Promieniowanie atomów wzbudzonych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Promieniowanie atomów wzbudzonych"

Transkrypt

1 Achorage, USA, May 2002

2 W-27 (Jaroszewicz) 23 slajdy Na podstawie prezetacji prof. J. Rutkowskiego Promieiowaie atomów wzbudzoych Promieiowaie spotaicze Promieiowaie wymuszoe Promieiowaie retgeowskie

3 3/23-W27 Widma optycze wzbudzeie atomu, czyli przejście elektroów walecyjych a wyższe poziomy eergetycze zachodzi pod wpływem: ogrzewaia, wyładowaia elektryczego, oświetleia promieiowaiem widzialym i adfioletowym, reakcji chemiczej, wzbudzoe atomy przechodzą do stau iższego promieiując eergię w postaci kwatów promieiowaia każdy pierwiastek ma charakterystyczy układ liii emisyjych przejścia odbywają się zgode z regułami wyboru (l=1, j=0, 1 są bardziej prawdopodobe od iych) czas życia a poziomach wzbudzoych 10-8 s jest wielokrotie krótszy od czasu a poziomach metatrwałych (10-2 s)

4

5 5/23-W27 Absorpcja i emisja spotaicza Emisję kwatu promieiowaia przy samorzutym przejściu atomu ze stau wzbudzoego do stau iższego eergetyczie azywamy emisją samoistą N (t) liczba wzbudzoych atomów Obliczmy ile ich ubędzie w czasie dt: dn N t dn = -A m N dt A m dt A ln A m N N ( 0) e m N ( 0) e t t t C t emisja spotaicza 0, C N ln gdzie A m = 1/ współczyik spotaiczego przejścia, określający szybkość przejść dla emisji spotaiczej, jest rówy odwrotości średiego czasu życia atomów w staie wzbudzoym Procesem odwrotym jest absorpcja, przejście atomu ze stau podstawowego do stau wzbudzoego w zależości od gęstości promieiowaia u dnm BmuNm 0 N 0 dt

6 6/23-W27 Rozkład obsadzeń staów eergetyczych Stay o iższej eergii są obsadzae z większym prawdopodobieństwem iż stay o wyższej eergii N E Ae E kt rozkład Boltzmaa prawdopodobieństwo z jakim atomy zajmują róże stay eergetycze rozkład boltzmaowski N << N m N > N m rozkład atyboltzmaowski odwróceie rozkładu Boltzmaa metodą pompowaia N m N E m E rozkład atyboltzmaowski

7 7/23-W27 Promieiowaie wymuszoe W przypadku iwersji obsadzeń oddziaływaie fali elektromagetyczej z cząstkami układu prowadzi do emisji wymuszoej dn BmuNdt Prawdopodobieństwa przejść między staami m i określa się za pomocą współczyików Eisteia: B m, B m, A m Z waruku rówowagi: liczba przejść: absorpcyjych, absorpcja B un dt A dt un emisyjych spotaiczych i wymuszoych B m m B m m oraz m N A m B m 8h 3 dt c 3B m lecz A m >B m u emisja wymuszoa emisja spotaicza jest bardziej prawdopodoba iż wymuszoa

8 8/23-W27 Emisja spotaicza a wymuszoa róże kieruki przypadkowa faza te sam kieruek zgoda faza (spójość)

9 9/23-W27 What is a

10 F o t o w y e m it o w a 10/23-W27 Light Amplificatio by Stimulated Emissio of Radiatio wzmocieie światła wskutek zjawiska emisji wymuszoej LASER laser geerator i wzmaciacz promieiowaia ośrodek aktywy atomy, cząsteczki pompowaie iwersja obsadzeń wzmocieie węka rezoasowa foto wysyłay w procesie emisji wymuszoej ma taką samą fazę i kieruek ruchu jak foto padający światło lasera jest: bardzo spóje zbieże (dobrze ukierukowae) quai-moochromatycze często spolaryzowae ( a ) ( b ) ( c ) 3 w z b u d z o e a t P ie r w s z y f o t o P ie r w s z y f o t o F o t o w y e m it o w a przez pie rw szy atom

11 11/23-W27 Laser helowo-eoowy apięcie V powoduje przepływ elektroów przez mieszakę gazów: helu z eoem atomy helu w wyiku zderzeń z elektroami wzbudzają się do stau metatrwałego E 3 zderzeia He-Ne wzbudzają atomy eou do stau E 2 o eergii podobej co eergii E 3 uzyskujemy iwersje obsadzeń pomiędzy staami E 2 i E 1 gdyż: początkowo mało atomów Ne w staie E 1 metatrwałość poziomu E 3 He zapewia stały dopływ atomów Ne w staie E 2 atomy Ne o staie eergii E 1 szybko przechodzą do stau podstawowego E 0 emisja spotaicza daje początek emisji wymuszoej wzmocioej w rezoatorze przejście bezpromieiste w wyiku zderzeń ze ściakami poziomy eergetycze He-Ne

12 12/23-W27 Laser rubiowy absorbując światło lampy błyskowej atomy chromu przechodzą do stau wzbudzoego 3 skąd większość przejdzie do stau metastabilego 2 tworząc iwersję obsadzeń. Spotaicze przejście A 21 wywołuje emisję wymuszoą B 21 praca impulsowa 3 poziom wzbudzoy =10-8 s B 13 A 31 A 21 B 21 pompowaie poziom metastabily 2 1 poziom podstawowy schemat poziomów jou chromu laser rubiowy z domieszką Cr

13 13/23-W27 Optical Resoat Cavity Pumpig Source Mirror Total reflectio Atoms Mirror Partial reflectio

