BEZPOŚREDNIE WYZNACZANIE ROZWIĄZAŃ OKRESOWYCH DLA PRZETWORNIKÓW ELEKTROMECHANICZNYCH W DZIEDZINIE CZASU

Wielkość: px
Rozpocząć pokaz od strony:

Download "BEZPOŚREDNIE WYZNACZANIE ROZWIĄZAŃ OKRESOWYCH DLA PRZETWORNIKÓW ELEKTROMECHANICZNYCH W DZIEDZINIE CZASU"

Transkrypt

1 Zeszyty Problemowe aszyy Elektryze r 3/4 (3 3 Taeusz Sobzyk, ihał Razik Politehika Krakowska, Istytut Elektromehaizyh Przemia Eergii Państwowa Wyższa Szkoła Zawoowa w owym Sązu, Istytut Tehizy BEZPŚREDIE WYZCZIE RZWIĄZŃ KRESWYCH D PRZETWRIKÓW EEKTRECHICZYCH W DZIEDZIIE CZSU DIRECT DETERITI F PERIDIC SUTI I TIE DI FR EECTRECHIC CVERTERS Streszzeie: W pray przestawioo rozważaia prowaząe o rówań umożliwiająyh oblizaie rozwiązań ustaloyh bezpośreio w zieziie zasu la ukłaów opisywayh rówaiami różizkowymi, o któryh wiaomo, że posiaają rozwiązaia okresowe o zaym okresie. Bazą la rozważań były zae w literaturze rówaia wyzazająe sta ustaloy w zieziie zęstotliwośi la rówań o okresowo zmieyh współzyikah oraz algebraize związki mięzy wartośiami hwilowymi przebiegów okresowyh a ih współzyikami Fouriera. Zefiiowao yskrety operator różizkowaia określająy hwilowe wartośi pohoej fukji w wybraym zbiorze puktów a postawie wartośi fukji w tym zbiorze oraz poao rówaia algebraize określająe rozwiązaia ustaloe w tyh puktah. Rówaia te uogólioo a ukłay ieliiowe posiaająe rozwiązaia okresowe z myślą o ukłaah elektromehaizyh oraz eergoelektroizyh. Dyskrety operator różizkowaia poao testom la ajbarziej harakterystyzyh fukji. W pray przestawioo wyiki testowyh oblizeń stau ustaloego w prostym przetworiku elektromehaizym. bstrat: The mai aim of osieratio is to fi relatios for iret etermiatio i time omai of perioi steay-state solutios for ifferetial equatios. Cosieratio starts from a ase of a set of liear perioi ifferetial equatios havig perioi steay-state solutio, for whih that solutio a be fi i frequey omai by harmoi balae metho. Require equatios have bee fi usig relatios betwee Fourier oeffiiets a values of perioi futio i time, whih has bee oe i the matrix form. ew isrete operator of ifferetiatig has bee efie. s a result a set of algebrai equatios has bee writte. Base o it a algorithm for oliear ifferetial equatios has bee propose. umerial tests have bee oe both for a ew isrete operator a for steay-state aalysis i a simply eletromehaial overter. Słowa kluzowe: rozwiązaia okresowe, rozwiązaia ustaloe, aaliza w zieziie zasu, yskrety operator różizkowaia Keywors: perioi steay-state solutio, aalysis i time omai. Wstęp W zagaieiah elektrotehiki stay ustaloe w obwoah elektryzyh i różego rozaju obiektah elektromagetyzyh są przemiotem szzególego zaiteresowaia, gyż a ih postawie są określae parametry tehize urzązeń. etoy wyzazaia staów ustaloyh ależą o elemetaryh problemów elektrotehiki i są postawowym arzęziem pozawaia właśiwośi ukłaów elektryzyh, zego przykłaem jest rahuek symbolizy stosoway o aalizy ukłaów z przebiegami siusoialymi. Jest to metoa operująa w zieziie zęstotliwośi, która umożliwia barzo proste określaie parametrów rozwiązań ustaloyh, a postawie któryh moża jeozaze określić wartośi rozwiązań w poszzególyh hwilah zasu, jeżeli jest taka potrzeba. W ukłaah z elemetami eergoelektroizymi metoa symboliza, awet w przypakah gy może być stosowaa, ie jest już tak efektywa i przeważie la określeia staów ustaloyh stosuje się metoy symulayje, wyłużają zas symulaji aż o osiągięia takiego stau. kreślaie przebiegów zasowyh a postawie wim Fouriera otrzymayh z meto zęstotliwośiowyh może być w przypaku okształoyh rozwiązań okresowyh zawierająyh skokowe zmiay wartośi iewystarzająe, hoiażby ze wzglęu a efekty Gibbsa. Praa przestawia próbę utworzeia algorytmu umożliwiająego bezpośreie oblizaie hwilowyh wartośi okresowyh

2 4 Zeszyty Problemowe aszyy Elektryze r 3/4 (3 przebiegów ustaloyh w przypakah, gy ukła jest opisyway ukłaem rówań różizkowyh zwyzajyh liiowyh o współzyikah okresowo zmieyh, posiaająyh okresowe rozwiązaia ustaloe.. Sformułowaie problemu Poszukiwae jest rozwiązaie ustaloe ukłau rówań różizkowyh o postai x ( x + b( ( w którym zarówo maierz ( jak i wektor wymuszeń b ( są okresowo zmiee i rozkłaale w szeregi Fouriera ( ( t + T k e jkωt jkωt b ( b( t + T B e ( Wówzas rozwiązaie ustaloe jest okresowe i może być przestawioe w postai szeregu Fouriera jkωt x ( x( t + T e, Ω π T (3 Wartośi współzyików tego szeregu spełiają ieskońzoy ukła rówań algebraizyh [], [] o postai jω E E k k B + B B (4 w którym k oraz B k są współzyikami opowieio: zespoloyh szeregów Fouriera maierzy i wektora wymuszeń ukłau (. Ukła te, ograizoy o wymiarów skońzoyh, pozwala oblizyć wimo rozwiązaia ustaloego w żąaym przeziale zęstotliwośi. Jest to zatem rozwiązaie w zieziie zęstotliwośi, a postawie którego moża określić przebiegi rozwiązaia w zasie. Powyższe rówaia określająe rozwiązaie ustaloe w zieziie zęstotliwośi wykorzystao la sformułowaia aalogizyh rówań określająyh bezpośreio wartośi rozwiązaia ustaloego w wybraym zbiorze puktów okresu jego zmieośi, zyli określająe rozwiązaie ustaloe w zieziie zasu. W tym elu wykorzystao zależośi mięzy wartośiami fukji okresowej o okresie T, a współzyikami jej szeregu Fouriera. Jeżeli wybrać zbiór + puktów rówomierie rozmieszzoyh w okresie zmieośi fukji tak, aby t T ( + la {, ±, ±,, ± } oraz wybrać zbiór + pozątkowyh harmoizyh zespoloego szeregu Fouriera {, ±, ±,, ± } wówzas otrzymuje się związki mięzy wartośiami fukji, a współzyikami jej szeregu Fouriera o postai [3], [4] gzie: x x x x x x C (5 [ ] T x [ ] T aierz C ma postać C (6 j (π (+ gzie e. oża wykazać, że maierz C spełia związek ( C ( + E + C T (7 Zatem związki mięzy współzyikami Fouriera a wartośiami fukji moża zapisać w postai T ( C + x (8

