. Sprawozdanie do Ćwiczenia 3 Algorytmy grafowe ( ) Poiedziałki 11.45 Grupa I3 Iformatyka a wydziale Iformatyki Politechika Pozańska Algorytmy I Struktury Daych Prowadząca: dr Hab. iż. Małgorzata Stera Sprawozdaie do Ćwiczeia 3 Algorytmy grafowe (26.03.12)

Bardziej szczegółowo

Lista 6. Estymacja punktowa

Lista 6. Estymacja punktowa Estymacja puktowa Lista 6 Model metoda mometów, rozkład ciągły. Zadaie. Metodą mometów zaleźć estymator iezaego parametru a w populacji jedostajej a odciku [a, a +. Czy jest to estymator ieobciążoy i zgody?

Bardziej szczegółowo

Chemia Teoretyczna I (6).

Chemia Teoretyczna I (6). Chemia Teoretycza I (6). NajwaŜiejsze rówaia róŝiczkowe drugiego rzędu o stałych współczyikach w chemii i fizyce cząstka w jedowymiarowej studi potecjału Cząstka w jedowymiarowej studi potecjału Przez

Bardziej szczegółowo

IV. TEORIA (MODEL) BOHRA ATOMU (1913)

IV. TEORIA (MODEL) BOHRA ATOMU (1913) IV. TEORIA (MODEL) BOHRA ATOMU (1913) Bohr zastanawiał się, jak wyjaśnić strukturę widm liniowych. Elektron musi krążyć, aby zrównoważyć siłę Coulomba (przyciągającą). Skoro krąży to doznaje przyspieszenia

Bardziej szczegółowo

Przykład Obliczenie wskaźnika plastyczności przy skręcaniu

Przykład Obliczenie wskaźnika plastyczności przy skręcaniu Przykład 10.5. Obliczeie wskaźika plastyczości przy skręcaiu Obliczyć wskaźiki plastyczości przy skręcaiu dla astępujących przekrojów: a) -kąta foremego b) przekroju złożoego 6a 16a 9a c) przekroju ciekościeego

Bardziej szczegółowo

Promieniowanie atomów wzbudzonych

Promieniowanie atomów wzbudzonych Achorage, USA, May 2002 W-27 (Jaroszewicz) 23 slajdy Na podstawie prezetacji prof. J. Rutkowskiego Promieiowaie atomów wzbudzoych Promieiowaie spotaicze Promieiowaie wymuszoe Promieiowaie retgeowskie 3/23-W27

Bardziej szczegółowo

Ciągi liczbowe wykład 3

Ciągi liczbowe wykład 3 Ciągi liczbowe wykład 3 dr Mariusz Grządziel semestr zimowy, r akad 204/205 Defiicja ciągu liczbowego) Ciagiem liczbowym azywamy fukcję odwzorowuja- ca zbiór liczb aturalych w zbiór liczb rzeczywistych

Bardziej szczegółowo

II.1 Serie widmowe wodoru

II.1 Serie widmowe wodoru II.1 Serie widmowe wodoru Jan Królikowski Fizyka IVBC 1 II.1 Serie widmowe wodoru W obszarze widzialnym wystepują 3 silne linie wodoru: H α (656.3 nm), H β (486.1 nm) i H γ (434.0 nm) oraz szereg linii

Bardziej szczegółowo

Podstawowe cechy podzielności liczb.

Podstawowe cechy podzielności liczb. Mariusz Kawecki, Notatki do lekcji Cechy podzielości liczb Podstawowe cechy podzielości liczb. Pamiętamy z gimazjum, że istieją reguły, przy pomocy których łatwo sprawdzić, czy kokreta liczba dzieli się

Bardziej szczegółowo

Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem:

Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem: Relacje rekurecyje Defiicja: Niech =,,,... będzie astępująco zdefiiowaym ciągiem: () = r, = r,..., k = rk, gdzie r, r,..., r k są skalarami, () dla k, = a + a +... + ak k, gdzie a, a,..., ak są skalarami.

Bardziej szczegółowo

3. Funkcje elementarne

3. Funkcje elementarne 3. Fukcje elemetare Fukcjami elemetarymi będziemy azywać fukcję tożsamościową x x, fukcję wykładiczą, fukcje trygoometrycze oraz wszystkie fukcje, jakie moża otrzymać z wyżej wymieioych drogą astępujących

Bardziej szczegółowo

INWESTYCJE MATERIALNE

INWESTYCJE MATERIALNE OCENA EFEKTYWNOŚCI INWESTYCJI INWESTCJE: proces wydatkowaia środków a aktywa, z których moża oczekiwać dochodów pieiężych w późiejszym okresie. Każde przedsiębiorstwo posiada pewą liczbę możliwych projektów

Bardziej szczegółowo

STATYSTYCZNA OCENA WYNIKÓW POMIARÓW.

