Kluczowy aspekt wyszukiwania informacji:
|
|
- Maja Klimek
- 9 lat temu
- Przeglądów:
Transkrypt
1 Wyszukiwaieiformacjitoproceswyszukiwaiawpewymzbiorze tychwszystkichdokumetów,którepoświęcoesąwskazaemuw kweredzietematowi(przedmiotowi)lubzawierająiezbędedla Wg M. A. Kłopotka: użytkowikafaktyiiformacje. Iteligete wyszukiwarki iteretowe AOW W-wa 001 Kluczowy aspekt wyszukiwaia iformacji: Wyszukiwaie iformacji oparte jest a zastosowaiu charakterystyk wyszukiwawczych dokumetów. Charakterystyka wyszukiwawcza dokumetu to sformułoway wg. określoych reguł tekst, w którym został zawarty zasadiczy temat lub przedmiot tego dokumetu i tylko częściowo towarzyszące mu przedmioty lub tematy. Im krócej sformułowae są charakterystyki wyszukiwawcze, tym większa szybkość wyszukiwaia, lecz jedocześie miejsza dokładość i kompletość. Najważiejszą operacją jest ideksowaie dokumetów i kwered. Polega oo a określeiu tematu lub przedmiotu i wyrażeiu go w charakterystyce wyszukiwawczej dokumetu w określoym języku iformacyjo-wyszukiwawczym (stosowaym w daym systemie wyszukiwaia). Problem polega a tym, iż źle sformułowae pytaie spowoduje wyszukaie dokumetów odpowiadających kweredzie a ie prawdziwym potrzebom iformacyjym. Jak się jedak okaże w dalszej części prezetacji powstają i takie awet systemy. Problem przy oceie wyszukiwarek iteretowych polega a tym, ze z uwagi a powiązaia (liki) między dokumetami awet dokumety, formalie ie odpowiadające kweredzie (ie relewate), mogą okazać się częściowo relewatymi, jeżeli zawierają liki do stro relewatych.
2 Schemat działaia systemy wyszukiwawczego Baza dokumetów Charakterystyka wyszukiwawcza kweredy Idekser dokumetów Szukaie Idekser kweredy Charakterystyki wyszukiwawcze dokumetów kwereda wyiki Schemat działaia systemu wyszukiwawczego UŜytkowik Modele wyszukiwaia iformacji Każda baza daych wyszukiwarki posiada pewe właściwe dla siebie możliwości formułowaia zapytań, lecz dla się wyodrębić kilka ajczęściej spotykaych rodzajów wyszukiwaia: 1. Wyszukiwaia wg słów kluczowych,. Wyszukiwaie boolowskie [AND, OR, NOT], 3. Wyszukiwaie kocepcyje, 4. Szukaie frazy (ciągu wyrazów, pełych zdań), 5. Szukaie z określeiem odległości słów, 6. Tezaurus, 7. Wyszukiwaie rozmyte, Model wyszukiwaia iformacji specyfikuje: 8. Szukaie podobych dokumetów 1. Reprezetację kweredy,. Reprezetację dokumetu, 3. Fukcję wyszukiwaia.
3 Fukcja wyszukiwaia określa, jak dobrze dokumet odpowiada zapotrzebowaiu użytkowika a iformacje oraz w jakiej kolejości prezetować wyiki wyszukiwaia iformacji. Wyróżia się zasadiczo astępujące modele WI: 1. Model boolowski (logiczy),. (statystyczy) model przestrzei wektorowej, 3. Model oparty a systemach uczących się, 4. Model ligwistyczy (zorietoway a aalizę morfologiczą, sytaktyczą, sytaktyczą i sematyczą tekstu). rakigachwyszukiwarek.jestpierwszymkrokiemwprocesieprzygotowaia Optymalizacjastroserwisumaaceluuzyskaiejakajwyższejpozycjiw strodoideksacji. iteretowych Cel: Czyiki mające wpływ a rakigi w wyszukiwarkach: 1. Tytuł dokumetu TITLE. Zaczik meta DESCRIPTION 3. Zaczik meta KEYWORDS 4. Projekt stroy 5. Tematyka 6. Odośiki 7. Rodzaj wyszukiwarki KEYWORD 8. Spam Po przeaalizowaiu wszystkich elemetów moża przystąpić do zgłaszaia stro do wyszukiwarek. We wczesych latach rozwoju Iteretu (1994-5) elemet był jedyą iformacją, którą wykorzystywały wyszukiwarki w rakigach zalezioych stro. Przy ówczesych małych bazach ideksów moża było szybko i w prosty sposób wybrać słowa kluczowe dla własych stro. Niestety wykorzystali to spamerzy, co
4 przyczyiło się do faktu, iż z czasem wyszukiwarki zaczęły przywiązywać coraz miejszą wagę do elemetu KEYWORDS, a skupiły się a treści serwisów. Waga sposobem a rakig dokumetów Iteret to źródło ogromej liczby dokumetów, Wszystko zależy od pytaia, bowiem to, jak są prezetowae dokumety zależy od strategii ważeia termów. 1. Statystycze wagi termów,. Statystycze wagi dokumetów, 3. Metoda Robertsoa i Sparcka-Joesa (1997), 4. Metoda Robertsoa (1994), 5. Metoda bazowa B, 6. Metoda lików, 7. PageRak swego rodzaju statycza waga stroy.
5 PageRak PageRak jest wartością liczbową, reprezetującą wartościowość stroy. Twórcy Google stwierdzili, że odpowiedim współczyikiem wartościowości stroy itererowej jest ilość lików prowadzących do daej stroy. Wzór obliczaia PageRak dla stroy A: gdzie: PR( t1) PR ( A) = (1 d) + d( C( t ) d-współczyik tłumieia zazwyczaj ustawioy a 0.85 t1..t - PR stro zawierających liki do aszej stroy C(x) - liczba lików wychodzących ze stroy x 1 PR( t) ) C( t ) System PageRak moża porówać do głosowaia a lik a stroie A prowadzący do stroy B do głosu oddaego przez A a B. Waga głosu zaś jest wartością PageRak dla stroy A podzieloą przez liczbę lików wychodzących ze stroy. Tak więc im więcej wartościowych stro o jak ajmiejszej liczbie lików wychodzących odwołuje się do aszej stroy tym większa wartość PageRak aszej stroy. Przykład: jede lik ze stroy o PR=5 z 10 likami wychodzącymi przekazuje większą wartość iż 1 lik ze stroy o PR10 ale ze 100 likami wychodzącymi. Nowe tredy... l ia prezetacja wyików: grupowaie, odp, (vivisimo, carrot), l podpowiedzi (keywords) : teoma, ifoetware, aeiwi, l owe iterfejsy użytkowika: google labs. Przyszłość Szukaie odpowiedzi a ie materiałów: Szukaie celowe a ie referecyje(system START, system AswerBus) Wyróżić trzeba: 1. systemy wyszukujące dokumety zawierające postawioe pytaie [google, altavista, alltheweb],. systemy odpowiadające a pytaia [system START, system AswerBus], 3. systemy orgaizujące (grupujące) wyiki [vivisimo, carrot].
