Matematyka stosowana i metody numeryczne
|
|
- Julia Witkowska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 8 Interpolacja Interpolacja polega na budowaniu tzw. funkcji interpolujących ϕ(x) na podstawie zadanych wartości f(x) zapamiętanych w postaci dyskretnej. Postać dyskretną tworzą dwa zbiory liczbowe: węzły interpolacji: X = {x 0, x 1,..., x n } wartości funkcji interpolowanej (odpowiadające tym węzłom): gdzie: f i f(x i ). F = {f 0, f 1,..., f n } Obie funkcje, interpolowana f(x) i interpolująca ϕ(x), mają na zbiorze węzłów X dokładnie takie same wartości liczbowe. Są zatem spełnione warunki: ϕ(x i ) = f(x i ), i = 0, 1,..., n, na podstawie których konstruuje się funkcję interpolującą ϕ(x i ). Funkcja ϕ(x i ) w przypadku ogólnym jest przedstawiana najczęściej w postaci wielomianu uogólnionego: ϕ(x) = a o φ 0 (x) + φ 1 (x) a n φ n (x) = a i φ i (x) = Φ(x) a, (1) utworzonego z odpowiednio dobranych tzw. funkcji bazowych Φ(x) = [φ 0 (x), φ 1 (x),..., φ n (x) i wektora współczynników (mnożników) a = [a 0,,..., a n T. W celu utworzenia konkretnej funkcji interpolującej ϕ(x) należy: przyjąć odpowiednią bazę Φ(x), wyznaczyć wartości liczbowe wszystkich jej współczynników a i, i = 0, 1,..., n, sformułować wielomian ϕ(x i ). 1
2 Przykład: Zbudować uogólniony wielomian interpolacyjny o postaci ϕ(x) = a 0 + x + a 2 cos x + a 3 sin x Węzły interpolacji: X = {x 0, x 1, x 2, x 3 } = {0, 1.5, 3, 4}. Wartości funkcji: F = {f 0, f 1, f 2, f 3 } = {2, 3, 1, 3}. Baza interpolacyjna: Φ(x) = [1, x, cos x, sin x. Rozwiązanie: Budujemy macierz U: U = 1 x 0 cos x 0 sin x 0 1 x 1 cos x 1 sin x 1 1 x 2 cos x 2 sin x 2 1 x 3 cos x 3 sin x 3 = Otrzymujemy układ równań U a = f, którego rozwiązanie pozwala zapisać poszukiwany wielomian w postaci: ϕ(x) = Φ(x) a = [1, x, cos x, sin x Interpolacja wielomianowa (algebraiczna) Przyjmujemy bazę jednomianową: i budujemy wielomianową funkcję interpolującą: 8.2 Interpolacja Lagrange a Φ(x) = [ 1, x, x 2, x 3,..., x n ϕ(x) = a 0 + x + a 2 x 2 + a 3 x a n x n. (2) Przyjmujemy postać funkcji interpolującej stopnia n jako tzw. wielomian interpolacyjny Lagrange a: ϕ(x) = f 0 L n 0(x) + f 1 L n 1(x) f n L n n(x). (3) gdzie f i (i = 0, 1,..., n) są wartościami funkcji interpolowanej, a funkcje bazowe Lagrange a mają postać: L n i = (x x 0) (x x 1 )... (x x i 1 ) (x x i+1 )... (x x n ) (x i x 0 ) (x i x 1 )... (x i x i 1 ) (x i x i+1 )... (x i x n ) czyli: L n i = j=n j=0 j i x x j x i x j. (4) 2
3 Przykład: Zbudować wielomian interpolacyjny Lagrange a stopnia n = 2. Węzły interpolacji: X = {x 0, x 1, x 2 }. Wartosci funkcji: F = {f 0, f 1, f 2 }. Baza Lagrange a: L 2 (x) = [L 2 0(x), L 2 1(x), L 2 2(x). Wielomian interpolacyjny: ϕ(x) = L 2 (x) f = f 0 L 2 0(x) + f 1 L 2 1(x) + f 2 L 2 2(x). L 2 i (x) = j=2 j=0 j i x x i x i x j : L 2 0(x) = (x x 1)(x x 2 ) (x 0 x 1 )(x 0 x 2 ), L 2 1(x) = (x x 0)(x x 2 ) (x 1 x 0 )(x 1 x 2 ), L 2 2(x) = (x x 0)(x x 1 ) (x 2 x 0 )(x 2 x 1 ). Dla węzłów X = {x 0, x 1, x 2 } = { 1, 2, 3} i wartości F = {f 0, f 1, f 2 } = {1, 4, 9 } wielomian interpolacyjny Lagrange a przyjmuje postać ϕ(x) = 1 x Interpolacja Hermite a Istnieje możliwość zastosowania interpolacji, zaproponowanej przez Hermite a, w której istotę stanowi budowanie funkcji interpolujących spełniających warunki: ϕ (k) (x i ) = f (k) i, i = 0, 1,..., n, k = 0, 1,..., m n. (5) w których indeks (k) oznacza rząd pochodnych funkcji ϕ i f. Najprostszym, ale najczęściej stosowanym wariantem interpolacji Hermite a jest przypadek, kiedy funkcje ϕ(x) są wielomianami algebraicznymi spełniającymi warunki (5). Liczba warunków ϕ (k) (x i ) = f (k) i wynosi (n + 1)(m + 1) i dlatego w celu posłużenia się interpolacją globalną należy stosować wielomiany stopnia (n + 1)(m + 1) 1. Przykład: Zbudować wielomian interpolacyjny Hermite a dla n = m = 1 na zbiorze węzłów X = {x 0, x 1 }. Rozwiązanie: Stopień wielomianu wynosi (n + 1)(m + 1) 1 = 3. Skorzystamy z następujących wielomianów: ϕ(x) = a 0 + x + a 2 x 2 + a 3 x 3, ϕ (x) = + 2 a 2 x + 3 a 3 x 2. 3
