MODELOWANIE GEOMETRII ZAZĘBIENIA PRZEKŁADNI PASOWYCH ZĘBATYCH MODELING THE MESHING GEOMETRY OF THE TOOTHED BELT DRIVES

Wielkość: px
Rozpocząć pokaz od strony:

Download "MODELOWANIE GEOMETRII ZAZĘBIENIA PRZEKŁADNI PASOWYCH ZĘBATYCH MODELING THE MESHING GEOMETRY OF THE TOOTHED BELT DRIVES"

Transkrypt

1 ANDRZEJ PAKUŁA * MODELOWANIE GEOMETRII ZAZĘBIENIA PRZEKŁADNI PASOWYCH ZĘBATYCH MODELING THE MESHING GEOMETRY OF THE TOOTHED BELT DRIVES Streszczenie Abstract W artkule przedstawiono model geometrczn zazębienia przekładni pasowch zębatch. Na podstawie modelu napisano program smulując. Wkorzstano środowisko Mathematica. Przeprowadzono smulacje współprac zazębienia bez obciążenia i napięcia wstępnego. Smulacje przeprowadzono dla zarsu HTD i dla porównania dla zarsu L oraz zazębienia mieszanego koło HTD z pasem L. Największe obciążenie boku zęba i zarazem największe zużcie wstępuje w miejscach największej interferencji (nałożenia zarsów) zęba pasa i koła. Wniki smulacji zgadzają się ze zużciem pasów po przebiegu nominalnm dla zarsów HTD i L. Dla par mieszanej wniki smulacji pokazują, że interferencja zarsów jest zastanawiająco mała. Wnik tej smulacji może bć inspiracją do przeprowadzenia badań stanowiskowch. Słowa kluczowe: model geometrczn, zazębienia przekładni pasowch zębatch Geometric model of the toothed belt drives meshing is presented. On the basis of the model simulation program was written. Mathematica environment was used. Simulations of the meshing cooperation have been run without load and preload. Simulations were performed for the contour HTD and for comparison to the contour L, and mixed couple-wheel HTD meshing with the belt L. The highest load of the tooth side and the largest wear occurs in places the greatest interference (contour imposing) of the tooth belt and wheels. The simulation results agree well with the belt wear on the course for HTD and L contours. For mixed couples simulation results show that the interference contours is surprisingl small. The result of this simulation can be an inspiration for the test stand. Kewords: geometric model, toothed belt drives meshing * Dr inż. Andrzej Pakuła, Insttut Pojazdów Samochodowch i Silników Spalinowch, Wdział Mechaniczn, Politechnika Krakowska.

2 Geometria zazębienia przekładni pasowej zębatej W literaturze światowej jest wiele opracowań dotczącch zazębienia w przekładni pasowej zębatej np. [1 3]. Opracowania te są bardzo szczegółowe, z uwzględnieniem odkształceń zębów pasa i samego pasa (tzw. klawiszowanie). Modele te narzucają wprowadzenie bardzo wielu danch materiałowch i wtrzmałościowch, często wmagającch zbudowania specjalnch przrządów w celu ich wznaczenia dla danego pasa. Brak jednak prostej i szbkiej metod ocen współprac różnch zarsów zazębienia tlko na podstawie danch geometrcznch. Celem prac bło opracowanie prostego modelu geometrcznego pozwalającego na ocenę współprac różnch zarsów zazębienia tlko na podstawie danch geometrcznch, biorąc za krterium interferencję zarsów zęba pasa i współpracującego z nim wrębu koła. Ze względu na trwałość przekładni pasowej zars profili zęba pasa zębatego i wrębu koła pasowego, powinn bć tak zaprojektowane, ab podczas współprac następowało ich odtaczanie. Przenikanie się profili zawsze związane jest z odkształceniami normalnmi i stcznmi do wrębu koła, przede wszstkim zęba pasa. Od wielkości tch odkształceń, zmiennch w czasie, uzależniona jest trwałość przekładni pasowej zębatej. 2. Eksperment numerczn dla zarsu HTD Na rsunku 1 pokazane są profile zęba pasa zębatego i wrębu koła pasowego zębatego z nim współpracującego. Zars zęba pasa składa się z odcinków okręgów o promieniach r 1p, r 2p i odcinka prostej LL 1. Podobnie zars wrębu koła utworzon jest z odcinków okręgów o promieniach r 1 i r 2, połączonch w krańcowch punktach B, D odcinkiem prostej. Na rs. 1b zaznaczono promień podziałow r c i zewnętrzn r p koła. Rs. 1. Profile: a) zęba pasa zębatego, b) wrębu koła pasowego zębatego Fig. 1. Profile: a) a tooth of the toothed belt, b) notch toothed pulle

3 121 Ruch profili rozpatrwan jest w układzie odniesienia, którego początek O położon jest na osi obrotu koła. Zars profili zęba pasa i wrębu koła określone są odpowiednio w lokalnch układach współrzędnch {O p }, {O k }. Wzajemne położenie w przpadku ogólnm pokazano na rs. 2a i b. Rs. 2. Położenie lokalnch układów odniesienia {O p }, {O k }: a) wrębu koła, b) zęba pasa Fig. 2. Location of local reference sstems {O p }, {O k }: a) a notch-wheel, b) belt tooth Współrzędne punktu S 1 należącego do odcinka AD zarsu wrębu koła wznacza wektor wodząc: r = r + A ( r + r ) (1) OS 1 c OOk OkO2 2 Gdzie A OOk jest macierzą transformacji z układu {O k } do układu {O} A OOk cosϕ = sinϕ sin ϕ cos ϕ (2) Współrzędne punktu S 2 należącego do odcinka KL 1 zarsu zęba pasa można określić za pomocą wektora wodzącego:

4 122 r = r + r + r (3) OS 2 OOp OO p 2p O2 p Wkorzstując rsunek pomocnicz z poszczególnmi odcinkami prawej stron zarsu wrębu koła, można wznaczć współrzędne punktów S 1 i S 1 w układzie {O}. α< χ2 χ2max χ max χ Współrzędna punktu S 1 należącego do odcinka AD: x OS 2 1 OS 2 1 = r sin χ 2 2 = r cos χ 2 2 x OS 2 1 OS 2 1 = r sin χ 2 2 = r cos χ 2 2 Punkt B, D połączone są odcinkiem prostej. Rs. 3. Punkt S 1 i S 1 należące do prawej stron zarsu wrębu koła Fig. 3. Points S 1 and S 1 belonging to the right side of the notch profile wheels Położenia punktów S 1 i S 1 (rs. 3) w układzie {O} zależne są od kata obrotu koła φ i odpowiednio kątów χ 1 i χ 2. Zgodnie z równaniem (1) odnoszącm się do punktu S 1 współrzędne wektora wodzącego można zapisać w postaci: r OS1 x OS1 OS1 rc sin ϕ = rc + cosϕ cos ϕ sinϕ sin ϕ x cos ϕ OO k 2 OO k 2 cosϕ sin ϕ xos sinϕ cos ϕ OS 21 W analogiczn sposób wznaczam współrzędne wektora wodzącego r OS1 {O}: (4) w układzie

