MODELOWANIE GEOMETRII ZAZĘBIENIA PRZEKŁADNI PASOWYCH ZĘBATYCH MODELING THE MESHING GEOMETRY OF THE TOOTHED BELT DRIVES
|
|
- Paulina Lewandowska
- 8 lat temu
- Przeglądów:
Transkrypt
1 ANDRZEJ PAKUŁA * MODELOWANIE GEOMETRII ZAZĘBIENIA PRZEKŁADNI PASOWYCH ZĘBATYCH MODELING THE MESHING GEOMETRY OF THE TOOTHED BELT DRIVES Streszczenie Abstract W artkule przedstawiono model geometrczn zazębienia przekładni pasowch zębatch. Na podstawie modelu napisano program smulując. Wkorzstano środowisko Mathematica. Przeprowadzono smulacje współprac zazębienia bez obciążenia i napięcia wstępnego. Smulacje przeprowadzono dla zarsu HTD i dla porównania dla zarsu L oraz zazębienia mieszanego koło HTD z pasem L. Największe obciążenie boku zęba i zarazem największe zużcie wstępuje w miejscach największej interferencji (nałożenia zarsów) zęba pasa i koła. Wniki smulacji zgadzają się ze zużciem pasów po przebiegu nominalnm dla zarsów HTD i L. Dla par mieszanej wniki smulacji pokazują, że interferencja zarsów jest zastanawiająco mała. Wnik tej smulacji może bć inspiracją do przeprowadzenia badań stanowiskowch. Słowa kluczowe: model geometrczn, zazębienia przekładni pasowch zębatch Geometric model of the toothed belt drives meshing is presented. On the basis of the model simulation program was written. Mathematica environment was used. Simulations of the meshing cooperation have been run without load and preload. Simulations were performed for the contour HTD and for comparison to the contour L, and mixed couple-wheel HTD meshing with the belt L. The highest load of the tooth side and the largest wear occurs in places the greatest interference (contour imposing) of the tooth belt and wheels. The simulation results agree well with the belt wear on the course for HTD and L contours. For mixed couples simulation results show that the interference contours is surprisingl small. The result of this simulation can be an inspiration for the test stand. Kewords: geometric model, toothed belt drives meshing * Dr inż. Andrzej Pakuła, Insttut Pojazdów Samochodowch i Silników Spalinowch, Wdział Mechaniczn, Politechnika Krakowska.
2 Geometria zazębienia przekładni pasowej zębatej W literaturze światowej jest wiele opracowań dotczącch zazębienia w przekładni pasowej zębatej np. [1 3]. Opracowania te są bardzo szczegółowe, z uwzględnieniem odkształceń zębów pasa i samego pasa (tzw. klawiszowanie). Modele te narzucają wprowadzenie bardzo wielu danch materiałowch i wtrzmałościowch, często wmagającch zbudowania specjalnch przrządów w celu ich wznaczenia dla danego pasa. Brak jednak prostej i szbkiej metod ocen współprac różnch zarsów zazębienia tlko na podstawie danch geometrcznch. Celem prac bło opracowanie prostego modelu geometrcznego pozwalającego na ocenę współprac różnch zarsów zazębienia tlko na podstawie danch geometrcznch, biorąc za krterium interferencję zarsów zęba pasa i współpracującego z nim wrębu koła. Ze względu na trwałość przekładni pasowej zars profili zęba pasa zębatego i wrębu koła pasowego, powinn bć tak zaprojektowane, ab podczas współprac następowało ich odtaczanie. Przenikanie się profili zawsze związane jest z odkształceniami normalnmi i stcznmi do wrębu koła, przede wszstkim zęba pasa. Od wielkości tch odkształceń, zmiennch w czasie, uzależniona jest trwałość przekładni pasowej zębatej. 2. Eksperment numerczn dla zarsu HTD Na rsunku 1 pokazane są profile zęba pasa zębatego i wrębu koła pasowego zębatego z nim współpracującego. Zars zęba pasa składa się z odcinków okręgów o promieniach r 1p, r 2p i odcinka prostej LL 1. Podobnie zars wrębu koła utworzon jest z odcinków okręgów o promieniach r 1 i r 2, połączonch w krańcowch punktach B, D odcinkiem prostej. Na rs. 1b zaznaczono promień podziałow r c i zewnętrzn r p koła. Rs. 1. Profile: a) zęba pasa zębatego, b) wrębu koła pasowego zębatego Fig. 1. Profile: a) a tooth of the toothed belt, b) notch toothed pulle
3 121 Ruch profili rozpatrwan jest w układzie odniesienia, którego początek O położon jest na osi obrotu koła. Zars profili zęba pasa i wrębu koła określone są odpowiednio w lokalnch układach współrzędnch {O p }, {O k }. Wzajemne położenie w przpadku ogólnm pokazano na rs. 2a i b. Rs. 2. Położenie lokalnch układów odniesienia {O p }, {O k }: a) wrębu koła, b) zęba pasa Fig. 2. Location of local reference sstems {O p }, {O k }: a) a notch-wheel, b) belt tooth Współrzędne punktu S 1 należącego do odcinka AD zarsu wrębu koła wznacza wektor wodząc: r = r + A ( r + r ) (1) OS 1 c OOk OkO2 2 Gdzie A OOk jest macierzą transformacji z układu {O k } do układu {O} A OOk cosϕ = sinϕ sin ϕ cos ϕ (2) Współrzędne punktu S 2 należącego do odcinka KL 1 zarsu zęba pasa można określić za pomocą wektora wodzącego:
4 122 r = r + r + r (3) OS 2 OOp OO p 2p O2 p Wkorzstując rsunek pomocnicz z poszczególnmi odcinkami prawej stron zarsu wrębu koła, można wznaczć współrzędne punktów S 1 i S 1 w układzie {O}. α< χ2 χ2max χ max χ Współrzędna punktu S 1 należącego do odcinka AD: x OS 2 1 OS 2 1 = r sin χ 2 2 = r cos χ 2 2 x OS 2 1 OS 2 1 = r sin χ 2 2 = r cos χ 2 2 Punkt B, D połączone są odcinkiem prostej. Rs. 3. Punkt S 1 i S 1 należące do prawej stron zarsu wrębu koła Fig. 3. Points S 1 and S 1 belonging to the right side of the notch profile wheels Położenia punktów S 1 i S 1 (rs. 3) w układzie {O} zależne są od kata obrotu koła φ i odpowiednio kątów χ 1 i χ 2. Zgodnie z równaniem (1) odnoszącm się do punktu S 1 współrzędne wektora wodzącego można zapisać w postaci: r OS1 x OS1 OS1 rc sin ϕ = rc + cosϕ cos ϕ sinϕ sin ϕ x cos ϕ OO k 2 OO k 2 cosϕ sin ϕ xos sinϕ cos ϕ OS 21 W analogiczn sposób wznaczam współrzędne wektora wodzącego r OS1 {O}: (4) w układzie
5 123 x OS1 OS1 rc sin cos rc cos sin = ϕ + ϕ ϕ ϕ sin ϕ x cos ϕ OO k 1 OO k 1 cosϕ + sinϕ sin ϕ x cos ϕ OS 1 1 OS 1 1 (5) Wkorzstując równania (4) i (5) można obliczć współrzędne punktów B i D w układzie {O} oraz równanie prostej, do której należ punkt S 3. BO. = x DO. BO. S3 3 DO. xbo. ( xs xbo. ) (6) Gdzie: indeks B.D, D.O oznaczają, że współrzędne punktów B, D określone są w układzie odniesienia {O}. W obliczeniach numercznch wgodnie jest posługiwać się równaniami parametrcznmi: t xs = x 3 BO. + (7) DO. BO. t S = 3 BO. + x x DO. BO. (8) 0 t ( ) x x ( ) DO. BO. DO. BO. (9) Na rs. 4. zaznaczono charakterstczne punkt należące do zarsu profilu zęba pasa. x S2 S2 = r = r sin τ 2p 2 cos τ 2p 2 x S2 S2 = r 1p 1 = r sin τ cos τ 1p 1 Rs. 4. Zars prawostronn profilu zęba pasa z punktami charakterstcznmi S 2 i S 2 Fig. 4. Outline of the right-side of the belt tooth profile with characteristic points S 2 i S 2
6 124 Położenie układów współrzędnch {O 1p }, {O 2p }, {O p } i {O} pokazano na rs. 5. Rs. 5. Położenie układów współrzędnch dotczące zarsu profilu zęba pasa Fig. 5. Location of coordinate sstems to the outline of belt tooth profile Na podstawie rs. 4 i rs. 5 obliczono współrzędne punktów S i S 2 2 w układzie odniesienia {O}. x = r ϕ+ r + r a r S2. O c 1p 2p 2p 2 = r ( p+ b) r cos τ S2. O c 2p 2 x = r ϕ a r sin τ S O c 1p 1 2. = r ( p+ b) r cos τ sin τ S O c 1p 1 2. (10) (11) Na podstawie powższch rozważań ułożon został program w środowisku Mathematica i przeprowadzono smulację, której wniki zamieszczono na rs. 6. Jest to smulacja współprac bez obciążenia i napięcia wstępnego.
7 125 Rs. 6. Wniki smulacji zazębienia przekładni pasowej zębatej HTD. Podziałka osi x, w milimetrach Fig. 6. The meshing simulation results for HTD toothed belt drive. X, axes pitch in millimeters
8 126 Największe obciążenie boku zęba i zarazem największe zużcie wstępuje w miejscach największej interferencji (nałożenia zarsów) zęba pasa i koła. Wniki smulacji dla zarsu HTD dobrze zgadzają się ze zużciem pasów po przebiegu nominalnm. Współpraca zazębienia ma charakter przetaczania się zęba pasa po wrębie koła. 3. Eksperment numerczn dla zarsu HTD Wkorzstując metodę i program, wprowadzono dane zarsu tpowego pasa rozrządu tpu L i również w celu porównania z HTD przeprowadzono smulację przebiegu zazębienia. Wniki przedstawiono na rs. 7. Rs. 7. Wniki smulacji zazębienia przekładni pasowej zębatej L. Podziałka osi x, w milimetrach Fig. 7. The meshing simulation results for L toothed belt drive. X, axes pitch in millimeters Wniki smulacji dla zarsu L zgadzają się ze zużciem pasów po przebiegu nominalnm, tzn. obszar zużcia pokrwają się z obszarami największej interferencji zarsów pasa i koła. Współpraca zazębienia ma charakter ślizgania się zęba pasa po wrębie koła. 4. Eksperment numerczn dla zarsu HTD i L Wkorzstując metodę i program, postanowiono sprawdzić pogłoskę krążącą w środowisku mechaników samochodowch, że do przekładni z kołami o zarsie HTD można założć pas o zarsie L. Wprowadzono dane zarsu tpowego pasa rozrządu tpu L i koła o zarsie HTD. Wniki smulacji przebiegu zazębienia przedstawiono na rs. 8.
