Dyskretna transformata falkowa z wykorzystaniem falek Haara. Alfréd Haar

Wielkość: px
Rozpocząć pokaz od strony:

Download "Dyskretna transformata falkowa z wykorzystaniem falek Haara. Alfréd Haar"

Transkrypt

1

2 Dyskretna transformata falkowa z wykorzystaniem falek Haara Alfréd Haar 88-9

3 Przypomnijmy, że istotą DWT jest podział pierwotnego sygnału za pomoą pary filtrów (górnoprzepustowego i dolnoprzepustowego) na dwie składowe i następnie hierarhizna dekompozyja jednej z tyh składowyh (niskozęstotliwośiowej) w analogizny sposób.

4 Pojedynzy krok wielopoziomowej dekompozyja danyh próbek dolnoprzepustowy Filtry górnoprzepustowy A ~ próbek ~ próbek ~ współzynników ~ współzynników D

5 Na każdym etapie realizaji piramidy Mallata wykonywana jest bazowa operaja splotu wejśiowego szeregu danyh (n) z dwoma zestawami współzynników wagowyh: Współzynniki aproksymaji współzynniki odpowiedzi impulsowej filtru dolnoprzepustowego a L ( i ) ( i ) n g m a n m, i m, K, detale współzynniki odpowiedzi impulsowej filtru górnoprzepustowego L ( i ) ( i) ( ) d n hm a n m, a m ( n) oraz operaja downsamplingu odrzuania o drugiej próbki odfiltrowanego sygnału w każdej ze składowyh w elu redukji nadmiarowośi zbioru danyh. n

6 Na dzień dzisiejszy istnieje wiele opraowanyh zestawów współzynników filtrów. Są to filtry Haara, Daubehies, Coiflety, Simflety i inne.

7 DWT w bazie Haara jest najprostszym, lez dość skuteznym sposobem wieloskalowej reprezentaji danyh. Zastosowanie filtrów Haara powoduje, że na każdym etapie dekompozyji proedura dolnoprzepustowej filtraji sprowadza się do oblizania znormalizowanej wartośi średniej sąsiednih elementów sekwenji danyh, zaś proedura filtraji górnoprzepustowej do oblizania znormalizowanej różniy tyh samyh elementów. 7

8 Filtr pasmowy H przekształa wejśie w wyjśie yh(). Jeśli filtr pasmowy jest liniowy, to odpowiednie transformaty mogą być reprezentowane jako maierz H, a oblizenie transformaty sygnału X osiąga się przez oblizenie mnożenia maierzy YH X. 8

9 9 Poniższy shemat pokazuje dobrze znany przykład filtru pasmowego stosowanego do analizy, który rozdziela zęstotliwośi sygnału dyskretnego na niskie i wysokie. H H X H n? X H n? X H D Y n n ) ( X H D Y n n ) ( Y Y Y

10 Jako przykład oblizmy maierz H dla filtru pasmowego Haara, biorą wejśie X zawierająe N próbek. Operaja ta dla filtru niskozęstotliwośiowego może być przedstawiona za pomoą maierzy: H ( n) O Należy przypomnieć, że filtr dolnoprzepustowy Haara H uśrednia sąsiednie elementy wejśia.

11 Filtr górnoprzepustowy Haara H obliza połowę różniy pomiędzy kolejnymi próbkami wejśiowymi, o może być przedstawione za pomoą maierzy: O n H

12 Operaja downsamplingu może być reprezentowana za pomoą maierzy: M n D która wybiera pierwszy, trzei, itd. element X.

13 Połązona operaja filtrowania dolnoprzepustowego i downsamplingu może być reprezentowana za pomoą maierzy: n n n... H D L

14 Podobnie, połązona operaja filtraji wysokoprzepustowej i downsamplingu jest reprezentowana jako: n n n... H D B

15 Górna i dolna gałąź filtru pasmowego wytwarza odpowiednio: n X L Y n X B Y Wyjśiem filtru pasmowego jest: n n n X H X B X L Y Y Y n n n B L H ) (, gdzie

16 Możemy także zbudować hierarhizną reprezentaję sygnału poprzez rekursywne filtrowanie niskoprzepustowego wyjśia filtru pasmowego:

17 W każdym kroku rekursji wielkość sygnału zmniejsza się dwukrotnie. Jeśli sygnał jest dyskretny i skońzony (i jego długość jest potęgą dwójki), to możemy w ostateznośi uzyskać sygnał o długośi jednej próbki. Suma wymiarów wszystkih wyjść jest równa wymiarowi oryginalnego sygnału wejśiowego. 7

18 Ostatezna, hierarhizna reprezentaja sygnału wejśiowego jest zbiorem współzynników szzegółowośi o różnyh poziomah rozkładu (skale) i gruboziarnistą wersją oryginalnego sygnału (wyjśie filtru dolnoprzepustowego). 8

19 9 Operaję analizy falkowej w ałym bloku filtrująym można przedstawić w postai maierzowej za pomoą następująego równania maierzowego: N N N N a a a M O M

20 Odwrotną transformatę Haara można przedstawić w następująy sposób:

21 Wzór na odtworzenie współzynnika aproksymaji będzie miał postać: a (n-) (L (n) ) T a (n) (B (n) ) T (n), gdzie maierze (L (n) ) T i (B (n) ) T wyglądają następująo:

22 ( L ( n) ) Τ M

23 ) ( n Τ M B

24 Operaja rekonstrukji sygnału w ałym bloku filtrująym będzie miała postać: N N N N a a a M O M

25 Przykłady: Transformata Falkowa Haara dla N8 X [ ] Τ 7 () H R n H ()?? a () () H () H ()?? a () () H () H ()?? a () ()

26 Krok : a () D () H () X L () X, () D () H () XB () X Maierze dla odpowiednih filtrów wyglądają następująo: () H () H

27 7 Operaja downsamplingu będzie reprezentowana przez maierz: () D Maierze przekształeń L i B mają wię postać: () L () B

28 8 W wyniku otrzymujemy wektory: Τ 7 () a Τ 7 ()

29 9 Krok : a () D () H () a () L () a (), () D () H () a () B () a () Maierze dla odpowiednih filtrów wyglądają następująo: H H

30 Operaja downsamplingu będzie reprezentowana przez maierz: D Maierze przekształeń L i B mają wię postać: () L () B

31 W wyniku otrzymamy wektory: T 7 () a T 7 ()

32 Krok : a () D () H () a () L () a (), () D () H () a () B () a () H H Operaja downsamplingu będzie reprezentowana przez maierz: ( ) D

33 Maierze przekształeń L i B mają wię postać: L B Otrzymamy skalary: 7 () a 7 ()

34 Odwrotna Transformata Falkowa Haara N8 Krok : a () (L () ) T a () (B () ) T () Τ ) ( L B () a

35 Krok : a () (L () ) T a () (B () ) T () () Τ ) ( B Τ ) ( L () a

36 Krok : X (L () ) T a () (B () ) T () () Τ ) ( L () Τ ) ( B

37 X

38 8 Graf algorytmu transformaty falkowej w baze Haara dla N

39 Dyskretna transformata falkowa z wykorzystaniem filtrów Daubehies Ingrid Daubehies 9

40 Jest kilka rodzajów filtrów Daubehies: DAUB, DAUB,..., DAUB. Najprostszą jest falka DAUB, która ma ztery współzynniki:, gdzie:,,,

41 Maierz pojedynzej iteraji transformaty Daubehies jest dana w postai: T gdzie puste pozyje oznazają zera. Wiersze nieparzyste reprezentują filtraję dolnoprzepustową, a wiersze parzyste operaję filtraji górnoprzepustowej

42 Proedura polega na przemnożeniu wektora danyh wejśiowyh X przez maierz transformaty T. Oryginalny wektor X ma długość N, gdzie N musi być potęgą dwójki. Konsekwentnie maierz filtrowania w pierwszym kroku rekursji ma rozmiar N N. W następnym kroku rekursji maierz ma rozmiar ½N ½N

43 Operaja odwrotna polega na przemnożeniu wektora współzynników przez maierz odwrotną, która jest po prostu transpozyją maierzy transformaty. Τ O T T

44 Maierz T T jest odwrotną do maierzy T, wtedy i tylko wtedy, gdy zahodzą dwa równania: Dodatkowo potrzebujemy zależnośi:

45 Równania te są zterema równaniami z zterema niewiadomymi,,, po raz pierwszy odkrytymi przez Ingrid Daubehies. Rozwiązaniem tyh równań są ztery współzynniki przedstawione już wześniej:,,,

46 DAUB jest najbardziej zwartym zbiorem ze zbiorów współzynników falkowyh. Jeśli będziemy mieli sześć współzynników w miejse ztereh, otrzymamy rozwiązanie postai.,,,,, To jest zbior wspólzynnikoów DAUB.