5 123 x OS1 OS1 rc sin cos rc cos sin = ϕ + ϕ ϕ ϕ sin ϕ x cos ϕ OO k 1 OO k 1 cosϕ + sinϕ sin ϕ x cos ϕ OS 1 1 OS 1 1 (5) Wkorzstując równania (4) i (5) można obliczć współrzędne punktów B i D w układzie {O} oraz równanie prostej, do której należ punkt S 3. BO. = x DO. BO. S3 3 DO. xbo. ( xs xbo. ) (6) Gdzie: indeks B.D, D.O oznaczają, że współrzędne punktów B, D określone są w układzie odniesienia {O}. W obliczeniach numercznch wgodnie jest posługiwać się równaniami parametrcznmi: t xs = x 3 BO. + (7) DO. BO. t S = 3 BO. + x x DO. BO. (8) 0 t ( ) x x ( ) DO. BO. DO. BO. (9) Na rs. 4. zaznaczono charakterstczne punkt należące do zarsu profilu zęba pasa. x S2 S2 = r = r sin τ 2p 2 cos τ 2p 2 x S2 S2 = r 1p 1 = r sin τ cos τ 1p 1 Rs. 4. Zars prawostronn profilu zęba pasa z punktami charakterstcznmi S 2 i S 2 Fig. 4. Outline of the right-side of the belt tooth profile with characteristic points S 2 i S 2

6 124 Położenie układów współrzędnch {O 1p }, {O 2p }, {O p } i {O} pokazano na rs. 5. Rs. 5. Położenie układów współrzędnch dotczące zarsu profilu zęba pasa Fig. 5. Location of coordinate sstems to the outline of belt tooth profile Na podstawie rs. 4 i rs. 5 obliczono współrzędne punktów S i S 2 2 w układzie odniesienia {O}. x = r ϕ+ r + r a r S2. O c 1p 2p 2p 2 = r ( p+ b) r cos τ S2. O c 2p 2 x = r ϕ a r sin τ S O c 1p 1 2. = r ( p+ b) r cos τ sin τ S O c 1p 1 2. (10) (11) Na podstawie powższch rozważań ułożon został program w środowisku Mathematica i przeprowadzono smulację, której wniki zamieszczono na rs. 6. Jest to smulacja współprac bez obciążenia i napięcia wstępnego.

7 125 Rs. 6. Wniki smulacji zazębienia przekładni pasowej zębatej HTD. Podziałka osi x, w milimetrach Fig. 6. The meshing simulation results for HTD toothed belt drive. X, axes pitch in millimeters

8 126 Największe obciążenie boku zęba i zarazem największe zużcie wstępuje w miejscach największej interferencji (nałożenia zarsów) zęba pasa i koła. Wniki smulacji dla zarsu HTD dobrze zgadzają się ze zużciem pasów po przebiegu nominalnm. Współpraca zazębienia ma charakter przetaczania się zęba pasa po wrębie koła. 3. Eksperment numerczn dla zarsu HTD Wkorzstując metodę i program, wprowadzono dane zarsu tpowego pasa rozrządu tpu L i również w celu porównania z HTD przeprowadzono smulację przebiegu zazębienia. Wniki przedstawiono na rs. 7. Rs. 7. Wniki smulacji zazębienia przekładni pasowej zębatej L. Podziałka osi x, w milimetrach Fig. 7. The meshing simulation results for L toothed belt drive. X, axes pitch in millimeters Wniki smulacji dla zarsu L zgadzają się ze zużciem pasów po przebiegu nominalnm, tzn. obszar zużcia pokrwają się z obszarami największej interferencji zarsów pasa i koła. Współpraca zazębienia ma charakter ślizgania się zęba pasa po wrębie koła. 4. Eksperment numerczn dla zarsu HTD i L Wkorzstując metodę i program, postanowiono sprawdzić pogłoskę krążącą w środowisku mechaników samochodowch, że do przekładni z kołami o zarsie HTD można założć pas o zarsie L. Wprowadzono dane zarsu tpowego pasa rozrządu tpu L i koła o zarsie HTD. Wniki smulacji przebiegu zazębienia przedstawiono na rs. 8.

9 127 Rs. 8. Wniki smulacji zazębienia przekładni pasowej zębatej mieszanej HTD z pasem L. Podziałka osi pomocniczch x, w milimetrach Fig. 8. The meshing simulation results for mixed toothed belt drive HTD with L belt. Secondar x, axes pitch in millimeters Smulacja zazębienia przekładni pasowej zębatej mieszanej HTD z pasem L pokazała, że istotnie wdaje się możliwa taka współpraca, a interferencja zarsów jest mała, co powinno się przełożć na małe obciążenia boku zęba i co za tm idzie jego małe zużcie. Współpraca zazębienia ma charakter ślizgania się zęba pasa po wrębie koła, tak jak w przpadku przekładni o zazębieniu L. Widać wraźnie, że wkorzstwana jest tlko część wsokości zarsu koła, czli przenoszone sił będą znacząco mniejsze niż w przpadku pasa HTD. Wnik tej smulacji wskazuje na celowość przeprowadzenia badań stanowiskowch.

10 Wnioski Największe obciążenie boku zęba i zarazem największe zużcie wstępuje w miejscach największej interferencji (nałożenia zarsów) zęba pasa i koła. Wniki smulacji dla zarsów HTD i L dobrze zgadzają się ze zużciem pasów po przebiegu nominalnm, więc wdaje się, że cel prac został osiągnięt. Zużcie dla par mieszanej trzeba dopiero sprawdzić doświadczalnie. Dla zarsu L interferencja zarsów jest znacząco większa niż w przpadku zarsu HTD. Wniki smulacji zazębienia przekładni pasowej zębatej mieszanej HTD z pasem L pokazują, że istotnie interferencja zarsów jest zastanawiająco mała. Oczwiście wkorzstwana jest tlko część wsokości zarsu koła, czli przenoszone sił będą znacząco mniejsze niż w przpadku pasa HTD. Wnik tej smulacji może bć inspiracją do przeprowadzenia badań stanowiskowch. Literatura [1] K o a m T. et al., A stud of Strength of Tooth Belt, 2nd to 6th report, JSME, Vol. 22, No. 169, 1979, [2] N a j i M. et al., Toothed Belt-Load Distribution, Trans. ASME J of Mechanisms, Transmissions and Automation in Design, Vol. 105, 1983, [3] K a g o t a n i M. et al., A stud on Transmission Characteristics of Tooth Belt Drives, JSME, Vol. 26, No. 211, 1983, [4] C h i l d s T.H.C., D a l g a r n o K.W., H o j j a t i M.H., T u t t M.J., D a A.J., A The meshing of timing belt teeth in pulle grooves, Journal Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, Vol. 211, Number 3/1997, 1997,