9 127 Rs. 8. Wniki smulacji zazębienia przekładni pasowej zębatej mieszanej HTD z pasem L. Podziałka osi pomocniczch x, w milimetrach Fig. 8. The meshing simulation results for mixed toothed belt drive HTD with L belt. Secondar x, axes pitch in millimeters Smulacja zazębienia przekładni pasowej zębatej mieszanej HTD z pasem L pokazała, że istotnie wdaje się możliwa taka współpraca, a interferencja zarsów jest mała, co powinno się przełożć na małe obciążenia boku zęba i co za tm idzie jego małe zużcie. Współpraca zazębienia ma charakter ślizgania się zęba pasa po wrębie koła, tak jak w przpadku przekładni o zazębieniu L. Widać wraźnie, że wkorzstwana jest tlko część wsokości zarsu koła, czli przenoszone sił będą znacząco mniejsze niż w przpadku pasa HTD. Wnik tej smulacji wskazuje na celowość przeprowadzenia badań stanowiskowch.
10 Wnioski Największe obciążenie boku zęba i zarazem największe zużcie wstępuje w miejscach największej interferencji (nałożenia zarsów) zęba pasa i koła. Wniki smulacji dla zarsów HTD i L dobrze zgadzają się ze zużciem pasów po przebiegu nominalnm, więc wdaje się, że cel prac został osiągnięt. Zużcie dla par mieszanej trzeba dopiero sprawdzić doświadczalnie. Dla zarsu L interferencja zarsów jest znacząco większa niż w przpadku zarsu HTD. Wniki smulacji zazębienia przekładni pasowej zębatej mieszanej HTD z pasem L pokazują, że istotnie interferencja zarsów jest zastanawiająco mała. Oczwiście wkorzstwana jest tlko część wsokości zarsu koła, czli przenoszone sił będą znacząco mniejsze niż w przpadku pasa HTD. Wnik tej smulacji może bć inspiracją do przeprowadzenia badań stanowiskowch. Literatura [1] K o a m T. et al., A stud of Strength of Tooth Belt, 2nd to 6th report, JSME, Vol. 22, No. 169, 1979, [2] N a j i M. et al., Toothed Belt-Load Distribution, Trans. ASME J of Mechanisms, Transmissions and Automation in Design, Vol. 105, 1983, [3] K a g o t a n i M. et al., A stud on Transmission Characteristics of Tooth Belt Drives, JSME, Vol. 26, No. 211, 1983, [4] C h i l d s T.H.C., D a l g a r n o K.W., H o j j a t i M.H., T u t t M.J., D a A.J., A The meshing of timing belt teeth in pulle grooves, Journal Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, Vol. 211, Number 3/1997, 1997,
Ć w i c z e n i e K 2 b
Akademia Górniczo Hutnicza Wdział Inżnierii Mechanicznej i Robotki Katedra Wtrzmałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wdział Górnictwa i Geoinżnierii Grupa nr: Ocena:
Wpływ wybranych czynników na trwałość pasów zębatych napędu rozrządu silnika spalinowego
ARCHIWUM MOTORYZACJI 4, pp. 357-362 (2005) Wpływ wybranych czynników na trwałość pasów zębatych napędu rozrządu silnika spalinowego ANDRZEJ PAKUŁA Politechnika Krakowska W niniejszej publikacji zostały
WYKORZYSTANIE MES DO WYZNACZANIA WPŁYWU PĘKNIĘCIA W STOPIE ZĘBA KOŁA NA ZMIANĘ SZTYWNOŚCI ZAZĘBIENIA
ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2009 Seria: TRANSPORT z. 65 Nr kol. 1807 Tomasz FIGLUS, Piotr FOLĘGA, Piotr CZECH, Grzegorz WOJNAR WYKORZYSTANIE MES DO WYZNACZANIA WPŁYWU PĘKNIĘCIA W STOPIE ZĘBA
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria Środowiska w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era inżniera
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria i Gospodarka Wodna w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era
VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH
VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH ZADANIA ZAMKNIĘTE Zadanie. ( pkt) 0 90 Liczba 9 jest równa 0 B. 00 C. 0 9 D. 700 7 Zadanie. 8 ( pkt) Liczba 9 jest równa B. 9 C. D. 5 Zadanie. ( pkt) Liczba
PRĘDKOŚĆ POŚLIZGU W ZAZĘBIENIU PRZEKŁADNI ŚLIMAKOWEJ
KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU ol. 7 nr Archiwum Technologii Maszyn i Automatyzacji 007 LESZEK SKOCZYLAS PRĘDKOŚĆ POŚLIZGU W ZAZĘBIENIU PRZEKŁADNI ŚLIMAKOWEJ W artykule przedstawiono sposób
RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA
Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechnika Łódzka RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Streszczenie: W pracy opisano wzajemne położenie płaszczyzny parasola
GEOMETRIA ANALITYCZNA. Poziom podstawowy