4 Układ równań U a = f ma postać: 1 x 0 x 2 0 x x 0 3 x x 1 x 2 1 x x 1 3 x 2 1 a 0 a 2 a 3 = Jeżeli przyjmiemy, że x 0 = 0, a x 1 = L, to: L L 2 L 3 a = f U a = f a = U 1 f 0 1 2L 3L 2 gdzie lokalna baza Hermite a: ϕ(x) =Φ(x) a = [1, x, x 2, x 3 a = [1, x, x 2, x 3 U 1 f = f 0 f 1 f 2 f 3 [H 1 (x), H 2 (x), H 3 (x), H 4 (x) f = H(x) f, H 1 (x) = 1 3 ξ ξ 3, ξ [0, 1, H 2 (x) = L (ξ 2 ξ 2 + ξ 3 ), H 3 (x) = 3 ξ 2 2 ξ 3, H 4 (x) = L ( ξ 2 + ξ 3 ). Stosując interpolację Hermite a do obliczenia f(1.25) dla danych: x f(x) f (x) x 0 = x 1 = otrzymujemy rozwiązanie: a 0 = , = , a 2 = , a 3 = ϕ(x) = x x x 3 ϕ(x = 1.25) = ϕ(ξ = 0.75) = W tym celu możemy posłużyć się wykorzystaniem transformacji i lokalnej bazy Hermite a: x ξ, L = x 1 x 0 = 0.2 ξ = x x 0 = x 1.1 x 1 x = x ϕ(x = 1.25) = ϕ(ξ = 0.75) = = H 1 (ξ = 0.75) H 2 (ξ = 0.75) H 3 (ξ = 0.75) H 4 (ξ = 0.75) =
5 8.4 Interpolacja 2D Interpolacja 2D jest złożeniem interpolacji 1D wzdłuż dwóch osi x i y L nm (x, y) = m j=0 f ij L nm ij (x, y) gdzie k=n L nm ij (x, y) = k=0 k i l=m x x k x i x k l=0 l j f ij = f(x i, y j ) y y l y j y l Interpolacja biliniowa 1, 0 x L 11 00(x, y) = (x x 1)(y y 1 ) (x 0 x 1 )(y 0 y 1 ) 1 0, 0 1, 1 L 11 10(x, y) = (x x 0)(y y 1 ) (x 1 x 0 )(y 0 y 1 ) L 11 01(x, y) = (x x 1)(y y 0 (x 0 x 1 )(y 1 y 0 ) 0, 1 0, 0 1 0, 1 y y 1, 0 x 1, 1 L 11 11(x, y) = (x x 0)(y y 0 ) (x 1 x 0 )(y 1 y 0 ) x 1, 0 1 0, 0 0, 0 0, 1 y 1, 1 0, 1 y 1, 0 x 1 1, 1 5
6 9 Aproksymacja Aproksymacja różni się od interpolacji funkcji tym, że dla wyznaczania współczynników wielomianu aproksymacyjnego nie korzysta się z warunków ϕ i (x) = f i. Oznacza to, że wielomian aproksymacyjny na zbiorze X nie musi przyjmować wartości funkcji aproksymowanej. Stopień wielomianu aproksymacyjnego nie ma więc związku z liczbą elementów zbioru X, a wyznaczanie niewiadomych a k jest realizowane np. przy pomocy aproksymacji optymalnej. Rozwiązanie problemu takiej aproksymacji wymaga: przyjęcia odpowiedniej bazy funkcyjnej, ustalenia kryterium oceny jakości aproksymacji, które służy do jednoznacznego określenia wartości a k. Najprostsza postać kryterium oceniającego jakość aproksymacji jest następująca: min R = min [f(x i ) ϕ(x i ) 2 (6) Wartość funkcji R jest pewną miarą odchylenia funkcji aproksymującej ϕ(x) od aproksymowanej f(x). Ten sposób postępowania nosi nazwę metody najmniejszych kwadratów. Obliczenie wartości a k polega na wykorzystaniu warunków stacjonarności funkcji R: R a k = 0, k = 0, 1, 2,..., m. (7) 9.1 Aproksymacja wielomianami algebraicznymi Wielomian aproksymacyjny stopnia m ma postać: ϕ(x) = a 0 + x + a 2 x a m x m = Obliczając pochodne cząstkowe funkcji R otrzymujemy ostatecznie: gdzie: S = s 0 s 1 s 2 s m s 1 s 2 s 3 s m+1 s 2 s 3 s 4 s m s m s m+1 s m+2 s 2m s k = m a k x k (8) k=0 S a = t (9) a 0 t 0, a = a 2..., t = t 1 t 2... a m t m x k i, t k = Powyższy układ równań moża też zapisać następująco: f i x k i [s k, s k+1,..., s k+m a = t k, k = 0, 1, 2,..., m (10) 6
