WYZNACZANIE LUZU OBWODOWEGO W ZAZĘBIENIU KÓŁ PRZEKŁADNI FALOWEJ
|
|
- Sabina Pawlak
- 6 lat temu
- Przeglądów:
Transkrypt
1 ZESZYTY NAUKOWE POLITECHNIKI RZESZOWSKIEJ 298, Mechanika 90 RUTMech, t. XXXV, z. 90 (4/18), październik-grudzień 2018, s Adam KALINA 1 Aleksander MAZURKOW 2 Stanisław WARCHOŁ 3 WYZNACZANIE LUZU OBWODOWEGO W ZAZĘBIENIU KÓŁ PRZEKŁADNI FALOWEJ 1. Wprowadzenie W pracy przedstawiono metodę wyznaczania luzu obwodowego dla przyjętego zarysu ewolwentowego koła podatnego i sztywnego przekładni falowej. W pierwszej części pracy scharakteryzowano parametry geometryczne przekładni. Następnie dla współpracujących kół zębatych zdefiniowano luz obwodowy, przedstawiono założenia do modelu matematycznego wyznaczania luzu obwodowego, omówiono algorytm metody rozwiązania równań modelu matematycznego. We wnioskach zawarto wyniki badań symulacyjnych. Opracowana metoda zostanie wykorzystana w dalszych badaniach do określenia w strefie kontaktu zazębiających się kół rozkładu nacisków i odkształceń. Słowa kluczowe: przekładnia falowa, zazębienie, koło sztywne, koło podatne, luz obwodowy Przekładnie falowe ze względu na specyfikę pracy stanowią dla konstruktorów złożone zagadnienie do realizacji [1]. Jednym z problemów w zapewnieniu poprawnej pracy pary zazębiających się kół: podatnego i sztywnego jest dobór geometrii wieńców wraz z odpowiadającymi im luzami. W niniejszej publikacji przedstawiono metodę wyznaczania luzu obwodowego. Do badań przyjęto koła zębate o zarysie ewolwentowym. Koło podatne ma zarys wypukły, koło sztywne natomiast zarys wklęsły. 2. Droga względna zęba koła podatnego W pierwszym etapie wyznaczania luzu obwodowego niezbędne jest ustalenie względnego położenia współpracujących wieńców koła sztywnego i podatnego. W pracy przyjęto, że wspomniane położenia określają trajektorie dwóch punktów wyznaczających oś zęba. Punkty te leżą kolejno na przecięciu osi zęba z okręgami 1 Autor do korespondencji/corresponding author: Adam Kalina, Politechnika Rzeszowska, al. Powstańców Warszawy 8, Rzeszów, tel.: (17) , akalina@prz.edu.pl 2 Aleksander Mazurkow, Politechnika Rzeszowska, almaz@prz.edu.pl 3 Stanisław Warchoł, Politechnika Rzeszowska, warchols@prz.edu.pl
2 482 A. Kalina i in. stóp i głów. Dokładny opis ich wyznaczania w zależności od konstrukcji przekładni przedstawiono w pracach [2, 3]. Położenia zęba względem wrębu określa się, obracając i przesuwając punkty wyznaczające oś zęba. Wyznaczanie trajektorii omawianych punktów opisano szczegółowo w artykule [4]. Z kolei w publikacji [5] omówiono zasady modyfikacji trajektorii przemieszczania się koła podatnego przez zmianę parametru w 0 maksymalnego odkształcenia promieniowego. Na rysunku 1. pokazano jedną z możliwych do uzyskania dróg względnych położeń zęba koła podatnego przekładni falowej względem nieruchomego koła sztywnego. Rys. 1. Droga względna zęba koła podatnego Fig. 1. Trajectory of flex spline tooth 3. Definicja i metoda wyznaczania luzu obwodowego Podczas współpracy z wrębem koła sztywnego ząb koła podatnego obraca się oraz przemieszcza na kierunku promieniowym. W zależności od obciążenia przekładni, kształtu zarysu oraz trajektorii może dojść do współpracy lewego boku zęba koła podatnego tylko z lewym bokiem wrębu koła sztywnego lub lewego boku zęba koła podatnego z lewym bokiem wrębu koła sztywnego i prawego boku zęba koła podatnego z prawym bokiem wrębu koła sztywnego (rys. 1.). Dla każdego kąta obrotu generatora φ G oraz położenia zęba względem wrębu konieczne jest zatem zapewnienie odpowiedniej wartości luzu obwodowego po obu stronach osi zęba (rys. 2.). W przypadku przekładni nieobciążonej wartość
3 Wyznaczanie luzu obwodowego luzu powinna być zawsze dodatnia. Dla przekładni obciążonej luz może być równy zeru lub większy. W pracy przyjęto, że luz obwodowy lewostronny będzie łukiem opisanym przez promień r y2 i kąt,,. Punkt A L leży na przecięciu okręgu o promieniu r y2 z lewym zarysem wrębu koła sztywnego, B L na przecięciu okręgu o promieniu r y2 z lewym zarysem zęba koła podatnego (rys. 3.). Analogicznie jest definiowany luz prawostronny. Rys. 2. Luzy obwodowe Fig. 2. Side Backlashes W celu zbadania współpracy zęba koła podatnego z wrębem koła sztywnego należy na całej czynnej wysokości zęba koła sztywnego (r y2 = r a2-r y2max) wyznaczyć luzy obwodowe w każdym położeniu generatora. W kolejnym etapie badań dla każdego położenia generatora ze zbioru wartości luzów obwodowych wyznaczono wartość minimalną. Na rysunku 4. pokazano algorytm metody obliczeń luzów obwodowych: lewostronnego i prawostronnego. Luzy obwodowe i obliczano ze wzorów (1)-(4). (1) (2)
4 484 A. Kalina i in. gdzie:, (3), (4) Rys. 3. Obliczanie luzów i, gdzie ε kąt zawarty między prostą przechodzącą przez punkt zarysu zęba (1) i wrębu (2) po lewej (L) lub prawej (P) stronie; kąty ε wyrażone w radianach Fig. 3. Calculation of side backlashes, where: ε the angle between the line passing through the point of profile of flexspline s (1) and circular spline s tooth (2) from left (L) or right (P) side; angles ε are expressed in radians Rys. 4. Algorytm metody obliczania wartości luzów obwodowych Fig. 4. Algorithm of the calculation method of side backlashes