14 14/23-W27 Pump Cycle Pumpig Source Excited Atoms

15 15/23-W27 Emissio ad Lasig Pumpig Source

16 16/23-W27 Rozwój laserów od uruchomieia w 1960 roku pierwszego lasera techologia tych urządzeń bardzo się rozwięła lasery impulsowe i o pracy ciągłej ośrodki czye: gazy, ciecze i ciała stałe zakres długości fal od podczerwiei do adfioletu zastosowaia laserów ze względu a cechy emitowaego światła: kolimacja operowaie a dużych odległościach: dalmierze, celowiki kolimacja duże gęstości mocy: medycya, obróbka materiałów moochromatyczość modulowaie wiązki: telekomuikacja, łączość, spójość iterferecyjy zapis obrazów: holografia, zapis iformacji

17 17/23-W27 Promieiowaie retgeowskie wysoko eergetycze promieiowaie EM widmo ciągłe promieiowaie hamowaia elektroów widmo charakterystycze wzbudzeie elektroów z wewętrzych powłok atomowych U = 10 4 ev

18 18/23-W27 Promieiowaie hamowaia Elektro o początkowej eergii kietyczej E k w wyiku oddziaływaia z ciężkim jądrem tarczy jest hamoway i eergia jaką traci pojawia się w formie kwatów h h c ' E k E k w wyiku zderzeń elektroy tracą róże ilości eergii otrzymujemy więc szereg fotoów o różych długościach fali (widmo ciągłe) h max h c mi eu miimala długość fali zależy jedyie od apięcia U, a ie p. od tarczy

19 19/23-W27 Promieiowaie charakterystycze w spektroskopii retgeowskiej umery powłok o =1, 2, 3 ozacza się K, L, M Widmo liiowe powstaje w wyiku przejść elektroów a wole miejsca po wybitym elektroie M a z = 4 a 3 L a z = 3 a 2 K a z = 2 a 1 = 1 = 2 a z +1 a b z +2 a g z +3 a = 3

20 20/23-W27 Widmo promiei X widmo liiowe zależy od atomów pierwiastka aody Liie charakterystycze: K a przejście z L a K c Z b Rc m Z liczba atomowa b stała ekraowaia prawo Moseleya ~ Z b własością określającą położeie pierwiastka w układzie okresowym ie jest jego masa atomowa, lecz liczba atomowa Z liczba protoów w jądrze Widmo promieiowaia retgeowskiego przy miejszych apięciach liie charakterystycze ie pojawiają się

21 21/23-W27 Absorpcja promiei X Zastosowaie w diagostyce medyczej I atężeie promieiowaia ax Ix I o e di aidx a - liiowy współczyik pochłaiaia zależy od rodzaju absorbeta

22 22/23-W27 Retgeografia Zastosowaie promiei X do określaia struktury krystaliczej ze względu a porówywale długości tych fal z odległościami atomów w ciałach stałych Promieie padające Promieie odbite Waruek Wulfa-Bragga a wzmocieie iterferecyje 2d si d zczyzy ciowe

23 Achorage, USA, May 2002

Wykład XI. Light Amplification by Stimulated Emission of Radiation (LASER) laser półprzewodnikowy

Wykład XI. Light Amplification by Stimulated Emission of Radiation (LASER) laser półprzewodnikowy Wykład XI Light Amplificatio by Stimulated Emissio of Radiatio (LASER) laser półprzewodikowy Emisja spotaicza Emisja spotaicza i wymuszoa Fotoy emitowae są we wszystkich kierukach z jedakowym prawdopodobieństwem

Bardziej szczegółowo

Budowa i zasada działania lasera

Budowa i zasada działania lasera Budowa i zasada działaia lasera Budowa atomu Demokryt (460 370 p..e.) materia składa się z iepodzielych elemetów; (atom, gr. atomos - iepodziely). Sta wiedzy o atomie w drugiej połowie XIX stulecia: Atom

Bardziej szczegółowo

Lekcja Efekt fotoelektryczny str

Lekcja Efekt fotoelektryczny str Lekcja 18-19. Efekt fotoelektryczy str. 10-109 Nawiązaie do gimazjum Pojęcie fali, fali elektromagetyczej przykłady. Pojęcia opisujące fale (λ, ν, T, c) i związki między imi. Pojęcie prądu i wielkości

Bardziej szczegółowo

ν = c/λ [s -1 = Hz] ν = [cm -1 ] ZASADY ZALICZENIA PRZEDMIOTU MBS c = m/s cos x H = H o E = E o cos x c = λν 1 ν = _ λ

ν = c/λ [s -1 = Hz] ν = [cm -1 ] ZASADY ZALICZENIA PRZEDMIOTU MBS c = m/s cos x H = H o E = E o cos x c = λν 1 ν = _ λ ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM Z MBS. ROZWIĄZYWANIE WIDM kolokwium NMR 23 kwietia 208 IR maja 208 złożoe czerwca 208 poiedziałek czwartek piątek 9.3 22.3 23.3 26.3 5. 6. 9. 2. 3. H NMR 23.

