WYKŁAD 1 ZASADY ELEKTROMECHANICZNEGO PRZETWARZANIA ENERGII
|
|
- Dominik Król
- 8 lat temu
- Przeglądów:
Transkrypt
1 WYKŁAD 1 ZASADY ELEKTROMECHANICZNEGO RZETWARZANIA ENERGII 1.1. Zasada zachowania energii. unem wyjściowym dla analizy przewarzania energii i mocy w pewnym przedziale czasu jes zasada zachowania energii W W W (1.1) we wy a gdzie W we - przyros energii wejściowej (dopływającej z zewnąrz) do urządzenia, W wy - przyros energii wyjściowej (wypływającej na zewnąrz) z urządzenia, W a - przyros energii aumulowanej w urządzeniu. Każda z wyżej wymienionych energii może być przesyłana bądź aumulowana na drodze elerycznej, mechanicznej, cieplnej, hydraulicznej ec., w zależności od rodzaju obieu. Jeśli w olejnych przedziałach czasu energia aumulowana nie zmienia się, czyli W a =, o mówimy o quasi-usalonym sanie pracy urządzenia. W dalszym ciągu wyładu ograniczymy się do analizy ego właśnie sanu. Inensywność wydzielania się bądź przesyłu energii charaeryzuje pojęcie mocy średniej zdefiniowane jao W (1.2) rzy czasie dążącym do zera orzymujemy definicję mocy chwilowej p( (1.3) Wzajemne powiązanie mocy średniej i chwilowej jes oreślone definicyjnie jao 1 p( d (1.4) W urządzeniach elerycznych mamy do czynienia zasadniczo z rzema posaciami mocy: - eleryczną el, - mechaniczną me, - ermiczną (cieplna) e. omijając urządzenia grzewcze, moc cieplna jes związana z ą częścią mocy doprowadzonej, óra nie zosała przeworzona na moc wyjściową i uległa rozproszeniu do ooczenia na ciepło.
2 Zwyczajowo jes ona oreślana jao sray mocy i oznaczana. Jes ona proporcjonalna do przyrosu emperaury średniej urządzenia w sosunu do ooczenia. Sray mocy są związane z wyraźnie wyodrębnionymi objęościami urządzenia (np. uzwojenia, rdzeń magneyczny, łożysa). Rozpływ mocy można schemaycznie przedsawić za pomocą zw. wyresu Saney a, na órym wydzielono dwa sładnii sra mocy we wewn wy we Rys.1.1 Schema rozpływu mocy Saney a we, wy sray mocy odpowiednio po sronie wejściowej i wyjściowej; wewn moc wewnęrzna. wy Każda z mocy chwilowych jes definiowana jao iloczyn dwóch wielości nazywanych zmiennymi sanu p p el me ( ( u( i( F( v( M( Ω( dla ruchu liniowego dla ruchu obroowego (1.5) gdzie u napięcie, i naężenie prądu, F siła, M momen siły, v prędość liniowa, prędość ąowa. W zdecydowanej więszości maszyn elerycznych weory prędości v, Ω mają jedną sładową (uład jednowymiarowy 1D, np. =2 n, gdzie n jes prędością obroową, [obr/s]), sąd w równaniu (1.5) można pominąć noację weorową p p el me ( ( u( i( F(v( dla ruchu liniowego 1D (1.6) M(Ω( dla ruchu obroowego 1D W zależności od rodzaju przewornia zarówno moc wejściowa ja i wyjściowa może być eleryczna ja i mechaniczna. Zesawiono o w ablicy 1.1.
3 Typ przewornia Moc wejściowa Tablica 1.1. Zesawienie rodzajów przeworniów Moc wyjściowa ransformaor eleryczna eleryczna silni eleryczny eleryczna mechaniczna prądnica mechaniczna eleryczna reduor mechaniczny mechaniczna mechaniczna Moce wejściową i wyjściową wiąże pojęcie sprawności wy we 1 (1.7) we przy czym dla ransformaora operuje się w prayce nie sprawnością lecz sraami mocy, ze względu na inną definicję mocy znamionowej niż w maszynach wirujących rawa eleromagneyzmu. Działanie wszysich urządzeń elerycznych, niezależnie od ich budowy i sposobu zasilania, jes opisane za pomocą ilu podsawowych praw, óre w zależności od posaci zapisu maemaycznego (różniczowego bądź całowego) i sopnia przyjęych uproszczeń są oreślane nazwisami ich odrywców. Najogólniejszą posać sformułował James Maxwell w posaci dwu praw nazywanych odpowiednio I i II równaniem Maxwella. Wyorzysują one całowe lub różniczowe operaory weorowe, órych zapis wynia z przyjęego uładu współrzędnych, będącego jednocześnie definicją iloczynu weorowego. Sosując zw. prawosręny uład współrzędnych arezjańsich (rys.1.2) mamy x y y x z z (1.8) Wyrażenia e definiują również dodani zwro współrzędnej ąowej, np. w płaszczyźnie xy. y z x Rys.1.2. rawosręny uład współrzędnych