5 Wyznaczanie luzu obwodowego Analiza wyników badań W tabeli 1. przedstawiono podstawowe parametry wieńców zębatych badanej przekładni falowej z generatorem krzywkowym. Do obliczeń przyjęto następujące założenia: wieniec koła sztywnego jest nieruchomy, w chwili początkowej dla kąta obrotu generatora φ G = 0, ząb koła podatnego znajduje się we wrębie koła sztywnego w skrajnym położeniu, oś wrębu pokrywa się z osią zęba, kąt obrotu generatora zmienia się w zakresie φ G = 90 o, 0 ujemna wartość kąta wynika z tego, że generator obraca się w przeciwnym kierunku do kierunku obrotu wieńca podatnego, w przypadku gdy ząb koła podatnego znajduje się poniżej średnicy d a2 = 2r a2, wartość luzu przyjmuje wartość 1, obliczenia przeprowadzono dla 100 położeń generatora, do badań przyjęto tylko punkty leżące na bokach zęba i wrębu. Nie analizowano punktów opisujących łuk wierzchołka oraz dno wrębu, każdy bok (wrębu i zęba) podzielono na 110 punktów. W wyniku przeprowadzonych badań otrzymano wartości luzów i w funkcji kąta obrotu generatora φ G oraz promienia r y2. Wartości tych luzów przedstawiono na rys. 5. i 6. Na rysunku 7. przedstawiono w powiększeniu uzyskane wartości luzów lewostronnych dla kąta obrotu generatora φ G = = 36,3636. Na rysunku 8. przedstawiono wartości minimalnych luzów obwodowych lewo- i prawostronnych i w funkcji obrotu generatora φ G. Tabela 1. Parametry geometryczne wieńców zębatych o zarysie ewolwentowym Table 1. Geometrical parameters of gear rims with involute outline Wieniec Parametr Oznaczenie Wartość Koła podatnego Koła sztywnego Promień okręgu podziałowego r1 39,6 mm Promień okręgu stóp rf1 40,824 mm Promień okręgu głów ra1 41,858 mm Współczynnik przesunięcia zarysu x1 3,39 Maksymalne odkształcenie promieniowe korpusu w0 0,64 mm Promień nieodkształconej warstwy obojętnej R 40,412 mm Promień okręgu podziałowego r2 40,2 mm Promień okręgu stóp rf2 42,7681 mm Promień okręgu głów ra2 41,658 mm Współczynnik przesunięcia zarysu x2 3,55
6 486 A. Kalina i in. Rys. 5. Wartości luzu obwodowego lewostronnego w funkcji kąta obrotu generatora φg i promienia ry2 Fig. 5. Side backlash from the left side in the function of angle of rotation of wave generator φg and radius ry2 Rys. 6. Wartości luzu obwodowego prawostronnego w funkcji kąta obrotu generatora φg i promienia ry2 Fig. 6. Side backlash from the right side in the function of angle of rotation of wave generator φg and radius ry2
7 Wyznaczanie luzu obwodowego Rys. 7. Wartości luzu obwodowego lewostronnego w wybranym położeniu generatora oraz określenie luzu minimalnego w tym położeniu Fig. 7. Side backlash from the left side in the selected position of wave generator and minimum value of side backlash from the left side for this position of wave generator Rys. 8. Minimalne wartości luzów i w funkcji kąta obrotu generatora φg Fig. 8. Minimal values of side backlases i in the fuction of of the angle of rotation of wave generator φg
8 488 A. Kalina i in. 5. Wnioski końcowe i podsumowanie Przeprowadzone symulacje komputerowe pozwalają na sformułowanie następujących wniosków: ząb koła podatnego wychodzi z przestrzeni wrębu międzyzębnego przy kącie φ G 53,5. Warto jednak zauważyć, że lewy bok zęba wyjdzie z tej przestrzeni wcześniej ze względu na pochylenie zęba koła podatnego w kierunku ruchu, najmniejsze wartości luzy obwodowe przyjmują dla kątów φ G = 20 o, 0, luz rośnie wraz ze wzrostem wartości bezwzględnej kąta obrotu generatora φ G, luz ma przebieg zbliżony do sinusoidy, przyjmując swoje maksimum max! " 0,1183 mm dla φ G 43, z kolei minimum min! "=0,01639 mm dla kąta φ G 3,64, wartość luzu można modyfikować, zmieniając kształt zarysu zębów lub kształt krzywki. Zmienia się w tym przypadku wartość parametru w 0 lub funkcja opisująca geometrię krzywki. Literatura [1] Kalina A., Mazurkow A., Warchoł S.: Przegląd rozwiązań konstrukcyjnych przekładni falowych, Przegląd Mechaniczny, 2 (2017) [2] Mijał M.: Synteza falowych przekładni zębatych. Zagadnienia konstrukcyjno-technologiczne, OW PRz, Rzeszów [3] Ostapski W.: Przekładnie falowe, OW Politechniki Warszawskiej, Warszawa [4] Kalina A., Mazurkow A., Warchoł S.: Geometria zazębienia kół przekładni falowej, Stal Metale Nowe Technol., 1 (2018) [5] Kalina A., Mazurkow A., Warchoł S.: Trajektoria przemieszczeń zęba koła podatnego falowej przekładni z eliptycznym generatorem krzywkowym, Przegląd Mechaniczny, 11 (2017) CALCULATION METHOD OF SIDE BACKLASH IN MESHING GEARS OF A HARMONIC GEAR S u m m a r y The article contains information about the calculation method of side backlash for harmonic gear with involute profile. The first part of the paper contains a description of main geometric parameters of this kind of gear. After that a definition of side backlashes was defined with the main
9 Wyznaczanie luzu obwodowego foundations of mathematical model of the method with algorithm. The summary contains conclusions. The presented method will be used in further research of tooth contact. Keywords: wave transmission, meshing, rigid wheel, flexible wheel, circumferential play DOI: /rm Otrzymano/received: Zaakceptowano/accepted:
10 490 A. Kalina i in.