Bardziej szczegółowo

Podstawy działania laserów

Podstawy działania laserów Prof. Dr Halia Abramczyk Techical Uiversity of Lodz, Faculty of Chemistry Istitute of Applied Radiatio Chemistry Polad, 93-59 Lodz, Wroblewskiego 15 Phoe:(+ 48 4) 631-31-88; fax:(+ 48 4) 684 43 E-mail:abramczy@mitr.p.lodz.pl,

Bardziej szczegółowo

Wzbudzony stan energetyczny atomu

Wzbudzony stan energetyczny atomu LASERY Wzbudzony stan energetyczny atomu Z III postulatu Bohra kj E k E h j Emisja spontaniczna Atom absorbuje tylko określone kwanty energii przechodząc ze stanu podstawowego do wzbudzonego. Zaabsorbowana

Bardziej szczegółowo

3. Zjawisko wzmocnienia i nasycenia. Rozkład mocy w przekroju poprzecznym (TEM)

3. Zjawisko wzmocnienia i nasycenia. Rozkład mocy w przekroju poprzecznym (TEM) 3. Zjawisko wzmocieia i asyceia. Rozkład mocy w przekroju poprzeczym (TEM) 3.. Zjawisko wzmocieia i asyceia W staie rówowagi termodyamiczej obsadzaie staów eergetyczych opisae jest rozkładem Boltzmaa.

Bardziej szczegółowo

Model Bohra atomu wodoru

Model Bohra atomu wodoru Model Bohra atomu wodoru Widma liiowe pierwiastków. wodór hel eo tle węgiel azot sód Ŝelazo Aby odpowiedzieć a pytaie dlaczego wodór i ie pierwiastki ie emitują wszystkich częstotliwości fal elektromagetyczych

Bardziej szczegółowo

Zjawiska kontaktowe. Pojęcia.

Zjawiska kontaktowe. Pojęcia. Zjawiska kotaktowe. Pojęcia. Próżia, E vac =0 Φ m W Φ s χ E c µ E v metal półprzewodik W praca przeiesieia elektrou z da pasma przewodictwa do próżi, bez zwiększaia jego eergii kietyczej (którą ma zerową).

Bardziej szczegółowo

Lasery. Własności światła laserowego Zasada działania Rodzaje laserów

Lasery. Własności światła laserowego Zasada działania Rodzaje laserów Lasery Własności światła laserowego Zasada działania Rodzaje laserów Lasery Laser - nazwa utworzona jako akronim od Light Amplification by Stimulated Emission of Radiation - wzmocnienie światła poprzez

Bardziej szczegółowo

Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X

Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Promieniowanie X Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Lampa rentgenowska Lampa rentgenowska Promieniowanie rentgenowskie

Bardziej szczegółowo

Informacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %.

Informacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %. Informacje ogólne Wykład 28 h Ćwiczenia 14 Charakter seminaryjny zespołu dwuosobowe ~20 min. prezentacje Lista tematów na stronie Materiały do wykładu na stronie: http://urbaniak.fizyka.pw.edu.pl Zaliczenie:

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 7 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Absorpcja promieniowania w ośrodku Promieniowanie elektromagnetyczne przy przejściu przez ośrodek

Bardziej szczegółowo

Lasery. Własności światła laserowego Zasada działania Rodzaje laserów

Lasery. Własności światła laserowego Zasada działania Rodzaje laserów Lasery Własności światła laserowego Zasada działania Rodzaje laserów Lasery Laser - nazwa utworzona jako akronim od Light Amplification by Stimulated Emission of Radiation - wzmocnienie światła poprzez

Bardziej szczegółowo

Wykład 15 Rozpraszanie światła Ramana i luminescencja

Wykład 15 Rozpraszanie światła Ramana i luminescencja Wykład 5 Rozpraszanie światła Ramana i luminescencja Zjawisko rozpraszania Ramana jest związane z niesprężystym rozpraszaniem padającego fotonu o częstości ν na cząsteczce, wskutek czego foton zmienia

Bardziej szczegółowo

n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24)

n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24) n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A 1 2 / B hν exp( ) 1 kt (24) Powyższe równanie określające gęstość widmową energii promieniowania

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrówawcze z fizyki -Zestaw 5 -Teoria Optyka geometrycza i optyka falowa. Prawo odbicia i prawo załamaia światła, Bieg promiei świetlych w pryzmacie, soczewki i zwierciadła. Zjawisko dyfrakcji

Bardziej szczegółowo

E Z m c N m c Mc A Z N. J¹dro atomowe Wielkoœci charakteryzuj¹ce j¹dro atomowe. Neutron

E Z m c N m c Mc A Z N. J¹dro atomowe Wielkoœci charakteryzuj¹ce j¹dro atomowe. Neutron J¹dro atomowe Wielkoœci charakteryzuj¹ce j¹dro atomowe liczba masowa Zliczba porz¹dkowa pierwiastka w uk³adzie okresowym - liczba eutroów Z X Z R 3 3 /, 3 cm eutro Schemat rozpadu swobodego eutrou p e

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU. Wprowadzenie. = =

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU. Wprowadzenie. = = WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Wprowadzeie. Przy przejśiu światła z jedego ośrodka do drugiego występuje zjawisko załamaia zgodie z prawem Selliusa siα

Bardziej szczegółowo

ELEMENTY OPTYKI GEOMETRYCZNEJ

ELEMENTY OPTYKI GEOMETRYCZNEJ ELEMENTY OPTYKI GEOMETRYCZNEJ Optyka to dział fizyki, zajmujący się badaiem atury światła, początkowo tylko widzialego, a obecie rówież promieiowaia z zakresów podczerwiei i adfioletu. Optyka - geometrycza

Bardziej szczegółowo

20. Model atomu wodoru według Bohra.

20. Model atomu wodoru według Bohra. Model atou wodou według Boha Wybó i opacowaie zadań Jadwiga Mechlińska-Dewko Więcej zadań a te teat zajdziesz w II części skyptu Opieając się a teoii Boha zaleźć: a/ poień -tej obity elektou w atoie wodou,

Bardziej szczegółowo

Podstawy fizyki kwantowej i budowy materii

Podstawy fizyki kwantowej i budowy materii Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 14 15 stycznia 2018 A.F.Żarnecki Podstawy

Bardziej szczegółowo

Termodynamika defektów sieci krystalicznej

Termodynamika defektów sieci krystalicznej Termodyamika defektów sieci krystaliczej Defekty sieci krystaliczej puktowe (wakasje, atomy międzywęzłowe, obce atomy) jedowymiarowe (dyslokacje krawędziowe i śrubowe) dwuwymiarowe (graice międzyziarowe,

Bardziej szczegółowo

Podstawy fizyki wykład 3

Podstawy fizyki wykład 3 D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 5, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,

Bardziej szczegółowo

Lasery budowa, rodzaje, zastosowanie. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego.