4 I prawo Maxwella jes w posaci gdzie H weor naężenia pola magneycznego, [A/m]; J weor gęsości prądu przewodzenia, [A/m 2 ]; D weor inducji dielerycznej. D ro H J (1.9) Gęsość zw. prądu pojemnościowego wyniającego z pochodnej czasowej inducji D jes pomijalna dla echnicznych częsoliwości rzędu see Hz w sosunu do gęsości prądu przewodzenia, ym niemniej przy zasilaniu z uładów przeszałniowych zawierających sładowe o częsoliwości ilunasu Hz jej wpływ może być już zauważalny. W dalszym ciągu wyładu sładni en będzie pomijany, a I równanie Maxwella jes najczęściej sosowane w posaci całowej nazywanej prawem Ampere a l( S ) H dl S ( l) J N i (1.1) gdzie l(s) onur brzegowy owarej powierzchni S N zwojność -ej wiązi przewodów wiodących prąd o naężeniu i l(s) Ni 1 i 1 N 2 i 2 Rys.1.3. Ilusracja prawa Ampere a. II prawo Maxwella jes w posaci d B ro E (1.11) d óre sprowadzone do posaci całowej (prawo Faraday a) zapisuje się jao
5 d d e( E dl B (1.12) d d l ( S ) S ( l) gdzie e siła eleromooryczna; E weor naężenia pola elerycznego, [V/m]; B weor inducji magneycznej; srumień magneyczny. l B e Rys.1.3. Ilusracja prawa Faraday a. Należy pamięać, że równanie (1.1) doyczy pojedynczego zwoju, a całowanie inducji B jes wyonywane w uładzie współrzędnych nieruchomym względem ego zwoju. Wyznaczając siłę eleromooryczną (SEM) induowaną w cewce czy paśmie cewowym rzeba wyonać odpowiednie sumowanie po wszysich zwojach, zależnie od sruury geomerycznej uzwojenia. Weory gęsości prądu J oraz gęsości srumienia magneycznego (inducji magneycznej) B spełniają warune bezźródłowości div B div J (1.13) óry w posaci całowej nosi nazwę I prawa Kirchoffa S ( V ) S ( V ) J B i (1.14)
6 2 S(V) i 1 i 2 i 3 1 S(V) a. b. 3 Rys.1.4. Ilusracja całowego sformułowania I prawa Kirchoffa. a. sumowanie srumieni magneycznych w węźle rdzenia ransformaora; b. sumowanie prądów w rójfazowym obwodzie. Własności maeriałów wiodących prąd eleryczny czy srumień magneyczny są wprowadzane zależnościami: gdzie onduywność eleryczna, [S/m]. J E (1.15) B r H H (1.16) gdzie przenialność magneyczna próżni, [H/m]. r względna przenialność magneyczna, dla ferromagneyów Fe, Ni, Co r=( ) i silnie zależy od warości pola H w maeriale; dla pozosałych maeriałów r=1. B [T ] M6 1.5 M Rys.1.5. Charaerysyi magnesowania blach M6 i M19. H [A/m ]
7 1.3. Moce w urządzeniach prądu przemiennego, sysemy oznaczeń. Załadając, że wszysie prądy i napięcia w rozparywanym obiecie są sinusoidalne w czasie, o do opisu jego właściwości można zasosować algebrę liczb zespolonych. rzyjmując, że napięcie i prąd o warościach suecznych, I w pewnym obwodzie są oreślone wzorami (1.17) gdzie I e I e j j (1.18) o na płaszczyźnie zespolonej o dodanim ącie ja na rys.1.2 (przeciwnie do ruchu wsazówe zegara) wielości e zaznacza się nasępująco Re I=I e -j Im Rys.1.6. Wsazy prądu i napięcia na płaszczyźnie zespolonej. Iloczyn zespolonych warości oraz I * (aseris oznacza u liczbę sprzężoną) nazywany jes zespoloną mocą pozorną (1.18) W zależności od przyjęego sysemu oznaczeń źródłowego lub odbiorniowego, wyres wsazowy będzie wyglądał inaczej.
8 I Z R ~ E L źródło odbiorni Rys.1.7. rzyładowy uład połączeń źródła prądu przemiennego z odbiorniiem RL Re Re I=I e -j Im Im I=I e j a. b. Rys.1.8.a. Wyres wsazowy odbiornia RL w odbiorniowym uładzie oznaczeń; b. Wyres wsazowy odbiornia RL w źródłowym uładzie oznaczeń.
WYKŁAD 1 ZASADY ELEKTROMECHANICZNEGO PRZETWARZANIA ENERGII
WYKŁAD 1 ZASADY ELEKTROMECHANICZNEGO PRZETWARZANIA ENERGII 1.1. Zasada zachowania energii. Puntem wyjściowym dla analizy przetwarzania energii i mocy w pewnym przedziale czasu t jest zasada zachowania
Bardziej szczegółowoGłównie występuje w ośrodkach gazowych i ciekłych.