Ć w i c z e n i e K 2 b

Ć w i c z e n i e K 2 b Akademia Górniczo Hutnicza Wdział Inżnierii Mechanicznej i Robotki Katedra Wtrzmałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wdział Górnictwa i Geoinżnierii Grupa nr: Ocena:

Bardziej szczegółowo

Wpływ wybranych czynników na trwałość pasów zębatych napędu rozrządu silnika spalinowego

Wpływ wybranych czynników na trwałość pasów zębatych napędu rozrządu silnika spalinowego ARCHIWUM MOTORYZACJI 4, pp. 357-362 (2005) Wpływ wybranych czynników na trwałość pasów zębatych napędu rozrządu silnika spalinowego ANDRZEJ PAKUŁA Politechnika Krakowska W niniejszej publikacji zostały

Bardziej szczegółowo

WYKORZYSTANIE MES DO WYZNACZANIA WPŁYWU PĘKNIĘCIA W STOPIE ZĘBA KOŁA NA ZMIANĘ SZTYWNOŚCI ZAZĘBIENIA

WYKORZYSTANIE MES DO WYZNACZANIA WPŁYWU PĘKNIĘCIA W STOPIE ZĘBA KOŁA NA ZMIANĘ SZTYWNOŚCI ZAZĘBIENIA ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2009 Seria: TRANSPORT z. 65 Nr kol. 1807 Tomasz FIGLUS, Piotr FOLĘGA, Piotr CZECH, Grzegorz WOJNAR WYKORZYSTANIE MES DO WYZNACZANIA WPŁYWU PĘKNIĘCIA W STOPIE ZĘBA

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria Środowiska w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era inżniera

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria i Gospodarka Wodna w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era

Bardziej szczegółowo

VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH

VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH ZADANIA ZAMKNIĘTE Zadanie. ( pkt) 0 90 Liczba 9 jest równa 0 B. 00 C. 0 9 D. 700 7 Zadanie. 8 ( pkt) Liczba 9 jest równa B. 9 C. D. 5 Zadanie. ( pkt) Liczba

Bardziej szczegółowo

PRĘDKOŚĆ POŚLIZGU W ZAZĘBIENIU PRZEKŁADNI ŚLIMAKOWEJ

PRĘDKOŚĆ POŚLIZGU W ZAZĘBIENIU PRZEKŁADNI ŚLIMAKOWEJ KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU ol. 7 nr Archiwum Technologii Maszyn i Automatyzacji 007 LESZEK SKOCZYLAS PRĘDKOŚĆ POŚLIZGU W ZAZĘBIENIU PRZEKŁADNI ŚLIMAKOWEJ W artykule przedstawiono sposób

Bardziej szczegółowo

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechnika Łódzka RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Streszczenie: W pracy opisano wzajemne położenie płaszczyzny parasola

Bardziej szczegółowo

GEOMETRIA ANALITYCZNA. Poziom podstawowy

GEOMETRIA ANALITYCZNA. Poziom podstawowy GEOMETRIA ANALITYCZNA Poziom podstawowy Zadanie (4 pkt.) Dana jest prosta k opisana równaniem ogólnym x + y 6. a) napisz równanie prostej k w postaci kierunkowej. b) podaj współczynnik kierunkowy prostej

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 1. Czas pracy 150 minut

MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 1. Czas pracy 150 minut Miejsce na naklejkę z kodem szkoł OKE ŁÓDŹ CKE MATEMATYKA POZIOM ROZSZERZONY MARZEC ROK 008 PRZYKŁADOWY ZESTAW ZADAŃ NR Czas prac 0 minut Instrukcja dla zdającego. Sprawdź, cz arkusz egzaminacjn zawiera

Bardziej szczegółowo

ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN

ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN Gr. 1 Zad. 1. Dane są punkty: P = (-, 1), R = (5, -1), S = (, 3). a) Oblicz odległość między punktami R i S. b) Wyznacz współrzędne środka odcinka PR. c) Napisz równanie

Bardziej szczegółowo

MES W ANALIZIE SPRĘŻYSTEJ UKŁADÓW PRĘTOWYCH

MES W ANALIZIE SPRĘŻYSTEJ UKŁADÓW PRĘTOWYCH MES W ANAIZIE SPRĘŻYSEJ KŁADÓW PRĘOWYCH Przkład obliczeń Kratownice płaskie idia FEDOROWICZ Jan FEDOROWICZ Magdalena MROZEK Dawid MROZEK Gliwice r. - idia Fedorowicz Jan Fedorowicz Magdalena Mrozek Dawid

Bardziej szczegółowo

matematyka Matura próbna

matematyka Matura próbna Gazeta Edukacja Sprawdź, cz zdasz! Egzamin maturaln matematka MTEMTYK zas prac: minut Matura próbna Maturzsto! Po raz pierwsz napiszesz obowiązkową maturę z matematki na poziomie podstawowm Rozwiąż zadania

Bardziej szczegółowo

12. FUNKCJE WIELU ZMIENNYCH. z = x + y jest R 2, natomiast jej

12. FUNKCJE WIELU ZMIENNYCH. z = x + y jest R 2, natomiast jej 1. FUNKCJE WIELU ZMIENNYCH 1.1. FUNKCJE DWÓCH ZMIENNYCH Funkcją dwóch zmiennch określoną w zbiorze D R nazwam przporządkowanie każdej parze liczb () D dokładnie jednej liczb rzeczwistej z. Piszem prz tm

Bardziej szczegółowo

Zad.1 Zad. Wyznaczyć rozkład sił wewnętrznych N, T, M, korzystając z komputerowej wersji metody przemieszczeń. schemat konstrukcji:

Zad.1 Zad. Wyznaczyć rozkład sił wewnętrznych N, T, M, korzystając z komputerowej wersji metody przemieszczeń. schemat konstrukcji: Zad. Wznaczć rozkład sił wewnętrznch N, T, M, korzstając z komputerowej wersji metod przemieszczeń. schemat konstrukcji: ϕ 4, kn 4, 4, macierz transformacji (pręt nr): α = - ϕ = -, () 5 () () E=5GPa; I

Bardziej szczegółowo

2. CHARAKTERYSTYKI GEOMETRYCZNE FIGUR PŁASKICH

2. CHARAKTERYSTYKI GEOMETRYCZNE FIGUR PŁASKICH dam Bodnar: Wtrzmałość Materiałów. Charakterstki geometrczne figur płaskich.. CHRKTERSTKI GEOMETRCZNE FIGUR PŁSKICH.. Definicje podstawowch charakterstk geometrcznch Podczas zajęć z wtrzmałości materiałów