STATYSTYCZNA OCENA WYNIKÓW POMIARÓW. Statytycza ocea wyików pomiaru STATYSTYCZNA OCENA WYNIKÓW POMIARÓW CEL ĆWICZENIA Celem ćwiczeia jet: uświadomieie tudetom, że każdy wyik pomiaru obarczoy jet błędem o ie zawze zaej przyczyie i wartości,

Bardziej szczegółowo

Stara i nowa teoria kwantowa

Stara i nowa teoria kwantowa Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż

Bardziej szczegółowo

CAŁKA NIEOZNACZONA. F (x) = f(x) dx.

CAŁKA NIEOZNACZONA. F (x) = f(x) dx. CAŁKA NIEOZNACZONA Mówimy, że fukcja F () jest fukcją pierwotą dla fukcji f() w pewym ustaloym przedziale - gdy w kadym pukcie zachodzi F () = f(). Fukcję pierwotą często azywamy całką ieozaczoą i zapisujemy

Bardziej szczegółowo

Wykład 11. a, b G a b = b a,

Wykład 11. a, b G a b = b a, Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada

Bardziej szczegółowo

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej 3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R

Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R Kresy zbiorów. Ćwiczeia 21.11.2011: zad. 197-229 Kolokwium r 7, 22.11.2011: materiał z zad. 1-249 Defiicja: Zbiór Z R azywamy ograiczoym z góry, jeżeli M R x Z x M. Każdą liczbę rzeczywistą M R spełiającą

Bardziej szczegółowo

Parametryzacja rozwiązań układu równań

Parametryzacja rozwiązań układu równań Parametryzacja rozwiązań układu rówań Przykład: ozwiąż układy rówań: / 2 2 6 2 5 2 6 2 5 //( / / 2 2 9 2 2 4 4 2 ) / 4 2 2 5 2 4 2 2 Korzystając z postaci schodkowej (środkowa macierz) i stosując podstawiaie

Bardziej szczegółowo

Internetowe Kółko Matematyczne 2004/2005

Internetowe Kółko Matematyczne 2004/2005 Iteretowe Kółko Matematycze 2004/2005 http://www.mat.ui.toru.pl/~kolka/ Zadaia dla szkoły średiej Zestaw I (20 IX) Zadaie 1. Daa jest liczba całkowita dodatia. Co jest większe:! czy 2 2? Zadaie 2. Udowodij,

Bardziej szczegółowo

Podstawy fizyki kwantowej i budowy materii

Podstawy fizyki kwantowej i budowy materii Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 9 5 grudnia 2016 A.F.Żarnecki Podstawy

Bardziej szczegółowo

Numeryczny opis zjawiska zaniku

Numeryczny opis zjawiska zaniku FOTON 8, iosa 05 7 Numeryczy opis zjawiska zaiku Jerzy Giter ydział Fizyki U Postawieie problemu wielu zagadieiach z różych działów fizyki spotykamy się z astępującym problemem: zmiay w czasie t pewej

Bardziej szczegółowo

Prawo odbicia i załamania. Autorzy: Zbigniew Kąkol Piotr Morawski

Prawo odbicia i załamania. Autorzy: Zbigniew Kąkol Piotr Morawski Prawo odbicia i załamaia Autorzy: Zbigiew Kąkol Piotr Morawski 207 Prawo odbicia i załamaia Autorzy: Zbigiew Kąkol, Piotr Morawski Jeżeli światło pada a graicę dwóch ośrodków, to ulega zarówo odbiciu a

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU. Wprowadzenie. = =

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU. Wprowadzenie. = = WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Wprowadzeie. Przy przejśiu światła z jedego ośrodka do drugiego występuje zjawisko załamaia zgodie z prawem Selliusa siα

Bardziej szczegółowo

BADANIA DOCHODU I RYZYKA INWESTYCJI

BADANIA DOCHODU I RYZYKA INWESTYCJI StatSoft Polska, tel. () 484300, (60) 445, ifo@statsoft.pl, www.statsoft.pl BADANIA DOCHODU I RYZYKA INWESTYCJI ZA POMOCĄ ANALIZY ROZKŁADÓW Agieszka Pasztyła Akademia Ekoomicza w Krakowie, Katedra Statystyki;

Bardziej szczegółowo

Budowa atomów. Budowa atomu wodoru

Budowa atomów. Budowa atomu wodoru 05-0- Budowa atomów atom wodoru atomy wieloelektroowe zakaz Pauliego układ okresowy pierwiastków Budowa atomu wodoru atom wodoru składa się z pojedyczego elektrou (-e) związaego z jądrem protoem (+e) przyciągającą