7 Przykład: Zbudować wielomian aproksymacyjny stopnia m = 1 dla funkcji: i x π/2 π/3 π/3 π/2 f Rozwiązanie: Wielomian aproksymacyjny ma postać ϕ(x) = a 0 + x. Funkcja R: R = (a 0 + x i f i ) 2. Układ równań S a = t przyjmuje postać: n + 1 x i Dla powyższych danych: [ x i x 2 i [ a0 [ a0 = [ = f i f i x i Rozwiązanie tego układu równań daje: a 0 = 2.5, = , zatem ostatecznie wielomian aproksymacyjny ma postać: ϕ(x) = x Aproksymacja wielomianami uogólnionymi Poszukujemy wielomianu uogólnionego ϕ(x), będącego najlepszym przybliżeniem średniokwadratowym funkcji f(x) na zbiorze X, tj. funkcji: ϕ(x) = a 0 φ 0 (x) + φ 1 (x) a m φ m (x) = m a k φ k (x). (11) Współczynniki a k są tak określone, aby wyrażenie: R = f(x i ) ϕ(x i ) 2. (12) było minimalne. k=0 Dla funkcji: korzystamy z warunków: R = [ f(x i ) m 2 a k φ k (x i ). (13) k=0 R a k = 0, k = 0, 1,..., m, (14) 7
8 W zapisie macierzowym układ równań przyjmuje postać: D T D a = D T f (15) gdzie: D = φ 0 (x 0 ) φ 1 (x 0 )... φ m (x 0 ) φ 0 (x 1 ) φ 1 (x 1 )... φ m (x 1 ) φ 0 (x 2 ) φ 1 (x 2 )... φ m (x 2 ) φ 0 (x n ) φ 1 (x 0 )... φ m (x n ) a = a 0 a 2... a m f = f(x 0 ) f(x 1 ) f(x 2 )... f(x n ). (16) Przykład: Znaleźć równanie krzywej najlepiej aproksymującej poniższą funkcję w sensie najmniejszych kwadratów: i x π/2 π/3 π/3 π/2 f Przyjąć funkcje bazowe: Rozwiązanie: φ 0 (x) = 3x π, φ 1(x) = cos(x). Funkcja aproksymująca: ϕ(x) = a 0 φ 0 (x) + φ 1 (x) gdzie: D = φ 0 (x 0 ) φ 1 (x 0 ) φ 0 (x 1 ) φ 1 (x 1 ) φ 0 (x 2 ) φ 1 (x 2 ) φ 0 (x 3 ) φ 1 (x 3 ) Po wymnożeniu otrzymujemy układ równań: [ 13/ /2 Po jego rozwiązaniu mamy: a 0 = 6, = 10. Wielomian aproksymacyjny ma postać: D T Da = D T f a = [ a0 [ a0 = [ 39 5 ϕ(x) = 6φ 0 (x) + 10 φ 1 (x). f = f 0 f 1 f 2 f 3. 8
INTERPOLACJA I APROKSYMACJA FUNKCJI
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Wprowadzenie Na czym polega interpolacja? Interpolacja polega
Aproksymacja. funkcji: ,a 2. ,...,a m. - są funkcjami bazowymi m+1 wymiarowej podprzestrzeni liniowej X m+1
Założenie: f(x) funkcja którą aproksymujemy X jest przestrzenią liniową Aproksymacja liniowa funkcji f(x) polega na wyznaczeniu współczynników a 0,a 1,a 2,...,a m funkcji: Gdzie: - są funkcjami bazowymi
Analiza numeryczna Kurs INP002009W. Wykład 8 Interpolacja wielomianowa. Karol Tarnowski A-1 p.223
Analiza numeryczna Kurs INP002009W Wykład 8 Interpolacja wielomianowa Karol Tarnowski karol.tarnowski@pwr.wroc.pl A-1 p.223 Plan wykładu Wielomian interpolujący Wzór interpolacyjny Newtona Wzór interpolacyjny
Metody numeryczne. Sformułowanie zagadnienia interpolacji
Ćwiczenia nr 4. Sformułowanie zagadnienia interpolacji Niech będą dane punkty x 0,..., x n i wartości y 0,..., y n, takie że i=0,...,n y i = f (x i )). Szukamy funkcji F (funkcji interpolującej), takiej
Interpolacja funkcji
Interpolacja funkcji Interpolacja funkcji Interpolacja funkcji Wielomianowa Splajny Lagrange a Trygonometryczna Interpolacja Newtona (wzór I ) Czebyszewa Newtona (wzór II ) ( Wielomiany Czebyszewa ) Załóżmy,
Metody numeryczne. Sformułowanie zagadnienia interpolacji
Wykład nr 2 Sformułowanie zagadnienia interpolacji Niech będą dane punkty x 0,..., x n (nazywane węzłami interpolacji) i wartości w węzłach y 0,..., y n. Od węzłów żądamy spełnienia warunku x i x j dla
Interpolacja. Marcin Orchel. Drugi przypadek szczególny to interpolacja trygonometryczna
Interpolacja Marcin Orchel 1 Wstęp Mamy daną funkcję φ (x; a 0,..., a n ) zależną od n + 1 parametrów a 0,..., a n. Zadanie interpolacji funkcji φ polega na określeniu parametrów a i tak aby dla n + 1
ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 26 czerwca 2017 roku