W/g ermodynamiki - ciepło jes jednym ze sposobów ransporu energii do/z bila, zysy przepływ ciepła może wysąpić jedynie w ciałach sałych pozosających w spoczynku. Proces wymiany ciepla: przejmowanie ciepła
Bardziej szczegółowoC d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:
Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili
Bardziej szczegółowo4.2. Obliczanie przewodów grzejnych metodą dopuszczalnego obciążenia powierzchniowego
4.. Obliczanie przewodów grzejnych meodą dopuszczalnego obciążenia powierzchniowego Meodą częściej sosowaną w prakyce projekowej niż poprzednia, jes meoda dopuszczalnego obciążenia powierzchniowego. W
Bardziej szczegółowoPodręcznik: Jan Machowski Regulacja i stabilność
dr hab. Désiré D. Rasolomampionona, pro. PW GM pok.111 STANY NEUSTALONE SYSTEMÓW ELEKTROENERGETYCZNYCH Wykład dla sem. sudiów sopnia Auomayka Elekroenergeyczna Podręcznik: Jan Machowski Regulacja i sabilność
Bardziej szczegółowoLABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR
LORTORIUM PODSTWY ELEKTRONIKI adanie ramki X-OR 1.1 Wsęp eoreyczny. ramka XOR ramka a realizuje funkcję logiczną zwaną po angielsku EXLUSIVE-OR (WYŁĄZNIE LU). Polska nazwa brzmi LO. Funkcję EX-OR zapisuje
Bardziej szczegółowoPolitechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Poliechnika Gdańska Wydział Elekroechniki i Auomayki Kaedra Inżynierii Sysemów Serowania Podsawy Auomayki Repeyorium z Podsaw auomayki Zadania do ćwiczeń ermin T15 Opracowanie: Kazimierz Duzinkiewicz,
Bardziej szczegółowoLABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ
INSTTUTU TECHNIKI CIEPLNEJ WDZIAŁ INŻNIERII ŚRODOWISKA I ENERGETKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORJNA Tema ćwiczenia: WZNACZANIE WSPÓŁCZNNIKA PRZEWODZENIA CIEPŁA CIAŁ STAŁCH METODĄ STANU UPORZĄDKOWANEGO
Bardziej szczegółowoTemat 6. ( ) ( ) ( ) k. Szeregi Fouriera. Własności szeregów Fouriera. θ możemy traktować jako funkcje ω, których dziedziną jest dyskretny zbiór
ema 6 Opracował: Lesław Dereń Kaedra eorii Sygnałów Insyu eleomuniacji, eleinformayi i Ausyi Poliechnia Wrocławsa Prawa auorsie zasrzeżone Szeregi ouriera Jeżeli f ( ) jes funcją oresową o oresie, czyli
Bardziej szczegółowo1. Rezonans w obwodach elektrycznych 2. Filtry częstotliwościowe 3. Sprzężenia magnetyczne 4. Sygnały odkształcone
Wyład 6 - wersja srócona. ezonans w obwodach elerycznych. Filry częsoliwościowe. Sprzężenia magneyczne 4. Sygnały odszałcone AMD ezonans w obwodach elerycznych Zależności impedancji dwójnia C od pulsacji
Bardziej szczegółowoDobór przekroju żyły powrotnej w kablach elektroenergetycznych
Dobór przekroju żyły powronej w kablach elekroenergeycznych Franciszek pyra, ZPBE Energopomiar Elekryka, Gliwice Marian Urbańczyk, Insyu Fizyki Poliechnika Śląska, Gliwice. Wsęp Zagadnienie poprawnego
Bardziej szczegółowoRÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?
RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1
Bardziej szczegółowo( ) + ( ) T ( ) + E IE E E. Obliczanie gradientu błędu metodą układu dołączonego
Obliczanie gradientu błędu metodą uładu dołączonego /9 Obliczanie gradientu błędu metodą uładu dołączonego Chodzi o wyznaczenie pochodnych cząstowych funcji błędu E względem parametrów elementów uładu
Bardziej szczegółowoψ przedstawia zależność
Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi
Bardziej szczegółowoModelowanie i obliczenia techniczne. Równania różniczkowe Numeryczne rozwiązywanie równań różniczkowych zwyczajnych
Moelowanie i obliczenia echniczne Równania różniczowe Numeryczne rozwiązywanie równań różniczowych zwyczajnych Przyła ułau ynamicznego E Uła ynamiczny R 0 Zachozi porzeba wyznaczenia: C u C () i() ur ir
Bardziej szczegółowoZasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim
Zasada pędu i popędu, kręu i pokręu, energii i pracy oraz d Alembera bryły w ruchu posępowym, obroowym i płaskim Ruch posępowy bryły Pęd ciała w ruchu posępowym obliczamy, jak dla punku maerialnego, skupiając
Bardziej szczegółowoUkład regulacji ze sprzężeniem od stanu
Uład reglacji ze sprzężeniem od san 1. WSĘP Jednym z celów sosowania ład reglacji owarego, zamnięego jes szałowanie dynamii obie serowania. Jeżeli obie opisany jes równaniami san, o dynamia obie jes jednoznacznie
Bardziej szczegółowo2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)
Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza
Bardziej szczegółowo3. EKSPERYMENTALNE METODY WYZNACZANIA MODELI MATEMATYCZNYCH Sposób wyznaczania charakterystyki czasowej
3. Esperymenalne meody wyznaczania modeli maemaycznych 3. EKSPERYMENALNE MEODY WYZNACZANIA MODELI MAEMAYCZNYCH 3.. Sposób wyznaczania charaerysyi czasowej Charaerysyę czasową orzymuje się na wyjściu obieu,