Bardziej szczegółowo

P π n π. Równanie ogólne płaszczyzny w E 3. Dane: n=[a,b,c] Wówczas: P 0 P=[x-x 0,y-y 0,z-z 0 ] Równanie (1) nazywamy równaniem ogólnym płaszczyzny

P π n π. Równanie ogólne płaszczyzny w E 3. Dane: n=[a,b,c] Wówczas: P 0 P=[x-x 0,y-y 0,z-z 0 ] Równanie (1) nazywamy równaniem ogólnym płaszczyzny Rówaie ogóle płaszczyzy w E 3. ae: P π i π o =[A,B,C] P (,y,z ) Wówczas: P P=[-,y-y,z-z ] P π PP PP= o o Rówaie () azywamy rówaiem ogólym płaszczyzy A(- )+B(y-y )+C(z-z )= ( ) A+By+Cz+= Przykład

Bardziej szczegółowo

Modele tendencji rozwojowej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017

Modele tendencji rozwojowej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017 STATYSTYKA OPISOWA Dr Alia Gleska Istytut Matematyki WE PP 18 listopada 2017 1 Metoda aalitycza Metoda aalitycza przyjmujemy założeie, że zmiay zjawiska w czasie moża przedstawić jako fukcję zmieej czasowej

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE. Strona 1

KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE.  Strona 1 KURS STATYSTYKA Lekcja 3 Parametrycze testy istotości ZADANIE DOMOWE www.etrapez.pl Stroa Część : TEST Zazacz poprawą odpowiedź (tylko jeda jest prawdziwa). Pytaie Statystykę moża rozumieć jako: a) próbkę

Bardziej szczegółowo

Model Lesliego. Oznaczmy: 0 m i liczba potomstwa pojawiającego się co jednostkę czasu u osobnika z i-tej grupy wiekowej, i = 1,...

Model Lesliego. Oznaczmy: 0 m i liczba potomstwa pojawiającego się co jednostkę czasu u osobnika z i-tej grupy wiekowej, i = 1,... Model Lesliego Macierze Lesliego i Markowa K. Leśiak Wyodrębiamy w populaci k grup wiekowych. Po każde edostce czasu astępuą arodziy i zgoy oraz starzeie (przechodzeie do astępe grupy wiekowe). Chcemy

Bardziej szczegółowo

Egzaminy. na wyższe uczelnie 2003. zadania

Egzaminy. na wyższe uczelnie 2003. zadania zadaia Egzamiy wstępe a wyższe uczelie 003 I. Akademia Ekoomicza we Wrocławiu. Rozwiąż układ rówań Æ_ -9 y - 5 _ y = 5 _ -9 _. Dla jakiej wartości parametru a suma kwadratów rozwiązań rzeczywistych rówaia

Bardziej szczegółowo

Fizyka 3. Konsultacje: p. 329, Mechatronika

Fizyka 3. Konsultacje: p. 329, Mechatronika Fizyka 3 Konsultacje: p. 39, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 1 sprawdzian 30 pkt 15.1 18 3.0 18.1 1 3.5 1.1 4 4.0 4.1 7 4.5 7.1 30 5.0 http:\\adam.mech.pw.edu.pl\~marzan Program: - elementy

Bardziej szczegółowo

c 2 + d2 c 2 + d i, 2

c 2 + d2 c 2 + d i, 2 3. Wykład 3: Ciało liczb zespoloych. Twierdzeie 3.1. Niech C R. W zbiorze C określamy dodawaie: oraz możeie: a, b) + c, d) a + c, b + d) a, b) c, d) ac bd, ad + bc). Wówczas C, +, ) jest ciałem, w którym

Bardziej szczegółowo

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz

Bardziej szczegółowo

2. Nieskończone ciągi liczbowe

2. Nieskończone ciągi liczbowe Ciągiem liczbowym azywamy fukcję 2. Nieskończoe ciągi liczbowe a: N R. Wartości tej fukcji ozaczamy przez a) = a i azywamy wyrazami ciągu. Często ciąg ozaczamy przez {a } = lub po prostu przez {a }. Prostymi

Bardziej szczegółowo

MACIERZE STOCHASTYCZNE

MACIERZE STOCHASTYCZNE MACIERZE STOCHASTYCZNE p ij - prawdopodobieństwo przejścia od stau i do stau j w jedym (dowolym) kroku, [p ij ]- macierz prawdopodobieństw przejść (w jedym kroku), Własości macierzy prawdopodobieństw przejść:

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy transportowe cd, Problem komiwojażera

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy transportowe cd, Problem komiwojażera Istrukcja do ćwiczeń laboratoryjych z przedmiotu: Badaia operacyje Temat ćwiczeia: Problemy trasportowe cd Problem komiwojażera Zachodiopomorski Uiwersytet Techologiczy Wydział Iżyierii Mechaiczej i Mechatroiki

Bardziej szczegółowo