Lasery budowa, rodzaje, zastosowanie. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Lasery budowa, rodzaje, zastosowanie Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Budowa i zasada działania lasera Laser (Light Amplification by Stimulated

Bardziej szczegółowo

= arc tg - eliptyczność. Polaryzacja światła. Prawo Snelliusa daje kąt. Co z amplitudą i polaryzacją? Drgania i fale II rok Fizyka BC

= arc tg - eliptyczność. Polaryzacja światła. Prawo Snelliusa daje kąt. Co z amplitudą i polaryzacją? Drgania i fale II rok Fizyka BC 4-0-0 G:\AA_Wyklad 000\FIN\DOC\Polar.doc Drgaia i fale II rok Fizyka C Polaryzacja światła ( b a) arc tg - eliptyczość Prawo Selliusa daje kąt. Co z amplitudą i polaryzacją? 4-0-0 G:\AA_Wyklad 000\FIN\DOC\Polar.doc

Bardziej szczegółowo

Kwantowa natura promieniowania

Kwantowa natura promieniowania Kwantowa natura promieniowania Promieniowanie ciała doskonale czarnego Ciało doskonale czarne ciało, które absorbuje całe padające na nie promieniowanie bez względu na częstotliwość. Promieniowanie ciała

Bardziej szczegółowo

Techniki Jądrowe w Diagnostyce i Terapii Medycznej

Techniki Jądrowe w Diagnostyce i Terapii Medycznej Techniki Jądrowe w Diagnostyce i Terapii Medycznej Wykład 2-5 marca 2019 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Rozpad Przemiana Widmo

Bardziej szczegółowo

Wykład 19: Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok

Wykład 19: Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok Wykład 9: Atom Dr iż. Zbigiew Szklarski Katedra Elektroiki, paw. C-, pok.3 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Wczese modele atomu Grecki filozof Demokryt rozpoczął poszukiwaia opisu

Bardziej szczegółowo

BUDOWA I PROMIENIOWANIE ATOMÓW

BUDOWA I PROMIENIOWANIE ATOMÓW BUDOWA I PROMIENIOWANIE ATOMÓW FALE ELEKTROMAGNEYCZNE WIDMO FAL ELEKTROMAGNETYCZNYCH Teoria orpusulara foto hν E hν, p c hc E, E ~ stała Placa h 6,6 0-34 J s J 0,6 9 ev Prędość fal świetlych w próżi c

Bardziej szczegółowo

Trzy rodzaje przejść elektronowych między poziomami energetycznymi

Trzy rodzaje przejść elektronowych między poziomami energetycznymi Trzy rodzaje przejść elektronowych między poziomami energetycznymi absorpcja elektron przechodzi na wyższy poziom energetyczny dzięki pochłonięciu kwantu o energii równej różnicy energetycznej poziomów

Bardziej szczegółowo

Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA)

Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA) Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA) Promieniowaniem X nazywa się promieniowanie elektromagnetyczne o długości fali od około

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16

Bardziej szczegółowo

Własności optyczne półprzewodników

Własności optyczne półprzewodników Własności optyczne półprzewodników Andrzej Wysmołek Wykład przygotowany w oparciu o wykłady prowadzone na Wydziale Fizyki UW przez prof. Mariana Grynberga oraz prof. Romana Stępniewskiego Klasyfikacja

Bardziej szczegółowo

Technika laserowa. dr inż. Sebastian Bielski. Wydział Fizyki Technicznej i Matematyki Stosowanej PG

Technika laserowa. dr inż. Sebastian Bielski. Wydział Fizyki Technicznej i Matematyki Stosowanej PG Technika laserowa dr inż. Sebastian Bielski Wydział Fizyki Technicznej i Matematyki Stosowanej PG Technika laserowa Zakres materiału (wstępnie przewidywany) 1. Bezpieczeństwo pracy z laserem 2. Własności

Bardziej szczegółowo

Wykład 38 Rozpraszanie światła Ramana i luminescencja

Wykład 38 Rozpraszanie światła Ramana i luminescencja Wykład 38 Rozpraszanie światła Ramana i luminescencja Zjawisko rozpraszania Ramana jest związane z niesprężystym rozpraszaniem padającego fotonu o częstości ν na cząsteczce, wskutek czego foton zmienia

Bardziej szczegółowo

Foton, kwant światła. w klasycznym opisie świata, światło jest falą sinusoidalną o częstości n równej: c gdzie: c prędkość światła, długość fali św.