6 Systemy orgaizujące wyiki [vivisimo, carrot] Systemy te opierają swoje działaie a algorytmach klasyfikacji i grupowaia daych, wśród których wyróżić moża: hierarchicze, k-optymalizacyje (ie hierarchicze). Idea algorytmów grupowaia: Na podstawie podobych cech łączy się obiekty w grupy, Na czele grupy staje jej reprezetat cetroid, Grupy traktuje się jak dokumety i dalej łączy a wyższych poziomach, Nie jest przeszukiwaa cała struktura, Dzięki strukturze hierarchiczej osiągamy szybszą odpowiedź a zadae pytaie Kocepcja: s(x,g 1 )=0.634 s(x,g )=0.867 s(x,g 3 )=0.331 s(x,g 1 )=0.878 s(x,g )=0.97 s(x,g 3 )=0.897 s(x,g )=0.9 Jakie dwa dokumety moŝemy uzać za podobe? Miary odległości, Miary podobieństwa.
7 Przykładowo dla podaych iżej dwóch wektorów: X 4 : X : Obliczamy odpowiedio odległość i podobieństwo: d( x4, x) = (0 0) + (0 0) + (0 0) + (0 0) + (1 1) + (0 1) + (0 0) + (3 3) = 1 = 1 p( x = 4, x ) = 1+ 9 = 10*11 ( = )*( ) = Widać, iż podobieństwo zawsze osiąga wartość z przedziału 0..1 co powoduje, iż wyik łatwo moża ziterpretować, kierując się prostą zależością, że wartość podobieństwa bliska zeru ozacza brak podobieństwa porówywaych obiektów, i aalogiczie wartość bliska jedości ozacza duże podobieństwo. Implemetowae w wyszukiwarkach algorytmy grupowaia wyików powstają w odpowiedzi a pojawiające się problemy: 1. Większa ilość iformacji ie przekłada się a ich jakość,. Iteret kiedyś był o wiele bardziej wiarygody, 3. Wyszukiwarki ie ułatwiają dostępu do jakościowo lepszej wiedzy: bo szukają dokumetów pasujących do pytań a ie do odpowiedzi, ie tłumaczą struktury zwracaych wyików. Istote aspekty grupowaia... GRUPOWANIE WYNIKÓW...gdyż za dużo ich jest...chodzi o wybór tych ajbardziej trafych. Defiicja problemu: SEARCH RESULTS CLUSTERING: Polega a efektywym utworzeiu sesowych grup tematyczie powiązaych dokumetów, oraz, ich zwięzłym opisaiu... w sposób zrozumiały dla człowieka.
8 klas Wyszukiwaie iformacji Problem ie jest trywialy...bo: ie jest zaa liczba oczekiwaych grup, miara podobieństwa dokumetów jest truda do zdefiiowaia, grupy mogą się akładać, zalezieie opisu dla grupy ie jest łatwe, wymagaa szybkość działaia {o-lie}, dokumety mogą być wielojęzycze, opisy są zazwyczaj krótkie i iepełe. Modelowaie to wykorzystuje techiki: 1. modelowaie odległości w przestrzeiach -wymiarowych,. model grafowy, 3. współwystępowaie słów i fraz. Tematem iiejszej prezetacji jest skupieie się a pierwszej techice, która pozwala a wykorzystywaie do grupowaia różego typu algorytmów. Tutaj omówioy zostaie algorytm aalizy skupień z aglomeracyjym łączeiem obiektów tworzących w te sposób pewą strukturę hierarchiczą, stąd azwa algorytmu: AHC Agglomerative Hierarchical Clusterig. Przebieg grupowaia obiektów w ramach metod aglomeracyjych odbywa się w astępujących krokach: 1. Utwórz Modelowaie podobieństwa Przebieg grupowaia AHC: zawierających pojedycze obiekty.. Oblicz wartość pewiej miary podobieństwa (odległości) dla wszystkich par klas. 3. Połącz dwie klasy ajbardziej podobe. 4. Jeśli wszystkie obiekty ależą do jedej klasy, to zakończ pracę. W przeciwym przypadku przejdź do kroku.
9 oraz (i,j (i,j Algorytm grupowaia: 1. Mając macierz D=[dij] = 1,,...,) wyzaczamy elemet ajmiejszy (szukamy pary skupień ajmiej odległych od siebie): dpq = mi i,j {dij} = 1,,...,), p<q.. Skupieia Gp i Gq łączymy w jedo owe skupieie, adając mu umer Wyszukiwaie iformacji Gp:= Gp Gq. q. Z macierzy D usuwamy wiersz i kolumę o umerach :=-1. podstawiamy 3. Wyzaczamy odległości dpj (j=1,,...,) utworzoego skupieia Gp od wszystkich pozostałych skupień, stosowie do wybraej metody. Wartości dpj wstawia się do macierzy Pokażdejiteracjimamycorazmiejgrup, D w miejsce p-tego wiersza (w miejsce p-tej kolumy wstawiamy elemety djp). corazmiejsząmacierzodległości. 4. Powtarza się kroki 1-4 do mometu, gdy wszystkie obiekty utworzą jedo skupieie (tz. gdy =1). Graficza ilustracja grupowaia AHC {o 1,o,o 3,o 4,o 5,o 6,o 7,o 8 } o 1 o o 3 o 4 o 5 o 6 o 7 o 8 Rys. Przykład dedrogramu
10 Surowe dae: (przykład) VAR 1 VAR Docelowo: duże zbiory dokumetów, gdzie każdy opisay jest różym zbiorem deskryptorów, Dae mogą być różego typu mogą być różego typu: ilościowe, jakościowe. Macierz odległości euklidesowych: P_1 P_ P_3 P_4 P_5 P_6 P_7 P_8 P_9 P_10 P_1 0 5,00 4,00,00 5,10 4,1 1,00 5,83 6,08 6,40 P_ 5,00 0 6,40 7,00 1,00 7,1 5,10 3,00 8,49 4,00 P_3 4,00 6,40 0 4,47 5,83 1,00 3,00 5,10,4 5,00 P_4,00 7,00 4,47 0 7,07 4,1,4 7,6 6,08 8,06 P_5 5,10 1,00 5,83 7,07 0 6,71 5,00,00 7,81 3,00 P_6 4,1 7,1 1,00 4,1 6,71 0 3,16 6,08,00 6,00 P_7 1,00 5,10 3,00,4 5,00 3,16 0 5,39 5,10 5,83 P_8 5,83 3,00 5,10 7,6,00 6,08 5,39 0 6,71 1,00 P_9 6,08 8,49,4 6,08 7,81,00 5,10 6,71 0 6,3 P_10 6,40 4,00 5,00 8,06 3,00 6,00 5,83 1,00 6,3 0
11 1 iteracja Szukamy miimalej odległości, i zajdujemy ją dla pary obiektów P_1 oraz p_7. Teraz łączymy obydwa obiekty w jedo skupieie.