Egzamin pisemny zestaw czerwca 0 roku Imię i nazwisko:.... ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x
ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 24 czerwca 2019 roku
Egzamin pisemny zestaw. ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x n, to funkcja x0 x gx ( ) + [ gx (
Metody numeryczne Wykład 6
Metody numeryczne Wykład 6 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Interpolacja o Interpolacja
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 6 Rozwiązywanie równań nieliniowych Rozwiązaniem lub pierwiastkiem równania f(x) = 0 lub g(x) = h(x)
Metody Obliczeniowe w Nauce i Technice
5. Aproksymacja Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland bubak@agh.edu.pl dice.cyfronet.pl Contributors Paweł Urban Jakub Ptak Łukasz Janeczko
Aproksymacja linią prostą. dane. X dane 0. Y dane 1. p q. line X, Y. Tablica z danymi do aproksymacji
v. 4 aproks_prosta.xmcd Aproksymacja linią prostą Tablica z danymi do aproksymacji dane.3 3.6 3 23.6 5 27.57 4 24.26 6 6.63 8 3.4 2 5.3 48.22 3 6.33 6 7.89 4 59.8 7 84.27 9 77.69 X dane Y dane Współczynniki
Egzamin z Metod Numerycznych ZSI, Grupa: A
Egzamin z Metod Numerycznych ZSI, 06.2005. Grupa: A Nazwisko: Imię: Numer indeksu: Ćwiczenia z: Data: Część 1. Test wyboru, max 36 pkt Zaznacz prawidziwe odpowiedzi literą T, a fałszywe N. Każda prawidłowa
Metody Numeryczne Wykład 4 Wykład 5. Interpolacja wielomianowa
Sformułowanie zadania interpolacji Metody Numeryczne Wykład 4 Wykład 5 Interpolacja wielomianowa Niech D R i niech F bȩdzie pewnym zbiorem funkcji f : D R. Niech x 0, x 1,..., x n bȩdzie ustalonym zbiorem
3. Interpolacja. Interpolacja w sensie Lagrange'a (3.1) Dana jest funkcja y= f x określona i ciągła w przedziale [a ;b], która
3. Interpolacja Interpolacja w sensie Lagrange'a (3.1) Dana jest funkcja y= f x określona i ciągła w przedziale [a ;b], która przyjmuje wartości y 1, y 2,, y n, dla skończonego zbioru argumentów x 1, x
Analiza numeryczna kolokwium2a-15grudnia2005
kolokwium2a-15grudnia2005 1.Niechf(x)=a n x n +a n 1 x n 1 +...+a 0.Jakąwartośćprzyjmujeilorazróżnicowy f[x 0,...,x n ]dladowolnychn+1paramiróżnychwęzłówx j?odpowiedźuzasadnić. 2. Pokazać, że zamiana zmiennych
dr inż. Damian Słota Gliwice r. Instytut Matematyki Politechnika Śląska
Program wykładów z metod numerycznych na semestrze V stacjonarnych studiów stopnia I Podstawowe pojęcia metod numerycznych: zadanie numeryczne, algorytm. Analiza błędów: błąd bezwzględny i względny, przenoszenie
Interpolacja, aproksymacja całkowanie. Interpolacja Krzywa przechodzi przez punkty kontrolne
Interpolacja, aproksymacja całkowanie Interpolacja Krzywa przechodzi przez punkty kontrolne Aproksymacja Punkty kontrolne jedynie sterują kształtem krzywej INTERPOLACJA Zagadnienie interpolacji można sformułować
Egzamin z Metod Numerycznych ZSI, Egzamin, Gr. A
Egzamin z Metod Numerycznych ZSI, 06.2007. Egzamin, Gr. A Imię i nazwisko: Nr indeksu: Section 1. Test wyboru, max 33 pkt Zaznacz prawidziwe odpowiedzi literą T, a fałszywe N. Każda prawidłowa odpowiedź
POD- I NADOKREŚLONE UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
POD- I NADOKREŚLONE UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko
Elementy projektowania inzynierskiego Przypomnienie systemu Mathcad
Elementy projektowania inzynierskiego Definicja zmiennych skalarnych a : [S] - SPACE a [T] - TAB - CTRL b - SHIFT h h. : / Wyświetlenie wartości zmiennych a a = b h. h. = Przykładowe wyrażenia
METODY NUMERYCZNE. Wykład 3. Plan. Aproksymacja Interpolacja wielomianowa Przykłady. dr hab.inż. Katarzyna Zakrzewska, prof.agh. Met.Numer.