Bardziej szczegółowo

WYZNACZANIE LUZU OBWODOWEGO W ZAZĘBIENIU KÓŁ PRZEKŁADNI FALOWEJ

WYZNACZANIE LUZU OBWODOWEGO W ZAZĘBIENIU KÓŁ PRZEKŁADNI FALOWEJ ZESZYTY NAUKOWE POLITECHNIKI RZESZOWSKIEJ 298, Mechanika 90 RUTMech, t. XXXV, z. 90 (4/18), październik-grudzień 2018, s. 481-489 Adam KALINA 1 Aleksander MAZURKOW 2 Stanisław WARCHOŁ 3 WYZNACZANIE LUZU

Bardziej szczegółowo

Młodzieżowe Uniwersytety Matematyczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego REGUŁA GULDINA

Młodzieżowe Uniwersytety Matematyczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego REGUŁA GULDINA Młodzieżowe Uniwerstet Matematczne Projekt współfinansowan przez Unię Europejską w ramach Europejskiego Funduszu połecznego REGUŁA GULDINA dr Bronisław Pabich Rzeszów marca 1 Projekt realizowan przez Uniwerstet

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 9 MARCA 019 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Cena nart po obniżce o

Bardziej szczegółowo

Rozwiązywanie ram płaskich wyznaczanie reakcji i wykresów sił przekrojowych 7

Rozwiązywanie ram płaskich wyznaczanie reakcji i wykresów sił przekrojowych 7 ozwiązwanie ram płaskich wznaczanie reakcji i wkresów sił przekrojowch 7 Obciążenie ram płaskiej, podobnie jak w przpadku beek rozdział 6, mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Matematka Poziom rozszerzon Listopad W niniejszm schemacie oceniania zadań otwartch są prezentowane przkładowe poprawne odpowiedzi. W tego tpu ch

Bardziej szczegółowo

[L] Rysunek Łuk wolnopodparty, paraboliczny wymiary, obciążenie, oznaczenia.

[L] Rysunek Łuk wolnopodparty, paraboliczny wymiary, obciążenie, oznaczenia. rzkład 10.3. Łuk paraboliczn. Rsunek przedstawia łuk wolnopodpart, którego oś ma kształt paraboli drugiego stopnia (łuk paraboliczn ). Łuk obciążon jest ciśnieniem wewnętrznm (wektor elementarnej wpadkowej

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 3

RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 Równania różniczkowe liniowe Metoda przewidwań Metoda przewidwań całkowania równania niejednorodnego ' p( x) opiera się na następującm twierdzeniu. Twierdzenie f ( x) Suma

Bardziej szczegółowo

WYZNACZANIE ZA POMOCĄ MEB WPŁYWU PĘKNIĘCIA U PODSTAWY ZĘBA NA ZMIANĘ SZTYWNOŚCI ZAZĘBIENIA

WYZNACZANIE ZA POMOCĄ MEB WPŁYWU PĘKNIĘCIA U PODSTAWY ZĘBA NA ZMIANĘ SZTYWNOŚCI ZAZĘBIENIA ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2009 Seria: TRANSPORT z. 65 Nr kol. 1807 Piotr FOLĘGA, Piotr CZECH, Tomasz FIGLUS, Grzegorz WOJNAR WYZNACZANIE ZA POMOCĄ MEB WPŁYWU PĘKNIĘCIA U PODSTAWY ZĘBA NA ZMIANĘ

Bardziej szczegółowo

Wektory. P. F. Góra. rok akademicki

Wektory. P. F. Góra. rok akademicki Wektor P. F. Góra rok akademicki 009-0 Wektor zwiazan. Wektorem zwiazanm nazwam parę punktów. Jeżeli parę tę stanowią punkt,, wektor przez nie utworzon oznaczm. Graficznie koniec wektora oznaczam strzałką.

Bardziej szczegółowo

KOMPUTEROWO WSPOMAGANE WYZNACZANIE DYNAMICZNYCH SIŁ MIĘDZYZĘBNYCH W PRZEKŁADNIACH WALCOWYCH O ZĘBACH PROSTYCH I SKOŚNYCH

KOMPUTEROWO WSPOMAGANE WYZNACZANIE DYNAMICZNYCH SIŁ MIĘDZYZĘBNYCH W PRZEKŁADNIACH WALCOWYCH O ZĘBACH PROSTYCH I SKOŚNYCH MECHANIK 7/015 Mgr inż. Jerzy MARSZAŁEK Dr hab. inż. Józef DREWNIAK, prof. ATH Akademia Techniczno-Humanistyczna w Bielsku-Białej DOI: 10.17814/mechanik.015.7.66 KOMPUTEROWO WSPOMAGANE WYZNACZANIE DYNAMICZNYCH

Bardziej szczegółowo

EGZAMIN PRÓBNY CZAS PRACY: 180 MIN. SUMA PUNKTÓW: 50 ZADANIE 1 (1 PKT) ZADANIE 2 (1 PKT) ZADANIE 3 (1 PKT) ZADANIE 4 (1 PKT) ZADANIE 5 (1 PKT)

EGZAMIN PRÓBNY CZAS PRACY: 180 MIN. SUMA PUNKTÓW: 50 ZADANIE 1 (1 PKT) ZADANIE 2 (1 PKT) ZADANIE 3 (1 PKT) ZADANIE 4 (1 PKT) ZADANIE 5 (1 PKT) IMIE I NAZWISKO EGZAMIN PRÓBNY CZAS PRACY: MIN. SUMA PUNKTÓW: 5 ZADANIE ( PKT) Dziedzina funkcji f (x) = x jest zbiór x 2 +x 6 A) R \ {, 2} B) (, 2) C) (, ) (2, + ) D) (, 2) (, + ) ZADANIE 2 ( PKT) W pewnej

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 8 MARCA 015 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Przbliżenie dziesiętne

Bardziej szczegółowo

Więcej arkuszy znajdziesz na stronie: arkusze.pl

Więcej arkuszy znajdziesz na stronie: arkusze.pl KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Matematka Poziom rozszerzon Listopad W niniejszm schemacie oceniania zadań otwartch są prezentowane przkładowe poprawne odpowiedzi. W tego tpu ch

Bardziej szczegółowo

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna Arkusz A04 2 Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba π spełnia nierówność: A. + 1 > 5 B. 1 < 2 C. + 2 3 4

Bardziej szczegółowo

Charakterystyki geometryczne figur płaskich. dr hab. inż. Tadeusz Chyży Katedra Mechaniki Konstrukcji

Charakterystyki geometryczne figur płaskich. dr hab. inż. Tadeusz Chyży Katedra Mechaniki Konstrukcji Charakterstki geometrczne figur płaskich dr hab. inż. Tadeusz Chż Katedra Mechaniki Konstrukcji Wielkości geometrczne charakterzujące przekrój pod względem wtrzmałościowm to: pole przekroju (A), (ang.