12 Zgodie z algorytmem z macierzy usuwamy kolume i wiersz dla obiektu o wyższym ideksie (czyli P_7). Tworzymy ową grupę P_17 i a owo obliczamy odległości wszystkich obiektów do owo utworzoej grupy. ap,aq,b,c Ogóla formuła wyzaczaia odległości podczas łączeia skupień Gp i Gq w owe skupieie dla hierarchiczych procedur grupowaia to: d pj = a pd pj + aqdqj + bd pq + c d pj dqj Wielkości są parametrami przekształceia charakterystyczymi dla różych metod tworzeia skupień. Wartości tych parametrów są przedstawioe w tabeli.
13 Metoda ap aq b c Najbliższego sąsiedztwa 0,5 0,5 0-0,5 Najdalszego sąsiedztwa 0,5 0,5 0 0,5 Mediay 0,5 0,5-0,5 0 Średiej grupowej 0 0 p q p + q p + q Środka ciężkości p p + q q p q p + q ( ) p + q 0 Warda i + i + p p + q i + i + p q + q i + + i p q 0 Po połączeiu obiektów P_1 i P_7: Usuwamy obiekt P_7 (kolumę i wiersz 7) a w wierszu i kolumie dla P_1 wstawiamy owe odległości: Np.: odległość owego skupieia P_17 od obiektu P_ wg miary: d 17 = 0.5 * d * d7 + 0 * d d1 d7 = 0.5 * * = = 5 W kolejej iteracji łączymy obiekty P_ oraz P_5. W iteracji r 3 łączymy P_3 oraz P_6.
14 Iteracja 4 łączy obiekty P_8 oraz P_10. Iteracja r 5 to połączeie obiektów p_17 z obiektem P_4. Następie łączymy obiekty P_5 z obiektem P_810
15 Iteracja koleja to połączeie obiektów P_36 oraz obiektu P_9. Kolejo łaczymy grupy P_174 z grupą P_369 I ostateczie w -1 iteracji połączymy ostatie grupy P_ z grupą P_5810.
16 Przebieg aglomeracji Odległość Łączoe obiekty: 1 P_1, P_7 1 P_, P_5 1 P_3, P_6 1 P_8, P_10 P_1, P_7, P_4 P_, P_5, P_8, P_10 P_3, P_6, P_9 3 P_1, P_7, P_4, P_3, P_6, P_9 5 P_1, P_7, P_4, P_3, P_6, P_9, P_, P_5, P_8, P_10 Dedrogram
17 Co to jest Carrot? Jak mówią twórcy systemu - Carrot jest systemem grupującym dae tekstowe. Grupuje wyiki z wyszukiwarek iteretowych, podobie jak czyi to serwis Vivisimo. Carrotjest modułowym systemem aukowym przetwarzaia rezultatów wyszukiwaia daych w wyszukiwarkach iteretowych, choć może być użyty rówież do iych typów daych. Architektura systemu jest zorietowaa główie a prostotę rozbudowy i poowego użycia jego istiejących elemetów składowych, czasem kosztem efektywości (dlatego właśie Carrot jest systemem :). System był zbudoway pierwotie do przetwarzaia daych z wyszukiwarek iteretowych, ale może być rówież użyty w iych celach. Schemat przepływu daych w systemie Carrot
18 Systemy odpowiadające a pytaia - [system START, system AswerBus]
19
20 Podsumowaie Na prawdziwy przełom możemy liczyć dopiero wówczas, gdy astąpi zmiaa sposobu patrzeia a to, jak powiy działać wyszukiwarki. Obiecujące wydaje się być odejście od wyszukiwaia dokumetów w sieci, a skupieie się a poszukiwaiu iformacji tak jak robią to systemu oparte a techikach: kowledge retrieval, questio aswerig system. Przykładem tego typu systemów są system Start MIT, czy AswerBus, będące pracami prowadzoymi a uiwersytecie w Michiga, Wydae im zapytaie staowi cel ie zaś zbiór oderwaych od siebie słów kluczowych. Idealy system wyszukiwaia iformacji: To taki który potrafi odpowiedzieć a każde pytaie poprawie. Niestety taki system igdy ie powstaie. Wiedza płyąca z iteretu jest dość iepewym źródłem iformacji, i faktów, o czym warto pamiętać, - bo każdy może umieścić w sieci iformacje...ie do końca precyzyje ale i często błęde. Pojawiające się owe pomysły mające a celu ułatwiaie użytkowikom korzystaie z wyszukiwarek, to z pewością krok by uczyić tę czyość przyjemiejszą i bardziej ituicyją. Nie moża jedak liczyć a to, ze wyszukiwarki w przyszłości będą w staie wyręczyć as z umiejętości logiczego myśleia i odrobiy dociekliwości w szukaiu tego co as iteresuje. Literatura Kłopotek M., Iteligete wyszukiwarki iteretowe, EXIT, 001
Jak obliczać podstawowe wskaźniki statystyczne?
Jak obliczać podstawowe wskaźiki statystycze? Przeprowadzoe egzamiy zewętrze dostarczają iformacji o tym, jak ucziowie w poszczególych latach opaowali umiejętości i wiadomości określoe w stadardach wymagań
Bardziej szczegółowoElementy modelowania matematycznego
Elemety modelowaia matematyczego Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Modelowaie daych (ilościowe): Metody statystycze: estymacja parametrów modelu,
Bardziej szczegółowoMetrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,
Bardziej szczegółowoMetoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień.