3 Zeszyty Problemowe aszyy Elektryze r 3/4 (3 5 Rówaia (4 oraz związki (5 i (8 zostaą wykorzystae o sformułowaia rówań określająyh bezpośreio wartośi hwilowe okresowyh rozwiązań ustaloyh. 3. Rówaia określająe rozwiązaie ustaloe w zieziie zasu la rówań liiowyh W elu utworzeia rówań algebraizyh określająyh okresowe rozwiązaie ustaloe w zieziie zasu ależy ograizyć ieskońzoy ukła rówań bilasu harmoizyh (4 o wymiarów ( + ( +, z którego moża oblizyć wimo Fouriera rozwiązaia ustaloego o -tej harmoizej włązie. Ukła te zapisay kompaktowo ma postać j Ω + B (9 Związki mięzy wartośiami hwilowymi rozwiązaia ustaloego, a współzyikami szeregu Fouriera la wektora rozwiązań x( moża, a postawie (5 (6, zapisać w postai x C T ( C + x ( aierz C przyjmuje postać ietyzą jak maierz C aa wzorem (6, lez każy jej elemet staowi maierz iagoala o wymiarze maierzy ( ukłau (, zawierająa elemety rówe opowieiemu elemetowi w maierzy C. Ukła rówań etermiująy rozwiązaie ustaloe w zieziie zasu moża otrzymać po wykoaiu astępująyh operaji matematyzyh T j + C Ω ( C x T + C C zazają j ( x + C B C D T + Ω ( C C ( a T + C b ( ( (3 C B (4 otrzymuje się liiowy ukła rówań algebraizyh ( D a x b (5 aierze D oraz a otrzymae w wyiku wymożeia maierzy w awiasah w związkah ((3 są kwaratowe i mają wymiary ( + ( +, a b jest wektorem o ( + elemetah. Wymiary te opowiaają lizbie puktów, w któryh oblizae są wartośi rozwiązaia okresowego. aierz D reprezetuje operator różizkowaia, atomiast maierze oraz b reprezetują wartośi maierzy ( i wektora wymuszeń b( w wybrayh hwilah zasu. aierz D, która może być azwaa yskretym operatorem różizkowaia la fukji okresowej, przyjmuje postać D (6 której elemetami są maierze iagoale o wymiarah ukłau ( z wartośiami a przekątej Wartośi te obliza się z zależośi Ω + π k sik (7 + aierz D jest osobliwa, o jest ość ozywiste, gyż ie a się oworzyć wartośi stałej fukji okresowej a postawie jej pohoej.

4 6 Zeszyty Problemowe aszyy Elektryze r 3/4 (3 Wykoaie operaji przewiziayh w (3 oraz (4 ie jest koieze, gyż określają oe wartośi maierzy ( oraz wektora b( w wybrayh hwilah zasu. ogą oe zostać wyzazoe bezpośreio z tyh maierzy, a ie korzystają z ih rozkłau w szeregi Fouriera. oża zatem apisać ( ( a ( b ( ( [ b( b( b( b( b( ] T gzie przez maierz ( ozazoo maierz (, a przez b ( wektor b (, oblizae la hwili t. Ukła rówań (5 przyjmuje wówzas postać ( x b( ( x b( ( x b( ( x b( ( x b( (8 Jest to poszukiway ukła rówań algebraizyh, z którego moża bezpośreio oblizyć wartośi ustaloego rozwiązaia okresowego w wybraym zbiorze + puktów. Rozważaia powyższe moża uogólić a ieliiowy ukła rówań różizkowyh o postai x f ( x, (9 w przypakah gy wiaomo, że istieje ustaloe rozwiązaie aego rówaia i rozwiązaie to jest okresowe x ( x( t + T. W tym elu ależy zapisać ukła (9 w postai x ( x, x + b( ( Dla tego rówaia moża utworzyć iterayjy algorytm poszukiwaia okresowego rozwiązaia ustaloego bazują a rówaiah (5 i (9. lgorytm taki wymaga iterayjego rozwiązywaia rówań o postai (w zapisie kompaktowym ( D a x i+ b + i ( w którym x i jest wektorem poszukiwayh rozwiązań w iteraji i +. aierz a i ma postać i ( ( i a i ( i ( i ( i i zawiera maierze i ( oblizae la wartośi rozwiązaia otrzymaego w iteraji i-tej la kolejyh hwil zasowyh. lgorytm taki wymaga określeia wartośi rozwiązaia startowego. 4. Baaie właśiwośi yskretego operatora różizkowaia W elu zbaaia poprawośi ziałaia operatora różizkowaia D wykoao astępu- jąe testy oblizeiowe: - sprawzoo poprawość oblizaia pohoej fukji stałej. W wyiku otrzymao okłaie zerową wartość pohoej, gyż wartośi elemetów maierzy D spełiają wa- ruek la (,,... ( + - sprawzoo poprawość oblizaia pohoej fukji os x. Wyiki oblizeń la przestawioo a Rys.. Dokłaość oworzeia fukji si x jest rzęu -. - sprawzoo poprawość oblizaia pohoej fukji ieiągłej. Pohoa ie jest ałkiem poprawie owarzaa gyż pojawiają się efekty poobe o efektu Gibbsa przy oblizaiu wartośi fukji ieiągłej a postawie szeregu Fouriera. Ilustruje to Rys. przy.

5 Zeszyty Problemowe aszyy Elektryze r 3/4 (3 7 Rys.. worzeie pohoej fukji przez operator różizkowaia D os x Rys.. worzeie pohoej fukji ieiągłej przez operator różizkowaia D oża zatem stwierzić, że yskrety operator różizkowaia D ziała poprawie la fukji różizkowalyh. 5. Przykła wyzazaia rozwiązaia ustaloego la przetworika elektromehaizego W elu zilustrowaia propoowaego poejśia przeprowazoo aalizę stau ustaloego ajprostszego przetworika elektromehaizego opisaego rówaiem ( os( i + R i u( + ϕ (3 t zasilaego apięiem przemieym u( U os( Ω (4 przy stałej prękośi kątowej ϕ Ω t +ϕ. W tyh warukah moża przewizieć, że rozwiązaie w staie ustaloym bęzie okresowe. Rówaie przetworika sprowazoo o postai ormalej, opowiaająej rówaiu ( ψ R ψ + u ( ( (5 wykorzystują związek ψ ( i. blizeia przeprowazoo la astępująyh parametrów: 3[H], [H], ϕ π /, U 3[V], Ω π 5[/sek] oraz la trzeh wartośi rezystaji: R [ Ω], R [ Ω] oraz R [ Ω]. Założoo, tj. w przeziale zmieośi apięia ( T/, T/ wybrao rówomierie rozłożoyh puktów. a postawie rówaia ( utworzoo ukła rówań (8 o wymiarah ( otrzymują z jego rozwiązaia wartośi strumieia skojarzoego w wybraym zbiorze puktów. Wartośi prąu w tyh puktah określoo z zależośi i ψ / (. Wyiki oblizeń w formie wykresów zmieośi i ( oraz ψ ( przestawioo a kolejyh rysukah: la R [ Ω] a Rys.3, la R [ Ω] a Rys.4 oraz la R [ Ω] a Rys.5. a Rys. 3a przebieg strumieia jest praktyzie ałką z apięia gyż wartość spaku apięia a rezystaji jest relatywie mała. Prą jest okształoy z powou zmieej iukyjośi. W miarę zwiększaia rezystaji strumień okształa się oraz barziej, a w kosekweji także prą. Przebiegi ustaloe zostały określoe bezpośreio w zasie. iewielka moyfikaja umożliwia także bezpośreie określeie prąu. Rys. 3a. Wykres zmieośi ψ ( (R[Ω] Rys. 3b. Wykres zmieośi i ( (R[Ω]