METODY NUMERYCZNE Wykład 3. dr hab.inż. Katarzyna Zakrzewska, prof.agh Met.Numer. wykład 3 1 Plan Aproksymacja Interpolacja wielomianowa Przykłady Met.Numer. wykład 3 2 1 Aproksymacja Metody numeryczne
Rozwiązywanie równań nieliniowych
Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej
DOPASOWYWANIE KRZYWYCH
DOPASOWYWANIE KRZYWYCH Maciej Patan Uniwersytet Zielonogórski Motywacje Przykład 1. Dane o przyroście światowej populacji są aktualizowane co każde 10 lat, celem szacowania średniego przyrostu rocznego.
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 14 Rachunekwektorowy W celu zdefiniowania wektora a należy podać: kierunek(prostą na której leży wektor)
METODY KOMPUTEROWE W MECHANICE
METODY KOMPUTEROWE W MECHANICE wykład dr inż. Paweł Stąpór laboratorium 15 g, projekt 15 g. dr inż. Paweł Stąpór dr inż. Sławomir Koczubiej Politechnika Świętokrzyska Wydział Zarządzania i Modelowania
Lista nr 1 - Liczby zespolone
Lista nr - Liczby zespolone Zadanie. Obliczyć: a) ( 3 i) 3 ( 6 i ) 8 c) (+ 3i) 8 (i ) 6 + 3 i + e) f*) g) ( 3 i ) 77 ( ( 3 i + ) 3i 3i h) ( + 3i) 5 ( i) 0 i) i ( 3 i ) 4 ) +... + ( 3 i ) 0 Zadanie. Przedstawić
2.2 Udowodnić,żejeżelif(x)=(x x 0 )(x x 1 )...(x x p ),to[x 0,x 1,...,x n ;f]= 0dlan p.jakajestwartośćtegoilorazu,gdyn=p+1?
2.2 Udowodnić,żejeżelif(x)=(x x 0 )(x x 1 )...(x x p ),to[x 0,x 1,...,x n ;f]= 0dlan p.jakajestwartośćtegoilorazu,gdyn=p+1? Definicja ilorazu różnicowego: [x l,x l+1,...,x l+k ;f]= l+k l+k i=l j=l j i
Grafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II
Grafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1
ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH
Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym
Aproksymacja funkcji a regresja symboliczna
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą
Newton vs. Lagrange - kto lepszy?
Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Katedra Analizy Matematycznej Agnieszka Rydzyńska nr albumu: 254231 Praca Zaliczeniowa z Seminarium Newton vs. Lagrange - kto lepszy? Opiekun
Ćwiczenia nr 7. TEMATYKA: Krzywe Bézier a
TEMATYKA: Krzywe Bézier a Ćwiczenia nr 7 DEFINICJE: Interpolacja: przybliżanie funkcji za pomocą innej funkcji, zwykle wielomianu, tak aby były sobie równe w zadanych punktach. Poniżej przykład interpolacji
Obliczenia naukowe Wykład nr 6
Obliczenia naukowe Wykład nr 6 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [1] D. Kincaid, W. Cheney, Analiza
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładów Błędy obliczeń Błędy można podzielić na: modelu, metody, wejściowe (początkowe), obcięcia, zaokrągleń..
w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą
Lokalna odwracalność odwzorowań, odwzorowania uwikłane
Lokalna odwracalność odwzorowań, odwzorowania uwikłane Katedra Matematyki i Ekonomii Matematycznej Szkoła Główna Handlowa 17 maja 2012 Definicja Mówimy, że odwzorowanie F : X R n, gdzie X R n, jest lokalnie
Zaawansowane metody numeryczne
Wykład 6 Własności wielomianów ortogonalnych Wszystkie znane rodziny wielomianów ortogonalnych dzielą pewne wspólne cechy: 1) definicja za pomocą wzoru różniczkowego, jawnej sumy lub funkcji tworzącej;
Aproksymacja. j<k. L 2 p[a, b] l 2 p,n X = Lemat 1. Wielomiany ortogonalne P 0,P 1,...,P n tworza przestrzeni liniowej Π n. Dowód.