Metoda aalizy hierarchii Saaty ego Ważym problemem podejmowaia decyzji optymalizowaej jest często występująca hierarchiczość zagadień. Istieje wiele heurystyczych podejść do rozwiązaia tego problemu, jedak
Bardziej szczegółowoSYSTEM OCENY STANU NAWIERZCHNI SOSN ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI BITUMICZNYCH W SYSTEMIE OCENY STANU NAWIERZCHNI SOSN
ZAŁĄCZNIK B GENERALNA DYREKCJA DRÓG PUBLICZNYCH Biuro Studiów Sieci Drogowej SYSTEM OCENY STANU NAWIERZCHNI SOSN WYTYCZNE STOSOWANIA - ZAŁĄCZNIK B ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI
Bardziej szczegółowoTwoja firma. Podręcznik użytkownika. Aplikacja Grupa. V edycja, kwiecień 2013
Twoja firma Podręczik użytkowika Aplikacja Grupa V edycja, kwiecień 2013 Spis treści I. INFORMACJE WSTĘPNE I LOGOWANIE...3 I.1. Wstęp i defiicje...3 I.2. Iformacja o możliwości korzystaia z systemu Aplikacja
Bardziej szczegółowoSTATYSTYKA OPISOWA WYKŁAD 1 i 2
STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest
Bardziej szczegółowoEGZAMIN MATURALNY Z INFORMATYKI MAJ 2011 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY
Cetrala Komisja Egzamiacyja Arkusz zawiera iformacje prawie chroioe do mometu rozpoczęcia egzamiu. Układ graficzy CKE 2010 KOD WISUJE ZDAJĄCY ESEL Miejsce a aklejkę z kodem EGZAMIN MATURALNY Z INORMATYKI
Bardziej szczegółowoKolorowanie Dywanu Sierpińskiego. Andrzej Szablewski, Radosław Peszkowski
olorowaie Dywau ierpińskiego Adrzej zablewski, Radosław Peszkowski pis treści stęp... Problem kolorowaia... Róże rodzaje kwadratów... osekwecja atury fraktalej...6 zory rekurecyje... Przekształcaie rekurecji...
Bardziej szczegółowoPODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy
Bardziej szczegółowoParametryzacja rozwiązań układu równań
Parametryzacja rozwiązań układu rówań Przykład: ozwiąż układy rówań: / 2 2 6 2 5 2 6 2 5 //( / / 2 2 9 2 2 4 4 2 ) / 4 2 2 5 2 4 2 2 Korzystając z postaci schodkowej (środkowa macierz) i stosując podstawiaie
Bardziej szczegółowoJak skutecznie reklamować towary konsumpcyjne
K Stowarzyszeie Kosumetów Polskich Jak skuteczie reklamować towary kosumpcyje HALO, KONSUMENT! Chcesz pozać swoje praw a? Szukasz pomoc y? ZADZWOŃ DO INFOLINII KONSUMENCKIEJ BEZPŁATNY TELEFON 0 800 800
Bardziej szczegółowoEGZAMIN MATURALNY Z INFORMATYKI MAJ 2012 POZIOM PODSTAWOWY CZĘŚĆ I WYBRANE: Czas pracy: 75 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY
Cetrala Komisja Egzamiacyja Arkusz zawiera iformacje prawie chroioe do mometu rozpoczęcia egzamiu. Układ graficzy CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce a aklejkę z kodem EGZAMIN MATURALNY Z INFORMATYKI
Bardziej szczegółowoRelacje rekurencyjne. będzie następująco zdefiniowanym ciągiem:
Relacje rekurecyje Defiicja: Niech =,,,... będzie astępująco zdefiiowaym ciągiem: () = r, = r,..., k = rk, gdzie r, r,..., r k są skalarami, () dla k, = a + a +... + ak k, gdzie a, a,..., ak są skalarami.
Bardziej szczegółowoModuł 4. Granica funkcji, asymptoty
Materiały pomocicze do e-learigu Matematyka Jausz Górczyński Moduł. Graica fukcji, asymptoty Wyższa Szkoła Zarządzaia i Marketigu Sochaczew Od Autora Treści zawarte w tym materiale były pierwotie opublikowae
Bardziej szczegółowoSTATYSTYKA I ANALIZA DANYCH
TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica
Bardziej szczegółowoHarmonogramowanie linii montażowej jako element projektowania cyfrowej fabryki
52 Sławomir Herma Sławomir HERMA atedra Iżyierii Produkcji, ATH w Bielsku-Białej E mail: slawomir.herma@gmail.com Harmoogramowaie liii motażowej jako elemet projektowaia cyfrowej fabryki Streszczeie: W
Bardziej szczegółowoZnajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek
Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy
Bardziej szczegółowoPodprzestrzenie macierzowe
Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji ( ) : m f x = Ax ( A) { Ax x } = Defiicja: Zakresem macierzy A Œ âm azywamy
Bardziej szczegółowoUKŁADY RÓWNAŃ LINOWYCH
Ekoeergetyka Matematyka. Wykład 4. UKŁADY RÓWNAŃ LINOWYCH Defiicja (Układ rówań liiowych, rozwiązaie układu rówań) Układem m rówań liiowych z iewiadomymi,,,, gdzie m, azywamy układ rówań postaci: a a a
Bardziej szczegółowoScenariusz lekcji: Kombinatoryka utrwalenie wiadomości
Sceariusz lekcji: Kombiatoryka utrwaleie wiadomości 1 1. Cele lekcji a) Wiadomości Uczeń: za pojęcia: permutacja, wariacja i kombiacja, zdarzeie losowe, prawdopodobieństwo, za iezbęde wzory. b) Umiejętości
Bardziej szczegółowo1.3. Największa liczba naturalna (bez znaku) zapisana w dwóch bajtach to a) b) 210 c) d) 32767
Egzami maturaly z iformatyki Zadaie. (0 pkt) Każdy z puktów tego zadaia zawiera stwierdzeie lub pytaie. Zazacz (otaczając odpowiedią literę kółkiem) właściwą kotyuację zdaia lub poprawą odpowiedź. W każdym
Bardziej szczegółowoPodprzestrzenie macierzowe
Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji : m f x = Ax RAAx x Defiicja: Zakresem macierzy A Œ âm azywamy podprzestrzeń
Bardziej szczegółowoHierarchiczna analiza skupień
Hierarchiczna analiza skupień Cel analizy Analiza skupień ma na celu wykrycie w zbiorze obserwacji klastrów, czyli rozłącznych podzbiorów obserwacji, wewnątrz których obserwacje są sobie w jakimś określonym
Bardziej szczegółowoO szukaniu sensu w stogu siana
O szukaniu sensu w stogu siana Algorytmy grupowania wyników z wyszukiwarek internetowych i propozycje ich ulepszenia przy wykorzystaniu wiedzy lingwistycznej. Dawid Weiss Instytut Informatyki Politechnika