THE MODELLING OF CONSTRUCTIONAL ELEMENTS OF HARMONIC DRIVE
ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2008 Seria: TRANSPORT z. 64 Nr kol. 1803 Piotr FOLĘGA MODELOWANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH PRZEKŁADNI FALOWYCH Streszczenie. W pracy na podstawie rzeczywistych
ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2014 Seria: TRANSPORT z. 82 Nr kol. 1903
ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2014 Seria: TRANSPORT z. 82 Nr kol. 1903 Piotr FOLĘGA 1 DOBÓR ZĘBATYCH PRZEKŁADNI FALOWYCH Streszczenie. Różnorodność typów oraz rozmiarów obecnie produkowanych zębatych
WYKORZYSTANIE MES DO WYZNACZANIA WPŁYWU PĘKNIĘCIA W STOPIE ZĘBA KOŁA NA ZMIANĘ SZTYWNOŚCI ZAZĘBIENIA
ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2009 Seria: TRANSPORT z. 65 Nr kol. 1807 Tomasz FIGLUS, Piotr FOLĘGA, Piotr CZECH, Grzegorz WOJNAR WYKORZYSTANIE MES DO WYZNACZANIA WPŁYWU PĘKNIĘCIA W STOPIE ZĘBA
POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY KATEDRA KONSTRUKCJI I EKSPLOATACJI MASZYN
POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY KATEDRA KONSTRUKCJI I EKSPLOATACJI MASZYN KOREKCJA ZAZĘBIENIA ĆWICZENIE LABORATORYJNE NR 5 Z PODSTAW KONSTRUKCJI MASZYN OPRACOWAŁ: dr inż. Jan KŁOPOCKI Gdańsk 2000
PRĘDKOŚĆ POŚLIZGU W ZAZĘBIENIU PRZEKŁADNI ŚLIMAKOWEJ
KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU ol. 7 nr Archiwum Technologii Maszyn i Automatyzacji 007 LESZEK SKOCZYLAS PRĘDKOŚĆ POŚLIZGU W ZAZĘBIENIU PRZEKŁADNI ŚLIMAKOWEJ W artykule przedstawiono sposób
Koła stożkowe o zębach skośnych i krzywoliniowych oraz odpowiadające im zastępcze koła walcowe wytrzymałościowo równoważne
Spis treści PRZEDMOWA... 9 1. OGÓLNA CHARAKTERYSTYKA I KLASYFIKACJA PRZEKŁADNI ZĘBATYCH... 11 2. ZASTOSOWANIE I WYMAGANIA STAWIANE PRZEKŁADNIOM ZĘBATYM... 22 3. GEOMETRIA I KINEMATYKA PRZEKŁADNI WALCOWYCH
WYZNACZANIE NAPRĘŻEŃ W PODSTAWACH ZĘBÓW KÓŁ NAPĘDÓW ZĘBATYCH
4-2007 PROBLEMY EKSPLOATACJI 83 Piotr FOLĘGA, Tomasz FIGLUS Politechnika Śląska, Gliwice WYZNACZANIE NAPRĘŻEŃ W PODSTAWACH ZĘBÓW KÓŁ NAPĘDÓW ZĘBATYCH Słowa kluczowe Koło zębate, stan naprężenia, metoda
Przekładnie zębate. Klasyfikacja przekładni zębatych. 1. Ze względu na miejsce zazębienia. 2. Ze względu na ruchomość osi
Przekładnie zębate Klasyfikacja przekładni zębatych 1. Ze względu na miejsce zazębienia O zazębieniu zewnętrznym O zazębieniu wewnętrznym 2. Ze względu na ruchomość osi O osiach stałych Planetarne przynajmniej
WYZNACZANIE ZA POMOCĄ MEB WPŁYWU PĘKNIĘCIA U PODSTAWY ZĘBA NA ZMIANĘ SZTYWNOŚCI ZAZĘBIENIA
ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2009 Seria: TRANSPORT z. 65 Nr kol. 1807 Piotr FOLĘGA, Piotr CZECH, Tomasz FIGLUS, Grzegorz WOJNAR WYZNACZANIE ZA POMOCĄ MEB WPŁYWU PĘKNIĘCIA U PODSTAWY ZĘBA NA ZMIANĘ
ANALITYCZNO-NUMERYCZNE METODY WYZNACZANIA OBSZARU STYKU PRZEKŁADNI WKLĘSŁO-WYPUKŁYCH NOWIKOWA
ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2014 Seria: TRANSPORT z. 82 Nr kol. 1903 Tadeusz MARKOWSKI 1, Michał BATSCH 2 ANALITYCZNO-NUMERYCZNE METODY WYZNACZANIA OBSZARU STYKU PRZEKŁADNI WKLĘSŁO-WYPUKŁYCH
POMIAR KÓŁ ZĘBATYCH WALCOWYCH cz. 1.
I. Cel ćwiczenia: POMIAR KÓŁ ZĘBATYCH WALCOWYCH cz. 1. 1. Zidentyfikować koło zębate przeznaczone do pomiaru i określić jego podstawowe parametry 2. Dokonać pomiaru grubości zęba suwmiarką modułową lub
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie UNIWERSYT E ZACHODNIOPOMOR T T E CH LOGICZNY W SZCZECINIE NO SKI KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN ZAKŁAD PODSTAW KONSTRUKCJI MASZYN
Podstawy Konstrukcji Maszyn
0-05-7 Podstawy Konstrukcji Maszyn Część Wykład nr.3. Przesunięcie zarysu przypomnienie znanych zagadnień (wykład nr. ) Zabieg przesunięcia zarysu polega na przybliżeniu lub oddaleniu narzędzia od osi
3. Wstępny dobór parametrów przekładni stałej
4,55 n1= 3500 obr/min n= 1750 obr/min N= 4,55 kw 0,70 1,00 16 37 1,41 1,4 8 30,7 1,41 1. Obliczenie momentu Moment na kole n1 obliczam z zależności: 9550 9550 Moment na kole n obliczam z zależności: 9550
Koła zębate. T. 3, Sprawdzanie / Kazimierz Ochęduszko. wyd. 5, dodr. Warszawa, Spis treści
Koła zębate. T. 3, Sprawdzanie / Kazimierz Ochęduszko. wyd. 5, dodr. Warszawa, 2012 Spis treści Część pierwsza Geometryczne zaleŝności w przekładniach zębatych I. Wiadomości podstawowe 21 1. Klasyfikacja
ANALIZA NAPRĘŻEŃ W KOŁACH ZĘBATYCH WYZNACZONYCH METODĄ ELEMENTÓW BRZEGOWYCH
3-2006 PROBLEMY EKSPLOATACJI 157 Piotr FOLĘGA Politechnika Śląska, Gliwice ANALIZA NAPRĘŻEŃ W KOŁACH ZĘBATYCH WYZNACZONYCH METODĄ ELEMENTÓW BRZEGOWYCH Słowa kluczowe Koła zębate, zużycie ścierne zębów,
PL B1. POLITECHNIKA RZESZOWSKA IM. IGNACEGO ŁUKASIEWICZA, Rzeszów, PL BUP 21/15
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 227819 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 407801 (22) Data zgłoszenia: 04.04.2014 (51) Int.Cl. F16H 1/16 (2006.01)