GEOMETRIA ANALITYCZNA Poziom podstawowy Zadanie (4 pkt.) Dana jest prosta k opisana równaniem ogólnym x + y 6. a) napisz równanie prostej k w postaci kierunkowej. b) podaj współczynnik kierunkowy prostej
MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 1. Czas pracy 150 minut
Miejsce na naklejkę z kodem szkoł OKE ŁÓDŹ CKE MATEMATYKA POZIOM ROZSZERZONY MARZEC ROK 008 PRZYKŁADOWY ZESTAW ZADAŃ NR Czas prac 0 minut Instrukcja dla zdającego. Sprawdź, cz arkusz egzaminacjn zawiera
ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN
ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN Gr. 1 Zad. 1. Dane są punkty: P = (-, 1), R = (5, -1), S = (, 3). a) Oblicz odległość między punktami R i S. b) Wyznacz współrzędne środka odcinka PR. c) Napisz równanie
MES W ANALIZIE SPRĘŻYSTEJ UKŁADÓW PRĘTOWYCH
MES W ANAIZIE SPRĘŻYSEJ KŁADÓW PRĘOWYCH Przkład obliczeń Kratownice płaskie idia FEDOROWICZ Jan FEDOROWICZ Magdalena MROZEK Dawid MROZEK Gliwice r. - idia Fedorowicz Jan Fedorowicz Magdalena Mrozek Dawid
matematyka Matura próbna
Gazeta Edukacja Sprawdź, cz zdasz! Egzamin maturaln matematka MTEMTYK zas prac: minut Matura próbna Maturzsto! Po raz pierwsz napiszesz obowiązkową maturę z matematki na poziomie podstawowm Rozwiąż zadania
12. FUNKCJE WIELU ZMIENNYCH. z = x + y jest R 2, natomiast jej
1. FUNKCJE WIELU ZMIENNYCH 1.1. FUNKCJE DWÓCH ZMIENNYCH Funkcją dwóch zmiennch określoną w zbiorze D R nazwam przporządkowanie każdej parze liczb () D dokładnie jednej liczb rzeczwistej z. Piszem prz tm
Zad.1 Zad. Wyznaczyć rozkład sił wewnętrznych N, T, M, korzystając z komputerowej wersji metody przemieszczeń. schemat konstrukcji:
Zad. Wznaczć rozkład sił wewnętrznch N, T, M, korzstając z komputerowej wersji metod przemieszczeń. schemat konstrukcji: ϕ 4, kn 4, 4, macierz transformacji (pręt nr): α = - ϕ = -, () 5 () () E=5GPa; I
2. CHARAKTERYSTYKI GEOMETRYCZNE FIGUR PŁASKICH
dam Bodnar: Wtrzmałość Materiałów. Charakterstki geometrczne figur płaskich.. CHRKTERSTKI GEOMETRCZNE FIGUR PŁSKICH.. Definicje podstawowch charakterstk geometrcznch Podczas zajęć z wtrzmałości materiałów
WYZNACZANIE LUZU OBWODOWEGO W ZAZĘBIENIU KÓŁ PRZEKŁADNI FALOWEJ
ZESZYTY NAUKOWE POLITECHNIKI RZESZOWSKIEJ 298, Mechanika 90 RUTMech, t. XXXV, z. 90 (4/18), październik-grudzień 2018, s. 481-489 Adam KALINA 1 Aleksander MAZURKOW 2 Stanisław WARCHOŁ 3 WYZNACZANIE LUZU
Młodzieżowe Uniwersytety Matematyczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego REGUŁA GULDINA
Młodzieżowe Uniwerstet Matematczne Projekt współfinansowan przez Unię Europejską w ramach Europejskiego Funduszu połecznego REGUŁA GULDINA dr Bronisław Pabich Rzeszów marca 1 Projekt realizowan przez Uniwerstet
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 9 MARCA 019 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Cena nart po obniżce o
Rozwiązywanie ram płaskich wyznaczanie reakcji i wykresów sił przekrojowych 7
ozwiązwanie ram płaskich wznaczanie reakcji i wkresów sił przekrojowch 7 Obciążenie ram płaskiej, podobnie jak w przpadku beek rozdział 6, mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Matematka Poziom rozszerzon Listopad W niniejszm schemacie oceniania zadań otwartch są prezentowane przkładowe poprawne odpowiedzi. W tego tpu ch
[L] Rysunek Łuk wolnopodparty, paraboliczny wymiary, obciążenie, oznaczenia.
rzkład 10.3. Łuk paraboliczn. Rsunek przedstawia łuk wolnopodpart, którego oś ma kształt paraboli drugiego stopnia (łuk paraboliczn ). Łuk obciążon jest ciśnieniem wewnętrznm (wektor elementarnej wpadkowej
RÓWNANIA RÓŻNICZKOWE WYKŁAD 3
RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 Równania różniczkowe liniowe Metoda przewidwań Metoda przewidwań całkowania równania niejednorodnego ' p( x) opiera się na następującm twierdzeniu. Twierdzenie f ( x) Suma
WYZNACZANIE ZA POMOCĄ MEB WPŁYWU PĘKNIĘCIA U PODSTAWY ZĘBA NA ZMIANĘ SZTYWNOŚCI ZAZĘBIENIA
ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2009 Seria: TRANSPORT z. 65 Nr kol. 1807 Piotr FOLĘGA, Piotr CZECH, Tomasz FIGLUS, Grzegorz WOJNAR WYZNACZANIE ZA POMOCĄ MEB WPŁYWU PĘKNIĘCIA U PODSTAWY ZĘBA NA ZMIANĘ
Wektory. P. F. Góra. rok akademicki
Wektor P. F. Góra rok akademicki 009-0 Wektor zwiazan. Wektorem zwiazanm nazwam parę punktów. Jeżeli parę tę stanowią punkt,, wektor przez nie utworzon oznaczm. Graficznie koniec wektora oznaczam strzałką.