Bardziej szczegółowoD. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne (wykład 6 _ZP) [1] ZAGADNIENIE PRZYDZIAŁU (ZP) (Assignment Problem)
D. Miszczyńska, M.Miszczyński KBO UŁ, Badaia operacyje (wykład 6 _ZP) [1] ZAGADNIENIE PRZYDZIAŁU (ZP) (Assigmet Problem) Bliskim "krewiakiem" ZT (w sesie podobieństwa modelu decyzyjego) jest zagadieie
Bardziej szczegółowoAlgorytmy I Struktury Danych Prowadząca: dr Hab. inż. Małgorzata Sterna. Sprawozdanie do Ćwiczenia 3 Algorytmy grafowe ( )
Poiedziałki 11.45 Grupa I3 Iformatyka a wydziale Iformatyki Politechika Pozańska Algorytmy I Struktury Daych Prowadząca: dr Hab. iż. Małgorzata Stera Sprawozdaie do Ćwiczeia 3 Algorytmy grafowe (26.03.12)
Bardziej szczegółowoStatystyka opisowa - dodatek
Statystyka opisowa - dodatek. *Jak obliczyć statystyki opisowe w dużych daych? Liczeie statystyk opisowych w dużych daych może sprawiać problemy. Dla przykładu zauważmy, że aiwa implemetacja średiej arytmetyczej
Bardziej szczegółowoTwierdzenie Cayleya-Hamiltona
Twierdzeie Cayleya-Hamiltoa Twierdzeie (Cayleya-Hamiltoa): Każda macierz kwadratowa spełia swoje włase rówaie charakterystycze. D: Chcemy pokazać, że jeśli wielomiaem charakterystyczym macierzy A jest
Bardziej szczegółowoWYBRANE METODY DOSTĘPU DO DANYCH
WYBRANE METODY DOSTĘPU DO DANYCH. WSTĘP Coraz doskoalsze, szybsze i pojemiejsze pamięci komputerowe pozwalają gromadzić i przetwarzać coraz większe ilości iformacji. Systemy baz daych staowią więc jedo
Bardziej szczegółowoArtykuł techniczny CVM-NET4+ Zgodny z normami dotyczącymi efektywności energetycznej
1 Artykuł techiczy Joatha Azañó Dział ds. Zarządzaia Eergią i Jakości Sieci CVM-ET4+ Zgody z ormami dotyczącymi efektywości eergetyczej owy wielokaałowy aalizator sieci i poboru eergii Obeca sytuacja Obece
Bardziej szczegółowoO liczbach naturalnych, których suma równa się iloczynowi
O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą
Bardziej szczegółowoĆwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA
Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz
Bardziej szczegółowoMINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU
Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów
Bardziej szczegółowoRachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.
Rachuek prawdopodobieństwa i statystyka W12: Statystycza aaliza daych jakościowych Dr Aa ADRIAN Paw B5, pok 407 ada@agh.edu.pl Wprowadzeie Rozróżia się dwa typy daych jakościowych: Nomiale jeśli opisują
Bardziej szczegółowoMATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum
MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu
Bardziej szczegółowoEGZAMIN MATURALNY Z INFORMATYKI
Miejsce a aklejkę z kodem szkoły dysleksja MIN-R_P-072 EGZAMIN MATURALNY Z INFORMATYKI MAJ ROK 2007 POZIOM ROZSZERZONY CZĘŚĆ I Czas pracy 90 miut Istrukcja dla zdającego. Sprawdź, czy arkusz egzamiacyjy
Bardziej szczegółowoElementy rach. macierzowego Materiały pomocnicze do MES Strona 1 z 7. Elementy rachunku macierzowego
Elemety rach macierzowego Materiały pomocicze do MES Stroa z 7 Elemety rachuku macierzowego Przedstawioe poiżej iformacje staowią krótkie przypomieie elemetów rachuku macierzowego iezbęde dla zrozumieia
Bardziej szczegółowoOBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI SWOBODNIE PODPARTEJ SWOBODNIE PODPARTEJ ALGORYTM DO PROGRAMU MATHCAD
OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI ALGORYTM DO PROGRAMU MATHCAD 1 PRAWA AUTORSKIE BUDOWNICTWOPOLSKIE.PL GRUDZIEŃ 2010 Rozpatrujemy belkę swobodie podpartą obciążoą siłą skupioą, obciążeiem rówomierie
Bardziej szczegółowoWyszukiwanie informacji w internecie. Nguyen Hung Son
Wyszukiwanie informacji w internecie Nguyen Hung Son Jak znaleźć informację w internecie? Wyszukiwarki internetowe: Potężne machiny wykorzystujące najnowsze metody z różnych dziedzin Architektura: trzy
Bardziej szczegółowoWYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ
WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM RACHUNEK EKONOMICZNY W ELEKTROENERGETYCE INSTRUKCJA DO ĆWICZENIA
Bardziej szczegółowoPOLITECHNIKA OPOLSKA
POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia
Bardziej szczegółowo3. Tworzenie próby, błąd przypadkowy (próbkowania) 5. Błąd standardowy średniej arytmetycznej
PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elemety kombiatoryki 2. Zmiee losowe i ich rozkłady 3. Populacje i próby daych, estymacja parametrów 4. Testowaie hipotez 5. Testy parametrycze 6. Testy
Bardziej szczegółowoWprowadzenie. metody elementów skończonych
Metody komputerowe Wprowadzeie Podstawy fizycze i matematycze metody elemetów skończoych Literatura O.C.Ziekiewicz: Metoda elemetów skończoych. Arkady, Warszawa 972. Rakowski G., acprzyk Z.: Metoda elemetów
Bardziej szczegółowo14. RACHUNEK BŁĘDÓW *
4. RACHUNEK BŁĘDÓW * Błędy, które pojawiają się w czasie doświadczeia mogą mieć włase źródła. Są imi błędy związae z błędą kalibracją torów pomiarowych, szumy, czas reagowaia przyrządu, ograiczeia kostrukcyje,
Bardziej szczegółowox 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem
9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3
Bardziej szczegółowoAlgorytmy I Struktury Danych Prowadząca: dr Hab. inż. Małgorzata Sterna. Sprawozdanie do Ćwiczenia 1 Algorytmy sortowania (27.02.