Bardziej szczegółowo

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6 ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch 6 Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs. 6.. s. 6. rzed przstąpieniem

Bardziej szczegółowo

KURS FUNKCJE WIELU ZMIENNYCH

KURS FUNKCJE WIELU ZMIENNYCH KURS FUNKCJE WIELU ZMIENNYCH Lekcja 1 Pochodne cząstkowe ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tlko jedna jest prawdziwa). Ptanie 1 Funkcja dwóch zmiennch a)

Bardziej szczegółowo

MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO Prowadzący: dr Krzysztof Polko WSTĘP z r C C(x C,y C,z C ) r C -r B B(x B,y B,z B ) r C -r A r B r B -r A A(x A,y A,z A ) Ciało sztywne

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 4 ZADANIA - ZESTAW 4

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 4 ZADANIA - ZESTAW 4 ZADANIA - ZESTAW 4 Zadanie 4. 0-0,4 c 0 0, 0, Wznacz c. Wznacz rozkład brzegowe. Cz, są niezależne? (odp. c = 0,3 Zadanie 4.- 0-0,4 0,3 0 0, 0, Wznaczć macierz kowariancji i korelacji. Cz, są skorelowane?

Bardziej szczegółowo

Interpolacja. Układ. x exp. = y 1. = y 2. = y n

Interpolacja. Układ. x exp. = y 1. = y 2. = y n MES 07 lokaln Interpolacja. Układ Interpolacja, wprowadzenie Interpolacja: po co nam to? Ptania MES polega na wznaczaniu interesującch nas parametrów w skończonej ilości punktów. A co leż pomiędz tmi punktami?

Bardziej szczegółowo

Grafika 2D. Przekształcenia geometryczne 2D. opracowanie: Jacek Kęsik

Grafika 2D. Przekształcenia geometryczne 2D. opracowanie: Jacek Kęsik Grafika 2D Przekształcenia geometrczne 2D opracowanie: Jacek Kęsik Wkład obejmuje podstawowe przekształcenia geometrczne stosowane w grafice komputerowej. Opisane są w nim również współrzędne jednorodne

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami Maciej Burnecki opracowanie strona główna Spis treści 1 Wyrażenia algebraiczne indukcja matematyczna 1 Geometria analityczna w R 3 3 Liczby zespolone

Bardziej szczegółowo

Programowanie nieliniowe optymalizacja funkcji wielu zmiennych

Programowanie nieliniowe optymalizacja funkcji wielu zmiennych Ekonomia matematczna II Ekonomia matematczna II Prowadząc ćwiczenia Programowanie nieliniowe optmalizacja unkcji wielu zmiennch Modele programowania liniowego często okazują się niewstarczające w modelowaniu

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 6 KWIETNIA 0 CZAS PRACY: 70 MINUT Zadania zamknięte ZADANIE ( PKT.) Liczbę 5 7 zaokr aglam do liczb,6.

Bardziej szczegółowo

( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia.

( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia. Adam Bdnar: Wtrzmałść Materiałów Analiza płaskieg stanu naprężenia 5 ANALIZA PŁASKIEGO STANU NAPRĘŻENIA 5 Naprężenia na dwlnej płaszczźnie Jak pamiętam płaski stan naprężenia w punkcie cechuje t że wektr

Bardziej szczegółowo

Ć w i c z e n i e K 1

Ć w i c z e n i e K 1 kademia Górniczo Hutnicza Wdział nżnierii echanicznej i Robotki Katedra Wtrzmałości, Zmęczenia ateriałów i Konstrukcji azwisko i mię: azwisko i mię: Wdział Górnictwa i Geoinżnierii Grupa nr: Ocena: Podpis:

Bardziej szczegółowo

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 4-5

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 4-5 ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch - Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs... s.. rzed przstąpieniem

Bardziej szczegółowo

ANALITYCZNO-NUMERYCZNE METODY WYZNACZANIA OBSZARU STYKU PRZEKŁADNI WKLĘSŁO-WYPUKŁYCH NOWIKOWA

ANALITYCZNO-NUMERYCZNE METODY WYZNACZANIA OBSZARU STYKU PRZEKŁADNI WKLĘSŁO-WYPUKŁYCH NOWIKOWA ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2014 Seria: TRANSPORT z. 82 Nr kol. 1903 Tadeusz MARKOWSKI 1, Michał BATSCH 2 ANALITYCZNO-NUMERYCZNE METODY WYZNACZANIA OBSZARU STYKU PRZEKŁADNI WKLĘSŁO-WYPUKŁYCH

Bardziej szczegółowo

Równania różniczkowe

Równania różniczkowe Równania różniczkowe I rzędu Andrzej Musielak Równania różniczkowe Równania różniczkowe I rzędu Równanie różniczkowe pierwszego rzędu to równanie w którm pojawia się zmienna x, funkcja tej zmiennej oraz

Bardziej szczegółowo

MES polega na wyznaczaniu interesujących nas parametrów w skończonej ilości punktów. A co leży pomiędzy tymi punktami?

MES polega na wyznaczaniu interesujących nas parametrów w skończonej ilości punktów. A co leży pomiędzy tymi punktami? MES- 07 Interpolacja, wprowadzenie Interpolacja: po co nam to? Ptania MES polega na wznaczaniu interesującch nas parametrów w skończonej ilości punktów. A co leż pomiędz tmi punktami? Na razie rozpatrwaliśm

Bardziej szczegółowo

ZARYS ŚLIMAKA TORUSOPOCHODNEGO KSZTAŁTOWANEGO NARZĘDZIEM TRZPIENIOWYM

ZARYS ŚLIMAKA TORUSOPOCHODNEGO KSZTAŁTOWANEGO NARZĘDZIEM TRZPIENIOWYM KOMISJA BUDOWY MASZY PA ODDZIAŁ W POZAIU Vol. 8 nr Archiwum Technologii Maszyn i Automatyzacji 8 LESZEK SKOCZYLAS ZARYS ŚLIMAKA TORUSOPOCHODEGO KSZTAŁTOWAEGO ARZĘDZIEM TRZPIEIOWYM W artykule przedstawiono

Bardziej szczegółowo

UZĘBIENIE EWOLWENTOWE KÓŁ TROCHOIDALNYCH

UZĘBIENIE EWOLWENTOWE KÓŁ TROCHOIDALNYCH KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU Vol. 26 nr 2 Archiwum Technologii Maszn i Automatzacji 2006 HIERONIM KORZENIEWSKI * UZĘBIENIE EWOLWENTOWE KÓŁ TROCHOIDALNYCH W artkule przedstawiono sposób

Bardziej szczegółowo

Arkusz 6. Elementy geometrii analitycznej w przestrzeni

Arkusz 6. Elementy geometrii analitycznej w przestrzeni Arkusz 6. Elementy geometrii analitycznej w przestrzeni Zadanie 6.1. Obliczyć długości podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos

Bardziej szczegółowo

WYZNACZANIE NAPRĘŻEŃ W PODSTAWACH ZĘBÓW KÓŁ NAPĘDÓW ZĘBATYCH

WYZNACZANIE NAPRĘŻEŃ W PODSTAWACH ZĘBÓW KÓŁ NAPĘDÓW ZĘBATYCH 4-2007 PROBLEMY EKSPLOATACJI 83 Piotr FOLĘGA, Tomasz FIGLUS Politechnika Śląska, Gliwice WYZNACZANIE NAPRĘŻEŃ W PODSTAWACH ZĘBÓW KÓŁ NAPĘDÓW ZĘBATYCH Słowa kluczowe Koło zębate, stan naprężenia, metoda

Bardziej szczegółowo

Ćwiczenie 361 Badanie układu dwóch soczewek

Ćwiczenie 361 Badanie układu dwóch soczewek Nazwisko... Data... Wdział... Imię... Dzień tg.... Godzina... Ćwiczenie 36 Badanie układu dwóch soczewek Wznaczenie ogniskowch soczewek metodą Bessela Odległość przedmiotu od ekranu (60 cm 0 cm) l Soczewka

Bardziej szczegółowo

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna Arkusz A01 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba log 1 3 3 27 jest równa:

Bardziej szczegółowo

Algebra WYKŁAD 9 ALGEBRA

Algebra WYKŁAD 9 ALGEBRA Algebra WYKŁAD 9 Krzwe sożkowe Definicja Prosa sczna do krzwej K w punkcie P jes o prosa, będąca granicznm położeniem siecznch s k przechodzącch przez punk P i P k gd punk P k dąż zbliża się do punku P

Bardziej szczegółowo

Tra r n a s n fo f rm r a m c a ja a na n p a rę r ż ę eń e pomi m ę i d ę zy y uk u ł k a ł d a am a i m i obr b ó r cony n m y i m

Tra r n a s n fo f rm r a m c a ja a na n p a rę r ż ę eń e pomi m ę i d ę zy y uk u ł k a ł d a am a i m i obr b ó r cony n m y i m Wytrzymałość materiałów Naprężenia główne na przykładzie płaskiego stanu naprężeń 1 Tensor naprężeń Naprężenia w stanie przestrzennym: τ τxz τ yx τ yz τzx τzy zz Układ współrzędnych jest zwykle wybrany

Bardziej szczegółowo

ZADANIE 1 Poniżej znajduje się fragment wykresu funkcji y = f (x). ZADANIE 2 Na podstawie podanego wykresu funkcji f

ZADANIE 1 Poniżej znajduje się fragment wykresu funkcji y = f (x). ZADANIE 2 Na podstawie podanego wykresu funkcji f IMIE I NAZWISKO ZADANIE Poniżej znajduje się fragment wkresu funkcji = f (). -7 -- - - 6 7 Dorsuj brakujac a część wkresu wiedzac, że dziedzina funkcji f jest przedział,, a wkres jest smetrczn względem

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 13 KWIETNIA 013 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Liczba 3 ( 1 8) 1

Bardziej szczegółowo

) q przyłożona jest w punkcie o współrzędnej x = x + x. Przykład Łuk trójprzegubowy.

) q przyłożona jest w punkcie o współrzędnej x = x + x. Przykład Łuk trójprzegubowy. rzkład 0.. Łuk trójprzegubow. Rsunek 0.. przedstawia łuk trójprzegubow, którego oś ma kształt półokręgu (jest to łuk kołow ). Łuk obciążon jest ciężarem konstrukcji podwieszonej. Narsować wkres momentów

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 17751 WYGENEROWANY AUTOMATYCZNIE W SERWISIE ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Rozważm treść następujacego

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennch Wkres i warstwice funkcji wielu zmiennch. Przeglad powierzchni stopnia drugiego. Granice i ciagłość funkcji wielu zmiennch. Małgorzata Wrwas Katedra Matematki Wdział Informatki Politechnika

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY+ 19 MARCA 2011 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Wskaż nierówność, która

Bardziej szczegółowo

Stan naprężenia. Przykład 1: Tarcza (płaski stan naprężenia) Określić siły masowe oraz obciążenie brzegu tarczy jeśli stan naprężenia wynosi:

Stan naprężenia. Przykład 1: Tarcza (płaski stan naprężenia) Określić siły masowe oraz obciążenie brzegu tarczy jeśli stan naprężenia wynosi: Stan naprężenia Przkład 1: Tarcza (płaski stan naprężenia) Określić sił masowe oraz obciążenie brzegu tarcz jeśli stan naprężenia wnosi: 5 T σ. 8 Składowe sił masowch obliczam wkonując różniczkowanie zapisane

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI WPISUJE ZDAJĄCY KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY PRZED MATURĄ MAJ 2015 1. Sprawdź, czy arkusz egzaminacyjny zawiera 22 strony ( zadania 1 19). Ewentualny brak zgłoś przewodniczącemu

Bardziej szczegółowo

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx 5. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU 5.1. Pojęcia wstępne. Klasfikacja równań i rozwiązań Rozróżniam dwa zasadnicze tp równań różniczkowch: równania różniczkowe zwczajne i równania różniczkowe cząstkowe.

Bardziej szczegółowo

Analiza dynamiczna uproszczonego modelu walcowej przekładni zębatej z uwzględnieniem prostokątnego przebiegu sztywności zazębienia

Analiza dynamiczna uproszczonego modelu walcowej przekładni zębatej z uwzględnieniem prostokątnego przebiegu sztywności zazębienia MARSZAŁEK Jerzy DREWNIAK Józef Analiza dynamiczna uproszczonego modelu walcowej przekładni zębatej z uwzględnieniem prostokątnego przebiegu sztywności zazębienia WSTĘP Przekładnie zębate należą do mechanizmów

Bardziej szczegółowo

Położenia, kierunki, płaszczyzny

Położenia, kierunki, płaszczyzny Położenia, kierunki, płaszczyzny Dalsze pojęcia Osie krystalograficzne; Parametry komórki elementarnej; Wskaźniki punktów kierunków i płaszczyzn; Osie krystalograficzne Osie krystalograficzne: układ osi

Bardziej szczegółowo

KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie

KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie KONKURS ZOSTAŃ PITAGORASEM MUM ETAP I TEST II Podstawowe własności figur geometrycznych na płaszczyźnie 1. A. Stosunek pola koła wpisanego w kwadrat o boku długości 6 do pola koła opisanego na tym kwadracie

Bardziej szczegółowo

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie

Bardziej szczegółowo

Spis treści. Przedmowa 11

Spis treści. Przedmowa 11 Przykłady obliczeń z podstaw konstrukcji maszyn. [Tom] 2, Łożyska, sprzęgła i hamulce, przekładnie mechaniczne / pod redakcją Eugeniusza Mazanka ; autorzy: Andrzej Dziurski, Ludwik Kania, Andrzej Kasprzycki,