6 8 Zeszyty Problemowe aszyy Elektryze r 3/4 (3 Rys.4a. Wykres zmieośi ψ ( (R[Ω] Rys.4b. Wykres zmieośi i ( (R[Ω] Rys.5a. Wykres zmieośi ψ ( (R[Ω] Rys.5b. Wykres zmieośi i ( (R[Ω] 6. Wioski W pray wyprowazoo rówaia umożliwiająe bezpośreie oblizaie wartośi hwilowyh ustaloego rozwiązaia okresowego la liiowyh rówań różizkowyh o okresowo zmieyh parametrah. ają oe postać liiowego ukłau rówań algebraizyh i elimiują potrzebę posługiwaia się szeregami Fouriera. Istotym elemetem tego ukłau jest yskrety operator różizkowaia. Testy umeryze yskretego operatora różizkowaia potwierziły poprawość owarzaia pohoyh fukji różizkowalyh oraz jego przyatość la aalizy staów ustaloyh elektromehaizyh przetworików eergii. 7. iteratura []. Boye W.E., DiPrima R.C.: Elemetary Differetial equatios, Joh Wiley & Sos, ew York, 969 []. Sobzyk T.: reiterpretatio of the Floquet solutio of the oriary ifferetial equatio system with perioi oeffiiets as a problem of ifiite matrix, Compel, Vol.5, o., Dubli, Boole Press t, 986, pp.(- [3]. Bure R.., Faires J.D.: umerial aalysis, PWS-KET Pub. Comp., Bosto, 985 [4]. Sobzyk T.: Diret etermiatio of twoperioi solutio for oliear yami systems, Compel, James & James Siee Pub. t., 994, Vol.3, o.3, pp(59-59 [5]. Sobzyk T.: Bezpośreie wyzazaie w zieziie zasu okresowyh rozwiązań ustaloyh la rówań różizkowyh, ateriały Kofereji PTETiS "Wybrae Zagaieia Elektrotehiki i Elektroiki", Rzeszów-Czara, 3, CD utorzy Taeusz J. Sobzyk, Prof. r hab. iż. Politehika Krakowska, Istytut Elektromehaizyh Przemia Eergii, Kraków, 3-55, ul. Warszawska 4, pesobzy@yf-kr.eu.pl ihał Razik, Dr iż. Państwowa Wyższa Szkoła Zawoowa, Istytut Tehizy, owy Sąz, 33-3, ul. Zamehofa a, m.razik@pozta.oet.pl

Statystyczna kontrola procesu karty kontrolne Shewharta.

Statystyczna kontrola procesu karty kontrolne Shewharta. tatystyza kotrola proesu karty kotrole hewharta. Każe przesiębiorstwo proukyje, ąży o tego, aby proukty które wytwarza były jak ajlepszej jakośi. W zisiejszyh zasah, to właśie jakość pozwala utrzymać się

Bardziej szczegółowo

APROKSYMACJA NIELINIOWYCH CHARAKTERYSTYK MASZYN ELEKTRYCZNYCH PRĄDU PRZEMIENNEGO WIELOMIANAMI POTĘGOWYMI WIELU ZMIENNYCH

APROKSYMACJA NIELINIOWYCH CHARAKTERYSTYK MASZYN ELEKTRYCZNYCH PRĄDU PRZEMIENNEGO WIELOMIANAMI POTĘGOWYMI WIELU ZMIENNYCH Zeszyty problewe Maszyy lektryze Nr / z. aeusz J. Sobzyk, am Warzeha, Witol Mazgaj Politehika Krakowska PROKSYMCJ NNOWYCH CHRKRYSYK MSZYN KRYCZNYCH PRĄDU PRZMNNGO WOMNM POĘGOWYM WU ZMNNYCH PPROXMON OF

Bardziej szczegółowo

Równania liniowe rzędu drugiego stałych współczynnikach

Równania liniowe rzędu drugiego stałych współczynnikach Rówaia liiowe rzędu drugiego stałyh współzyikah Rówaiem różizkowym zwyzajym liiowym drugiego rzędu azywamy rówaie postai p( t) y q( t) y r( t), (1) gdzie p( t), q( t), r( t ) są daymi fukjami Rówaie to,

Bardziej szczegółowo

ZASTOSOWANIE METODY CBR DO SZACOWANIA KOSZTÓW WYTWARZANIA W FAZIE PROJEKTOWANIA

ZASTOSOWANIE METODY CBR DO SZACOWANIA KOSZTÓW WYTWARZANIA W FAZIE PROJEKTOWANIA ZASTOSOWANIE METODY CBR DO SZACOWANIA KOSZTÓW WYTWARZANIA W FAZIE PROJEKTOWANIA prof. r hab. iż. Ryszar Kosala r.kosala@po.opole.pl mgr iż. Barbara Baruś b.barus@po.opole.pl Politechika Opolska Wyział

Bardziej szczegółowo

Wykład 13: Zbieżność według rozkładu. Centralne twierdzenie graniczne.

Wykład 13: Zbieżność według rozkładu. Centralne twierdzenie graniczne. Rachuek prawopoobieństwa MA064 Wyział Elektroiki, rok aka 2008/09, sem leti Wykłaowca: r hab A Jurlewicz Wykła 3: Zbieżość weług rozkłau Cetrale twierzeie graicze Zbieżości ciągu zmieych losowych weług

Bardziej szczegółowo

Szeregi liczbowe i ich własności. Kryteria zbieżności szeregów. Zbieżność bezwzględna i warunkowa. Mnożenie szeregów.

Szeregi liczbowe i ich własności. Kryteria zbieżności szeregów. Zbieżność bezwzględna i warunkowa. Mnożenie szeregów. Materiały dydaktyze Aaliza Matematyza (Wykład 3) Szeregi lizbowe i ih własośi. Kryteria zbieżośi szeregów. Zbieżość bezwzględa i warukowa. Możeie szeregów. Defiija. Nieh {a } N będzie iągiem lizbowym.

Bardziej szczegółowo

G:\AA_Wyklad 2000\FIN\DOC\Fourier.doc. Drgania i fale II rok Fizyki BC. zawierają fazy i amplitudy.

G:\AA_Wyklad 2000\FIN\DOC\Fourier.doc. Drgania i fale II rok Fizyki BC. zawierają fazy i amplitudy. Elemety aalizy ourierowskiej: W przypadku drgań było: () t A + A ( ω t + φ ) + A os( 2ω t + φ ) gdzie + A ω 0 os 2 2 os( ω t + φ ) +... 2π Moża zapisać jako: [ ] () t A + C exp( iω t) + C ( iω t) gdzie

Bardziej szczegółowo

Programowanie ilorazowe #1

Programowanie ilorazowe #1 Programowanie ilorazowe #1 Problem programowania ilorazowego (PI) jest przykłaem problemu programowania matematyznego nieliniowego, który można skuteznie zlinearyzować, tzn. zapisać (i rozwiązać) jako

Bardziej szczegółowo

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy

Bardziej szczegółowo

Przekształcenie całkowe Fouriera

Przekształcenie całkowe Fouriera Przekształcenie całkowe Fouriera Postać zespolona szeregu Fouriera Niech ana bęzie funkcja f spełniająca w przeziale [, ] warunki Dirichleta. Wtey szereg Fouriera tej funkcji jest o niej zbieżny, tj. przy

Bardziej szczegółowo

EFEKTY DYSPERSYJNE ZNIEKSZTAŁCAJĄCE KRÓTKIE IMPULSY LASEROWE. prof. Halina Abramczyk Laboratory of Laser Molecular Spectroscopy