STATYCZNA PRÓBA SKRĘCANIA
Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie STATYCZNA PRÓBA SKRĘCANIA Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Skręcanie pręta występuje w przypadku
PŁYNNOŚĆ PRZENIESIENIA NAPĘDU W PRZEKŁADNI Z KOŁAMI TYPU BEVELOID THE SMOOTHNESS OF TRANSSMISION IN BEVELOID GEAR
GRZEGORZ BUDZIK, MARIUSZ SOBOLAK, PIOTR STROJNY * PŁYNNOŚĆ PRZENIESIENIA NAPĘDU W PRZEKŁADNI Z KOŁAMI TYPU BEVELOID THE SMOOTHNESS OF TRANSSMISION IN BEVELOID GEAR S t r e s z c z e n i e A b s t r a c
Politechnika Poznańska Instytut Technologii Mechanicznej. Laboratorium MASZYN I URZĄDZEŃ TECHNOLOGICZNYCH. Nr 2
Politechnika Poznańska Instytut Technologii Mechanicznej Laboratorium MASZYN I URZĄDZEŃ TECHNOLOGICZNYCH Nr 2 POMIAR I KASOWANIE LUZU W STOLE OBROTOWYM NC Poznań 2008 1. CEL ĆWICZENIA Celem ćwiczenia jest
Wspomagane komputerowo projektowanie przekładni zębatej o krzywej tocznej zawierającej krzywe przejściowe
DOMAŃSKI Janusz 1 BAJKOWSKI Marcin 2 Wspomagane komputerowo projektowanie przekładni zębatej o krzywej tocznej zawierającej krzywe przejściowe WSTĘP Przekładnie zębate podczas pracy podlegają różnego rodzaju
Matematyczny opis układu napędowego pojazdu szynowego
GRZESIKIEWICZ Wiesław 1 LEWANDOWSKI Mirosław 2 Matematyczny opis układu napędowego pojazdu szynowego WPROWADZENIE Rozważmy model układu napędowego pojazdu szynowego. Model ten dotyczy napędu jednej osi
EVALUATION OF THE QUALITY OF MESHING FOR DESIGNED PAIR OF BEVEL GEARS WITH INDEPENDENT DESIGN SYSTEM
Pisula Jadwiga, dr inż. Płocica Mieczysław, dr inż. Politechnika Rzeszowska, Wydział Budowy Maszyn i Lotnictwa (17) 865 1662 jpisula@prz.edu.pl mplocica@prz.edu.pl OCENA JAKOŚCI WSPÓŁPRACY PROJEKTOWANEJ
ODCHYŁKA DYNAMICZNA NOWYM PARAMETREM OPISUJĄCYM DOKŁADNOŚĆ WYKONANIA KÓŁ ZĘBATYCH
7 JAN CHAJDA *, MIROSŁAW GRZELKA, ŁUKASZ MĄDRY ** ODCHYŁKA DYNAMICZNA NOWYM PARAMETREM OPISUJĄCYM DOKŁADNOŚĆ WYKONANIA KÓŁ ZĘBATYCH DYNAMIC DEVIATION AS A NEW PARAMETER OF THE GEARS ACCURACY CHARACTERISTIC
WYZNACZANIE FUNKCJI SZTYWNOŚCI ZAZĘBIENIA METODĄ ELEMENTÓW SKOŃCZONYCH IDENTIFICATION OF MESHING STIFFNESS FUNCTION BY MEANS OF FINITE ELEMENT METHOD
ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2014 Seria: TRANSPORT z. 82 Nr kol. 1903 Przemysław GRZESICA 1 WYZNACZANIE FUNKCJI SZTYWNOŚCI ZAZĘBIENIA METODĄ ELEMENTÓW SKOŃCZONYCH Streszczenie. Niewątpliwym zaletom,
KOMPUTEROWO WSPOMAGANE WYZNACZANIE DYNAMICZNYCH SIŁ MIĘDZYZĘBNYCH W PRZEKŁADNIACH WALCOWYCH O ZĘBACH PROSTYCH I SKOŚNYCH
MECHANIK 7/015 Mgr inż. Jerzy MARSZAŁEK Dr hab. inż. Józef DREWNIAK, prof. ATH Akademia Techniczno-Humanistyczna w Bielsku-Białej DOI: 10.17814/mechanik.015.7.66 KOMPUTEROWO WSPOMAGANE WYZNACZANIE DYNAMICZNYCH
Scientific Journal of Silesian University of Technology. Series Transport Zeszyty Naukowe Politechniki Śląskiej. Seria Transport
Scientific Journal of Silesian University of Technology. Series Transport Zeszyty Naukowe Politechniki Śląskiej. Seria Transport Volume 90 2016 p-issn: 0209-3324 e-issn: 2450-1549 DOI: 10.20858/sjsutst.2016.90.2
OBLICZANIE KÓŁK ZĘBATYCH
OBLICZANIE KÓŁK ZĘBATYCH koło podziałowe linia przyporu P R P N P O koło podziałowe Najsilniejsze zginanie zęba następuje wówczas, gdy siła P N jest przyłożona u wierzchołka zęba. Siłę P N można rozłożyć
MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO Prowadzący: dr Krzysztof Polko WSTĘP z r C C(x C,y C,z C ) r C -r B B(x B,y B,z B ) r C -r A r B r B -r A A(x A,y A,z A ) Ciało sztywne
PROGRAMOWANIE DYNAMICZNE W ROZMYTYM OTOCZENIU DO STEROWANIA STATKIEM
Mostefa Mohamed-Seghir Akademia Morska w Gdyni PROGRAMOWANIE DYNAMICZNE W ROZMYTYM OTOCZENIU DO STEROWANIA STATKIEM W artykule przedstawiono propozycję zastosowania programowania dynamicznego do rozwiązywania
Scientific Journal of Silesian University of Technology. Series Transport Zeszyty Naukowe Politechniki Śląskiej. Seria Transport
Scientific Journal of Silesian University of Technology. Series Transport Zeszyty Naukowe Politechniki Śląskiej. Seria Transport Volume 89 2015 p-issn: 0209-3324 e-issn: 2450-1549 DOI: Journal homepage:
MECHANIKA 2. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Prowadzący: dr Krzysztof Polko PLAN WYKŁADÓW 1. Podstawy kinematyki 2. Ruch postępowy i obrotowy bryły 3. Ruch płaski bryły 4. Ruch złożony i ruch względny 5. Ruch kulisty i ruch ogólny bryły
Spis treści. Przedmowa 11
Przykłady obliczeń z podstaw konstrukcji maszyn. [Tom] 2, Łożyska, sprzęgła i hamulce, przekładnie mechaniczne / pod redakcją Eugeniusza Mazanka ; autorzy: Andrzej Dziurski, Ludwik Kania, Andrzej Kasprzycki,
Przekładnie zębate : zasady działania : obliczenia geometryczne i wytrzymałościowe / Antoni Skoć, Eugeniusz Świtoński. Warszawa, 2017.