47 Przykład: Transformata Falkowa Daubehies-, N8 X [ ] Τ 7 Krok : a () L () X () B () X 7

48 8 Maierze dla odpowiednih filtrów wyglądają następująo: () L () B

49 9 W wyniku otrzymamy dwa wektory o wymiarze : a () i (). Krok : a () L () a () () B () a () Maierze dla odpowiednih filtrów mają postać: L B W wyniku otrzymamy dwa wektory o wymiarze : a () i ().

50 W ten sposób otrzymaliśmy zakońzyliśmy proes transformaty, którą można przedstawić za pomoą shematu: () () () () () () () () () () () 7 a a a a a a

51 Odwrotna transformata falkowa Daubehies-, N8 Krok : a () (L () ) T a () (B () ) T () Maierze dla odpowiednih filtrów wyglądają następująo: Τ ) ( L Τ ) ( B

52 Krok : X (L () ) T a () (B () ) T () Maierze dla odpowiednih filtrów mają postać: () Τ ) ( L () Τ ) ( B W ten sposób odzyskujemy wektor X o wymiarze 8.

53 Jeśli hemy podobnie jak w transformaie Haara w ostatnim kroku uzyskać skalary, musimy zastosować transformatę, w której współzynniki aproksymaji i szzegółowośi oblizamy z następująyh równań: i i i i i i i i i i a Maierze odpowiednih filtraji będą miały postać:

54 () L () B

55 W ostatniej iteraji współzynniki maierzy będą mnożone przez elementy sygnału: N-, N-, N i N. () L I tu pojawi się problem, ponieważ N i N nie istnieją. () B

56 Istnieją trzy metody radzenia sobie z tym problemem:. Potraktowanie zbioru danyh jako okresowyh. Na pozątek sekwenji danyh wstawiamy końowe elementy sygnału (w przypadku DWT), lub na końu wektora umieszzamy pozątkowe elementy sekwenji danyh (w przypadku IDWT).

57 . Powturzenie skrajnih elementów znajdująyh się po każdej stronie wektora danyh (na pozątku i na końu) tyle razy ile jest to koneznie dla uzupelnienia nezbędnej dlugośi wektora.. Dopisywanie po jednej lub obydwu stronah wektora danyh odpowiedniej liby zer. 7

58 8 Krok : W pierwszym kroku będziemy wię mnożyć maierz L () i maierz B () przez wektor: [ ] Τ 7 7 X Otrzymamy: () 7 7 a () 7 7

59 9 Krok : W drugim kroku będziemy oblizać równania: a () L () a () ; () B () a (), gdzie wektor a () jest wektorem a (), do którego pozątku dodano dwa końowe elementy, maierze L () i B () będą miały postać L B

60 Krok : będziemy oblizać równania: a () L () a () ; () B () a () [ ] L [ ] B

61 Operaja odwrotna składa się z następująyh kroków: Krok : a () (L () ) T a () (B () ) T () gdzie maierze (L () ) T i (B () ) T mają postać: Τ ) ( L Τ ) ( B

62 Krok : a () (L () ) T a () (B () ) T (), gdzie maierze (L () ) T i (B () ) T mają postać: Τ ) ( L Τ ) ( B

63 Krok : X a () (L () ) T () (B () ) T () Τ ) ( L () Τ ) ( B

64

Składowe odpowiedzi czasowej. Wyznaczanie macierzy podstawowej

Składowe odpowiedzi czasowej. Wyznaczanie macierzy podstawowej Składowe odpowiedzi zasowej. Wyznazanie maierzy podstawowej Analizowany układ przedstawia rys.. q (t A q 2, q 2 przepływy laminarne: h(t q 2 (t q 2 h, q 2 2 h 2 ( Przykładowe dane: A, 2, 2 2 (2 h2(t q

Bardziej szczegółowo

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20).