EFEKTY DYSPERSYJNE ZNIEKSZTAŁCAJĄCE KRÓTKIE IMPULSY LASEROWE. prof. Halina Abramczyk Laboratory of Laser Molecular Spectroscopy EFEKTY DYSPERSYJNE ZNIEKSZTAŁCAJĄCE KRÓTKIE IMPUSY ASEROWE T t N t Dwa główe mehaizmy powoująe ziekształeie impulsów laserowyh: ) GVD-group veloity isspersio ) SMP-self phase moulatio 3 E E τ () 0 t /

Bardziej szczegółowo

Mieszanie. otrzymanie jednorodnych roztworów, emulsji i zawiesin intensyfikacja procesów wymiany ciepła intensyfikacja procesów wymiany masy

Mieszanie. otrzymanie jednorodnych roztworów, emulsji i zawiesin intensyfikacja procesów wymiany ciepła intensyfikacja procesów wymiany masy ieszaie Celem procesu mieszaia jest : otrzymaie jeoroych roztworów, emulsji i zawiesi itesyfikacja procesów wymiay ciepła itesyfikacja procesów wymiay masy Sposoby prowazeia mieszaia w śroowisku ciekłym

Bardziej szczegółowo

Temat lekcji: Utrwalenie wiadomości dotyczących rozwiązywania równań kwadratowych.

Temat lekcji: Utrwalenie wiadomości dotyczących rozwiązywania równań kwadratowych. -- S C E N A R I U S Z L E K C J I Przedmiot: Matematyka Klasa: (poziom podstawowy Imię i azwisko auzyiela: Aleksadra Trzepaz Temat lekji: Utrwaleie wiadomośi dotyząyh rozwiązywaia rówań kwadratowyh. Cele

Bardziej szczegółowo

Projekt ze statystyki

Projekt ze statystyki Projekt ze statystyki Opracowaie: - - Spis treści Treść zaia... Problem I. Obliczeia i wioski... 4 Samochó I... 4 Miary położeia... 4 Miary zmieości... 5 Miary asymetrii... 6 Samochó II... 8 Miary położeia:...

Bardziej szczegółowo

PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,,

PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,, PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA Ruch cząstki ieograiczoy z klasyczego puktu widzeia W tym przypadku V = cost, przejmiemy V ( x ) = 0, cząstka porusza się wzdłuż osi x. Rozwiązujemy

Bardziej szczegółowo

WYKŁAD nr Ekstrema funkcji jednej zmiennej o ciągłych pochodnych. xˆ ( ) 0

WYKŁAD nr Ekstrema funkcji jednej zmiennej o ciągłych pochodnych. xˆ ( ) 0 WYKŁAD nr 4. Zaanie programowania nieliniowego ZP. Ekstrema unkcji jenej zmiennej o ciągłych pochonych Przypuśćmy ze punkt jest punktem stacjonarnym unkcji gzie punktem stacjonarnym nazywamy punkt la którego

Bardziej szczegółowo

MACIERZE STOCHASTYCZNE

MACIERZE STOCHASTYCZNE MACIERZE STOCHASTYCZNE p ij - prawdopodobieństwo przejścia od stau i do stau j w jedym (dowolym) kroku, [p ij ]- macierz prawdopodobieństw przejść (w jedym kroku), Własości macierzy prawdopodobieństw przejść:

Bardziej szczegółowo

Wprowadzenie. metody elementów skończonych

Wprowadzenie. metody elementów skończonych Metody komputerowe Wprowadzeie Podstawy fizycze i matematycze metody elemetów skończoych Literatura O.C.Ziekiewicz: Metoda elemetów skończoych. Arkady, Warszawa 972. Rakowski G., acprzyk Z.: Metoda elemetów

Bardziej szczegółowo

Elementy nieliniowe w modelach obwodowych oznaczamy przy pomocy symboli graficznych i opisu parametru nieliniowego. C N

Elementy nieliniowe w modelach obwodowych oznaczamy przy pomocy symboli graficznych i opisu parametru nieliniowego. C N OBWODY SYGNAŁY 1 5. OBWODY NELNOWE 5.1. WOWADZENE Defiicja 1. Obwodem elektryczym ieliiowym azywamy taki obwód, w którym występuje co ajmiej jede elemet ieliiowy bądź więcej elemetów ieliiowych wzajemie

Bardziej szczegółowo

Elementy rach. macierzowego Materiały pomocnicze do MES Strona 1 z 7. Elementy rachunku macierzowego

Elementy rach. macierzowego Materiały pomocnicze do MES Strona 1 z 7. Elementy rachunku macierzowego Elemety rach macierzowego Materiały pomocicze do MES Stroa z 7 Elemety rachuku macierzowego Przedstawioe poiżej iformacje staowią krótkie przypomieie elemetów rachuku macierzowego iezbęde dla zrozumieia

Bardziej szczegółowo

MIESZANIE GAZÓW W MIESZALNIKU STATYCZNYM

MIESZANIE GAZÓW W MIESZALNIKU STATYCZNYM JAN HEHLMANN, BOGUSŁAW SĄSIADEK, EDYTA KUJAWSKA, JACEK ZASĘPA MIESZANIE GAZÓW W MIESZALNIKU STATYCZNYM GAS MIXING IN A STATIC AGITATOR STRESZCZENIE: W pray przestawioo baaia proesu mieszaia amoiaku i powietrza,

Bardziej szczegółowo

Metoda szeregów potęgowych dla równań różniczkowych zwyczajnych liniowych. Równanie różniczkowe zwyczajne liniowe drugiego rzędu ma postać

Metoda szeregów potęgowych dla równań różniczkowych zwyczajnych liniowych. Równanie różniczkowe zwyczajne liniowe drugiego rzędu ma postać met_szer_potegowyh-.doowyh Metod szeregów potęgowyh dl rówń różizkowyh zwyzjyh liiowyh Rówie różizkowe zwyzje liiowe drugiego rzędu m postć d u d f du d gu h ( Złóżmy, że rozwiązie rówi ( może yć przedstwioe

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17 Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo

Bardziej szczegółowo

2.27. Oblicz wartość wyrażenia 3 a Wykaż, że jeżeli x i y są liczbami dodatnimi oraz x+ y =16, to ( 1+

2.27. Oblicz wartość wyrażenia 3 a Wykaż, że jeżeli x i y są liczbami dodatnimi oraz x+ y =16, to ( 1+ MATURA z matematki w roku,, fragmet Liza log log log log log 7 log 8 jest: 7 A iewmiera, B ałkowita, C kwadratem liz aturalej, D większa od 7 : B 7 Oliz wartość wrażeia a wiedzą, że a a 7 Wskazówka: Zauważ,

Bardziej szczegółowo

Wykład 8: Zbieżność według rozkładu. Centralne twierdzenie graniczne.