Bardziej szczegółowo

ĆWICZENIE 8 i 9. Zginanie poprzeczne z wykładową częścią

ĆWICZENIE 8 i 9. Zginanie poprzeczne z wykładową częścią ĆWICZENIE 8 i 9 Zginanie poprzeczne z wkładową częścią z z QzS J b z Dskusja wzoru na naprężenia stczne. Uśrednione naprężenie stczne, J bz Qz x S z jest funkcją dwóch zmiennch: x- położenia przekroju

Bardziej szczegółowo

1.11. RÓWNANIE RÓŻNICZKOWE OSI UGIĘTEJ

1.11. RÓWNANIE RÓŻNICZKOWE OSI UGIĘTEJ .. RÓWNANIE RÓŻNICZKOWE OSI UGIĘTEJ od płem obciążenia prostolinioa oś podłużna belki staje się krzolinioa. Zakrzioną oś belki nazam linią ugięcia (osią ugiętą), przemieszczenie pionoe ( x) tej osi nazam

Bardziej szczegółowo

Przekładnie zębate. Klasyfikacja przekładni zębatych. 1. Ze względu na miejsce zazębienia. 2. Ze względu na ruchomość osi

Przekładnie zębate. Klasyfikacja przekładni zębatych. 1. Ze względu na miejsce zazębienia. 2. Ze względu na ruchomość osi Przekładnie zębate Klasyfikacja przekładni zębatych 1. Ze względu na miejsce zazębienia O zazębieniu zewnętrznym O zazębieniu wewnętrznym 2. Ze względu na ruchomość osi O osiach stałych Planetarne przynajmniej

Bardziej szczegółowo

Elementy algebry i analizy matematycznej II

Elementy algebry i analizy matematycznej II Element algebr i analiz matematcznej II Wkład 1. Ekstrema unkcji dwóch zmiennch Deinicja 1 Funkcja dwóch zmiennch, z = (, ), ma w punkcie z = (, ), maksimum lokalne, jeżeli istnieje takie otoczenie punktu

Bardziej szczegółowo

3. Wstępny dobór parametrów przekładni stałej

3. Wstępny dobór parametrów przekładni stałej 4,55 n1= 3500 obr/min n= 1750 obr/min N= 4,55 kw 0,70 1,00 16 37 1,41 1,4 8 30,7 1,41 1. Obliczenie momentu Moment na kole n1 obliczam z zależności: 9550 9550 Moment na kole n obliczam z zależności: 9550

Bardziej szczegółowo

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski Uniwersytet Śląski 23 marca 2012 Ciało liczb zespolonych Rozważmy zbiór C = R R, czyli C = {(x, y) : x, y R}. W zbiorze C definiujemy następujące działania: dodawanie: mnożenie: (a, b) + (c, d) = (a +

Bardziej szczegółowo

GEOMETRIA ANALITYCZNA W PRZESTRZENI

GEOMETRIA ANALITYCZNA W PRZESTRZENI Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska Wykład 13. Egzaminy I termin wtorek 31.01 14:00 Aula A Wydział Budownictwa II termin poprawkowy czwartek 9.02 14:00 Aula A Wydział Budownictwa

Bardziej szczegółowo

Podstawy Konstrukcji Maszyn

Podstawy Konstrukcji Maszyn 0-05-7 Podstawy Konstrukcji Maszyn Część Wykład nr.3. Przesunięcie zarysu przypomnienie znanych zagadnień (wykład nr. ) Zabieg przesunięcia zarysu polega na przybliżeniu lub oddaleniu narzędzia od osi

Bardziej szczegółowo

Równania różniczkowe cząstkowe

Równania różniczkowe cząstkowe Równania różniczkowe cząstkowe Definicja: Równaniem różniczkowm cząstkowm nazwam takie równanie różniczkowe w którm wstępuje co najmniej jedna pochodna cząstkowa niewiadomej funkcji dwóch lub więcej zmiennch

Bardziej szczegółowo

Zadania do rozdziału 10.

Zadania do rozdziału 10. Zadania do rozdziału 0. Zad.0.. Jaką wsokość musi mieć pionowe zwierciadło ab osoba o wzroście.80 m mogła się w nim zobaczć cała. Załóżm, że ocz znajdują się 0 cm poniżej czubka głow. Ab prawidłowo rozwiązać

Bardziej szczegółowo

BADANIA SYMULACYJNE PROCESU HAMOWANIA SAMOCHODU OSOBOWEGO W PROGRAMIE PC-CRASH

BADANIA SYMULACYJNE PROCESU HAMOWANIA SAMOCHODU OSOBOWEGO W PROGRAMIE PC-CRASH BADANIA SYMULACYJNE PROCESU HAMOWANIA SAMOCHODU OSOBOWEGO W PROGRAMIE PC-CRASH Dr inż. Artur JAWORSKI, Dr inż. Hubert KUSZEWSKI, Dr inż. Adam USTRZYCKI W artykule przedstawiono wyniki analizy symulacyjnej

Bardziej szczegółowo

Równania różniczkowe cząstkowe

Równania różniczkowe cząstkowe Równania różniczkowe cząstkowe Definicja Równaniem różniczkowm cząstkowm nazwam takie równanie różniczkowe w którm wstępuje co najmniej jedna pochodna cząstkowa niewiadomej funkcji dwóch lub więcej zmiennch

Bardziej szczegółowo

PL B1. POLITECHNIKA WARSZAWSKA, Warszawa, PL BUP 12/14. ANTONI SZUMANOWSKI, Warszawa, PL PAWEŁ KRAWCZYK, Ciechanów, PL

PL B1. POLITECHNIKA WARSZAWSKA, Warszawa, PL BUP 12/14. ANTONI SZUMANOWSKI, Warszawa, PL PAWEŁ KRAWCZYK, Ciechanów, PL PL 222644 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 222644 (13) B1 (21) Numer zgłoszenia: 401778 (51) Int.Cl. F16H 55/56 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:

Bardziej szczegółowo

Defi f nicja n aprę r żeń

Defi f nicja n aprę r żeń Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie

Bardziej szczegółowo

Informatyka Stosowana. a b c d a a b c d b b d a c c c a d b d d c b a

Informatyka Stosowana. a b c d a a b c d b b d a c c c a d b d d c b a Działania na zbiorach i ich własności Informatyka Stosowana 1. W dowolnym zbiorze X określamy działanie : a b = b. Pokazać, że jest to działanie łączne. 2. W zbiorze Z określamy działanie : a b = a 2 +

Bardziej szczegółowo

f x f y f, jest 4, mianowicie f = f xx f xy f yx

f x f y f, jest 4, mianowicie f = f xx f xy f yx Zestaw 14 Pochodne wŝszch rzędów Niech będzie dana funkcja x f określona w pewnm obszarze D Przpuśćm Ŝe f x istnieją pochodne cząstkowe tej funkcji x x Pochodne cząstkowe tch pochodnch jeŝeli istnieją