Foton, kwant światła. w klasycznym opisie świata, światło jest falą sinusoidalną o częstości n równej: c gdzie: c prędkość światła, długość fali św. Foton, kwant światła Wielkość fizyczna jest skwantowana jeśli istnieje w pewnych minimalnych (elementarnych) porcjach lub ich całkowitych wielokrotnościach w klasycznym opisie świata, światło jest falą

Bardziej szczegółowo

Krystalografia Wykład IX

Krystalografia Wykład IX Krystalograia Wykład IX Pla wykładu NatęŜ ęŝeie retgeowskich releksów dyrakcyjych Atomowy czyik rozpraszaia Źródłem spójego promieiowaia rozproszoego sąs elektroy w atomach. Zatem liczba elektroów w w

Bardziej szczegółowo

Widmo promieniowania

Widmo promieniowania Widmo promieniowania Spektroskopia Każde ciało wysyła promieniowanie. Promieniowanie to jest składa się z wiązek o różnych długościach fal. Jeśli wiązka światła pada na pryzmat, ulega ono rozszczepieniu,

Bardziej szczegółowo

Energetyka konwencjonalna odnawialna i jądrowa

Energetyka konwencjonalna odnawialna i jądrowa Energetyka konwencjonalna odnawialna i jądrowa Wykład 8-27.XI.2018 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Wykład 8 Energia atomowa i jądrowa

Bardziej szczegółowo

41P6 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V POZIOM PODSTAWOWY

41P6 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V POZIOM PODSTAWOWY 41P6 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V Optyka fizyczna POZIOM PODSTAWOWY Dualizm korpuskularno-falowy Atom wodoru. Widma Fizyka jądrowa Teoria względności Rozwiązanie zadań należy

Bardziej szczegółowo

NF9 Badanie widm luminescencji i absorpcji

NF9 Badanie widm luminescencji i absorpcji NF9 Badaie widm lumiescecji i absorpcji. Absorpcja i emisja światła Światło jest falą elektromagetyczą, rozchodzącą się zgodie z rówaiami Maxwella. W ośrodku materialym prędkość fali zmiejsza się. Ze zjawiskiem

Bardziej szczegółowo

u t 1 v u(x,t) - odkształcenie, v - prędkość rozchodzenia się odkształceń (charakterystyczna dla danego ośrodka) Drgania sieci krystalicznej FONONY

u t 1 v u(x,t) - odkształcenie, v - prędkość rozchodzenia się odkształceń (charakterystyczna dla danego ośrodka) Drgania sieci krystalicznej FONONY Drgaia sieci krystaliczej FONONY 1. model klasyczy (iekwatowy) a) model ośrodka ciągłego (model Debye a) - przypadek jedowymiarowy - drgaia struy drgaia mogą być podłuże (guma, sprężya) i dwie prostopadłe

Bardziej szczegółowo

PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,,

PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,, PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA Ruch cząstki ieograiczoy z klasyczego puktu widzeia W tym przypadku V = cost, przejmiemy V ( x ) = 0, cząstka porusza się wzdłuż osi x. Rozwiązujemy

Bardziej szczegółowo

Fizyka promieniowania jonizującego. Zygmunt Szefliński

Fizyka promieniowania jonizującego. Zygmunt Szefliński Fizyka promieniowania jonizującego Zygmunt Szefliński 1 Wykład 3 Ogólne własności jąder atomowych (masy ładunki, izotopy, izobary, izotony izomery). 2 Liczba atomowa i masowa Liczba nukleonów (protonów

Bardziej szczegółowo

Zadanie domowe: kiedy pole elektryczne jest słabe, a kiedy silne?

Zadanie domowe: kiedy pole elektryczne jest słabe, a kiedy silne? Zadaie domowe: kiedy pole elektrycze jest słabe, a kiedy sile? Wersje rozwiązań: Wersja z polem magetyczym; Wersja z kaciastym wykresem; Wersja bez kaciastego wykresu, ale z asyceiem; Wersja z porówaiem

Bardziej szczegółowo

Energetyka Jądrowa. Wykład 28 lutego Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Energetyka Jądrowa. Wykład 28 lutego Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Energetyka Jądrowa Wykład 8 lutego 07 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Model atomu. Promieniowanie atomów 8.II.07 EJ - Wykład / r

Bardziej szczegółowo

III.3 Emisja wymuszona. Lasery

III.3 Emisja wymuszona. Lasery III.3 Emisja wymuszona. Lasery 1. Wyprowadzenie wzoru Plancka metodą Einsteina. Emisja wymuszona 2. Koherencja ciągów falowych. Laser jako źródło koherentnego promieniowania e-m 3. Zasada działania lasera.

Bardziej szczegółowo

Charakterystyka promieniowania miedziowej lampy rentgenowskiej.

Charakterystyka promieniowania miedziowej lampy rentgenowskiej. Uniwersytet Śląski - Instytut Chemii Zakładu Krystalografii ul. Bankowa 14, pok. 133, 40-006 Katowice tel. 0323591503, e-mail: izajen@wp.pl, opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii

Bardziej szczegółowo

TEORIA PASMOWA CIAŁ STAŁYCH

TEORIA PASMOWA CIAŁ STAŁYCH TEORIA PASMOWA CIAŁ STAŁYCH Skolektywizowane elektrony w metalu Weźmy pod uwagę pewną ilość atomów jakiegoś metalu, np. sodu. Pojedynczy atom sodu zawiera 11 elektronów o konfiguracji 1s 2 2s 2 2p 6 3s

Bardziej szczegółowo

LASERY NA CIELE STAŁYM BERNARD ZIĘTEK

LASERY NA CIELE STAŁYM BERNARD ZIĘTEK LASERY NA CIELE STAŁYM BERNARD ZIĘTEK TEK Lasery na ciele stałym lasery, których ośrodek czynny jest: -kryształem i ciałem amorficznym (również proszkiem), - dielektrykiem i półprzewodnikiem. 2 Podział