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20). SPIS TREŚCI ROZDZIAŁ I SYGNAŁY CYFROWE 9 1. Pojęcia wstępne Wiadomości, informacje, dane, sygnały (9). Sygnał jako nośnik informacji (11). Sygnał jako funkcja (12). Sygnał analogowy (13). Sygnał cyfrowy

Bardziej szczegółowo

TRANSFORMATA FALKOWA 2D. Oprogramowanie Systemów Obrazowania 2016/2017

TRANSFORMATA FALKOWA 2D. Oprogramowanie Systemów Obrazowania 2016/2017 TRANSFORMATA FALKOWA 2D Oprogramowanie Systemów Obrazowania 2016/2017 Wielorozdzielczość - dekompozycja sygnału w ciąg sygnałów o coraz mniejszej rozdzielczości na wielu poziomach gdzie: s l+1 - aproksymata

Bardziej szczegółowo

Analiza obrazów - sprawozdanie nr 2

Analiza obrazów - sprawozdanie nr 2 Analiza obrazów - sprawozdanie nr 2 Filtracja obrazów Filtracja obrazu polega na obliczeniu wartości każdego z punktów obrazu na podstawie punktów z jego otoczenia. Każdy sąsiedni piksel ma wagę, która

Bardziej szczegółowo

Wykład 30 Szczególne przekształcenie Lorentza

Wykład 30 Szczególne przekształcenie Lorentza Wykład Szzególne przekształenie Lorentza Szzególnym przekształeniem Lorentza (właśiwym, zahowująym kierunek zasu) nazywa się przekształenie między dwoma inerjalnymi układami odniesienia K i K w przypadku

Bardziej szczegółowo

Kompresja Danych. Streszczenie Studia Dzienne Wykład 13, f(t) = c n e inω0t, T f(t)e inω 0t dt.

Kompresja Danych. Streszczenie Studia Dzienne Wykład 13, f(t) = c n e inω0t, T f(t)e inω 0t dt. 1 Kodowanie podpasmowe Kompresja Danych Streszczenie Studia Dzienne Wykład 13, 18.05.2006 1.1 Transformaty, próbkowanie i filtry Korzystamy z faktów: Każdą funkcję okresową można reprezentować w postaci

Bardziej szczegółowo

Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI)

Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

Akwizycja i przetwarzanie sygnałów cyfrowych

Akwizycja i przetwarzanie sygnałów cyfrowych Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Analiza czas - częstotliwość analiza częstotliwościowa: problem dla sygnału niestacjonarnego zwykła transformata

Bardziej szczegółowo

FUNKCJA KWADRATOWA. Poziom podstawowy

FUNKCJA KWADRATOWA. Poziom podstawowy FUNKCJA KWADRATOWA Poziom podstawowy Zadanie ( pkt) Wykres funkji y = ax + bx+ przehodzi przez punkty: A = (, ), B= (, ), C = (,) a) Wyznaz współzynniki a, b, (6 pkt) b) Zapisz wzór funkji w postai kanoniznej

Bardziej szczegółowo

ELEMENTY SZCZEGÓLNEJ TEORII WZGLĘDNOŚCI. I. Zasada względności: Wszystkie prawa przyrody są takie same we wszystkich

ELEMENTY SZCZEGÓLNEJ TEORII WZGLĘDNOŚCI. I. Zasada względności: Wszystkie prawa przyrody są takie same we wszystkich ELEMENTY SZCZEGÓLNEJ TEORII WZGLĘDNOŚCI Postulaty Einsteina (95 r) I Zasada względnośi: Wszystkie prawa przyrody są takie same we wszystkih inerjalnyh układah odniesienia lub : Równania wyrażająe prawa

Bardziej szczegółowo

; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze...

; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze... Tekst na niebiesko jest komentarzem lub treścią zadania. Zadanie. Dane są macierze: A D 0 ; E 0 0 0 ; B 0 5 ; C Wykonaj poniższe obliczenia: 0 4 5 Mnożenia, transpozycje etc wykonuję programem i przepisuję

Bardziej szczegółowo

Laboratorium Przetwarzania Sygnałów

Laboratorium Przetwarzania Sygnałów PTS - laboratorium Laboratorium Przetwarzania Sygnałów Ćwiczenie 4 Transformacja falkowa Opracował: - prof. dr hab. inż. Krzysztof Kałużyński Zakład Inżynierii Biomedycznej Instytut Metrologii i Inżynierii

Bardziej szczegółowo

9. Dyskretna transformata Fouriera algorytm FFT

9. Dyskretna transformata Fouriera algorytm FFT Transformata Fouriera ma szerokie zastosowanie w analizie i syntezie układów i systemów elektronicznych, gdyż pozwala na połączenie dwóch sposobów przedstawiania sygnałów reprezentacji w dziedzinie czasu

Bardziej szczegółowo

Cyfrowe przetwarzanie sygnałów. Wykład 10. Transformata cosinusowa. Falki. Transformata falkowa. dr inż. Robert Kazała

Cyfrowe przetwarzanie sygnałów. Wykład 10. Transformata cosinusowa. Falki. Transformata falkowa. dr inż. Robert Kazała Cyfrowe przetwarzanie sygnałów Wykład 10 Transformata cosinusowa. Falki. Transformata falkowa. dr inż. Robert Kazała 1 Transformata cosinusowa Dyskretna transformacja kosinusowa, (DCT ang. discrete cosine

Bardziej szczegółowo

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem:

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem: PPS 2 kartkówka 1 RÓWNANIE RÓŻNICOWE Jest to dyskretny odpowiednik równania różniczkowego. Równania różnicowe to pewne związki rekurencyjne określające w sposób niebezpośredni wartość danego wyrazu ciągu.

Bardziej szczegółowo

Transformata Fouriera i analiza spektralna

Transformata Fouriera i analiza spektralna Transformata Fouriera i analiza spektralna Z czego składają się sygnały? Sygnały jednowymiarowe, częstotliwość Liczby zespolone Transformata Fouriera Szybka Transformata Fouriera (FFT) FFT w 2D Przykłady

Bardziej szczegółowo

POSZUKIWANIE FALKOWYCH MIAR POTENCJAŁU INFORMACYJNEGO OBRAZÓW CYFROWYCH JAKO WSKAŹNIKÓW JAKOŚCI WIZUALNEJ

POSZUKIWANIE FALKOWYCH MIAR POTENCJAŁU INFORMACYJNEGO OBRAZÓW CYFROWYCH JAKO WSKAŹNIKÓW JAKOŚCI WIZUALNEJ Krystian Pyka POSZUKIWANIE FALKOWYCH MIAR POTENCJAŁU INFORMACYJNEGO OBRAZÓW CYFROWYCH JAKO WSKAŹNIKÓW JAKOŚCI WIZUALNEJ Streszczenie. W pracy przedstawiono wyniki badań nad wykorzystaniem falek do analizy

Bardziej szczegółowo

Transformaty. Kodowanie transformujace

Transformaty. Kodowanie transformujace Transformaty. Kodowanie transformujace Kodowanie i kompresja informacji - Wykład 10 10 maja 2009 Szeregi Fouriera Każda funkcję okresowa f (t) o okresie T można zapisać jako f (t) = a 0 + a n cos nω 0

Bardziej szczegółowo

NOŚNOŚĆ FUNDAMENTU BEZPOŚREDNIEGO WEDŁUG EUROKODU 7

NOŚNOŚĆ FUNDAMENTU BEZPOŚREDNIEGO WEDŁUG EUROKODU 7 Geotehnizne zagadnienia realizaji budowli drogowyh projekt, dr inż. Ireneusz Dyka Kierunek studiów: Budownitwo, studia I stopnia Rok IV, sem.vii 19 NOŚNOŚĆ FUNDAMENTU BEZPOŚREDNIEGO WEDŁUG EUROKODU 7 Według

Bardziej szczegółowo

D5. Podprogramy rozwiązywania układu równań

D5. Podprogramy rozwiązywania układu równań D5. Podprogramy rozwiązywania układu równań W niniejszym dodatku zamieśiliśmy proedury rozwiazywania układu równań liniowyh. Krótki opis algorytmów omówiliśmy w rozdz. 10.1. Proedury mają bogaty komentarz