Wykład 8: Zbieżność według rozkładu. Centralne twierdzenie graniczne. Rachuek prawopoobieństwa MA5 Wyział Elektroiki, rok aka 20/2, sem leti Wykłaowca: r hab A Jurlewicz Wykła 8: Zbieżość weług rozkłau Cetrale twierzeie graicze Zbieżości ciągu zmieych losowych weług rozkłau

Bardziej szczegółowo

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ ĆWICZENIE 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Opis kł pomirowego A) Wyzzie ogiskowej sozewki skpijąej z pomir oległośi przemiot i obrz o sozewki Szzególie proste, rówoześie

Bardziej szczegółowo

Składowe odpowiedzi czasowej. Wyznaczanie macierzy podstawowej

Składowe odpowiedzi czasowej. Wyznaczanie macierzy podstawowej Składowe odpowiedzi zasowej. Wyznazanie maierzy podstawowej Analizowany układ przedstawia rys.. q (t A q 2, q 2 przepływy laminarne: h(t q 2 (t q 2 h, q 2 2 h 2 ( Przykładowe dane: A, 2, 2 2 (2 h2(t q

Bardziej szczegółowo

R e. i d. i L. e(t) u L. u d. Jacek CZOSNOWSKI AKADEMIA GÓRNICZO-HUTNICZA, KATEDRA ELEKTROTECHNIKI

R e. i d. i L. e(t) u L. u d. Jacek CZOSNOWSKI AKADEMIA GÓRNICZO-HUTNICZA, KATEDRA ELEKTROTECHNIKI Jacek CZOSNOWSKI AKADEMIA GÓRNICZO-HUTNICZA, KATEDRA EEKTROTECHNIKI {czos@agh.eu.pl} ZASTOSOWANIE KASYCZNEGO AGORYTMU GENETYCZNEGO DO SY- MUACJI STANÓW DYNAMICZNYCH OBWODÓW NIEINIOWYCH OPISA- NYCH SZTYWNYMI

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji ( ) : m f x = Ax ( A) { Ax x } = Defiicja: Zakresem macierzy A Œ âm azywamy

Bardziej szczegółowo

Analiza dokładności pomiaru, względnego rozkładu egzytancji widmowej źródeł światła, dokonanego przy użyciu spektroradiometru kompaktowego

Analiza dokładności pomiaru, względnego rozkładu egzytancji widmowej źródeł światła, dokonanego przy użyciu spektroradiometru kompaktowego doi:1.15199/48.215.4.38 Eugeiusz CZECH 1, Zbigiew JAROZEWCZ 2,3, Przemysław TABAKA 4, rea FRYC 5 Politechika Białostocka, Wydział Elektryczy, Katedra Elektrotechiki Teoretyczej i Metrologii (1), stytut

Bardziej szczegółowo

V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy I Etap ZADANIA 27 lutego 2013r.

V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy I Etap ZADANIA 27 lutego 2013r. V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizka się licz I Etap ZDNI 7 lutego 3r.. Dwa pociski wstrzeloo jeocześie w tę saą stroę z wóch puktów oległch o o. Pierwsz pocisk wstrzeloo z prękością o po kąte α. Z jaką

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji : m f x = Ax RAAx x Defiicja: Zakresem macierzy A Œ âm azywamy podprzestrzeń

Bardziej szczegółowo

UNIWESRYTET EKONOMICZNY WE WROCŁAWIU HOSSA ProCAPITAL WYCENA OPCJI. Sebastian Gajęcki WYDZIAŁ NAUK EKONOMICZNYCH

UNIWESRYTET EKONOMICZNY WE WROCŁAWIU HOSSA ProCAPITAL WYCENA OPCJI. Sebastian Gajęcki WYDZIAŁ NAUK EKONOMICZNYCH UNIWESRYTET EKONOMICZNY WE WROCŁAWIU HOSSA ProCAPITAL WYCENA OPCJI Sebastian Gajęcki WYDZIAŁ NAUK EKONOMICZNYCH WPROWADZENIE Opcje są instrumentem pochonym, zatem takim, którego cena zależy o ceny instrumentu

Bardziej szczegółowo

Przykładowe pytania na egzamin dyplomowy dla kierunku Automatyka i Robotyka

Przykładowe pytania na egzamin dyplomowy dla kierunku Automatyka i Robotyka Przykładowe pytaia a egzami dyplomowy dla kieruku Automatyka i obotyka Aktualizacja: 13.12.2016 r. Przedmiot: Matematyka 1 (Algebra liiowa) 1. Wiemy że struktura (Gh) jest grupą z elemetem eutralym e.

Bardziej szczegółowo

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej 3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi

Bardziej szczegółowo

IV. RÓWNANIA RÓŻNICOWE

IV. RÓWNANIA RÓŻNICOWE V. RÓWNANA RÓŻNCOWE 4.. Wstęp Prz frowm przetwarzaiu sgałów dooujem ih dsretzaji zli próbowaia, tz. zamia sgału iągłego a iąg sgałów dsreth. Sgał iągł (t) przedstawiam jao iąg rzędh wzazah dla dsreth wartośi

Bardziej szczegółowo

Przykładowe zadania dla poziomu rozszerzonego

Przykładowe zadania dla poziomu rozszerzonego Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,

Bardziej szczegółowo

P π n π. Równanie ogólne płaszczyzny w E 3. Dane: n=[a,b,c] Wówczas: P 0 P=[x-x 0,y-y 0,z-z 0 ] Równanie (1) nazywamy równaniem ogólnym płaszczyzny

P π n π. Równanie ogólne płaszczyzny w E 3. Dane: n=[a,b,c] Wówczas: P 0 P=[x-x 0,y-y 0,z-z 0 ] Równanie (1) nazywamy równaniem ogólnym płaszczyzny Rówaie ogóle płaszczyzy w E 3. ae: P π i π o =[A,B,C] P (,y,z ) Wówczas: P P=[-,y-y,z-z ] P π PP PP= o o Rówaie () azywamy rówaiem ogólym płaszczyzy A(- )+B(y-y )+C(z-z )= ( ) A+By+Cz+= Przykład

Bardziej szczegółowo

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu

Bardziej szczegółowo

OCHRONA PRZECIWPOŻAROWA BUDYNKÓW

OCHRONA PRZECIWPOŻAROWA BUDYNKÓW 95 V. OCHRONA PRZCWPOŻAROWA BUDYNKÓW 34 tapy rozwoju pożaru Ohroa prziwpożarowa uwzględia astępują fazy rozwoju pożaru:. Lokala iijaja pożaru i jgo arastai.. Radiayja i kowkyja wymiaa ipła między źródłm

Bardziej szczegółowo

Metody numeryczne Laboratorium 5 Info

Metody numeryczne Laboratorium 5 Info Metody umerycze Laboratorium 5 Ifo Aproksymacja - proces określaia rozwiązań przybliżoych a podstawie rozwiązań zaych, które są bliskie rozwiązaiom dokładym w ściśle sprecyzowaym sesie. Metoda ajmiejszych

Bardziej szczegółowo

d d dt dt d c k B t (2) prądy w oczkach obwodu elektrycznego pole temperatury (4) c oraz dynamikę układu

d d dt dt d c k B t (2) prądy w oczkach obwodu elektrycznego pole temperatury (4) c oraz dynamikę układu Wojciech SZELĄG, Marci ANTCZAK, Mariusz BARAŃSKI, Piotr SZELĄG, Piotr SUJKA Politechika Pozańska, Istytut Elektrotechiki i Elektroiki Przemysłowej Numerycza metoda aalizy zjawisk sprzężoych w siliku o

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU. Wprowadzenie. = =

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU. Wprowadzenie. = = WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Wprowadzeie. Przy przejśiu światła z jedego ośrodka do drugiego występuje zjawisko załamaia zgodie z prawem Selliusa siα

Bardziej szczegółowo

Dyskretna transformata falkowa z wykorzystaniem falek Haara. Alfréd Haar

Dyskretna transformata falkowa z wykorzystaniem falek Haara. Alfréd Haar Dyskretna transformata falkowa z wykorzystaniem falek Haara Alfréd Haar 88-9 Przypomnijmy, że istotą DWT jest podział pierwotnego sygnału za pomoą pary filtrów (górnoprzepustowego i dolnoprzepustowego)