Przekładnie zębate : zasady działania : obliczenia geometryczne i wytrzymałościowe / Antoni Skoć, Eugeniusz Świtoński. Warszawa, 2017 Spis treści Przedmowa XV 1. Znaczenie przekładni zębatych w napędach
Politechnika Poznańska Instytut Technologii Mechanicznej. Programowanie obrabiarek CNC. Nr 2. Obróbka z wykorzystaniem kompensacji promienia narzędzia
1 Politechnika Poznańska Instytut Technologii Mechanicznej Programowanie obrabiarek CNC Nr 2 Obróbka z wykorzystaniem kompensacji promienia narzędzia Opracował: Dr inż. Wojciech Ptaszyński Poznań, 2015-03-05
MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie
AutoCAD Mechanical - Konstruowanie przekładni zębatych i pasowych. Radosław JABŁOŃSKI Wydział Mechaniczny Technologiczny Politechnika Śląska, Gliwice
AutoCAD Mechanical - Konstruowanie przekładni zębatych i pasowych Radosław JABŁOŃSKI Wydział Mechaniczny Technologiczny Politechnika Śląska, Gliwice Streszczenie: W artykule opisano funkcje wspomagające
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie UNIWERSYT E ZACHODNIOPOMOR T T E CH LOGICZNY W SZCZECINIE NO SKI KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN ZAKŁAD PODSTAW KONSTRUKCJI MASZYN
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia
WYZNACZANIE SZTYWNOŚCI SKRĘTNEJ PRZEKŁADNI FALOWEJ DETERMINATION OF TORSIONAL STIFFNESS OF HARMONIC DRIVE
ZESZYY NAUKOWE POLIECHNIKI ŚLĄSKIEJ 204 Seria: RANSPOR z. 83 Nr kol. 904 Piotr FOLĘGA WYZNACZANIE SZYWNOŚCI SKRĘNEJ PRZEKŁADNI FALOWEJ Streszczenie. Celem artykułu było opracowanie uproszczonej metody
OKREŚLENIE GEOMETRII KOŁA ZĘBATEGO W OBIEGOWEJ PRZEKŁADNI CYKLOIDALNEJ DEFINITION OF THE GEAR S GEOMETRY IN THE PLANETARY CYCLOIDAL TRANSMISSION
ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 04 Seria: TRANSPORT z. 8 Nr kol. 903 Sławomir BEDNARCZYK OKREŚLENIE GEOMETRII KOŁA ZĘBATEGO W OBIEGOWEJ PRZEKŁADNI CYKLOIDALNEJ Streszczenie. W artykule omówiono budowę
WZORU UŻYTKOWEGO (19,PL <">63167
RZECZPOSPOLITA POLSKA (12> EGZEMPLARZ ARCHIWALNY OPIS OCHRONNY _.,._ WZORU UŻYTKOWEGO (19,PL
Badanie wpływu obciążenia na sprawność przekładni falowej
Zakład Podstaw Konstrukcji i Eksploatacji Maszyn Instytut Podstaw Budowy Maszyn Wydział Samochodów i Maszyn Roboczych Politechnika Warszawska dr inż. Benedykt Ponder dr inż. Szymon Dowkontt Laboratorium
EXAMINATION ON THE TEST STAND FOR CONTACTS BETWEEN ROLLER AND BOLT IN THREAD ROLLER SCREW
Mgr inŝ. Jacek BERNACZEK, jbernacz@prz.edu.pl Dr hab. inŝ. Aleksander MAZURKOW, prof. PRz, almaz@prz.edu.pl Dr hab. inŝ. Mariusz SOBOLAK, prof. PRz, msobolak@prz.edu.pl Mgr inŝ. Bartłomiej SOBOLEWSKI,
Trajektoria rzuconego ukośnie granatu w układzie odniesienia skręcającego samolotu
Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2009/2010 sem. 3. grupa II Termin: 10 XI 2009 Zadanie: Trajektoria rzuconego ukośnie granatu w układzie odniesienia skręcającego samolotu
KOŁO ZĘBATE O ZĘBACH PROSTYCH I DOWOLNYCH PARAMETRACH W CATII. TEST MOŻLIWOŚCI APLIKACJI
Andrzej MACIEJCZYK KOŁO ZĘBATE O ZĘBACH PROSTYCH I DOWOLNYCH PARAMETRACH W CATII. TEST MOŻLIWOŚCI APLIKACJI W artykule przedstawiono krok po kroku proces konstrukcji koła zębatego o zębach prostych za
Globoidalna przekładnia ślimakowa z obrotowymi zębami z samoczynnym kasowaniem luzu
SOBOLAK Mariusz 1 JAGIEŁOWICZ Patrycja Ewa 2 Globoidalna przekładnia ślimakowa z obrotowymi zębami z samoczynnym kasowaniem luzu WPROWADZENIE Przekładnie ślimakowe znajdują zastosowanie m.in. w maszynach
Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.
Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny
NUMERYCZNE WYBRANE METODY WYZNACZANIA ŚLADU WSPÓŁPRACY PRZEKŁADNI ZĘBATEJ NA PRZYKŁADZIE PARY STOŻKOWEJ O KOŁOWO-ŁUKOWEJ LINII ZĘBA
dr inż. Jacek PACANA pacana@prz.edu.pl Politechnika Rzeszowska dr inż. Jadwiga PISULA jpisula@prz.edu.pl Politechnika Rzeszowska NUMERYCZNE WYBRANE METODY WYZNACZANIA ŚLADU WSPÓŁPRACY PRZEKŁADNI ZĘBATEJ
(12) OPIS PATENTOWY (19) PL (11) (13) B1
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 174162 (13) B1 (21) Numer zgłoszenia: 303848 (51) IntCl6: F16H 1/14 Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia: 14.06.1994 (54)
Scientific Journal of Silesian University of Technology. Series Transport Zeszyty Naukowe Politechniki Śląskiej. Seria Transport
Scientific Journal of Silesian University of Technology. Series Transport Zeszyty Naukowe Politechniki Śląskiej. Seria Transport Volume 89 2015 p-issn: 0209-3324 e-issn: 2450-1549 DOI: 10.20858/sjsutst.2015.89.10
Materiały pomocnicze do ćwiczenia laboratoryjnego z korekcji kół zębatych (uzębienia i zazębienia)
Materiały pomocnicze do ćwiczenia laboratoryjnego z korekcji kół zębatych (uzębienia i zazębienia) 1. WPROWADZENIE Koła zębate znajdują zastosowanie w rozlicznych mechanizmach, począwszy od przemysłu zegarmistrzowskiego
(12) OPIS PATENTOWY (19)PL (11) (13) B1
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19)PL (11)160312 (13) B1 (21) Numer zgłoszenia: 280556 (51) IntCl5: Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia: 04.07.1989 F16H 57/12 (54)
Porównanie wytrzymałości kół zębatych stożkowych o zębach kołowołukowych wyznaczonej wg normy ISO z analizą numeryczną MES
KÓSKA Mateusz 1 DREWNIAK Józef 2 KÓSKA Monika 3 Porównanie wytrzymałości kół zębatych stożkowych o zębach kołowołukowych wyznaczonej wg normy ISO z analizą numeryczną MES WSTĘP Przekładnie zębate są stosowane
ogólna charakterystyka
PRZEKŁADNIE ogólna charakterystyka Większość maszyn nie może być napędzana bezpośrednio silnikiem i wymaga ogniwa pośredniczącego w postaci przekładni. Przekładnie są to mechanizmy służące do przenoszenia
ZARYS ŚLIMAKA TORUSOPOCHODNEGO KSZTAŁTOWANEGO NARZĘDZIEM TRZPIENIOWYM
KOMISJA BUDOWY MASZY PA ODDZIAŁ W POZAIU Vol. 8 nr Archiwum Technologii Maszyn i Automatyzacji 8 LESZEK SKOCZYLAS ZARYS ŚLIMAKA TORUSOPOCHODEGO KSZTAŁTOWAEGO ARZĘDZIEM TRZPIEIOWYM W artykule przedstawiono
THE ANALYSIS OF THE MANUFACTURING OF GEARS WITH SMALL MODULES BY FDM TECHNOLOGY
Prof. dr hab. inż. Tadeusz MARKOWSKI, e-mail: tmarkow@prz.edu.pl Dr hab. inż. Grzegorz BUDZIK, prof. PRz, e-mail: gbudzik@prz.edu.pl Dr inż. Bogdan KOZIK, e-mail: bogkozik@prz.edu.pl Mgr inż. Bartłomiej
PORÓWNANIE NARZĘDZI DOSTĘPNYCH W OBSZARZE ROBOCZYM SZKICOWNIKA NX Z POLECENIAMI ZAWARTYMI W ANALOGICZNEJ PRZESTRZENI GEOMETRYCZNEJ CATIA V5
PORÓWNANIE NARZĘDZI DOSTĘPNYCH W OBSZARZE ROBOCZYM SZKICOWNIKA NX Z POLECENIAMI ZAWARTYMI W ANALOGICZNEJ PRZESTRZENI GEOMETRYCZNEJ CATIA V5 Tworzenie profili o charakterystycznym kształcie NARZĘDZIA, KTÓRE
BADANIA SYMULACYJNE PROCESU HAMOWANIA SAMOCHODU OSOBOWEGO W PROGRAMIE PC-CRASH
BADANIA SYMULACYJNE PROCESU HAMOWANIA SAMOCHODU OSOBOWEGO W PROGRAMIE PC-CRASH Dr inż. Artur JAWORSKI, Dr inż. Hubert KUSZEWSKI, Dr inż. Adam USTRZYCKI W artykule przedstawiono wyniki analizy symulacyjnej
9. Podstawowe narzędzia matematyczne analiz przestrzennych
Waldemar Izdebski - Wykłady z przedmiotu SIT 75 9. odstawowe narzędzia matematyczne analiz przestrzennych Niniejszy rozdział służy ogólnemu przedstawieniu metod matematycznych wykorzystywanych w zagadnieniu
WPŁYW BŁĘDÓW MONTAŻU PRZEKŁADNI STOŻKOWEJ NA JAKOŚĆ ZAZĘBIENIA INFLUENCE OF ASSEMBLY ERRORS OF BEVEL GEAR PAIR ON THE MESH QUALITY
ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2014 Seria: TRANSPORT z. 82 Nr kol. 1903 Jadwiga PISULA 1, Mieczysław PŁOCICA 2 WPŁYW BŁĘDÓW MONTAŻU PRZEKŁADNI STOŻKOWEJ NA JAKOŚĆ ZAZĘBIENIA Streszczenie. W artykule
W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ
POLITECHNIKA BIAŁOSTOCKA Wydział Budownictwa i Inżynierii Środowiska Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: POWIERZCHNIA SWOBODNA CIECZY W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ Ćwiczenie
Analiza dynamiczna uproszczonego modelu walcowej przekładni zębatej z uwzględnieniem prostokątnego przebiegu sztywności zazębienia
MARSZAŁEK Jerzy DREWNIAK Józef Analiza dynamiczna uproszczonego modelu walcowej przekładni zębatej z uwzględnieniem prostokątnego przebiegu sztywności zazębienia WSTĘP Przekładnie zębate należą do mechanizmów
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3
DEFINICJE PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 Czworokąt to wielokąt o 4 bokach i 4 kątach. Przekątną czworokąta nazywamy odcinek łączący przeciwległe wierzchołki. Wysokością czworokąta nazywamy
PL B1 (12) OPIS PATENTOWY (19) PL (11) (13) B1. fig.1 F16H 55/17 E21C 31/00 F04C 2/24 RZECZPOSPOLITA POLSKA
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 181581 (21 ) Numer zgłoszenia: 317495 Urząd Patentowy (22) Data zgłoszenia: 12.12.1996 Rzeczypospolitej Polskiej (13) B1 (51) Int.Cl.7 F16H 55/17
RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA
Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechnika Łódzka RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Streszczenie: W pracy opisano wzajemne położenie płaszczyzny parasola
ZESZYTY NAUKOWE NR 10(82) AKADEMII MORSKIEJ W SZCZECINIE
ISSN 1733-8670 ZESZYTY NAUKOWE NR 10(82) AKADEMII MORSKIEJ W SZCZECINIE IV MIĘDZYNARODOWA KONFERENCJA NAUKOWO-TECHNICZNA EXPLO-SHIP 2006 Stefan Berczyński, Zenon Grządziel, Szymon Rukowicz Analiza porównawcza
Dobór sprzęgieł hydrokinetycznych 179 Bibliografia 183
Podstawy konstrukcji maszyn. T. 3 / autorzy: Tadeusz Kacperski, Andrzej Krukowski, Sylwester Markusik, Włodzimierz Ozimowski ; pod redakcją Marka Dietricha. wyd. 3, 3 dodr. Warszawa, 2015 Spis treści 1.