Bardziej szczegółowo

Wpływ energii mieszania na współczynnik wnikania masy w układzie ciało stałe - ciecz

Wpływ energii mieszania na współczynnik wnikania masy w układzie ciało stałe - ciecz Wpływ energii mieszania na współzynnik wnikania masy w układzie iało stałe - iez 1.Wprowadzenie Rozpuszzanie iała stałego w mieszalnikah stanowi jedną z prostszyh metod realizaji proesu wymiany masy od

Bardziej szczegółowo

Teoretyczne podstawy programowania liniowego

Teoretyczne podstawy programowania liniowego Teoretyczne podstawy programowania liniowego Elementy algebry liniowej Plan Kombinacja liniowa Definicja Kombinacja liniowa wektorów (punktów) x 1, x 2,, x k R n to wektor x R n k taki, że x = i=1 λ i

Bardziej szczegółowo

Cyfrowe przetwarzanie i kompresja danych

Cyfrowe przetwarzanie i kompresja danych Cyfrowe przetwarzanie i kompresja danych dr inż.. Wojciech Zając Wykład 5. Dyskretna transformata falkowa Schemat systemu transmisji danych wizyjnych Źródło danych Przetwarzanie Przesył Przetwarzanie Prezentacja

Bardziej szczegółowo

Macierze. Rozdział Działania na macierzach

Macierze. Rozdział Działania na macierzach Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy

Bardziej szczegółowo

Zastosowanie falek w przetwarzaniu obrazów

Zastosowanie falek w przetwarzaniu obrazów Informatyka, S2 sem. Letni, 2013/2014, wykład#1 Zastosowanie falek w przetwarzaniu obrazów dr inż. Paweł Forczmański Katedra Systemów Multimedialnych, Wydział Informatyki ZUT 1 / 61 Alfréd Haar Alfréd

Bardziej szczegółowo

Definicja szybkości reakcji

Definicja szybkości reakcji Definija szybkośi reakji Szybkość reakji definiuje się jako stosunek zmiany stężenia substratów lub produktów reakji do zasu potrzebnego do zajśia tej zmiany. v zas zmiana stężenia potrzebny do zajśia

Bardziej szczegółowo

Filtrowanie a sploty. W powyższym przykładzie proszę zwrócić uwagę na efekty brzegowe. Wprowadzenie Projektowanie filtru Zadania

Filtrowanie a sploty. W powyższym przykładzie proszę zwrócić uwagę na efekty brzegowe. Wprowadzenie Projektowanie filtru Zadania Filtrowanie a sploty idea x=[2222222222] %sygnałstochastycznyodługości5próbek h=[1111]/4; %Filtruśredniającypo4sąsiednichelementach y=conv(h,x)%zaaplikowaniefiltruhdosygnałux W powyższym przykładzie proszę

Bardziej szczegółowo

Przetwarzanie sygnałów

Przetwarzanie sygnałów Przetwarzanie sygnałów Ćwiczenie 3 Filtry o skończonej odpowiedzi impulsowej (SOI) Spis treści 1 Filtracja cyfrowa podstawowe wiadomości 1 1.1 Właściwości filtru w dziedzinie czasu............... 1 1.2

Bardziej szczegółowo

LXIV Olimpiada Matematyczna

LXIV Olimpiada Matematyczna LXIV Olimpiada Matematyzna Rozwiązania zadań konkursowyh zawodów stopnia drugiego 22 lutego 203 r. (pierwszy dzień zawodów) Zadanie. Dane są lizby ałkowite b i oraz trójmian f(x) = x 2 +bx+. Udowodnić,

Bardziej szczegółowo

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe

Bardziej szczegółowo

EKSTRAKCJA CECH TWARZY ZA POMOCĄ TRANSFORMATY FALKOWEJ

EKSTRAKCJA CECH TWARZY ZA POMOCĄ TRANSFORMATY FALKOWEJ Janusz Bobulski Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska ul. Dąbrowskiego 73 42-200 Częstochowa januszb@icis.pcz.pl EKSTRAKCJA CECH TWARZY ZA POMOCĄ TRANSFORMATY FALKOWEJ