Bardziej szczegółowo

DYFRAKCJA NA POJEDYNCZEJ I PODWÓJNEJ SZCZELINIE

DYFRAKCJA NA POJEDYNCZEJ I PODWÓJNEJ SZCZELINIE YFRAKCJA NA POJEYNCZEJ POWÓJNEJ SZCZELNE. Cel ćwiczenia: zapoznanie ze zjawiskiem yfrakcji światła na pojeynczej i powójnej szczelinie. Pomiar ługości fali światła laserowego, oległości mięzy śrokami szczelin

Bardziej szczegółowo

Ćwiczenie nr 5 BADANIE SOCZEWKI

Ćwiczenie nr 5 BADANIE SOCZEWKI Ćwizeie r 5 BADANIE SOCZEWKI. Wprowazeie Zolość sozewe o załamywaia promiei świetlyh uzależioa jest o astępująyh zyiów: a) ształtu powierzhi załamująyh promieie rzywiz b) materiału z tórego są wyoae współzyi

Bardziej szczegółowo

Metody numeryczne. Marek Lefik. Wykład 1 Studia doktoranckie

Metody numeryczne. Marek Lefik. Wykład 1 Studia doktoranckie Metody umerycze Marek Lefik Wykład 1 Studia doktorackie 01-013 Metody umerycze: wstęp ogóly Czemu służą MN Rozwiązaia symbolicze zagadień brzegowych dla skomplikowaej geometrii ie jest możliwe Rozwiązaia

Bardziej szczegółowo

Analiza wyników symulacji i rzeczywistego pomiaru zmian napięcia ładowanego kondensatora

Analiza wyników symulacji i rzeczywistego pomiaru zmian napięcia ładowanego kondensatora Aaliza wyików symulacji i rzeczywistego pomiaru zmia apięcia ładowaego kodesatora Adrzej Skowroński Symulacja umożliwia am przeprowadzeie wirtualego eksperymetu. Nie kostruując jeszcze fizyczego urządzeia

Bardziej szczegółowo

Badanie stabilności układu sterowania statkiem z nieliniowym autopilotem

Badanie stabilności układu sterowania statkiem z nieliniowym autopilotem Baaie stabilości ułau sterowaia statiem z ieliiowym autopilotem Zliearyzowae rówaie wiążące ochyleie ursu statu (zmiaę ąta ursu wzglęem ursu zaaego) ψ z ątem wychyleia steru δ jest astępujące (tzw. moel

Bardziej szczegółowo

I. Podzielność liczb całkowitych

I. Podzielność liczb całkowitych I Podzielość liczb całkowitych Liczba a = 57 przy dzieleiu przez pewą liczbę dodatią całkowitą b daje iloraz k = 3 i resztę r Zaleźć dzieik b oraz resztę r a = 57 = 3 b + r, 0 r b Stąd 5 r b 8, 3 więc

Bardziej szczegółowo

Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień.

Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień. Metoda aalizy hierarchii Saaty ego Ważym problemem podejmowaia decyzji optymalizowaej jest często występująca hierarchiczość zagadień. Istieje wiele heurystyczych podejść do rozwiązaia tego problemu, jedak

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINOWYCH

UKŁADY RÓWNAŃ LINOWYCH Ekoeergetyka Matematyka. Wykład 4. UKŁADY RÓWNAŃ LINOWYCH Defiicja (Układ rówań liiowych, rozwiązaie układu rówań) Układem m rówań liiowych z iewiadomymi,,,, gdzie m, azywamy układ rówań postaci: a a a

Bardziej szczegółowo

Egzaminy. na wyższe uczelnie 2003. zadania

Egzaminy. na wyższe uczelnie 2003. zadania zadaia Egzamiy wstępe a wyższe uczelie 003 I. Akademia Ekoomicza we Wrocławiu. Rozwiąż układ rówań Æ_ -9 y - 5 _ y = 5 _ -9 _. Dla jakiej wartości parametru a suma kwadratów rozwiązań rzeczywistych rówaia

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elemety modelowaia matematyczego Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Modelowaie daych (ilościowe): Metody statystycze: estymacja parametrów modelu,

Bardziej szczegółowo

Przykłady 8.1 : zbieżności ciągów zmiennych losowych

Przykłady 8.1 : zbieżności ciągów zmiennych losowych Rachuek rawopoobieństwa MA8 Wyział Matematyki, Matematyka Stosowaa rzykłay 8. Róże rozaje zbieżości ciągów zmieych losowych. rawa wielkich liczb. Twierzeia graicze. rzykłay 8. : zbieżości ciągów zmieych

Bardziej szczegółowo

Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik

Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik Pierwiastki z liczby zespoloej Autorzy: Agieszka Kowalik 09 Pierwiastki z liczby zespoloej Autor: Agieszka Kowalik DEFINICJA Defiicja : Pierwiastek z liczby zespoloej Niech będzie liczbą aturalą. Pierwiastkiem

Bardziej szczegółowo

CIĄGI LICZBOWE. Poziom podstawowy

CIĄGI LICZBOWE. Poziom podstawowy CIĄGI LICZBOWE Poziom podstawowy Zadaie ( pkt) + 0 Day jest ciąg o wyrazie ogólym a =, N+ + jest rówy? Wyzacz a a + Czy istieje wyraz tego ciągu, który Zadaie (6 pkt) Marek chce przekopać swój przydomowy

Bardziej szczegółowo

Pracownia fizyczna dla szkół

Pracownia fizyczna dla szkół Natężeie światła Pracowia fizycza Imię i Nazwisko yfrakcja i iterferecja a świetle laserowym opracowaie: Aeta rabińska Fotoy, jak zresztą i ie obiekty, mają barzo specyficzą cechę w pewych sytuacjach zachowują

Bardziej szczegółowo

O nauczaniu oceny niepewności standardowej

O nauczaniu oceny niepewności standardowej 8 O nauczaniu oceny niepewności stanarowej Henryk Szyłowski Wyział Fizyki UAM, Poznań PROBLEM O lat 90. ubiegłego wieku istnieją mięzynaroowe normy oceny niepewności pomiarowych [, ], zawierające jenolitą

Bardziej szczegółowo

FILTRY ANALOGOWE Spis treści

FILTRY ANALOGOWE Spis treści FILTRY AALOGOWE Spis treśi. Modele iltrów aalogowyh. Idealy iltr doloprzepustowy 3. Rzezywiste iltry doloprzepustowe 4. Stabilość iltrów 5. Filtr Butterwortha 6. Filtr Czebyszewa 7. Filtry eliptyze 8.