Bardziej szczegółowoWydział Mechaniczno-Energetyczny Laboratorium Elektroniki. Badanie zasilaczy ze stabilizacją napięcia
Wydział Mechaniczno-Energeyczny Laboraorium Elekroniki Badanie zasilaczy ze sabilizacją napięcia 1. Wsęp eoreyczny Prawie wszyskie układy elekroniczne (zarówno analogowe, jak i cyfrowe) do poprawnej pracy
Bardziej szczegółowoĆWICZENIE NR 43 U R I (1)
ĆWCZENE N 43 POMY OPO METODĄ TECHNCZNĄ Cel ćwiczenia: wyznaczenie warości oporu oporników poprzez pomiary naężania prądu płynącego przez opornik oraz napięcia na oporniku Wsęp W celu wyznaczenia warości
Bardziej szczegółowoPodstawy elektrotechniki
Wydział Mechaniczno-Energeyczny Podsawy elekroechniki Prof. dr hab. inż. Juliusz B. Gajewski, prof. zw. PWr Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław Bud. A4 Sara kołownia, pokój 359 Tel.: 71 320 3201
Bardziej szczegółowoPrąd przemienny - wprowadzenie
Prąd przemienny - wprowadzenie Prądem zmiennym nazywa się wszelkie prądy elektryczne, dla których zależność natężenia prądu od czasu nie jest funkcją stałą. Zmienność ta może związana również ze zmianą
Bardziej szczegółowo( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: =
ROZŁADOWANIE KONDENSATORA I. el ćwiczenia: wyznaczenie zależności napięcia (i/lub prądu I ) rozładowania kondensaora w funkcji czasu : = (), wyznaczanie sałej czasowej τ =. II. Przyrządy: III. Lieraura:
Bardziej szczegółowoLABORATORIUM PODSTAW ELEKTRONIKI PROSTOWNIKI
ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM PODSTAW ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 5 PROSTOWNIKI DO UŻYTKU
Bardziej szczegółowoWYKŁAD 2 INDUKOWANIE SIŁY ELEKTROMOTORYCZNEJ
WYKŁAD DUKOWA SŁY KTOMOTOYCZJ.. Źródłowy i odbiornikowy system oznaczeń. ozpatrzmy elementarny obwód elektryczny prądu stałego na przykładzie ładowania akumulatora samochodowego przedstawiony na rys...
Bardziej szczegółowoBADANIE DYNAMICZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH
BADANIE DYNAMICZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH. CEL ĆWICZENIA Celem ćwiczenia jes: przybliżenie zagadnień doyczących pomiarów wielości zmiennych w czasie (pomiarów dynamicznych, poznanie sposobów
Bardziej szczegółowoWykład 14: Indukcja cz.2.
Wykład 14: Indukcja cz.. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 10.05.017 Wydział Informatyki, Elektroniki i 1 Przykład
Bardziej szczegółowoDOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH
Franciszek SPYRA ZPBE Energopomiar Elekryka, Gliwice Marian URBAŃCZYK Insyu Fizyki Poliechnika Śląska, Gliwice DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH. Wsęp Zagadnienie poprawnego
Bardziej szczegółowoWykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07)
Wyład 9 Fizya 1 (Informatya - EEIiA 006/07) 9 11 006 c Mariusz Krasińsi 006 Spis treści 1 Ruch drgający. Dlaczego właśnie harmoniczny? 1 Drgania harmoniczne proste 1.1 Zależność między wychyleniem, prędością
Bardziej szczegółowoPodstawy elektrotechniki
Wydział Mechaniczno-Energeyczny Podsawy elekroechniki Prof. dr hab. inż. Juliusz B. Gajewski, prof. zw. PWr Wybrzeże S. Wyspiańskiego 27, 5-37 Wrocław Bud. A4 Sara kołownia, pokój 359 Tel.: 71 32 321 Fax:
Bardziej szczegółowoĆwiczenie 4 Badanie wpływu asymetrii obciążenia na pracę sieci
Ćwiczenie 4 - Badanie wpływu asymetrii obciążenia na pracę sieci Strona 1/13 Ćwiczenie 4 Badanie wpływu asymetrii obciążenia na pracę sieci Spis treści 1.Cel ćwiczenia...2 2.Wstęp...2 2.1.Wprowadzenie
Bardziej szczegółowoMatematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( )
Zadanie. Zmienna losowa: X = Y +... + Y N ma złożony rozkład Poissona. W abeli poniżej podano rozkład prawdopodobieńswa składnika sumy Y. W ejże abeli podano akże obliczone dla k = 0... 4 prawdopodobieńswa
Bardziej szczegółowoPOMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU
Pomiar paramerów sygnałów napięciowych. POMIAR PARAMERÓW SYGNAŁOW NAPIĘCIOWYCH MEODĄ PRÓKOWANIA I CYFROWEGO PRZEWARZANIA SYGNAŁU Cel ćwiczenia Poznanie warunków prawidłowego wyznaczania elemenarnych paramerów
Bardziej szczegółowoSZACOWANIE WSPÓŁCZYNNIKA FILTRACJI W KOLUMNIE FILTRACYJNEJ
ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/007 Komisja Inżynierii Budowlanej Oddział Polsiej Aademii Nau w Kaowicac SZACOWANIE WSPÓŁCZYNNIKA FILTRACJI W KOLUMNIE FILTRACYJNEJ Jadwiga ŚWIRSKA Poliecnia Opolsa,
Bardziej szczegółowoPodstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude
Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie Podstawowe
Bardziej szczegółowoRuch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.