Bardziej szczegółowo

Pomiar bezpośredni przyrządem wskazówkowym elektromechanicznym

Pomiar bezpośredni przyrządem wskazówkowym elektromechanicznym . Rodzaj poiaru.. Poiar bezpośredni (prost) W przpadku poiaru pojednczej wielkości przrząde wskalowan w jej jednostkach wartość niedokładności ± określa graniczn błąd przrządu analogowego lub cfrowego

Bardziej szczegółowo

ZESZYTY NAUKOWE NR 10(82) AKADEMII MORSKIEJ W SZCZECINIE

ZESZYTY NAUKOWE NR 10(82) AKADEMII MORSKIEJ W SZCZECINIE ISSN 1733-8670 ZESZYTY NAUKOWE NR 10(82) AKADEMII MORSKIEJ W SZCZECINIE IV MIĘDZYNARODOWA KONFERENCJA NAUKOWO-TECHNICZNA EXPLO-SHIP 2006 Stefan Berczyński, Zenon Grządziel, Szymon Rukowicz Analiza porównawcza

Bardziej szczegółowo

MATURA PRÓBNA 2 KLASA I LO

MATURA PRÓBNA 2 KLASA I LO IMIE I NAZWISKO MATURA PRÓBNA KLASA I LO CZAS PRACY: 90 MIN. SUMA PUNKTÓW: 60 ZADANIE (5 PKT) Znajdź wszstkie funkcje liniowe określone na zbiorze ;, którch zbiorem wartości jest przedział ; 0. ZADANIE

Bardziej szczegółowo

3.3. UKŁADY RÓWNAŃ LINIOWYCH. Równanie liniowe z dwiema niewiadomymi. Równaniem liniowym z dwiema niewiadomymi x i y nazywamy równanie postaci

3.3. UKŁADY RÓWNAŃ LINIOWYCH. Równanie liniowe z dwiema niewiadomymi. Równaniem liniowym z dwiema niewiadomymi x i y nazywamy równanie postaci .. UKŁADY RÓWNAŃ LINIOWYCH Równanie liniowe z dwiema niewiadommi Równaniem liniowm z dwiema niewiadommi i nazwam równanie postaci A B C 0, gdzie A, B, C R i A B 0 m równania z dwiema niewiadommi nazwam

Bardziej szczegółowo

Imperfekcje globalne i lokalne

Imperfekcje globalne i lokalne Imperfekcje globalne i lokalne Prz obliczaniu nośności i stateczności konstrukcji stalowch szczególnego znaczenia nabiera konieczność uwzględniania warunków wkonania, transportu i montażu elementów konstrukcjnch.

Bardziej szczegółowo

ARKUSZ II

ARKUSZ II www.galileusz.com.pl ARKUSZ II W każdym z zadań 1.-24. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0-1 pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D)

Bardziej szczegółowo

Przykład Łuk ze ściągiem, obciążenie styczne. D A

Przykład Łuk ze ściągiem, obciążenie styczne. D A Przykład 1.4. Łuk ze ściągiem, obciążenie styczne. Rysunek przedstawia łuk trójprzegubowy, kołowy, ze ściągiem. Łuk obciążony jest obciążeniem stycznym do łuku, o stałej gęstości na jednostkę długości

Bardziej szczegółowo

lim = 0, gdzie d n oznacza najdłuższą przekątną prostokątów

lim = 0, gdzie d n oznacza najdłuższą przekątną prostokątów 9. CAŁKA POWÓJNA 9.. Całka podwójna w prostokącie Niech P będzie prostokątem opisanm na płaszczźnie OXY nierównościami: a < < b, c < < d, a f(,) funkcją określoną i ograniczoną w tm prostokącie. Prostokąt

Bardziej szczegółowo

Przykłady do zadania 1.1 : Obliczyć dane całki podwójne po wskazanych prostokątach. π 4. (a) sin(x + y) dxdy, R = π 4, π ] [ dy = sin(x + y)dy = dx =

Przykłady do zadania 1.1 : Obliczyć dane całki podwójne po wskazanych prostokątach. π 4. (a) sin(x + y) dxdy, R = π 4, π ] [ dy = sin(x + y)dy = dx = achunek prawdopodobieństwa MAP6 Wdział Elektroniki, rok akad. 8/9, sem. letni Wkładowca: dr hab. A. Jurlewicz Przkład do list : Całki podwójne Przkład do zadania. : Obliczć dane całki podwójne po wskazanch

Bardziej szczegółowo

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2). 1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego

Bardziej szczegółowo

Przykład 4.2. Sprawdzenie naprężeń normalnych

Przykład 4.2. Sprawdzenie naprężeń normalnych Przykład 4.. Sprawdzenie naprężeń normalnych Sprawdzić warunki nośności przekroju ze względu na naprężenia normalne jeśli naprężenia dopuszczalne są równe: k c = 0 MPa k r = 80 MPa 0, kn 0 kn m 0,5 kn/m

Bardziej szczegółowo

Rysunek 4.1. Odwzorowanie przez soczewkę. PołoŜenie obrazu znajdziemy, korzystając z równania (3.41). Odpowiednio dla obu powierzchni mamy O C

Rysunek 4.1. Odwzorowanie przez soczewkę. PołoŜenie obrazu znajdziemy, korzystając z równania (3.41). Odpowiednio dla obu powierzchni mamy O C Temat 4: Podstaw optki geometrcznej-3 Ilość godzin na temat wkładu: Zagadnienia: Cienka soczewka sferczna. Wzór soczewkow. Konstrukcja obrazu w soczewce cienkiej. Powiększenie soczewki cienkiej. Soczewka

Bardziej szczegółowo

Matematyczny opis układu napędowego pojazdu szynowego

Matematyczny opis układu napędowego pojazdu szynowego GRZESIKIEWICZ Wiesław 1 LEWANDOWSKI Mirosław 2 Matematyczny opis układu napędowego pojazdu szynowego WPROWADZENIE Rozważmy model układu napędowego pojazdu szynowego. Model ten dotyczy napędu jednej osi

Bardziej szczegółowo

V Międzyszkolny Konkurs Matematyczny

V Międzyszkolny Konkurs Matematyczny V Międzyszkolny Konkurs Matematyczny im. Stefana Banacha dla uczniów szkół średnich Zespół Szkół Nr 1 im. Adama Mickiewicza w Lublińcu 42-700 Lubliniec, ul. Sobieskiego 22 18. kwiecień 2011 rok 1. W trapezie

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 5

RÓWNANIA RÓŻNICZKOWE WYKŁAD 5 RÓWNANIA RÓŻNICZKOWE WYKŁAD 5 Równania różniczkowe rzędu drugiego Równania rzędu drugiego sprowadzalne do równań rzędu pierwszego Równanie różniczkowe rzędu drugiego postaci F ( x, ', ") 0 ( nie wstępuje

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP REJONOWY

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP REJONOWY pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP REJONOWY Drogi Uczniu Witaj na II etapie konkursu matematcznego. Przecztaj uważnie instrukcję.

Bardziej szczegółowo