Bardziej szczegółowo

Numeryczny opis zjawiska zaniku

Numeryczny opis zjawiska zaniku FOTON 8, iosa 05 7 Numeryczy opis zjawiska zaiku Jerzy Giter ydział Fizyki U Postawieie problemu wielu zagadieiach z różych działów fizyki spotykamy się z astępującym problemem: zmiay w czasie t pewej

Bardziej szczegółowo

LABORATORIUM MODELOWANIA I SYMULACJI. Ćwiczenie 3 MODELOWANIE SYSTEMÓW DYNAMICZNYCH METODY OPISU MODELI UKŁADÓW

LABORATORIUM MODELOWANIA I SYMULACJI. Ćwiczenie 3 MODELOWANIE SYSTEMÓW DYNAMICZNYCH METODY OPISU MODELI UKŁADÓW Wydział Elektryczy Zespół Automatyki (ZTMAiPC) ZERiA LABORATORIUM MODELOWANIA I SYMULACJI Ćwiczeie 3 MODELOWANIE SYSTEMÓW DYNAMICZNYCH METODY OPISU MODELI UKŁADÓW I. Cel ćwiczeia Celem ćwiczeia jest zapozaie

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia

Bardziej szczegółowo

Parametryzacja rozwiązań układu równań

Parametryzacja rozwiązań układu równań Parametryzacja rozwiązań układu rówań Przykład: ozwiąż układy rówań: / 2 2 6 2 5 2 6 2 5 //( / / 2 2 9 2 2 4 4 2 ) / 4 2 2 5 2 4 2 2 Korzystając z postaci schodkowej (środkowa macierz) i stosując podstawiaie

Bardziej szczegółowo

( ) WŁASNOŚCI MACIERZY

( ) WŁASNOŚCI MACIERZY .Kowalski własości macierzy WŁSNOŚC MCERZY Własości iloczyu i traspozycji a) możeie macierzy jest łącze, tz. (C) ()C, dlatego zapis C jest jedozaczy, b) możeie macierzy jest rozdziele względem dodawaia,

Bardziej szczegółowo

Mechanika kwantowa III

Mechanika kwantowa III Mecaika kwatowa III Opracowaie: Barbara Pac, Piotr Petele Powtóreie Moet pędu jest wielkością pojęciowo bardo istotą, gdż dla wsstkic pól o setrii sfercej operator jego kwadratu ( ˆM koutuje ailtoiae (

Bardziej szczegółowo

Twierdzenie Cayleya-Hamiltona

Twierdzenie Cayleya-Hamiltona Twierdzeie Cayleya-Hamiltoa Twierdzeie (Cayleya-Hamiltoa): Każda macierz kwadratowa spełia swoje włase rówaie charakterystycze. D: Chcemy pokazać, że jeśli wielomiaem charakterystyczym macierzy A jest

Bardziej szczegółowo

KO OF Szczecin:

KO OF Szczecin: XXXI OLIMPIADA FIZYCZNA (1981/198) Stopień III, zaanie teoretyczne T Źróło: Nazwa zaania: Działy: Słowa kluczowe: Komitet Główny Olimpiay Fizycznej; Anrzej Kotlicki; Anrzej Naolny: Fizyka w Szkole, nr

Bardziej szczegółowo

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów

Bardziej szczegółowo

APROKSYMACJA I INTERPOLACJA. funkcja f jest zbyt skomplikowana; użycie f w dalszej analizie problemu jest trudne

APROKSYMACJA I INTERPOLACJA. funkcja f jest zbyt skomplikowana; użycie f w dalszej analizie problemu jest trudne APROKSYMACJA I INTERPOLACJA Przybliżeie fucji f(x) przez ią fucję g(x) fucja f jest zbyt sompliowaa; użycie f w dalszej aalizie problemu jest trude fucja f jest zaa tylo tabelaryczie; wymagaa jest zajomość

Bardziej szczegółowo

WYZNACZANIE PARAMETRÓW ZASTĘPCZYCH LINIOWEGO ODBIORNIKA ENERGII ELEKTRYCZNEJ NA PODSTAWIE ANALIZY WIDMOWEJ

WYZNACZANIE PARAMETRÓW ZASTĘPCZYCH LINIOWEGO ODBIORNIKA ENERGII ELEKTRYCZNEJ NA PODSTAWIE ANALIZY WIDMOWEJ Prace aukowe Istytutu Maszy, apędów i Pomiarów Elektryczych r 56 Politechiki Wrocławskiej r 56 Studia i Materiały r 4 4 Józef KOLASA *, Grzegorz KOSOBUDZKI Układ zastępczy odbiorika, parametry zastępcze,

Bardziej szczegółowo

III. LICZBY ZESPOLONE

III. LICZBY ZESPOLONE Pojęcie ciała 0 III LICZBY ZESPOLONE Defiicja 3 Niech K będie dowolm biorem Diałaiem wewętrm (krótko będiem mówić - diałaiem) w biore K awam każdą fukcję o : K K K Wartość fukcji o dla elemetów K oacam

Bardziej szczegółowo

Dyspersja światłowodów

Dyspersja światłowodów Dyspersja światłowoów Prezetaja zawiera kopie folii omawiayh a wykłazie. Niiejsze opraowaie hroioe jest prawem autorskim. Wykorzystaie iekomeryje ozwoloe po warukiem poaia źróła. Sergiusz Patela 998-003

Bardziej szczegółowo

ALGEBRA LINIOWA Informatyka 2015/2016 Kazimierz Jezuita. ZADANIA - Seria 1. Znaleźć wzór na ogólny wyraz ciągu opisanego relacją rekurencyjną: x

ALGEBRA LINIOWA Informatyka 2015/2016 Kazimierz Jezuita. ZADANIA - Seria 1. Znaleźć wzór na ogólny wyraz ciągu opisanego relacją rekurencyjną: x Iformatyka 05/06 Kazimierz Jezuita ZADANIA - Seria. Relacja rekurecyja kowecja sumacyja suma ciągu geometryczego. Zaleźć wzór a ogóly wyraz ciągu opisaego relacją rekurecyją: x sprowadzając problem do

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTUT EKSPLOATACJI MASZYN I TRANSPORTU ZAKŁAD STEROWANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆWICZENIE: E20 BADANIE UKŁADU

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania SYSTEMY DYNAMICZNE

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania SYSTEMY DYNAMICZNE Politechnika Gańska Wyział Elektrotechniki i Automatyki Katera Inżynierii Systemów Sterowania SYSTEMY DYNAMICZNE Stabilność systemów ynamicznych Materiały pomocnicze o ćwiczeń Termin T7 Opracowanie: Kazimierz

Bardziej szczegółowo

Egzamin maturalny z matematyki CZERWIEC 2011

Egzamin maturalny z matematyki CZERWIEC 2011 Egzami maturaly z matematyki CZERWIEC 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Poziom podstawowy czerwiec 0 Klucz puktowaia do zadań zamkiętych Nr

Bardziej szczegółowo

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce! Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,

Bardziej szczegółowo

KADD Metoda najmniejszych kwadratów

KADD Metoda najmniejszych kwadratów Metoda ajmiejszych kwadratów Pomiary bezpośredie o rówej dokładości o różej dokładości średia ważoa Pomiary pośredie Zapis macierzowy Dopasowaie prostej Dopasowaie wielomiau dowolego stopia Dopasowaie

Bardziej szczegółowo

O1. POMIARY KĄTA GRANICZNEGO

O1. POMIARY KĄTA GRANICZNEGO O1 POMIARY KĄTA GRANICZNEGO tekst opraowała: Bożea Jaowska-Dmoh Gdy wiązka światła pada a aię dwóh ośrodków przezrozystyh od stroy ośrodka optyzie gęstszego pod kątem aizym, to promień załamay ślizga się

Bardziej szczegółowo

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D. Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)

Bardziej szczegółowo

D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne (wykład 6 _ZP) [1] ZAGADNIENIE PRZYDZIAŁU (ZP) (Assignment Problem)

D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne (wykład 6 _ZP) [1] ZAGADNIENIE PRZYDZIAŁU (ZP) (Assignment Problem) D. Miszczyńska, M.Miszczyński KBO UŁ, Badaia operacyje (wykład 6 _ZP) [1] ZAGADNIENIE PRZYDZIAŁU (ZP) (Assigmet Problem) Bliskim "krewiakiem" ZT (w sesie podobieństwa modelu decyzyjego) jest zagadieie

Bardziej szczegółowo

tek zauważmy, że podobnie jak w dziedzinie rzeczywistej wprowadzamy dla funkcji zespolonych zmiennej rzeczywistej pochodne wyższych rze

tek zauważmy, że podobnie jak w dziedzinie rzeczywistej wprowadzamy dla funkcji zespolonych zmiennej rzeczywistej pochodne wyższych rze R o z d z i a l III RÓWNANIA RÓŻNICZKOWE LINIOWE WYŻSZYCH RZE DÓW 12. Rówaie różiczowe liiowe -tego rze du Na pocza te zauważmy, że podobie ja w dziedziie rzeczywistej wprowadzamy dla fucji zespoloych

Bardziej szczegółowo

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) (1.1) (1.2a)

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) (1.1) (1.2a) PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 1 i 2

STATYSTYKA OPISOWA WYKŁAD 1 i 2 STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest

Bardziej szczegółowo

ZADANIA PRZYGOTOWUJĄCE DO SPRAWDZIANÓW W KLASIE DRUGIEJ.