Ruch płaski Ruchem płaskim nazywamy ruch, podczas kórego wszyskie punky ciała poruszają się w płaszczyznach równoległych do pewnej nieruchomej płaszczyzny, zwanej płaszczyzną kierującą. Punky bryły o jednakowych
Bardziej szczegółowoBadanie funktorów logicznych TTL - ćwiczenie 1
adanie funkorów logicznych TTL - ćwiczenie 1 1. Cel ćwiczenia Zapoznanie się z podsawowymi srukurami funkorów logicznych realizowanych w echnice TTL (Transisor Transisor Logic), ich podsawowymi paramerami
Bardziej szczegółowo5. Równania Maxwella. 5.1 Równania Maxwella 5.2 Transformacja pól 5.3 Fala elektromagnetyczna
5 Równania Maxwella 5 Równania Maxwella 5 Transformaja pól 53 ala eleromagnezna 86 5 Równania Maxwella Wśród poazanh uprzednio równań Maxwella znajduje się prawo Ampere a j Jedna można pozać, że posać
Bardziej szczegółowoIndukcja wzajemna. Transformator. dr inż. Romuald Kędzierski
Indukcja wzajemna Transformator dr inż. Romuald Kędzierski Do czego służy transformator? Jest to urządzenie (zwane też maszyną elektryczną), które wykorzystując zjawisko indukcji elektromagnetycznej pozwala
Bardziej szczegółowoĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym
ĆWIZENIE 4 Badanie sanów nieusalonych w obwodach, i przy wymuszeniu sałym. el ćwiczenia Zapoznanie się z rozpływem prądów, rozkładem w sanach nieusalonych w obwodach szeregowych, i Zapoznanie się ze sposobami
Bardziej szczegółowoWSTĘP DO ELEKTRONIKI
WSTĘP DO ELEKTRONIKI Część I Napięcie, naężenie i moc prądu elekrycznego Sygnały elekryczne i ich klasyfikacja Rodzaje układów elekronicznych Janusz Brzychczyk IF UJ Elekronika Dziedzina nauki i echniki
Bardziej szczegółowoTemat: Analiza pracy transformatora: stan jałowy, obciążenia i zwarcia.
Temat: Analiza pracy transformatora: stan jałowy, obciążenia i zwarcia. Transformator może się znajdować w jednym z trzech charakterystycznych stanów pracy: a) stanie jałowym b) stanie obciążenia c) stanie
Bardziej szczegółowoZespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu
Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Przedmiot: Pomiary Elektryczne Materiały dydaktyczne: Pomiar i regulacja prądu i napięcia zmiennego Zebrał i opracował: mgr inż. Marcin Jabłoński
Bardziej szczegółowoRównanie Fresnela. napisał Michał Wierzbicki
napisał Michał Wierzbici Równanie Fresnela W anizotropowych ryształach optycznych zależność między wetorami inducji i natężenia pola eletrycznego (równanie materiałowe) jest następująca = ϵ 0 ˆϵ E (1)
Bardziej szczegółowoWykład 4 Metoda Klasyczna część III
Teoria Obwodów Wykład 4 Meoda Klasyczna część III Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska D-, 5/8 el: (7) 3 6 fax: (7)
Bardziej szczegółowoBadanie transformatora
Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne
Bardziej szczegółowoPOMIAR INDUKCJI MAGNETYCZNEJ ZA POMOCĄ FLUKSOMETRU
Ćwiczenie 56 E. Dudziak POMIAR INDUKCJI MAGNETYCZNEJ ZA POMOCĄ FLUKSOMETRU Cel ćwiczenia: pomiar fluksomerem indukcji maneycznej sałeo pola maneyczneo między nabieunnikami elekromanesu. Zaadnienia: indukcja
Bardziej szczegółowoII. Elementy systemów energoelektronicznych
II. Elementy systemów energoelektronicznych II.1. Wstęp. Główne grupy elementów w układach impulsowego przetwarzania mocy: elementy bierne bezstratne (kondensatory, cewki, transformatory) elementy przełącznikowe
Bardziej szczegółowoRÓWNANIA RÓŻNICZKOWE WYKŁAD 13
RÓWNANIA RÓŻNICZKOWE WYKŁAD 13 Geomeria różniczkowa Geomeria różniczkowa o dział maemayki, w kórym do badania obieków geomerycznych wykorzysuje się meody opare na rachunku różniczkowym. Obieky geomeryczne
Bardziej szczegółowoWykład 15: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok
Wykład 15: Indukcja Dr inż. Zbigniew zklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ 1 Pole magnetyczne a prąd elektryczny Do tej pory omawiano skutki
Bardziej szczegółowoBadanie transformatora
Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne
Bardziej szczegółowoPOMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH. Cel ćwiczenia. Program ćwiczenia
Pomiary częsoliwości i przesunięcia fazowego sygnałów okresowych POMIARY CZĘSOLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH Cel ćwiczenia Poznanie podsawowych meod pomiaru częsoliwości i przesunięcia
Bardziej szczegółowoLaboratorium Podstaw Elektrotechniki i Elektroniki
Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1) Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDLNEGO
Bardziej szczegółowoLekcja 10. Temat: Moc odbiorników prądu stałego. Moc czynna, bierna i pozorna w obwodach prądu zmiennego.