Modyfikacja zarysu zębaz
Modyfikacja zarysu zębaz METODY OBRÓBKI BKI KÓŁK ZĘBATYCH W obróbce zębów kół zębatych wyróżnia się dwie metody: metoda kształtowa. metoda obwiedniowa. metoda kształtowa metoda obwiedniowa W metodzie kształtowej
(13) B1 F16H 1/16 F16H 57/12
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 164105 (13) B1 (21) Numer zgłoszenia: 288497 Urząd Patentowy (22) Data zgłoszenia: 20.12.1990 Rzeczypospolitej Polskiej (51) IntCl5: F16H 1/16 F16H
Podstawy Konstrukcji Maszyn
Podstawy Konstrukcji Maszyn Część Wykład nr. 1 1. Podstawowe prawo zazębienia I1 przełożenie kinematyczne 1 i 1 = = ω ω r r w w1 1 . Rozkład prędkości w zazębieniu 3 4 3. Zarys cykloidalny i ewolwentowy
1. Dostosowanie paska narzędzi.
1. Dostosowanie paska narzędzi. 1.1. Wyświetlanie paska narzędzi Rysuj. Rys. 1. Pasek narzędzi Rysuj W celu wyświetlenia paska narzędzi Rysuj należy wybrać w menu: Widok Paski narzędzi Dostosuj... lub
Politechnika Poznańska Instytut Technologii Mechanicznej. Programowanie obrabiarek CNC. Nr 2. Obróbka z wykorzystaniem kompensacji promienia narzędzia
1 Politechnika Poznańska Instytut Technologii Mechanicznej Programowanie obrabiarek CNC Nr 2 Obróbka z wykorzystaniem kompensacji promienia narzędzia Opracował: Dr inż. Wojciech Ptaszyński Poznań, 2016-12-02
Politechnika Poznańska Instytut Technologii Mechanicznej. Laboratorium Programowanie obrabiarek CNC. Nr 2
1 Politechnika Poznańska Instytut Technologii Mechanicznej Laboratorium Programowanie obrabiarek CNC Nr 2 Obróbka z wykorzystaniem kompensacji promienia narzędzia Opracował: Dr inŝ. Wojciech Ptaszyński
MATEMATYCZNY MODEL OBRÓBKI KSZTAŁTOWEJ UZĘBIEŃ O KOŁOWO-ŁUKOWYM ZARYSIE ZĘBÓW TYPU NOWIKOWA
Scientific Journal of Silesian University of Technology. Series Transport Zeszyty Naukowe Politechniki Śląskiej. Seria Transport Volume 90 2016 p-issn: 0209-3324 e-issn: 2450-1549 DOI: 10.20858/sjsutst.2016.90.12
WORM THREADS FINISHING BY USING CONICAL SHANK TOOLS
LESZEK SKOCZYLAS * OBRÓBKA WYKOŃCZENIOWA ZWOJÓW ŚLIMAKA STOŻKOWYMI NARZĘDZIAMI TRZPIENIOWYMI WORM THREADS FINISHING BY USING CONICAL SHANK TOOLS S t r e s z c z e n i e A b s t r a c t W niniejszym artykule
FUNKCJE I RÓWNANIA KWADRATOWE. Lekcja 78. Pojęcie i wykres funkcji kwadratowej str
FUNKCJE I RÓWNANIA KWADRATOWE Lekcja 78. Pojęcie i wykres funkcji kwadratowej str. 178-180. Funkcja kwadratowa to taka, której wykresem jest parabola. Definicja Funkcją kwadratową nazywamy funkcje postaci
Opis przedmiotu. Karta przedmiotu - Podstawy budowy maszyn II Katalog ECTS Politechniki Warszawskiej
Kod przedmiotu TR.NIK408 Nazwa przedmiotu Podstawy budowy maszyn II Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów
Metoda wyznaczania zarysów zębów przekładni zębatej o krzywej tocznej zawierającej łuki klotoidy
DOMAŃSKI Janusz 1 BAJKOWSKI Marcin 2 Metoda wyznaczania zarysów zębów przekładni zębatej o krzywej tocznej zawierającej łuki klotoidy WSTĘP Współczesne środki transportu wykorzystują wiele różnorodnych
ANALITYCZNO-NUMERYCZNE OBLICZENIA WYTRZYMAŁOŚCIOWE KÓŁ ZĘBATYCH LOTNICZEJ PRZEKŁADNI STOŻKOWEJ
dr inż. Jacek PACANA pacana@prz.edu.pl Politechnika Rzeszowska dr inż. Jadwiga PISULA jpisula@prz.edu.pl Politechnika Rzeszowska ANALITYCZNO-NUMERYCZNE OBLICZENIA WYTRZYMAŁOŚCIOWE KÓŁ ZĘBATYCH LOTNICZEJ
Cykl Frezowanie Gwintów
Cykl Frezowanie Gwintów 1. Definicja narzędzia. Narzędzie do frezowania gwintów definiuje się tak samo jak zwykłe narzędzie typu frez walcowy z tym ze należy wybrać pozycję Frez do gwintów (rys.1). Rys.1
Scientific Journal of Silesian University of Technology. Series Transport Zeszyty Naukowe Politechniki Śląskiej. Seria Transport
Scientific Journal of Silesian University of Technology. Series Transport Zeszyty Naukowe Politechniki Śląskiej. Seria Transport Volume 89 2015 p-issn: 0209-3324 e-issn: 2450-1549 DOI: 10.20858/sjsutst.2015.89.14
PODSTAWY KONSTRUKCJI MASZYN KLASA IV TECHNIKUM ZAWODOWE ZAWÓD TECHNIK MECHANIK
DZIAŁ WAŁY, OSIE, ŁOśYSKA WYMAGANIA EDUKACYJNE PODSTAWY KONSTRUKCJI MASZYN KLASA IV TECHNIKUM ZAWODOWE scharakteryzować sztywność giętą i skrętną osi i wałów; obliczać osie i wały dwupodporowe; obliczać
PL B1. ŻBIKOWSKI JERZY, Zielona Góra, PL BUP 03/06. JERZY ŻBIKOWSKI, Zielona Góra, PL WUP 09/11 RZECZPOSPOLITA POLSKA
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 209441 (13) B1 (21) Numer zgłoszenia: 369279 (51) Int.Cl. F16H 7/06 (2006.01) F16G 13/06 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)