ZADANIA PRZYGOTOWUJĄCE DO SPRAWDZIANÓW W KLASIE DRUGIEJ. ZADANIA PRZYGOTOWUJĄCE DO SPRAWDZIANÓW W KLASIE DRUGIEJ I Fukcja kwadratowa ) PODAJ POSTAĆ KANONICZNĄ I ILOCZYNOWĄ (O ILE ISTNIEJE) FUNKCJI: a) f ( ) + b) f ( ) 6+ 9 c) f ( ) ) Narysuj wykresy fukcji f

Bardziej szczegółowo

Geometria Różniczkowa II wykład dziesiąty

Geometria Różniczkowa II wykład dziesiąty Geometria Różniczkowa II wykła ziesiąty Wykła ziesiąty rozpoczyna serię wykłaów poświęconych geometrii symplektycznej. Zajmować się bęziemy głównie zastosowaniami geometrii symplektycznej w mechanice,

Bardziej szczegółowo

OBWODY LINIOWE PRĄDU STAŁEGO

OBWODY LINIOWE PRĄDU STAŁEGO Politechika Gdańska Wydział Elektrotechiki i Automatyki 1. Wstęp st. stacjoare I st. iżyierskie, Eergetyka Laboratorium Podstaw Elektrotechiki i Elektroiki Ćwiczeie r 1 OBWODY LINIOWE PRĄDU STAŁEGO Obwód

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

Teoria Przekształtników - Kurs elementarny

Teoria Przekształtników - Kurs elementarny W. PRZEKSZTAŁTNIKI SIECIOWE 1 ( AC/DC; AC/AC) Ta wielka grupa przekształtników swą nazwę wywozi z tego, że są one ołączane bezpośrenio o sieci lub systemu energetycznego o napięciu przemiennym 50/60 Hz

Bardziej szczegółowo

Wyznaczanie czasu retencji gazu gaśniczego

Wyznaczanie czasu retencji gazu gaśniczego st. kpt. gr iż. Przeysław Kubica Wyzaczaie czasu retecji gazu gaśiczego 1 Cel ćwiczeia Cele ćwiczeia jest: a) wykoaie testu szczelości poieszczeia etoą wetylatora rzwiowego (ag. oor fa test); b) a postawie

Bardziej szczegółowo

Zadanie 1 Probówka I: AgNO 3 + NaCl AgCl + NaNO 3 Probówka II: 3AgNO 3 + AlCl 3 3AgCl + Al(NO 3 ) 3 Zadanie 2 Przykłady poprawnych odpowiedzi

Zadanie 1 Probówka I: AgNO 3 + NaCl AgCl + NaNO 3 Probówka II: 3AgNO 3 + AlCl 3 3AgCl + Al(NO 3 ) 3 Zadanie 2 Przykłady poprawnych odpowiedzi www.ehedukaja.pl Zbiór zadań CKE Roztwory i reakje zahodząe w roztworah wodyh - odpowiedzi Zadaie Probówka I: AgNO + NaCl AgCl + NaNO Probówka II: AgNO + AgCl + Al(NO ) Zadaie Przykłady poprawyh odpowiedzi

Bardziej szczegółowo

MATURA 2014 z WSiP. Zasady oceniania zadań

MATURA 2014 z WSiP. Zasady oceniania zadań MATURA 0 z WSiP Matematyka Poziom rozszerzoy Zasady oceiaia zadań Copyright by Wydawictwa Szkole i Pedagogicze sp z oo, Warszawa 0 Matematyka Poziom rozszerzoy Kartoteka testu Numer zadaia Sprawdzaa umiejętość

Bardziej szczegółowo

MATERIAŁY POMOCNICZE DO WYKŁADU Z PODSTAW ZASTOSOWAŃ ULTRADŹWIĘKÓW W MEDYCYNIE (wyłącznie do celów dydaktycznych zakaz rozpowszechniania)

MATERIAŁY POMOCNICZE DO WYKŁADU Z PODSTAW ZASTOSOWAŃ ULTRADŹWIĘKÓW W MEDYCYNIE (wyłącznie do celów dydaktycznych zakaz rozpowszechniania) MATRIAŁY POMOCNICZ DO WYKŁADU Z PODSTAW ZASTOSOWAŃ ULTRADŹWIĘKÓW W MDYCYNI (wyłączie do celów dydaktyczych zakaz rozpowszechiaia) 4. Drgaia brył prętów, membra i płyt. ****************************************************************

Bardziej szczegółowo

LABORATORIUM MODELOWANIA I SYMULACJI. Ćwiczenie 5

LABORATORIUM MODELOWANIA I SYMULACJI. Ćwiczenie 5 Wydział Elektryczy Zespół Automatyki (ZTMAiPC) ZERiA LABORATORIUM MODELOWANIA I SYMULACJI Ćwiczeie 5 ANALIZA WŁASNOŚCI DYNAMICZNYCH WYBRANEGO OBIEKTU FIZYCZNEGO 1. Opis właściwości dyamiczych obiektu Typowym

Bardziej szczegółowo

Siemens. The future moving in.

Siemens. The future moving in. Ogrzewaczy wody marki Siemes zae są a rykach całego świata. Ich powstawaiu towarzyszą ambite cele: stale poszukujemy iowacyjych, przyszłościowych rozwiązań techologiczych, służących poprawie jakości życia.

Bardziej szczegółowo

1. Podstawowe pojęcia w wymianie ciepła

1. Podstawowe pojęcia w wymianie ciepła PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.

Bardziej szczegółowo

Fraktale - ciąg g dalszy

Fraktale - ciąg g dalszy Fraktale - ciąg g dalszy Koleja próba defiicji fraktala Jak Madelbrot zdefiiował fraktal? Co to jest wymiar fraktaly zbioru? Układy odwzorowań iterowaych (IFS Przykład kostrukcji pewego zbioru. Elemety

Bardziej szczegółowo

ANALIZA FUNKCJONAŁÓW NIEWYPUKŁYCH CHARAKTERYZUJĄCYCH MIKROMAGNETYKI

ANALIZA FUNKCJONAŁÓW NIEWYPUKŁYCH CHARAKTERYZUJĄCYCH MIKROMAGNETYKI INSTYTUT PODSTAWOWYCH PROBLEMÓW TECHNIKI PAN ZAKŁAD MECHANIKI MATERIAŁÓW I BIOMECHANIKI PRACOWNIA METOD WARIACYJNYCH I BIOMECHANIKI Eleoora Krugleko ANALIZA FUNKCJONAŁÓW NIEWYPUKŁYCH CHARAKTERYZUJĄCYCH

Bardziej szczegółowo