Metody numeryczne Paweł Zieliński p. 1/19 Lemat 1. Wielomiany ortogonalne P 0,P 1,...,P n tworza bazę przestrzeni liniowej Π n. Dowód. Lemat 2. Dowolny wielomian Q j stopnia j niższego od k jest prostopadły
Programowanie nieliniowe. Badania operacyjne Wykład 3 Metoda Lagrange a
Programowanie nieliniowe Badania operacyjne Wykład 3 Metoda Lagrange a Plan wykładu Przykład problemu z nieliniową funkcją celu Sformułowanie problemu programowania matematycznego Podstawowe definicje
Bardzo łatwa lista powtórkowa
Analiza numeryczna, II rok inf., WPPT- 12 stycznia 2008 Terminy egzaminów Przypominam, że egzaminy odbędą się w następujących terminach: egzamin podstawowy: 30 stycznia, godz. 13 15, C-13/1.31 egzamin
Interpolacja i aproksymacja, pojęcie modelu regresji
27 styczeń 2009 SciLab w obliczeniach numerycznych - część 3 Slajd 1 Interpolacja i aproksymacja, pojęcie modelu regresji 27 styczeń 2009 SciLab w obliczeniach numerycznych - część 3 Slajd 2 Plan zajęć
Całkowanie numeryczne przy użyciu kwadratur
Całkowanie numeryczne przy użyciu kwadratur Plan wykładu: 1. Kwadratury Newtona-Cotesa a) wzory: trapezów, parabol etc. b) kwadratury złożone 2. Ekstrapolacja a) ekstrapolacja Richardsona b) metoda Romberga
Układy równań i równania wyższych rzędów
Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem
x y
Przykłady pytań na egzamin końcowy: (Uwaga! Skreślone pytania nie obowiązują w tym roku.). Oblicz wartość interpolacji funkcjami sklejanymi (przypadek (case) a), dla danych i =[- 4 5], y i =[0 4 -]. Jaka
Zaawansowane metody numeryczne
Wykład 1 Zadanie Definicja 1.1. (zadanie) Zadaniem nazywamy zagadnienie znalezienia rozwiązania x spełniającego równanie F (x, d) = 0, gdzie d jest zbiorem danych (od których zależy rozwiązanie x), a F
Zaawansowane metody numeryczne
Wykład 7 a szeregi Fouriera (zarówno w przypadku ciągłym, jak i dyskretnym) jest szczegónym przypadkiem aproksymacji funkcjami ortogonanymi. Anaitycznie rozwiązanie zadania aproksymacji trygonometrycznej
Programowanie liniowe
Badania operacyjne Problem Model matematyczny Metoda rozwiązania Znaleźć optymalny program produkcji. Zmaksymalizować 1 +3 2 2 3 (1) Przy ograniczeniach 3 1 2 +2 3 7 (2) 2 1 +4 2 12 (3) 4 1 +3 2 +8 3 10
składa się z m + 1 uporządkowanych niemalejąco liczb nieujemnych. Pomiędzy p, n i m zachodzi następująca zależność:
TEMATYKA: Krzywe typu Splajn (Krzywe B sklejane) Ćwiczenia nr 8 Krzywe Bezier a mają istotne ograniczenie. Aby uzyskać kształt zawierający wiele punktów przegięcia niezbędna jest krzywa wysokiego stopnia.
Elementy Analizy Numerycznej - opracowanie pytań egzaminacyjnych
Elementy Analizy Numerycznej - opracowanie pytań egzaminacyjnych baszmen, entereczek, JG, kubked, MK, PajdziuPaj Vertyk WI-INFA września 0 Spis treści Teoria. Co to znaczy, że algorytm obliczeniowy jest
Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.
Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3
ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j),
ELEKTROTECHNIKA Semestr Rok akad. / 5 ZADANIA Z MATEMATYKI Zestaw. Przedstaw w postaci algebraicznej liczby zespolone: (3 + j)(5 j) 3 j +j (5 + j) (3 + j) 3. Narysuj zbiory punktów na płaszczyźnie: +j
Definicja problemu programowania matematycznego
Definicja problemu programowania matematycznego minimalizacja lub maksymalizacja funkcji min (max) f(x) gdzie: x 1 x R n x 2, czyli: x = [ ] x n przy ograniczeniach (w skrócie: p.o.) p.o. g i (x) = b i
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności
Obliczenia Naukowe i Metody Numeryczne. Laboratorium Komputerowe lista 4 5 października 2012
Obliczenia Naukowe i Metody Numeryczne Laboratorium Komputerowe lista 4 5 października 2012 Temat: interpolacja i iteracyjne metody obliczania zer funkcji Uwagi. Zalecane jest graficzne ilustrowanie przeprowadzonych
Grafika komputerowa Wykład 7 Modelowanie obiektów graficznych cz. I
Grafika komputerowa Wykład 7 Modelowanie obiektów graficznych cz. I Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1
= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3
ZESTAW I 1. Rozwiązać równanie. Pierwiastki zaznaczyć w płaszczyźnie zespolonej. z 3 8(1 + i) 3 0, Sposób 1. Korzystamy ze wzoru a 3 b 3 (a b)(a 2 + ab + b 2 ), co daje: (z 2 2i)(z 2 + 2(1 + i)z + (1 +
Zagadnienia brzegowe dla równań eliptycznych
Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta
Przykład przedstawia rozwiązanie problemu brzegowego 7u +3xu=9x 2 +4 u ( 1)=3 u(2)= 2
Przykład przedstawia rozwiązanie problemu brzegowego 7u +3xu=9x 2 +4 u ()=3 u(2)= 2 (1) metodami residuów ważonych i MES. Metoda residuów ważonych Zanim zaczniemy obliczenia metodami wariacyjnymi zamienimy
Wstęp do metod numerycznych Zadania numeryczne 2016/17 1
Wstęp do metod numerycznych Zadania numeryczne /7 Warunkiem koniecznym (nie wystarczającym) uzyskania zaliczenia jest rozwiązanie co najmniej 3 z poniższych zadań, przy czym zadania oznaczone literą O
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych
y ( x) x i. y x i y( x) = ( x) x i,
Teoria reprezentacji zmiennoprzecinkowej i błędu obliczeń () Zapisać liczby, /3, 275, 225 w arytmetyce M(2, 6, 2) (zapis dwójkowy, 6 miejsc na mantysę, 2 na wykładnik), M(6, 4, 4), M(2, 2, 2) (2) (W) Wykaż,
Funkcje charakterystyczne zmiennych losowych, linie regresji 1-go i 2-go rodzaju
Funkcje charakterystyczne zmiennych losowych, linie regresji -go i 2-go rodzaju Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
VI. FIGURY GEOMETRYCZNE i MODELE
VI. FIGURY GEOMETRYCZNE i MODELE 6.1. Wprowadzenie Jednym z głównych zastosowań grafiki komputerowej jest modelowanie obiektów, czyli ich opis matematyczny, na podstawie którego na ekranie można stworzyć
Szybka transformacja Fouriera (FFT Fast Fourier Transform)
Szybka transformacja Fouriera (FFT Fast Fourier Transform) Plan wykładu: 1. Transformacja Fouriera, iloczyn skalarny 2. DFT - dyskretna transformacja Fouriera 3. FFT szybka transformacja Fouriera a) algorytm
Wprowadzenie do Mathcada 1
Wprowadzenie do Mathcada Ćwiczenie. - Badanie zmienności funkcji kwadratowej Ćwiczenie. pokazuje krok po kroku tworzenie prostego dokumentu w Mathcadzie. Dokument ten składa się z następujących elementów:.