Poiedziałki 11.45 Grupa I3 Iformatyka a wydziale Iformatyki Politechika Pozańska Algorytmy I Struktury Daych Prowadząca: dr Hab. iż. Małgorzata Stera Sprawozdaie do Ćwiczeia 1 Algorytmy sortowaia (27.2.12)
Bardziej szczegółowoEstymacja przedziałowa
Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze
Bardziej szczegółowoAnaliza matematyczna. Robert Rałowski
Aaliza matematycza Robert Rałowski 6 paździerika 205 2 Spis treści 0. Liczby aturale.................................... 3 0.2 Liczby rzeczywiste.................................... 5 0.2. Nierówości...................................
Bardziej szczegółowoWYKŁAD 6 TRANZYSTORY POLOWE
WYKŁA 6 RANZYSORY POLOWE RANZYSORY POLOWE ZŁĄCZOWE (Juctio Field Effect rasistors) 55 razystor polowy złączowy zbudoway jest z półprzewodika (w tym przypadku typu p), w który wdyfudowao dwa obszary bramki
Bardziej szczegółowoINWESTYCJE MATERIALNE
OCENA EFEKTYWNOŚCI INWESTYCJI INWESTCJE: proces wydatkowaia środków a aktywa, z których moża oczekiwać dochodów pieiężych w późiejszym okresie. Każde przedsiębiorstwo posiada pewą liczbę możliwych projektów
Bardziej szczegółowoZasada indukcji matematycznej. Dowody indukcyjne.
Zasada idukcji matematyczej Dowody idukcyje Z zasadą idukcji matematyczej i dowodami idukcyjymi sytuacja jest ajczęściej taka, że podaje się w szkole treść zasady idukcji matematyczej, a astępie omawia,
Bardziej szczegółowoSiłownie ORC sposobem na wykorzystanie energii ze źródeł niskotemperaturowych.
Siłowie ORC sposobem a wykorzystaie eergii ze źródeł iskotemperaturowych. Autor: prof. dr hab. Władysław Nowak, Aleksadra Borsukiewicz-Gozdur, Zachodiopomorski Uiwersytet Techologiczy w Szczeciie, Katedra
Bardziej szczegółowoJarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy
12. Dowieść, że istieje ieskończeie wiele par liczb aturalych k < spełiających rówaie ( ) ( ) k. k k +1 Stosując wzór a wartość współczyika dwumiaowego otrzymujemy ( ) ( )!! oraz k k! ( k)! k +1 (k +1)!
Bardziej szczegółowoZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA
ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA Mamy populację geeralą i iteresujemy się pewą cechą X jedostek statystyczych, a dokładiej pewą charakterystyką liczbową θ tej cechy (p. średią wartością
Bardziej szczegółowoElementy statystyki opisowej Izolda Gorgol wyciąg z prezentacji (wykład I)
Elemety statystyki opisowej Izolda Gorgol wyciąg z prezetacji (wykład I) Populacja statystycza, badaie statystycze Statystyka matematycza zajmuje się opisywaiem i aalizą zjawisk masowych za pomocą metod
Bardziej szczegółowoMACIERZE STOCHASTYCZNE
MACIERZE STOCHASTYCZNE p ij - prawdopodobieństwo przejścia od stau i do stau j w jedym (dowolym) kroku, [p ij ]- macierz prawdopodobieństw przejść (w jedym kroku), Własości macierzy prawdopodobieństw przejść:
Bardziej szczegółowoFundamentalna tabelka atomu. eureka! to odkryli. p R = nh -
TEKST TRUDNY Postulat kwatowaia Bohra, czyli założoy ad hoc związek pomiędzy falą de Broglie a a geometryczymi własościami rozważaego problemu, pozwolił bez większych trudości teoretyczie przewidzieć rozmiary
Bardziej szczegółowoKongruencje Wykład 4. Kongruencje kwadratowe symbole Legendre a i Jac
Kogruecje kwadratowe symbole Legedre a i Jacobiego Kogruecje Wykład 4 Defiicja 1 Kogruecję w ostaci x a (mod m), gdzie a m, azywamy kogruecją kwadratową; jej bardziej ogóla ostać ax + bx + c może zostać
Bardziej szczegółowoAnaliza dokładności pomiaru, względnego rozkładu egzytancji widmowej źródeł światła, dokonanego przy użyciu spektroradiometru kompaktowego
doi:1.15199/48.215.4.38 Eugeiusz CZECH 1, Zbigiew JAROZEWCZ 2,3, Przemysław TABAKA 4, rea FRYC 5 Politechika Białostocka, Wydział Elektryczy, Katedra Elektrotechiki Teoretyczej i Metrologii (1), stytut
Bardziej szczegółowoStwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic).