Bardziej szczegółowo

Promieniowanie jonizujące i metody radioizotopowe. dr Marcin Lipowczan

Promieniowanie jonizujące i metody radioizotopowe. dr Marcin Lipowczan Promieniowanie jonizujące i metody radioizotopowe dr Marcin Lipowczan Budowa atomu 897 Thomson, 0 0 m, kula dodatnio naładowana ładunki ujemne 9 Rutherford, rozpraszanie cząstek alfa na folię metalową,

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 3 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14

Bardziej szczegółowo

ĆWICZENIE NR 72B (Teoria)

ĆWICZENIE NR 72B (Teoria) * ĆWICZENIE NR 7B (Teoria) N. Mirowska WYZNACZANIE STAŁEJ RYDBERGA I MASY ZREDUKOWANEJ ELEKTRONU ZA POMOCĄ SPEKTROSKOPU Cel ćwiczeia: pozaie zasady działaia spektroskopu oraz metody wyzaczaia stałej Rydberga

Bardziej szczegółowo

Atom wodoropodobny. Biegunowy układ współrzędnych. współrzędne w układzie. kartezjańskim. współrzędne w układzie. (x,y,z) biegunowym.

Atom wodoropodobny. Biegunowy układ współrzędnych. współrzędne w układzie. kartezjańskim. współrzędne w układzie. (x,y,z) biegunowym. Atom wodoropodobny z współrzędne w układzie kartezjańskim r sinθ cosφ x r cosθ φ θ r r sinθ (x,y,z) r sinθ sinφ Biegunowy układ współrzędnych y funkcja faowa współrzędne w układzie biegunowym ( ) r,θ,φ

Bardziej szczegółowo

Atom wodoru w mechanice kwantowej. Równanie Schrödingera

Atom wodoru w mechanice kwantowej. Równanie Schrödingera Fizyka atomowa Atom wodoru w mechanice kwantowej Moment pędu Funkcje falowe atomu wodoru Spin Liczby kwantowe Poprawki do równania Schrödingera: struktura subtelna i nadsubtelna; przesunięcie Lamba Zakaz

Bardziej szczegółowo

Podstawowe własności jąder atomowych

Podstawowe własności jąder atomowych Podstawowe własności jąder atomowych 1. Ilość protonów i neutronów Z, N 2. Masa jądra M j = M p + M n - B 2 2 Q ( M c ) ( M c ) 3. Energia rozpadu p 0 k 0 Rozpad zachodzi jeżeli Q > 0, ta nadwyżka energii

Bardziej szczegółowo

I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona

I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona r. akad. 004/005 I.4 Promieniowanie rentgenowskie. Efekt Comptona Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona Jan Królikowski Fizyka IVBC 1 r. akad. 004/005 0.01 nm=0.1 A

Bardziej szczegółowo

Temat: PRAWO SNELLIUSA. WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA W SZKLE I PLEKSIGLASIE.

Temat: PRAWO SNELLIUSA. WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA W SZKLE I PLEKSIGLASIE. W S E i Z WYDZIAŁ. L A B O R A T O R I U M F I Z Y C Z N E Nr ćwicz. 9 Temat: PRAWO SNELLIUSA. WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA W SZKLE I PLEKSIGLASIE. Semestr Grupa Zespół Ocea Data / Podpis Warszawa,

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 7 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet

Bardziej szczegółowo

Pomiary widm fotoluminescencji

Pomiary widm fotoluminescencji Fotoluminescencja (PL photoluminescence) jako technika eksperymentalna, oznacza badanie zależności spektralnej rekombinacji promienistej, pochodzącej od nośników wzbudzonych optycznie. Schemat układu do

Bardziej szczegółowo

Wykład FIZYKA II. 13. Fizyka atomowa. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 13. Fizyka atomowa.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 13. Fizyka atomowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ ZASADA PAULIEGO Układ okresowy pierwiastków lub jakiekolwiek

Bardziej szczegółowo

Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego

Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego W5. Energia molekuł Przemieszczanie się całych molekuł w przestrzeni - Ruch translacyjny - Odbywa się w fazie gazowej i ciekłej, w fazie stałej

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania (3.7), pomimo swojej prostoty, nie posiadają poza nielicznymi przypadkami ścisłych rozwiązań,

Bardziej szczegółowo

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. 1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu

Bardziej szczegółowo

Równowaga reakcji chemicznej

Równowaga reakcji chemicznej Rówowaga reakcji chemiczej Sta i stała rówowagi reakcji chemiczej (K) Reakcje dysocjacji Stopień dysocjacji Prawo rozcieńczeń Ostwalda utodysocjacja wody p roztworów p roztworów. p roztworów mocych elektrolitów

Bardziej szczegółowo

Politechnika Poznańska

Politechnika Poznańska Politechika Pozańska Temat: Laboratorium z termodyamiki Aaliza składu spali powstałych przy spalaiu paliw gazowych oraz pomiar ich prędkości przepływu za pomocą Dopplerowskiego Aemometru Laserowego (LDA)

Bardziej szczegółowo

Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a

Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a Modele atomu wodoru Modele atomu wodoru Thomson'a Rutherford'a Bohr'a Demokryt: V w. p.n.e najmniejszy, niepodzielny metodami chemicznymi składnik materii. atomos - niepodzielny Co to jest atom? trochę

Bardziej szczegółowo

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne Promieniowanie rentgenowskie Podstawowe pojęcia krystalograficzne Krystalografia - podstawowe pojęcia Komórka elementarna (zasadnicza): najmniejszy, charakterystyczny fragment sieci przestrzennej (lub

Bardziej szczegółowo

Lasery. Własności światła laserowego Zasada działania Rodzaje laserów

Lasery. Własności światła laserowego Zasada działania Rodzaje laserów Lasery Własności światła laserowego Zasada działania Rodzaje laserów Lasery Laser - nazwa utworzona jako akronim od Light Amplification by Stimulated Emission of Radiation - wzmocnienie światła poprzez