KOMPUTEROWO WSPOMAGANE WYZNACZANIE DYNAMICZNYCH SIŁ MIĘDZYZĘBNYCH W PRZEKŁADNIACH WALCOWYCH O ZĘBACH PROSTYCH I SKOŚNYCH
MECHANIK 7/015 Mgr inż. Jerzy MARSZAŁEK Dr hab. inż. Józef DREWNIAK, prof. ATH Akademia Techniczno-Humanistyczna w Bielsku-Białej DOI: 10.17814/mechanik.015.7.66 KOMPUTEROWO WSPOMAGANE WYZNACZANIE DYNAMICZNYCH
EGZAMIN PRÓBNY CZAS PRACY: 180 MIN. SUMA PUNKTÓW: 50 ZADANIE 1 (1 PKT) ZADANIE 2 (1 PKT) ZADANIE 3 (1 PKT) ZADANIE 4 (1 PKT) ZADANIE 5 (1 PKT)
IMIE I NAZWISKO EGZAMIN PRÓBNY CZAS PRACY: MIN. SUMA PUNKTÓW: 5 ZADANIE ( PKT) Dziedzina funkcji f (x) = x jest zbiór x 2 +x 6 A) R \ {, 2} B) (, 2) C) (, ) (2, + ) D) (, 2) (, + ) ZADANIE 2 ( PKT) W pewnej
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 8 MARCA 015 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Przbliżenie dziesiętne
Więcej arkuszy znajdziesz na stronie: arkusze.pl
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Matematka Poziom rozszerzon Listopad W niniejszm schemacie oceniania zadań otwartch są prezentowane przkładowe poprawne odpowiedzi. W tego tpu ch
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A04 2 Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba π spełnia nierówność: A. + 1 > 5 B. 1 < 2 C. + 2 3 4
Charakterystyki geometryczne figur płaskich. dr hab. inż. Tadeusz Chyży Katedra Mechaniki Konstrukcji
Charakterstki geometrczne figur płaskich dr hab. inż. Tadeusz Chż Katedra Mechaniki Konstrukcji Wielkości geometrczne charakterzujące przekrój pod względem wtrzmałościowm to: pole przekroju (A), (ang.
Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6
ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch 6 Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs. 6.. s. 6. rzed przstąpieniem
KURS FUNKCJE WIELU ZMIENNYCH
KURS FUNKCJE WIELU ZMIENNYCH Lekcja 1 Pochodne cząstkowe ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tlko jedna jest prawdziwa). Ptanie 1 Funkcja dwóch zmiennch a)
MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO Prowadzący: dr Krzysztof Polko WSTĘP z r C C(x C,y C,z C ) r C -r B B(x B,y B,z B ) r C -r A r B r B -r A A(x A,y A,z A ) Ciało sztywne
L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 4 ZADANIA - ZESTAW 4
ZADANIA - ZESTAW 4 Zadanie 4. 0-0,4 c 0 0, 0, Wznacz c. Wznacz rozkład brzegowe. Cz, są niezależne? (odp. c = 0,3 Zadanie 4.- 0-0,4 0,3 0 0, 0, Wznaczć macierz kowariancji i korelacji. Cz, są skorelowane?
Interpolacja. Układ. x exp. = y 1. = y 2. = y n
MES 07 lokaln Interpolacja. Układ Interpolacja, wprowadzenie Interpolacja: po co nam to? Ptania MES polega na wznaczaniu interesującch nas parametrów w skończonej ilości punktów. A co leż pomiędz tmi punktami?
Grafika 2D. Przekształcenia geometryczne 2D. opracowanie: Jacek Kęsik
Grafika 2D Przekształcenia geometrczne 2D opracowanie: Jacek Kęsik Wkład obejmuje podstawowe przekształcenia geometrczne stosowane w grafice komputerowej. Opisane są w nim również współrzędne jednorodne
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami Maciej Burnecki opracowanie strona główna Spis treści 1 Wyrażenia algebraiczne indukcja matematyczna 1 Geometria analityczna w R 3 3 Liczby zespolone
Programowanie nieliniowe optymalizacja funkcji wielu zmiennych
Ekonomia matematczna II Ekonomia matematczna II Prowadząc ćwiczenia Programowanie nieliniowe optmalizacja unkcji wielu zmiennch Modele programowania liniowego często okazują się niewstarczające w modelowaniu
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 6 KWIETNIA 0 CZAS PRACY: 70 MINUT Zadania zamknięte ZADANIE ( PKT.) Liczbę 5 7 zaokr aglam do liczb,6.
( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia.
Adam Bdnar: Wtrzmałść Materiałów Analiza płaskieg stanu naprężenia 5 ANALIZA PŁASKIEGO STANU NAPRĘŻENIA 5 Naprężenia na dwlnej płaszczźnie Jak pamiętam płaski stan naprężenia w punkcie cechuje t że wektr
Ć w i c z e n i e K 1
kademia Górniczo Hutnicza Wdział nżnierii echanicznej i Robotki Katedra Wtrzmałości, Zmęczenia ateriałów i Konstrukcji azwisko i mię: azwisko i mię: Wdział Górnictwa i Geoinżnierii Grupa nr: Ocena: Podpis:
Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 4-5
ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch - Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs... s.. rzed przstąpieniem
ANALITYCZNO-NUMERYCZNE METODY WYZNACZANIA OBSZARU STYKU PRZEKŁADNI WKLĘSŁO-WYPUKŁYCH NOWIKOWA
ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2014 Seria: TRANSPORT z. 82 Nr kol. 1903 Tadeusz MARKOWSKI 1, Michał BATSCH 2 ANALITYCZNO-NUMERYCZNE METODY WYZNACZANIA OBSZARU STYKU PRZEKŁADNI WKLĘSŁO-WYPUKŁYCH
Równania różniczkowe
Równania różniczkowe I rzędu Andrzej Musielak Równania różniczkowe Równania różniczkowe I rzędu Równanie różniczkowe pierwszego rzędu to równanie w którm pojawia się zmienna x, funkcja tej zmiennej oraz
MES polega na wyznaczaniu interesujących nas parametrów w skończonej ilości punktów. A co leży pomiędzy tymi punktami?