KATEDRA TECHNOLOGII MASZYN I AUTOMATYZACJI PRODUKCJI
KATEDRA TECHNOLOGII MASZYN I AUTOMATYZACJI PRODUKCJI TEMAT ĆWICZENIA: ĆWICZENIE NR 3 POMIAR KÓŁ ZĘBATYCH WALCOWYCH ZADANIA DO WYKONANIA: 1. Zidentyfikować koło zębate przeznaczone do pomiaru i określić
(73) Uprawniony z patentu: (43) Zgłoszenie ogłoszono: Wyższa Szkoła Inżynierska, Koszalin, PL
RZECZPOSPOLITA POLSKA (12)OPIS PATENTOWY (19)PL (11)164102 (13) B1 (21) N um er zgłoszenia: 288495 Urząd Patentowy (22) D ata zgłoszenia: 20.12.1990 Rzeczypospolitej Polskiej (51) IntCl5: F16H 1/16 F16H
LOKALIZACJA ŚLADU WSPÓŁPRACY W ZAZĘBIENIU PRZEKŁADNI ŚLIMAKOWYCH
KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU Vol. 26 nr 2 Archiwum Technologii Maszyn i Automatyzacji 2006 TADEUSZ MARCINIAK * LOKALIZACJA ŚLADU WSPÓŁPRACY W ZAZĘBIENIU PRZEKŁADNI ŚLIMAKOWYCH Jedną z metod
EKSPERYMENTALNA METODA OKREŚLANIA CHWILOWEGO ŚLADU STYKU W PRZEKŁADNI ZĘBATEJ
KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU Vol. 27 nr 2 Archiwum Technologii Maszyn i Automatyzacji 2007 MARIUSZ SOBOLAK * EKSPERYMENTALNA METODA OKREŚLANIA CHWILOWEGO ŚLADU STYKU W PRZEKŁADNI ZĘBATEJ
1. A 2. A 3. B 4. B 5. C 6. B 7. B 8. D 9. A 10. D 11. C 12. D 13. B 14. D 15. C 16. C 17. C 18. B 19. D 20. C 21. C 22. D 23. D 24. A 25.
1. A 2. A 3. B 4. B 5. C 6. B 7. B 8. D 9. A 10. D 11. C 12. D 13. B 14. D 15. C 16. C 17. C 18. B 19. D 20. C 21. C 22. D 23. D 24. A 25. A Najłatwiejszym sposobem jest rozpatrzenie wszystkich odpowiedzi
Model odpowiedzi i schemat oceniania do arkusza II
Model odpowiedzi i schemat oceniania do arkusza II Zadanie 12 (3 pkt) Z warunków zadania : 2 AM = MB > > n Wprowadzenie oznaczeń, naprzykład: A = (x, y) i obliczenie współrzędnych wektorów n Obliczenie
Politechnika Warszawska Wydział Mechatroniki Instytut Automatyki i Robotyki
Politechnika Warszawska Wydział Mechatroniki Instytut Automatyki i Robotyki Ćwiczenie laboratoryjne 2 Temat: Modelowanie powierzchni swobodnych 3D przy użyciu programu Autodesk Inventor Spis treści 1.
PL B1. Przedsiębiorstwo Produkcyjno-Remontowe Energetyki ENERGOSERWIS S.A.,Lubliniec,PL BUP 02/06
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 201011 (13) B1 (21) Numer zgłoszenia: 369048 (51) Int.Cl. B65G 23/06 (2006.01) E21F 13/06 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)
PROBLEMY NIEKONWENCJONALNYCH UKŁADÓW ŁOŻYSKOWYCH Łódź maja 1995 roku
PROBLEMY NIEKONWENCJONALNYCH UKŁADÓW ŁOŻYSKOWYCH Łódź 09-10 maja 1995 roku Jerzy-Andrzej Nowakowski, Walenty Osipiuk (Politechnika Bialostocka) PROBLEMY REALIZACJI NAPIFCIA WSTF~PNEGO JEDNORZF~DOWYCH ŁOŻYSK
POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY KATEDRA KONSTRUKCJI I EKSPLOATACJI MASZYN
POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY KATEDRA KONSTRUKCJI I EKSPLOATACJI MASZYN BADANIE ŚLADÓW DOLEGANIA ZĘBÓW NA PRZYKŁADZIE PRZEKŁADNI HIPOIDALNEJ ĆWICZENIE LABORATORYJNE NR 4 Z PODSTAW KONSTRUKCJI
Podstawy Konstrukcji Maszyn. Wykład nr. 13 Przekładnie zębate
Podstawy Konstrukcji Maszyn Wykład nr. 13 Przekładnie zębate 1. Podział PZ ze względu na kształt bryły na której wykonano zęby A. walcowe B. stożkowe i inne 2. Podział PZ ze względu na kształt linii zębów
Ekstrema globalne funkcji
SIMR 2013/14, Analiza 1, wykład 9, 2013-12-13 Ekstrema globalne funkcji Definicja: Funkcja f : D R ma w punkcie x 0 D minimum globalne wtedy i tylko (x D) f(x) f(x 0 ). Wartość f(x 0 ) nazywamy wartością
PL B1. POLITECHNIKA RZESZOWSKA IM. IGNACEGO ŁUKASIEWICZA, Rzeszów, PL BUP 11/16
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 228639 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 410211 (22) Data zgłoszenia: 21.11.2014 (51) Int.Cl. F16H 57/12 (2006.01)
Własności punktów w czworokątach
Własności punktów w czworokątach Autor: Michał Woźny Gimnazjum nr 2 im. A. Mickiewicza w Krakowie Opiekun pracy: dr Jacek Dymel Spis treści 1. Wstęp str. 3 2. Badanie punktów będących środkami boków w
DETEKCJA FAL UDERZENIOWYCH W UKŁADACH ŁOPATKOWYCH CZĘŚCI NISKOPRĘŻNYCH TURBIN PAROWYCH
Mgr inż. Anna GRZYMKOWSKA Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa DOI: 10.17814/mechanik.2015.7.236 DETEKCJA FAL UDERZENIOWYCH W UKŁADACH ŁOPATKOWYCH CZĘŚCI NISKOPRĘŻNYCH TURBIN PAROWYCH
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw udowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2016/2017