Materiały dydaktycze Aaliza Matematycza Wykład Ciągi liczbowe i ich graice. Graice ieskończoe. Waruek Cauchyego. Działaia arytmetycze a ciągach. Podstawowe techiki obliczaia graic ciągów. Istieie graic
Bardziej szczegółowoKonica Minolta Optimized Print Services (OPS) Oszczędzaj czas. Poprawiaj efektywność. Stabilizuj koszty. OPS firmy Konica Minolta
Koica Miolta Optimized Prit Services (OPS) Oszczędzaj czas. Poprawiaj efektywość. Stabilizuj koszty. OPS firmy Koica Miolta Optimized Prit Services OPS Najlepszą metodą przewidywaia przyszłości jest jej
Bardziej szczegółowoEgzamin maturalny z informatyki Poziom rozszerzony część I
Zadaie 1. Długość apisów biarych (7 pkt) Opisaa poiżej fukcja rekurecyja wyzacza, dla liczby aturalej 0, długość apisu uzyskaego przez sklejeie biarych reprezetacji liczb aturalych od 1 do 1. ukcja krok
Bardziej szczegółowoPOMIARY WARSZTATOWE. D o u ż y t k u w e w n ę t r z n e g o. Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Ćwiczenia laboratoryjne
D o u ż y t k u w e w ę t r z e g o Katedra Iżyierii i Aparatury Przemysłu Spożywczego POMIARY WARSZTATOWE Ćwiczeia laboratoryje Opracowaie: Urszula Goik, Maciej Kabziński Kraków, 2015 1 SUWMIARKI Suwmiarka
Bardziej szczegółowoINSTRUKCJA NR 06-2 POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ
LABORATORIUM OCHRONY ŚRODOWISKA - SYSTEM ZARZĄDZANIA JAKOŚCIĄ - INSTRUKCJA NR 06- POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ 1. Cel istrukcji Celem istrukcji jest określeie metodyki postępowaia w celu
Bardziej szczegółowoSPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA
SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA 1. ZAMAWIAJĄCY TALEX S.A., ul. Karpia 27 d, 61 619 Pozań, e mail: cetrumit@talex.pl 2. INFORMACJE OGÓLNE 2.1. Talex S.A. zaprasza do udziału w postępowaiu przetargowym,
Bardziej szczegółowoPrzemysław Jaśko Wydział Ekonomii i Stosunków Międzynarodowych, Uniwersytet Ekonomiczny w Krakowie
MODELE SCORINGU KREDYTOWEGO Z WYKORZYSTANIEM NARZĘDZI DATA MINING ANALIZA PORÓWNAWCZA Przemysław Jaśko Wydział Ekoomii i Stosuków Międzyarodowych, Uiwersytet Ekoomiczy w Krakowie 1 WROWADZENIE Modele aplikacyjego
Bardziej szczegółowoĆwiczenie 5 ITERACYJNY ALGORYTM LS. IDENTYFIKACJA OBIEKTÓW NIESTACJONARNYCH ALGORYTM Z WYKŁADNICZYM ZAPOMINANIEM.
Kompterowe Sstem Idetfikacji Laboratorim Ćwiczeie 5 IERACYJY ALGORY LS. IDEYFIKACJA OBIEKÓW IESACJOARYCH ALGORY Z WYKŁADICZY ZAPOIAIE. gr iż. Piotr Bros, bros@agh.ed.pl Kraków 26 Kompterowe Sstem Idetfikacji
Bardziej szczegółowoModa (Mo, D) wartość cechy występującej najczęściej (najliczniej).
Cetrale miary położeia Średia; Moda (domiata) Mediaa Kwatyle (kwartyle, decyle, cetyle) Moda (Mo, D) wartość cechy występującej ajczęściej (ajlicziej). Mediaa (Me, M) dzieli uporządkoway szereg liczbowy
Bardziej szczegółowo(1) gdzie I sc jest prądem zwarciowym w warunkach normalnych, a mnożnik 1,25 bierze pod uwagę ryzyko 25% wzrostu promieniowania powyżej 1 kw/m 2.
Katarzya JARZYŃSKA ABB Sp. z o.o. PRODUKTY NISKONAPIĘCIOWE W INSTALACJI PV Streszczeie: W ormalych warukach pracy każdy moduł geeruje prąd o wartości zbliżoej do prądu zwarciowego I sc, który powiększa
Bardziej szczegółowoJarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.
Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe
Bardziej szczegółowo40:5. 40:5 = 500000υ5 5p 40, 40:5 = 500000 5p 40.
Portfele polis Poieważ składka jest ustalaa jako wartość oczekiwaa rzeczywistego, losowego kosztu ubezpieczeia, więc jest tym bliższa średiej wydatków im większa jest liczba ubezpieczoych Polisy grupuje
Bardziej szczegółowoWspółpraca instytucji pomocy społecznej z innymi instytucjami
Projekt 1.16 Koordyacja a rzecz aktywej itegracji jest współfiasoway przez Uię Europejską w ramach Europejskiego Fu duszu Społeczego Współpraca istytucji pomocy społeczej z iymi istytucjami a tereie gmiy,
Bardziej szczegółowoTrzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w
Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to
Bardziej szczegółowoKATEDRA ENERGOELEKTRONIKI I ELEKTROENERGETYKI
KATEDRA ENERGOELEKTRONIKI I ELEKTROENERGETYKI Grupa: 1. 2. 3. 4. 5. LABORATORIUM ELEKTROENERGETYKI Data: Ocea: ĆWICZENIE 3 BADANIE WYŁĄCZNIKÓW RÓŻNICOWOPRĄDOWYCH 3.1. Cel ćwiczeia Celem ćwiczeia jest:
Bardziej szczegółowoELEKTROTECHNIKA I ELEKTRONIKA
UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTUT EKSPLOATACJI MASZYN I TRANSPORTU ZAKŁAD STEROWANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆWICZENIE: E20 BADANIE UKŁADU
Bardziej szczegółowoINSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW
INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW BADANIE ODKSZTAŁCEŃ SPRĘŻYNY ŚRUBOWEJ Opracował: Dr iż. Grzegorz
Bardziej szczegółowoRysunek 1: Fale stojące dla struny zamocowanej na obu końcach; węzły są zaznaczone liniami kropkowanymi, a strzałki przerywanymi
Aaliza fal złożoych Autorzy: Zbigiew Kąkol, Bartek Wiedlocha Przyjrzyjmy się drgaiu poprzeczemu struy. Jeżeli strua zamocowaa a obu końcach zostaie ajpierw wygięta, a astępie puszczoa, to wzdłuż struy
Bardziej szczegółowoWykład 11. a, b G a b = b a,
Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada
Bardziej szczegółowoBADANIA DOCHODU I RYZYKA INWESTYCJI
StatSoft Polska, tel. () 484300, (60) 445, ifo@statsoft.pl, www.statsoft.pl BADANIA DOCHODU I RYZYKA INWESTYCJI ZA POMOCĄ ANALIZY ROZKŁADÓW Agieszka Pasztyła Akademia Ekoomicza w Krakowie, Katedra Statystyki;
Bardziej szczegółowoWYGRYWAJ NAGRODY z KAN-therm
Regulami Kokursu I. POSTANOWIENIA OGÓLNE. 1. Regulami określa zasady KONKURSU p. Wygrywaj agrody z KAN-therm (dalej: Kokurs). 2. Orgaizatorem Kokursu jest KAN Sp. z o.o. z siedzibą w Białymstoku- Kleosiie,
Bardziej szczegółowoĆwiczenie 10/11. Holografia syntetyczna - płytki strefowe.