MES- 07 Interpolacja, wprowadzenie Interpolacja: po co nam to? Ptania MES polega na wznaczaniu interesującch nas parametrów w skończonej ilości punktów. A co leż pomiędz tmi punktami? Na razie rozpatrwaliśm
ZARYS ŚLIMAKA TORUSOPOCHODNEGO KSZTAŁTOWANEGO NARZĘDZIEM TRZPIENIOWYM
KOMISJA BUDOWY MASZY PA ODDZIAŁ W POZAIU Vol. 8 nr Archiwum Technologii Maszyn i Automatyzacji 8 LESZEK SKOCZYLAS ZARYS ŚLIMAKA TORUSOPOCHODEGO KSZTAŁTOWAEGO ARZĘDZIEM TRZPIEIOWYM W artykule przedstawiono
UZĘBIENIE EWOLWENTOWE KÓŁ TROCHOIDALNYCH
KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU Vol. 26 nr 2 Archiwum Technologii Maszn i Automatzacji 2006 HIERONIM KORZENIEWSKI * UZĘBIENIE EWOLWENTOWE KÓŁ TROCHOIDALNYCH W artkule przedstawiono sposób
Arkusz 6. Elementy geometrii analitycznej w przestrzeni
Arkusz 6. Elementy geometrii analitycznej w przestrzeni Zadanie 6.1. Obliczyć długości podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos
WYZNACZANIE NAPRĘŻEŃ W PODSTAWACH ZĘBÓW KÓŁ NAPĘDÓW ZĘBATYCH
4-2007 PROBLEMY EKSPLOATACJI 83 Piotr FOLĘGA, Tomasz FIGLUS Politechnika Śląska, Gliwice WYZNACZANIE NAPRĘŻEŃ W PODSTAWACH ZĘBÓW KÓŁ NAPĘDÓW ZĘBATYCH Słowa kluczowe Koło zębate, stan naprężenia, metoda
Ćwiczenie 361 Badanie układu dwóch soczewek
Nazwisko... Data... Wdział... Imię... Dzień tg.... Godzina... Ćwiczenie 36 Badanie układu dwóch soczewek Wznaczenie ogniskowch soczewek metodą Bessela Odległość przedmiotu od ekranu (60 cm 0 cm) l Soczewka
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A01 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba log 1 3 3 27 jest równa:
Algebra WYKŁAD 9 ALGEBRA
Algebra WYKŁAD 9 Krzwe sożkowe Definicja Prosa sczna do krzwej K w punkcie P jes o prosa, będąca granicznm położeniem siecznch s k przechodzącch przez punk P i P k gd punk P k dąż zbliża się do punku P
Tra r n a s n fo f rm r a m c a ja a na n p a rę r ż ę eń e pomi m ę i d ę zy y uk u ł k a ł d a am a i m i obr b ó r cony n m y i m
Wytrzymałość materiałów Naprężenia główne na przykładzie płaskiego stanu naprężeń 1 Tensor naprężeń Naprężenia w stanie przestrzennym: τ τxz τ yx τ yz τzx τzy zz Układ współrzędnych jest zwykle wybrany
ZADANIE 1 Poniżej znajduje się fragment wykresu funkcji y = f (x). ZADANIE 2 Na podstawie podanego wykresu funkcji f
IMIE I NAZWISKO ZADANIE Poniżej znajduje się fragment wkresu funkcji = f (). -7 -- - - 6 7 Dorsuj brakujac a część wkresu wiedzac, że dziedzina funkcji f jest przedział,, a wkres jest smetrczn względem
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 13 KWIETNIA 013 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Liczba 3 ( 1 8) 1
) q przyłożona jest w punkcie o współrzędnej x = x + x. Przykład Łuk trójprzegubowy.
rzkład 0.. Łuk trójprzegubow. Rsunek 0.. przedstawia łuk trójprzegubow, którego oś ma kształt półokręgu (jest to łuk kołow ). Łuk obciążon jest ciężarem konstrukcji podwieszonej. Narsować wkres momentów
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 17751 WYGENEROWANY AUTOMATYCZNIE W SERWISIE ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Rozważm treść następujacego
Funkcje wielu zmiennych
Funkcje wielu zmiennch Wkres i warstwice funkcji wielu zmiennch. Przeglad powierzchni stopnia drugiego. Granice i ciagłość funkcji wielu zmiennch. Małgorzata Wrwas Katedra Matematki Wdział Informatki Politechnika
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY+ 19 MARCA 2011 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Wskaż nierówność, która
Stan naprężenia. Przykład 1: Tarcza (płaski stan naprężenia) Określić siły masowe oraz obciążenie brzegu tarczy jeśli stan naprężenia wynosi:
Stan naprężenia Przkład 1: Tarcza (płaski stan naprężenia) Określić sił masowe oraz obciążenie brzegu tarcz jeśli stan naprężenia wnosi: 5 T σ. 8 Składowe sił masowch obliczam wkonując różniczkowanie zapisane
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
WPISUJE ZDAJĄCY KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY PRZED MATURĄ MAJ 2015 1. Sprawdź, czy arkusz egzaminacyjny zawiera 22 strony ( zadania 1 19). Ewentualny brak zgłoś przewodniczącemu
25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx
5. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU 5.1. Pojęcia wstępne. Klasfikacja równań i rozwiązań Rozróżniam dwa zasadnicze tp równań różniczkowch: równania różniczkowe zwczajne i równania różniczkowe cząstkowe.