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 39 ATOM WODORU. PROMIENIOWANIE. WIDMA TEST JEDNOKROTNEGO WYBORU

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 39 ATOM WODORU. PROMIENIOWANIE. WIDMA TEST JEDNOKROTNEGO WYBORU autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 39 ATOM WODORU. PROMIENIOWANIE. WIDMA Zadanie 1 1 punkt TEST JEDNOKROTNEGO WYBORU Moment pędu elektronu znajdującego się na drugiej orbicie w atomie

Bardziej szczegółowo

Technika laserowa, otrzymywanie krótkich impulsów Praca impulsowa

Technika laserowa, otrzymywanie krótkich impulsów Praca impulsowa Praca impulsowa Impuls trwa określony czas i jest powtarzany z pewną częstotliwością; moc w pracy impulsowej znacznie wyższa niż w pracy ciągłej (pomiędzy impulsami może magazynować się energia) Ablacja

Bardziej szczegółowo

Przejścia promieniste

Przejścia promieniste Przejście promieniste proces rekombinacji elektronu i dziury (przejście ze stanu o większej energii do stanu o energii mniejszej), w wyniku którego następuje emisja promieniowania. E Długość wyemitowanej

Bardziej szczegółowo

Fotometria. F. obiektywna = radiometria: Jaka ENERGIA dopływa ze źródła. F. subiektywna: Jak JASNO świeci to źródło? (w ocenie przeciętnego człowieka)

Fotometria. F. obiektywna = radiometria: Jaka ENERGIA dopływa ze źródła. F. subiektywna: Jak JASNO świeci to źródło? (w ocenie przeciętnego człowieka) Fotometria F. obiektywa = radiometria: Jaka NRGIA dopływa ze źródła F. subiektywa: Jak JASNO świei to źródło? (w oeie przeiętego złowieka) Potrzebujemy kilku defiiji: defiija Gęstość spektrala (widmo)

Bardziej szczegółowo

Atomy wieloelektronowe

Atomy wieloelektronowe Wiązania atomowe Atomy wieloelektronowe, obsadzanie stanów elektronowych, układ poziomów energii. Przykładowe konfiguracje elektronów, gazy szlachetne, litowce, chlorowce, układ okresowy pierwiastków,

Bardziej szczegółowo

Elementy optyki. Odbicie i załamanie fal Zasada Huygensa Zasada Fermata Interferencja Dyfrakcja Siatka dyfrakcyjna

Elementy optyki. Odbicie i załamanie fal Zasada Huygensa Zasada Fermata Interferencja Dyfrakcja Siatka dyfrakcyjna Elemety optyki Odbiie i załamaie fal Zasada Huygesa Zasada Fermata Iterfereja Dyfrakja Siatka dyfrakyja Frot fali złązeie promień padająy Odbiie i załamaie fal elektromagetyzyh a graiah dwóh ośrodków Normala

Bardziej szczegółowo

Przejścia optyczne w cząsteczkach

Przejścia optyczne w cząsteczkach -4-8 Pzejścia optycze w cząsteczkac Pzybliżeie Boa Oppeeimea acek.szczytko@fuw.edu.pl ttp://www.fuw.edu.pl/~szczytko/t ttp://www.sciececatoosplus.com/ Podziękowaia za pomoc w pzygotowaiu zajęć: Pof. d

Bardziej szczegółowo

A21, B21, B12 współczynniki wprowadzone przez Einsteina w 1917 r.

A21, B21, B12 współczynniki wprowadzone przez Einsteina w 1917 r. Absorpcja i emisja fotonu przez atom, który ma dwa poziomy energii hν=e2-e1 h=6,63 10-34 J s Emisja spontaniczna A21 prawdopodobieństwo emisji fotonu przez atom w stanie E2 w ciągu sekundy Absorpcja (wymuszona)

Bardziej szczegółowo

WYZNACZANIE PRĘDKOŚCI DŹWIĘKU W POWIE- TRZU METODĄ FALI STOJĄCEJ

WYZNACZANIE PRĘDKOŚCI DŹWIĘKU W POWIE- TRZU METODĄ FALI STOJĄCEJ Ć w i c z e i e 6 WYZNACZANIE PRĘDKOŚCI DŹWIĘKU W POWIE- TRZU METODĄ FALI STOJĄCEJ 6.1 Opis teoretyczy W ośrodkach sprężystych wytrąceie pewego obszaru z położeia rówowagi powoduje drgaia wokół tego położeia.

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 14 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład

Bardziej szczegółowo

BADANIE CHARAKTERYSTYKI DIODY PÓŁPRZEWODNIKOWEJ

BADANIE CHARAKTERYSTYKI DIODY PÓŁPRZEWODNIKOWEJ Ćwiczeie 47 BADANIE CHARAKTERYSTYKI DIODY PÓŁPRZEWODNIKOWEJ 47.. Wiadomości ogóle Dla zrozumieia elektryczych właściwości ciał stałych koiecze jest pozaie praw rządzących elektroami wewątrz tych ciał.