Obliczenia Naukowe i Metody Numeryczne Przykładowe zadania z Analizy Numerycznej z poprzednich lat 5 października 2009
Obliczenia Naukowe i Metody Numeryczne Przykładowe zadania z Analizy Numerycznej z poprzednich lat 5 października 2009 1. Co to jest epsilon maszynowy? Napisać schemat algorytmu obliczania w komputerze
INFORMATYKA ELEMENTY METOD NUMERYCZNYCH.
INFORMATYKA ELEMENTY METOD NUMERYCZNYCH http://www.infoceram.agh.edu.pl METODY NUMERYCZNE Metody numeryczne zbiór metod rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane
Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne
Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur
Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński
Obliczenia Naukowe Wykład 12: Zagadnienia na egzamin Bartek Wilczyński 6.6.2016 Tematy do powtórki Arytmetyka komputerów Jak wygląda reprezentacja liczb w arytmetyce komputerowej w zapisie cecha+mantysa
Łagodne wprowadzenie do Metody Elementów Skończonych
Łagodne wprowadzenie do Metody Elementów Skończonych dr inż. Grzegorz DZIERŻANOWSKI dr hab. inż. Wojciech GILEWSKI Katedra Mechaniki Budowli i Zastosowań Informatyki 10 XII 2009 - część I 17 XII 2009 -
Zastosowanie MES do rozwiązania problemu ustalonego przepływu ciepła w obszarze 2D
Równanie konstytutywne opisujące sposób w jaki ciepło przepływa w materiale o danych właściwościach, prawo Fouriera Macierz konstytutywna (właściwości) materiału Wektor gradientu temperatury Wektor strumienia
1 Metody rozwiązywania równań nieliniowych. Postawienie problemu
1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie
1. Liczby zespolone. Jacek Jędrzejewski 2011/2012
1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać
3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B
1. Dla macierzy a) A = b) A = c) A = d) A = 3 1 + i 1 i i i 0 i i 0 1 + i 1 i 0 0 0 0 1 0 1 0 1 + i 1 i Wyznaczyć macierze spełniające własność komutacji: A, X = B. Obliczyć pierwiaski z macierzy: A =
Wstęp do metod numerycznych Interpolacja. P. F. Góra
Wstęp do metod numerycznych Interpolacja P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Interpolacja Dana jest funkcja w postaci stabelaryzowanej x i x 1 x 2 x 3... x n f i = f(x i ) f 1 f 2 f 3...
PROGRAMOWANIE NIELINIOWE
PROGRAMOWANIE NIELINIOWE Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie programowania nieliniowego (ZPN) min f(x) g i (x) 0, h i (x) = 0, i = 1,..., m g i = 1,..., m h f(x) funkcja celu g i (x) i
Metody numeryczne i statystyka dla in»ynierów
Kierunek: Automatyka i Robotyka, II rok Aproksymacja cz. II, wielomiany ortogonalne zastosowania PWSZ Gªogów, 2009 Iloczyn skalarny Funkcja okre±lona na przestrzeni liniowej (, ) R iloczyn skalarny wektorów
WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH
WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH Pod redakcją Anny Piweckiej Staryszak Autorzy poszczególnych rozdziałów Anna Piwecka Staryszak: 2-13; 14.1-14.6; 15.1-15.4; 16.1-16.3; 17.1-17.6;
Wprowadzenie Metoda bisekcji Metoda regula falsi Metoda siecznych Metoda stycznych RÓWNANIA NIELINIOWE
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Zazwyczaj nie można znaleźć
Metoda elementów brzegowych
Metoda elementów brzegowych Tomasz Chwiej, Alina Mreńca-Kolasińska 9 listopada 8 Wstęp Rysunek : a) Geometria układu z zaznaczonymi: elementami brzegu (czerwony), węzłami (niebieski). b) Numeracja: elementów
VII. WYKRESY Wprowadzenie
VII. WYKRESY 7.1. Wprowadzenie Wykres jest graficznym przedstawieniem (w pewnym układzie współrzędnych) zależności pomiędzy określonymi wielkościami. Ułatwia on interpretację informacji (danych) liczbowych.