Lekcja 10. Temat: Moc odbiorników prądu stałego. Moc czynna, bierna i pozorna w obwodach prądu zmiennego. 1. Moc odbiorników prądu stałego Prąd płynący przez odbiornik powoduje wydzielanie się określonej
Bardziej szczegółowoSygnały zmienne w czasie
Sygnały zmienne w czasie a) b) c) A = A = a A = f(+) d) e) A d = A = A sinω / -A -A ys.. odzaje sygnałów: a)sały, b)zmienny, c)okresowy, d)przemienny, e)sinusoidalny Sygnały zmienne okresowe i ich charakerysyczne
Bardziej szczegółowoPodstawy elektrotechniki
Wydział Mechaniczno-Energeyczny Podsawy elekroechniki Prof. dr hab. inż. Juliusz B. Gajewski, prof. zw. PWr Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław Bud. A4 Sara kołownia, pokój 359 Tel.: 7 320 320
Bardziej szczegółowoLICZBY ZESPOLONE W ELEKTROTECHNICE, ELEKTRYCZNY WEKTOR ZESPOLONY, METODA SYMBOLICZNA,
Wykład VIII LICZBY ZESPOLONE W ELEKTROTECHNICE, ELEKTRYCZNY WEKTOR ZESPOLONY, METODA SYMBOLICZNA, ROZWIĄZYWANIA UKŁADÓW ROZGAŁĘZIONYCH PRĄDU PRZEMIENNEGO POSTACI LICZB ZESPOLONYCH Wskazy prądu i napięcia:
Bardziej szczegółowotransformatora jednofazowego.
Badanie transformatora jednofazowego. Celem ćwiczenia jest zapoznanie się z budową, zasadami działania oraz podstawowymi właściwościami transformatora jednofazowego pracującego w stanie jałowym, zwarcia
Bardziej szczegółowoDYNAMIKA KONSTRUKCJI
10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej
Bardziej szczegółowoINSTRUKCJA LABORATORIUM ELEKTROTECHNIKI BADANIE TRANSFORMATORA. Autor: Grzegorz Lenc, Strona 1/11
NSTRKCJA LABORATORM ELEKTROTECHNK BADANE TRANSFORMATORA Autor: Grzegorz Lenc, Strona / Badanie transformatora Celem ćwiczenia jest poznanie zasady działania transformatora oraz wyznaczenie parametrów schematu
Bardziej szczegółowodla małych natężeń polaryzacja podatność elektryczna natężenie pola elektrycznego
OPTYKA NILINIOWA W zaresie opyi liniowej naężenia promieniowania emiowane z onwencjonalnych źródeł świała są niewielie (0-0 3 V/cm) i oddziałując z maerią nie zmieniają jej własności miro- i marosopowych,
Bardziej szczegółowoPraca domowa nr 1. Metodologia Fizyki. Grupa 1. Szacowanie wartości wielkości fizycznych Zad Stoisz na brzegu oceanu, pogoda jest idealna,
Praca domowa nr. Meodologia Fizyki. Grupa. Szacowanie warości wielkości fizycznych Zad... Soisz na brzegu oceanu, pogoda jes idealna, powierze przeźroczyse; proszę oszacować jak daleko od Ciebie znajduje
Bardziej szczegółowo4. OBLICZANIE REZYSTANCYJNYCH PRZEWODÓW I ELEMENTÓW GRZEJ- NYCH
4. OBLICZANIE REZYSTANCYJNYCH PRZEWODÓW I ELEMENTÓW GRZEJ- NYCH Wybór wymiarów i kszału rezysancyjnych przewodów czy elemenów grzejnych mających wchodzić w skład urządzenia elekroermicznego zależny jes,
Bardziej szczegółowoSformułowanie Schrödingera mechaniki kwantowej. Fizyka II, lato
Sformułowanie Schrödingera mechaniki kwanowej Fizyka II, lao 018 1 Wprowadzenie Posać funkcji falowej dla fali de Broglie a, sin sin k 1 Jes o przypadek jednowymiarowy Posać a zosała określona meodą zgadywania.
Bardziej szczegółowoIndukcyjność. Autorzy: Zbigniew Kąkol Kamil Kutorasiński
Indukcyjność Autorzy: Zbigniew Kąkol Kamil Kutorasiński 2019 Indukcyjność Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Powszechnie stosowanym urządzeniem, w którym wykorzystano zjawisko indukcji elektromagnetycznej
Bardziej szczegółowoTEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
EORI OBWODÓW I SYGNŁÓW LBORORIUM KDEMI MORSK Katedra eleomuniacji Morsiej Ćwiczenie nr 2: eoria obwodów i sygnałów laboratorium ĆWICZENIE 2 BDNIE WIDM SYGNŁÓW OKRESOWYCH. Cel ćwiczenia Celem ćwiczenia
Bardziej szczegółowoMetodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)
OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu
Bardziej szczegółowo7 Dodatek II Ogólna teoria prądu przemiennego
7 Dodatek II Ogólna teoria prądu przemiennego AC (ang. Alternating Current) oznacza naprzemienne zmiany natężenia prądu i jest symbolizowane przez znak ~. Te zmiany dotyczą zarówno amplitudy jak i kierunku
Bardziej szczegółowoWykład Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu
Wykład 7 7. Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu M d x kx Rozwiązania x = Acost v = dx/ =-Asint a = d x/ = A cost przy warunku = (k/m) 1/. Obwód