Bardziej szczegółowo

Rentgenowska analiza fazowa jakościowa i ilościowa Wykład 9

Rentgenowska analiza fazowa jakościowa i ilościowa Wykład 9 Retgeowska aaliza fazowa jakościowa i ilościowa Wykład 9 1. Retgeowska aaliza fazowa jakościowa i ilościowa. 2. Metody aalizy fazowej ilościowej. 3. Dobór wzorca w aalizie ilościowej. 4. Przeprowadzeie

Bardziej szczegółowo

Wyjaśnienie. linii widmowych atomów. eureka! to odkryli

Wyjaśnienie. linii widmowych atomów. eureka! to odkryli TEKST TRUDNY Rodząca się powoli owoczesa mechaika kwatowa odosiła od samego początku bardzo wiele sukcesów. Za każdym razem, gdy fizyka klasycza błędie opisywała jakieś zjawisko lub zupełie ie potrafiła

Bardziej szczegółowo

Oddziaływanie cząstek z materią

Oddziaływanie cząstek z materią Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki

Bardziej szczegółowo

Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy

Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy T_atom-All 1 Nazwisko i imię klasa Stałe : h=6,626 10 34 Js h= 4,14 10 15 evs 1eV=1.60217657 10-19 J Zaznacz zjawiska świadczące o falowej naturze światła a) zjawisko fotoelektryczne b) interferencja c)

Bardziej szczegółowo

OPTYKA. Leszek Błaszkieiwcz

OPTYKA. Leszek Błaszkieiwcz OPTYKA Leszek Błaszkieiwcz Ojcem optyki jest Witelon (1230-1314) Zjawisko odbicia fal promień odbity normalna promień padający Leszek Błaszkieiwcz Rys. Zjawisko załamania fal normalna promień padający

Bardziej szczegółowo

Podstawowe pojęcia optyki geometrycznej. c prędkość światła w próżni v < c prędkość światła w danym ośrodku

Podstawowe pojęcia optyki geometrycznej. c prędkość światła w próżni v < c prędkość światła w danym ośrodku Optyka geometrycza Podstawowe pojęcia optyki geometryczej Bezwzględy współczyik załamaia c prędkość światła w próżi v < c prędkość światła w daym ośrodku c v > 1 Aksjomaty Światło w ośrodku jedorodym propaguje

Bardziej szczegółowo

Fizyka 3. Konsultacje: p. 329, Mechatronika

Fizyka 3. Konsultacje: p. 329, Mechatronika Fizyka 3 Konsultacje: p. 39, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 1 sprawdzian 30 pkt 15.1 18 3.0 18.1 1 3.5 1.1 4 4.0 4.1 7 4.5 7.1 30 5.0 http:\\adam.mech.pw.edu.pl\~marzan Program: - elementy

Bardziej szczegółowo

Pytania nie mające charakteru pytań testowych

Pytania nie mające charakteru pytań testowych Umiejętość podaia poprawych i pełych odpowiedzi a pytaia ie mające charakteru pytań testowych,6,7,9,0,,3,4,5,6,7,8,,,4,7 oraz pytaia mające częściowo charakter pytań testowych,,4,5,6,7,9,0,,3,4, 5a,5b,6,8,,3,5,6,7,8,30,33,34,35,37,40,4,4,43,44,45,47,48a-e

Bardziej szczegółowo

Własności optyczne półprzewodników

Własności optyczne półprzewodników Własności optyczne półprzewodników Andrzej Wysmołek Wykład przygotowany w oparciu o wykłady prowadzone na Wydziale Fizyki Uniwersytetu Warszawakiego przez prof. Mariana Grynberga oraz prof. Romana Stępniewskiego

Bardziej szczegółowo

Obliczenie liczby zwojów w uzwojeniu wtórnym 1 pkt n n I = U I

Obliczenie liczby zwojów w uzwojeniu wtórnym 1 pkt n n I = U I WOJEWÓDZKI KONKRS FIZYCZNY DLA CZNIÓW GIMNAZJÓW W ROK SZKOLNYM 205/206 STOPIEŃ WOJEWÓDZKI KLCZ ODPOWIEDZI I SCHEMAT PNKTOWANIA waga: Poprawe rozwiązaie zadań, iym sposobem iż poday w kryteriah, powoduje

Bardziej szczegółowo

Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita

Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita Niezwykłe światło ultrakrótkie impulsy laserowe Laboratorium Procesów Ultraszybkich Zakład Optyki Wydział Fizyki Uniwersytetu Warszawskiego Światło Fala elektromagnetyczna Dla światła widzialnego długość

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 atomu węgla 12 C. Mol - jest taką ilością danej substancji,

Bardziej szczegółowo

Reakcje jądrowe. X 1 + X 2 Y 1 + Y b 1 + b 2

Reakcje jądrowe. X 1 + X 2 Y 1 + Y b 1 + b 2 Reakcje jądrowe X 1 + X 2 Y 1 + Y 2 +...+ b 1 + b 2 kanał wejściowy kanał wyjściowy Reakcje wywołane przez nukleony - mechanizm reakcji Wielkości mierzone Reakcje wywołane przez ciężkie jony a) niskie

Bardziej szczegółowo

Fale elektromagnetyczne cd

Fale elektromagnetyczne cd Fale elektromagetycze cd Falami elektromagetyczymi azywamy rozchodzące się zaburzeia pola elektromagetyczego (tz. zmiee pole elektromagetycze). Twierdzeie o istieiu fal elektromagetyczych wyika bezpośredio

Bardziej szczegółowo

Pracownia Jądrowa. dr Urszula Majewska. Spektrometria scyntylacyjna promieniowania γ.

Pracownia Jądrowa. dr Urszula Majewska. Spektrometria scyntylacyjna promieniowania γ. Ćwiczenie nr 1 Spektrometria scyntylacyjna promieniowania γ. 3. Oddziaływanie promieniowania γ z materią: Z elektronami: zjawisko fotoelektryczne, rozpraszanie Rayleigha, zjawisko Comptona, rozpraszanie

Bardziej szczegółowo