DYNAMIKA RAM WERSJA KOMPUTEROWA
DYNAMIKA RAM WERSJA KOMPTEROWA Parametry przekrojów belek: E=205MPa=205 10 6 kn m 2 =205109 N m 2 1 - IPE 220 Pręty: 1, 3, 4: I y =2770cm 4 =0,00002770 m 4 EI =5678500 Nm 2 A=33,4 cm 4 =0,00334 m 2 EA=684700000
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można
Elementy metod numerycznych - zajęcia 9
Poniższy dokument zawiera informacje na temat zadań rozwiązanych w trakcie laboratoriów. Elementy metod numerycznych - zajęcia 9 Tematyka - Scilab 1. Labolatoria Zajęcia za 34 punktów. Proszę wysłać krótkie
ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ
ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie minimalizacji bez ograniczeń f(ˆx) = min x R nf(x) f : R n R funkcja ograniczona z dołu Algorytm rozwiazywania Rekurencyjny
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 3 autorzy: A. Gonczarek, J.M. Tomczak Zbiory i funkcje wypukłe Zad. 1 Pokazać, że następujące zbiory są wypukłe: a) płaszczyzna S = {x
Funkcje dwóch zmiennych
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Funkcje dwóch zmiennych 1. Funkcje dwóch zmiennych: pojęcia podstawowe Definicja 1. Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach
Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)
Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Obliczenia Naukowe Nazwa w języku angielskim : Scientific Computing. Kierunek studiów : Informatyka Specjalność
1. PODSTAWY TEORETYCZNE
1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych
PROGRAMOWANIE KWADRATOWE
PROGRAMOWANIE KWADRATOWE Programowanie kwadratowe Zadanie programowania kwadratowego: Funkcja celu lub/i co najmniej jedno z ograniczeń jest funkcją kwadratową. 2 Programowanie kwadratowe Nie ma uniwersalnej
Algebra liniowa. Macierze i układy równań liniowych
Algebra liniowa Macierze i układy równań liniowych Własności wyznaczników det I = 1, det(ab) = det A det B, det(a T ) = det A. Macierz nieosobliwa Niech A będzie macierzą kwadratową wymiaru n n. Mówimy,
1 Szeregi potęgowe. 1.1 Promień zbieżności szeregu potęgowego. Wydział Informatyki, KONWERSATORIUM Z MATEMATYKI, 2008/2009.
Szeregi potęgowe Definicja.. Szeregiem potęgowym o środku w punkcie R nazywamy szereg postaci: gdzie x R oraz c n R dla n = 0,, 2,... c n (x ) n, Przyjmujemy, że 0 0 def =. Liczby c n nazywamy współczynnikami
Metody Numeryczne w Budowie Samolotów/Śmigłowców Wykład I
Metody Numeryczne w Budowie Samolotów/Śmigłowców Wykład I dr inż. Tomasz Goetzendorf-Grabowski (tgrab@meil.pw.edu.pl) Dęblin, 11 maja 2009 1 Organizacja wykładu 5 dni x 6 h = 30 h propozycja zmiany: 6
Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka
Szeregi funkcyjne Szeregi potęgowe i trygonometryczne Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne str. 1/36 Szereg potęgowy Szeregiem potęgowym o
Estymacja wektora stanu w prostym układzie elektroenergetycznym
Zakład Sieci i Systemów Elektroenergetycznych LABORATORIUM INFORMATYCZNE SYSTEMY WSPOMAGANIA DYSPOZYTORÓW Estymacja wektora stanu w prostym układzie elektroenergetycznym Autorzy: dr inż. Zbigniew Zdun
Rachunek różniczkowy i całkowy w przestrzeniach R n
Rachunek różniczkowy i całkowy w przestrzeniach R n Na dzisiejszym wykładzie rozważać będziemy funkcje f : R m R n Każda taka funkcję f można przedstawić jako wektor funkcji (f 1, f 2,, f n ), gdzie każda
RÓWNANIA RÓŻNICZKOWE WYKŁAD 1
RÓWNANIA RÓŻNICZKOWE WYKŁAD 1 Przedmiot realizowany w układzie wykład 2 godz. tygodniowo ćwiczenia 2 godz. tygodniowo Regulamin zaliczeń www.mini.pw.edu.pl/~figurny 2 Program zajęć Równania różniczkowe
Zajęcia nr 1: Zagadnienia do opanowania:
Laboratorium komputerowe oraz Ćwiczenia rachunkowe z przedmiotu Metody obliczeniowe Prowadzący: L. Bieniasz (semestr letni 018) Zagadnienia do opanowania przed zajęciami, pomocnicze zadania rachunkowe