Analiza dynamiczna uproszczonego modelu walcowej przekładni zębatej z uwzględnieniem prostokątnego przebiegu sztywności zazębienia
MARSZAŁEK Jerzy DREWNIAK Józef Analiza dynamiczna uproszczonego modelu walcowej przekładni zębatej z uwzględnieniem prostokątnego przebiegu sztywności zazębienia WSTĘP Przekładnie zębate należą do mechanizmów
Położenia, kierunki, płaszczyzny
Położenia, kierunki, płaszczyzny Dalsze pojęcia Osie krystalograficzne; Parametry komórki elementarnej; Wskaźniki punktów kierunków i płaszczyzn; Osie krystalograficzne Osie krystalograficzne: układ osi
KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie
KONKURS ZOSTAŃ PITAGORASEM MUM ETAP I TEST II Podstawowe własności figur geometrycznych na płaszczyźnie 1. A. Stosunek pola koła wpisanego w kwadrat o boku długości 6 do pola koła opisanego na tym kwadracie
MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie
Spis treści. Przedmowa 11
Przykłady obliczeń z podstaw konstrukcji maszyn. [Tom] 2, Łożyska, sprzęgła i hamulce, przekładnie mechaniczne / pod redakcją Eugeniusza Mazanka ; autorzy: Andrzej Dziurski, Ludwik Kania, Andrzej Kasprzycki,
ĆWICZENIE 8 i 9. Zginanie poprzeczne z wykładową częścią
ĆWICZENIE 8 i 9 Zginanie poprzeczne z wkładową częścią z z QzS J b z Dskusja wzoru na naprężenia stczne. Uśrednione naprężenie stczne, J bz Qz x S z jest funkcją dwóch zmiennch: x- położenia przekroju
1.11. RÓWNANIE RÓŻNICZKOWE OSI UGIĘTEJ
.. RÓWNANIE RÓŻNICZKOWE OSI UGIĘTEJ od płem obciążenia prostolinioa oś podłużna belki staje się krzolinioa. Zakrzioną oś belki nazam linią ugięcia (osią ugiętą), przemieszczenie pionoe ( x) tej osi nazam
Przekładnie zębate. Klasyfikacja przekładni zębatych. 1. Ze względu na miejsce zazębienia. 2. Ze względu na ruchomość osi
Przekładnie zębate Klasyfikacja przekładni zębatych 1. Ze względu na miejsce zazębienia O zazębieniu zewnętrznym O zazębieniu wewnętrznym 2. Ze względu na ruchomość osi O osiach stałych Planetarne przynajmniej
Elementy algebry i analizy matematycznej II
Element algebr i analiz matematcznej II Wkład 1. Ekstrema unkcji dwóch zmiennch Deinicja 1 Funkcja dwóch zmiennch, z = (, ), ma w punkcie z = (, ), maksimum lokalne, jeżeli istnieje takie otoczenie punktu
3. Wstępny dobór parametrów przekładni stałej
4,55 n1= 3500 obr/min n= 1750 obr/min N= 4,55 kw 0,70 1,00 16 37 1,41 1,4 8 30,7 1,41 1. Obliczenie momentu Moment na kole n1 obliczam z zależności: 9550 9550 Moment na kole n obliczam z zależności: 9550
Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski
Uniwersytet Śląski 23 marca 2012 Ciało liczb zespolonych Rozważmy zbiór C = R R, czyli C = {(x, y) : x, y R}. W zbiorze C definiujemy następujące działania: dodawanie: mnożenie: (a, b) + (c, d) = (a +
GEOMETRIA ANALITYCZNA W PRZESTRZENI
Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska Wykład 13. Egzaminy I termin wtorek 31.01 14:00 Aula A Wydział Budownictwa II termin poprawkowy czwartek 9.02 14:00 Aula A Wydział Budownictwa
Podstawy Konstrukcji Maszyn
0-05-7 Podstawy Konstrukcji Maszyn Część Wykład nr.3. Przesunięcie zarysu przypomnienie znanych zagadnień (wykład nr. ) Zabieg przesunięcia zarysu polega na przybliżeniu lub oddaleniu narzędzia od osi
Równania różniczkowe cząstkowe
Równania różniczkowe cząstkowe Definicja: Równaniem różniczkowm cząstkowm nazwam takie równanie różniczkowe w którm wstępuje co najmniej jedna pochodna cząstkowa niewiadomej funkcji dwóch lub więcej zmiennch
Zadania do rozdziału 10.
Zadania do rozdziału 0. Zad.0.. Jaką wsokość musi mieć pionowe zwierciadło ab osoba o wzroście.80 m mogła się w nim zobaczć cała. Załóżm, że ocz znajdują się 0 cm poniżej czubka głow. Ab prawidłowo rozwiązać
BADANIA SYMULACYJNE PROCESU HAMOWANIA SAMOCHODU OSOBOWEGO W PROGRAMIE PC-CRASH
BADANIA SYMULACYJNE PROCESU HAMOWANIA SAMOCHODU OSOBOWEGO W PROGRAMIE PC-CRASH Dr inż. Artur JAWORSKI, Dr inż. Hubert KUSZEWSKI, Dr inż. Adam USTRZYCKI W artykule przedstawiono wyniki analizy symulacyjnej
Równania różniczkowe cząstkowe
Równania różniczkowe cząstkowe Definicja Równaniem różniczkowm cząstkowm nazwam takie równanie różniczkowe w którm wstępuje co najmniej jedna pochodna cząstkowa niewiadomej funkcji dwóch lub więcej zmiennch
PL B1. POLITECHNIKA WARSZAWSKA, Warszawa, PL BUP 12/14. ANTONI SZUMANOWSKI, Warszawa, PL PAWEŁ KRAWCZYK, Ciechanów, PL
PL 222644 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 222644 (13) B1 (21) Numer zgłoszenia: 401778 (51) Int.Cl. F16H 55/56 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:
Defi f nicja n aprę r żeń
Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie
Informatyka Stosowana. a b c d a a b c d b b d a c c c a d b d d c b a
Działania na zbiorach i ich własności Informatyka Stosowana 1. W dowolnym zbiorze X określamy działanie : a b = b. Pokazać, że jest to działanie łączne. 2. W zbiorze Z określamy działanie : a b = a 2 +
f x f y f, jest 4, mianowicie f = f xx f xy f yx
Zestaw 14 Pochodne wŝszch rzędów Niech będzie dana funkcja x f określona w pewnm obszarze D Przpuśćm Ŝe f x istnieją pochodne cząstkowe tej funkcji x x Pochodne cząstkowe tch pochodnch jeŝeli istnieją
Pomiar bezpośredni przyrządem wskazówkowym elektromechanicznym
. Rodzaj poiaru.. Poiar bezpośredni (prost) W przpadku poiaru pojednczej wielkości przrząde wskalowan w jej jednostkach wartość niedokładności ± określa graniczn błąd przrządu analogowego lub cfrowego
ZESZYTY NAUKOWE NR 10(82) AKADEMII MORSKIEJ W SZCZECINIE
ISSN 1733-8670 ZESZYTY NAUKOWE NR 10(82) AKADEMII MORSKIEJ W SZCZECINIE IV MIĘDZYNARODOWA KONFERENCJA NAUKOWO-TECHNICZNA EXPLO-SHIP 2006 Stefan Berczyński, Zenon Grządziel, Szymon Rukowicz Analiza porównawcza
MATURA PRÓBNA 2 KLASA I LO
IMIE I NAZWISKO MATURA PRÓBNA KLASA I LO CZAS PRACY: 90 MIN. SUMA PUNKTÓW: 60 ZADANIE (5 PKT) Znajdź wszstkie funkcje liniowe określone na zbiorze ;, którch zbiorem wartości jest przedział ; 0. ZADANIE
3.3. UKŁADY RÓWNAŃ LINIOWYCH. Równanie liniowe z dwiema niewiadomymi. Równaniem liniowym z dwiema niewiadomymi x i y nazywamy równanie postaci
.. UKŁADY RÓWNAŃ LINIOWYCH Równanie liniowe z dwiema niewiadommi Równaniem liniowm z dwiema niewiadommi i nazwam równanie postaci A B C 0, gdzie A, B, C R i A B 0 m równania z dwiema niewiadommi nazwam
Imperfekcje globalne i lokalne
Imperfekcje globalne i lokalne Prz obliczaniu nośności i stateczności konstrukcji stalowch szczególnego znaczenia nabiera konieczność uwzględniania warunków wkonania, transportu i montażu elementów konstrukcjnch.
ARKUSZ II
www.galileusz.com.pl ARKUSZ II W każdym z zadań 1.-24. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0-1 pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D)
Przykład Łuk ze ściągiem, obciążenie styczne. D A
Przykład 1.4. Łuk ze ściągiem, obciążenie styczne. Rysunek przedstawia łuk trójprzegubowy, kołowy, ze ściągiem. Łuk obciążony jest obciążeniem stycznym do łuku, o stałej gęstości na jednostkę długości
lim = 0, gdzie d n oznacza najdłuższą przekątną prostokątów
9. CAŁKA POWÓJNA 9.. Całka podwójna w prostokącie Niech P będzie prostokątem opisanm na płaszczźnie OXY nierównościami: a < < b, c < < d, a f(,) funkcją określoną i ograniczoną w tm prostokącie. Prostokąt
Przykłady do zadania 1.1 : Obliczyć dane całki podwójne po wskazanych prostokątach. π 4. (a) sin(x + y) dxdy, R = π 4, π ] [ dy = sin(x + y)dy = dx =
achunek prawdopodobieństwa MAP6 Wdział Elektroniki, rok akad. 8/9, sem. letni Wkładowca: dr hab. A. Jurlewicz Przkład do list : Całki podwójne Przkład do zadania. : Obliczć dane całki podwójne po wskazanch
11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).
1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego
Przykład 4.2. Sprawdzenie naprężeń normalnych
Przykład 4.. Sprawdzenie naprężeń normalnych Sprawdzić warunki nośności przekroju ze względu na naprężenia normalne jeśli naprężenia dopuszczalne są równe: k c = 0 MPa k r = 80 MPa 0, kn 0 kn m 0,5 kn/m
Rysunek 4.1. Odwzorowanie przez soczewkę. PołoŜenie obrazu znajdziemy, korzystając z równania (3.41). Odpowiednio dla obu powierzchni mamy O C
Temat 4: Podstaw optki geometrcznej-3 Ilość godzin na temat wkładu: Zagadnienia: Cienka soczewka sferczna. Wzór soczewkow. Konstrukcja obrazu w soczewce cienkiej. Powiększenie soczewki cienkiej. Soczewka
Matematyczny opis układu napędowego pojazdu szynowego
GRZESIKIEWICZ Wiesław 1 LEWANDOWSKI Mirosław 2 Matematyczny opis układu napędowego pojazdu szynowego WPROWADZENIE Rozważmy model układu napędowego pojazdu szynowego. Model ten dotyczy napędu jednej osi
V Międzyszkolny Konkurs Matematyczny
V Międzyszkolny Konkurs Matematyczny im. Stefana Banacha dla uczniów szkół średnich Zespół Szkół Nr 1 im. Adama Mickiewicza w Lublińcu 42-700 Lubliniec, ul. Sobieskiego 22 18. kwiecień 2011 rok 1. W trapezie
RÓWNANIA RÓŻNICZKOWE WYKŁAD 5
RÓWNANIA RÓŻNICZKOWE WYKŁAD 5 Równania różniczkowe rzędu drugiego Równania rzędu drugiego sprowadzalne do równań rzędu pierwszego Równanie różniczkowe rzędu drugiego postaci F ( x, ', ") 0 ( nie wstępuje
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP REJONOWY
pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP REJONOWY Drogi Uczniu Witaj na II etapie konkursu matematcznego. Przecztaj uważnie instrukcję.