Ćwiczeie 10/11 Holografia sytetycza - płytki strefowe. Wprowadzeie teoretycze W klasyczej holografii optyczej, gdzie hologram powstaje w wyiku rejestracji pola iterferecyjego, rekostruuje się jedyie takie
Bardziej szczegółowoP = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 +
Zadaia róże W tym rozdziale zajdują się zadaia ietypowe, często dotyczące łańcuchów Markowa oraz własości zmieych losowych. Pojawią się także zadaia z estymacji Bayesowskiej.. (Eg 8/) Rozważamy łańcuch
Bardziej szczegółowoInstrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy transportowe cd, Problem komiwojażera
Istrukcja do ćwiczeń laboratoryjych z przedmiotu: Badaia operacyje Temat ćwiczeia: Problemy trasportowe cd Problem komiwojażera Zachodiopomorski Uiwersytet Techologiczy Wydział Iżyierii Mechaiczej i Mechatroiki
Bardziej szczegółowoNumeryczny opis zjawiska zaniku
FOTON 8, iosa 05 7 Numeryczy opis zjawiska zaiku Jerzy Giter ydział Fizyki U Postawieie problemu wielu zagadieiach z różych działów fizyki spotykamy się z astępującym problemem: zmiay w czasie t pewej
Bardziej szczegółowoprofi-air 250 / 400 touch Nowoczesne centrale rekuperacyjne do wentylacji pomieszczeń mieszkalnych
profi-air 250 / 400 touch Nowoczese cetrale rekuperacyje do wetylacji pomieszczeń mieszkalych SYSTEMY ODWADNIAJĄ CE SYSTEMY ELEKTRYCZNE INSTALACJE WEWNĘTRZNE PRODUKTY DLA PRZEMYSŁU Nowoczesa techologia
Bardziej szczegółowoMetody Obliczeniowe w Nauce i Technice laboratorium
Marci Rociek Iformatyka, II rok Metody Obliczeiowe w Nauce i Techice laboratorium zestaw 1: iterpolacja Zadaie 1: Zaleźć wzór iterpolacyjy Lagrage a mając tablicę wartości: 3 5 6 y 1 3 5 6 Do rozwiązaia
Bardziej szczegółowoĆwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny
TEMATYKA: Regresja liiowa dla prostej i płaszczyzy Ćwiczeia r 5 DEFINICJE: Regresja: metoda statystycza pozwalająca a badaie związku pomiędzy wielkościami daych i przewidywaie a tej podstawie iezaych wartości
Bardziej szczegółowoStatystyczny opis danych - parametry
Statystyczy opis daych - parametry Ozaczeia żółty owe pojęcie czerwoy, podkreśleie uwaga * materiał adobowiązkowy Aa Rajfura, Matematyka i statystyka matematycza a kieruku Rolictwo SGGW Zagadieia. Idea
Bardziej szczegółowoUwarunkowania rozwojowe województw w Polsce analiza statystyczno-ekonometryczna
3 MAŁGORZATA STEC Dr Małgorzata Stec Zakład Statystyki i Ekoometrii Uiwersytet Rzeszowski Uwarukowaia rozwojowe województw w Polsce aaliza statystyczo-ekoometrycza WPROWADZENIE Rozwój społeczo-gospodarczy
Bardziej szczegółowoData Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu
Data Mining Wykład 9 Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster Plan wykładu Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Sformułowanie problemu
Bardziej szczegółowoAnaliza potencjału energetycznego depozytów mułów węglowych
zaiteresowaia wykorzystaiem tej metody w odiesieiu do iych droboziaristych materiałów odpadowych ze wzbogacaia węgla kamieego ależy poszukiwać owych, skutecziej działających odczyików. Zdecydowaie miej
Bardziej szczegółowo2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1
Tekst a iebiesko jest kometarzem lub treścią zadaia. Zadaie 1. Zbadaj mootoiczość i ograiczoość ciągów. a = + 3 + 1 Ciąg jest mootoiczie rosący i ieograiczoy poieważ różica kolejych wyrazów jest dodatia.
Bardziej szczegółowoMetody badania zbieżności/rozbieżności ciągów liczbowych
Metody badaia zbieżości/rozbieżości ciągów liczbowych Ryszard Rębowski 14 grudia 2017 1 Wstęp Kluczowe pytaie odoszące się do zagadieia badaia zachowaia się ciągu liczbowego sprowadza się do sposobu opisu
Bardziej szczegółowoPrawo odbicia i załamania. Autorzy: Zbigniew Kąkol Piotr Morawski
Prawo odbicia i załamaia Autorzy: Zbigiew Kąkol Piotr Morawski 207 Prawo odbicia i załamaia Autorzy: Zbigiew Kąkol, Piotr Morawski Jeżeli światło pada a graicę dwóch ośrodków, to ulega zarówo odbiciu a
Bardziej szczegółowoPodpis elektroniczny. zastosowanie i korzyści
Podpis elektroiczy sposób działaia, zastosowaie i korzyści Miisterstwo Gospodarki Warszawa 2005 Nadzór merytoryczy: Departamet Przedsiębiorczości Miisterstwa Gospodarki Autorzy: Artur Kruk Uizeto Techologies
Bardziej szczegółowoOCENA WARIANTÓW DECYZYJNYCH O ROZKŁADACH CIĄGŁYCH NA GRUNCIE TEORII PERSPEKTYWY
Reata Dudzińska-Baryła Uiwersytet Ekoomiczy w Katowicach Wydział Iformatyki i Komuikacji Katedra Badań Operacyjych reata.dudziska-baryla@ue.katowice.pl OCENA WARIANTÓW DECYZYJNYCH O ROZKŁADACH CIĄGŁYCH
Bardziej szczegółowo( ) WŁASNOŚCI MACIERZY
.Kowalski własości macierzy WŁSNOŚC MCERZY Własości iloczyu i traspozycji a) możeie macierzy jest łącze, tz. (C) ()C, dlatego zapis C jest jedozaczy, b) możeie macierzy jest rozdziele względem dodawaia,
Bardziej szczegółowo2.1. Studium przypadku 1
Uogóliaie wyików Filip Chybalski.. Studium przypadku Opis problemu Przedsiębiorstwo ŚRUBEX zajmuje się produkcją wyrobów metalowych i w jego szerokim asortymecie domiują różego rodzaju śrubki i wkręty.
Bardziej szczegółowo