Bardziej szczegółowoUkłady elektroniczne I Przetwornice napięcia
kłady elekriczne Przewornice napięcia Jerzy Wikowski Sabilizaor równoległy i szeregowy = + Z = + Z Z o o Z Mniejsze sray mocy 1 Sabilizaor impulsowy i liniowy P ( ) sra P sra sa max o o o Z Mniejsze sray
Bardziej szczegółowoZaliczenie wykładu Technika Analogowa Przykładowe pytania (czas zaliczenia minut, liczba pytań 6 8)
Zaliczenie wyładu Technia Analogowa Przyładowe pytania (czas zaliczenia 3 4 minut, liczba pytań 6 8) Postulaty i podstawowe wzory teorii obowdów 1 Sformułuj pierwsze i drugie prawo Kirchhoffa Wyjaśnij
Bardziej szczegółowoLABORATORIUM PODSTAWY ELEKTROTECHNIKI
LABORATORIUM PODSTAWY ELEKTROTECHNIKI CHARAKTERYSTYKI TRANSFORMATORA JEDNOFAZOWEGO Badanie właściwości transformatora jednofazowego. Celem ćwiczenia jest poznanie budowy oraz wyznaczenie charakterystyk
Bardziej szczegółowoWykres linii ciśnień i linii energii (wykres Ancony)
Wyres linii ciśnień i linii energii (wyres Ancony) W wyorzystywanej przez nas do rozwiązywania problemów inżyniersich postaci równania Bernoulliego występuje wysoość prędości (= /g), wysoość ciśnienia
Bardziej szczegółowoEFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ
Sudia Podyplomowe EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ w ramach projeku Śląsko-Małopolskie Cenrum Kompeencji Zarządzania Energią 1 Wysokoobroowe układy napędowe dla AGD i elekronarzędzi Sanisław
Bardziej szczegółowoELEKTROTECHNIKA I ELEKTRONIKA
UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIŁ INŻYNIERII MECHNICZNEJ INSTYTUT EKSPLOTCJI MSZYN I TRNSPORTU ZKŁD STEROWNI ELEKTROTECHNIK I ELEKTRONIK ĆWICZENIE: E2 POMIRY PRĄDÓW I NPIĘĆ W
Bardziej szczegółowoTemat ćwiczenia: GENERATOR FUNKCYJNY i OSCYLOSKOP Układ z diodą prostowniczą, pomiary i obserwacje sygnałów elektrycznych Wprowadzenie AMD
Laboraoriu Eleroechnii i eleronii ea ćwiczenia: LABORAORIUM 6 GENERAOR UNKCYJNY i OSCYLOSKOP Uład z diodą prosowniczą, poiary i obserwacje sygnałów elerycznych Wprowadzenie Ćwiczenie a za zadanie zapoznanie
Bardziej szczegółowoPodstawowe człony dynamiczne
Podsawowe człony dynamiczne charakerysyki czasowe. Człon proporcjonalny = 2. Człony całkujący idealny 3. Człon inercyjny = = + 4. Człony całkujący rzeczywisy () = + 5. Człon różniczkujący rzeczywisy ()
Bardziej szczegółowoWykład 14: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok
Wykład 14: Indukcja Dr inż. Zbigniew zklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Pole magnetyczne a prąd elektryczny Do tej pory omawiano skutki
Bardziej szczegółowoAnaliza popytu. Ekonometria. Metody i analiza problemów ekonomicznych. (pod red. Krzysztofa Jajugi), Wydawnictwo AE Wrocław, 1999.
Analiza popyu Eonomeria. Meody i analiza problemów eonomicznych (pod red. Krzyszofa Jajugi) Wydawnicwo AE Wrocław 1999. Popy P = f ( X X... X ε ) 1 2 m Zmienne onrolowane: np.: cena (C) nałady na relamę
Bardziej szczegółowo1. Sygnały i systemy dyskretne (LTI, SLS) (1w=2h)
Cyfrowe rzewarzanie sygnałów Jace Rezmer --. Sygnały i sysemy dysrene (LI, SLS (w=h.. Sysemy LI Pojęcie sysemy LI oznacza liniowe sysemy niezmienne w czasie (ang. Linear ime - Invarian. W lieraurze olsiej
Bardziej szczegółowoStanowisko badawcze do modelowania pracy napędu trakcyjnego w stanach wywołanych nagłą zmianą prędkości kątowej kół pojazdu
Pior CHUDZIK, Andrzej DĘBOWSKI, omasz KOLASA, Daniel LEWANDOWSKI, Grzegorz LISOWSKI, Przemysław ŁUKASIAK 3, Rafał NOWAK Poliechnia Łódza, Insyu Auomayi (, ABB Sp. z o.o. ABB Corporae Research Cener (,
Bardziej szczegółowo- Strumień mocy, który wpływa do obszaru ograniczonego powierzchnią A ( z minusem wpływa z plusem wypływa)
37. Straty na histerezę. Sens fizyczny. Energia dostarczona do cewki ferromagnetykiem jest znacznie większa od energii otrzymanej. Energia ta jest tworzona w ferromagnetyku opisanym pętlą histerezy, stąd
Bardziej szczegółowoLekcja 5. Temat: Prawo Ohma dla części i całego obwodu
Lekcja 5. Temat: Prawo Ohma dla części i całego obwodu Prąd płynący w gałęzi obwodu jest wprost proporcjonalny do przyłożonej siły elektromotorycznej E, a odwrotnie proporcjonalne do rezystancji R umieszczonej
Bardziej szczegółowoObwody sprzężone magnetycznie.
POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTT MASZYN I RZĄDZEŃ ENERGETYCZNYCH LABORATORIM ELEKTRYCZNE Obwody sprzężone magnetycznie. (E 5) Opracował: Dr inż. Włodzimierz OGLEWICZ
Bardziej szczegółowoRodzaje, przebiegi i widma sygnałów Zniekształcenia Szumy Poziomy logiczne Margines zakłóceń Zasady cyfryzacji sygnałów analogowych
Sygnały eleroniczne (decybele-bajy) Rodzaje, przebiegi i widma sygnałów Znieszałcenia Szumy Poziomy logiczne Margines załóceń Zasady cyfryzacji sygnałów analogowych Jednym z celów przewodnich realizowanych
Bardziej szczegółowoMODEL OGÓLNY MONITOROWANIA RYZYKA AWARII W EKSPLOATACJI ŚRODKÓW TRANSPORTU
Henry TOMASZEK Ryszard KALETA Mariusz ZIEJA Insyu Techniczny Wojs Loniczych PRACE NAUKOWE ITWL Zeszy 33, s. 5 17, 2013 r. DOI 10.2478/afi-2013-0001 MODEL OGÓLNY MONITOROWANIA RYZYKA AWARII W EKSPLOATACJI
Bardziej szczegółowoPolitechnika Wrocławska Wydział Elektroniki, Katedra K-4. Klucze analogowe. Wrocław 2017
Poliechnika Wrocławska Klucze analogowe Wrocław 2017 Poliechnika Wrocławska Pojęcia podsawowe Podsawą realizacji układów impulsowych oraz cyfrowych jes wykorzysanie wielkosygnałowej pacy elemenów akywnych,
Bardziej szczegółowoPolitechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w
Bardziej szczegółowoUkłady sekwencyjne asynchroniczne Zadania projektowe
Układy sekwencyjne asynchroniczne Zadania projekowe Zadanie Zaprojekować układ dwusopniowej sygnalizacji opycznej informującej operaora procesu o przekroczeniu przez konrolowany paramer warości granicznej.
Bardziej szczegółowoWENTYLACJA i KLIMATYZACJA 2. Ćwiczenia nr 1
Insyu Inżynierii Cieplnej i Ochrony Powierza Poliechniki Krakowskiej Zakład Wenylacji Klimayzacji i Chłodnicwa WENTYLACJA i KLIMATYZACJA 2 Ćwiczenia nr 1 Urządzenia do uzdania powierza w klimayzacji Dr
Bardziej szczegółowoRys.1. Podstawowa klasyfikacja sygnałów
Kaedra Podsaw Sysemów echnicznych - Podsawy merologii - Ćwiczenie 1. Podsawowe rodzaje i ocena sygnałów Srona: 1 1. CEL ĆWICZENIA Celem ćwiczenia jes zapoznanie się z podsawowymi rodzajami sygnałów, ich
Bardziej szczegółowoPrądy wirowe (ang. eddy currents)
Prądy wirowe (ang. eddy currents) Prądy można indukować elektromagnetycznie nie tylko w przewodnikach liniowych, ale również w materiałach przewodzących o dowolnym kształcie i powierzchni, jeżeli tylko
Bardziej szczegółowoWYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład VII Przekształcenie Fouriera.
7. Całka Fouriera w posaci rzeczywisej. Wykład VII Przekszałcenie Fouriera. Doychczas rozparywaliśmy szeregi Fouriera funkcji w ograniczonym przedziale [ l, l] lub [ ] Teraz pokażemy analogicznie przedsawienie
Bardziej szczegółowoWykład FIZYKA II. 4. Indukcja elektromagnetyczna. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 4. Indukcja elektromagnetyczna Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ PRAWO INDUKCJI FARADAYA SYMETRIA W FIZYCE
Bardziej szczegółowoKondensacyjne gazowe nagrzewnice powietrza GMS9- górnonadmuchowy/leżący GDS9 - dolnonadmuchowy
Kondensacyjne gazowe nagrzewnice powierza - górnonadmuchowy/leżący - dolnonadmuchowy Kondensacyjne nagrzewnice gazowe jednosopniowe Goodman / posiadają opaenowany, aluminiowany salowy rurowy wymiennik
Bardziej szczegółowoPodstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude
Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 3 Zagadnienie mocy w obwodzie RLC przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie sinusoidalnie
Bardziej szczegółowoElektrotechnika teoretyczna
Zachodniopomorski Uniwersytet Technologiczny w Szczecinie RYSZARD SIKORA TOMASZ CHADY PRZEMYSŁAW ŁOPATO GRZEGORZ PSUJ Elektrotechnika teoretyczna Szczecin 2016 Spis treści Spis najważniejszych oznaczeń...
Bardziej szczegółowoy 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) =
Uk lady równań różniczkowych Pojȩcia wsȩpne Uk ladem równań różniczkowych nazywamy uk lad posaci y = f (, y, y 2,, y n ) y 2 = f 2 (, y, y 2,, y n ) y n = f n (, y, y 2,, y n ) () funkcje f j, j =, 2,,
Bardziej szczegółowoR w =
Laboratorium Eletrotechnii i eletronii LABORATORM 6 Temat ćwiczenia: BADANE ZASLACZY ELEKTRONCZNYCH - pomiary w obwodach prądu stałego Wyznaczanie charaterysty prądowo-napięciowych i charaterysty mocy.
Bardziej szczegółowo