Bardziej szczegółowo

1 Układy równań liniowych

1 Układy równań liniowych II Metoda Gaussa-Jordana Na wykładzie zajmujemy się układami równań liniowych, pojawi się też po raz pierwszy macierz Formalną (i porządną) teorią macierzy zajmiemy się na kolejnych wykładach Na razie

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY

MATEMATYKA POZIOM ROZSZERZONY EGZAMIN MATURALNY W ROKU SZKOLNYM 06/07 FORMUŁA OD 05 ( NOWA MATURA ) MATEMATYKA POZIOM ROZSZERZONY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 07 Kluz punktowania zadań zamkniętyh Numer zadania

Bardziej szczegółowo

Robert Susmaga. Instytut Informatyki ul. Piotrowo 2 Poznań

Robert Susmaga. Instytut Informatyki ul. Piotrowo 2 Poznań ... Robert Susmaga Instytut Informatyki ul. Piotrowo 2 Poznań kontakt mail owy Robert.Susmaga@CS.PUT.Poznan.PL kontakt osobisty Centrum Wykładowe, blok informatyki, pok. 7 Wyłączenie odpowiedzialności

Bardziej szczegółowo

1 Zbiory i działania na zbiorach.

1 Zbiory i działania na zbiorach. Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu

Bardziej szczegółowo

Technika audio część 2

Technika audio część 2 Technika audio część 2 Wykład 12 Projektowanie cyfrowych układów elektronicznych Mgr inż. Łukasz Kirchner lukasz.kirchner@cs.put.poznan.pl http://www.cs.put.poznan.pl/lkirchner Wprowadzenie do filtracji

Bardziej szczegółowo

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz

Bardziej szczegółowo

SZYBKI ALGORYTM Z MACIERZĄ SHURA DLA MACIERZY TRÓJDIAGONALNYCH

SZYBKI ALGORYTM Z MACIERZĄ SHURA DLA MACIERZY TRÓJDIAGONALNYCH SZYBKI ALGORYTM Z MACIERZĄ SHURA DLA MACIERZY TRÓJDIAGONALNYCH Rozwiązujemy układ z macierzą trójdiagonalną. Założymy dla prostoty opisu, że macierz ma stałe współczynniki, to znaczy, że na głównej diagonali

Bardziej szczegółowo

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych

Rozwiązywanie układów równań liniowych Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy

Bardziej szczegółowo

Laboratorium Przetwarzania Sygnałów Biomedycznych

Laboratorium Przetwarzania Sygnałów Biomedycznych Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 2 Analiza sygnału EKG przy użyciu transformacji falkowej Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - inż. Tomasz Kubik Politechnika

Bardziej szczegółowo

2. Układy równań liniowych

2. Układy równań liniowych 2. Układy równań liniowych Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 2. Układy równań liniowych zima 2017/2018 1 /

Bardziej szczegółowo

1. Wykład NWD, NWW i algorytm Euklidesa.

1. Wykład NWD, NWW i algorytm Euklidesa. 1.1. NWD, NWW i algorytm Euklidesa. 1. Wykład 1 Twierdzenie 1.1 (o dzieleniu z resztą). Niech a, b Z, b 0. Wówczas istnieje dokładnie jedna para liczb całkowitych q, r Z taka, że a = qb + r oraz 0 r< b.

Bardziej szczegółowo

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory

Bardziej szczegółowo

Sumy kwadratów kolejnych liczb naturalnych

Sumy kwadratów kolejnych liczb naturalnych Sumy kwadratów kolejnych liczb naturalnych Andrzej Nowicki 24 maja 2015, wersja kk-17 Niech m < n będą danymi liczbami naturalnymi. Interesować nas będzie równanie ( ) y 2 + (y + 1) 2 + + (y + m 1) 2 =

Bardziej szczegółowo

Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w

Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w Metoda Simpleks Jak wiadomo, problem PL z dowolną liczbą zmiennych można rozwiązać wyznaczając wszystkie wierzchołkowe punkty wielościanu wypukłego, a następnie porównując wartości funkcji celu w tych

Bardziej szczegółowo

Filtracja obrazu operacje kontekstowe

Filtracja obrazu operacje kontekstowe Filtracja obrazu operacje kontekstowe Główne zadania filtracji Usunięcie niepożądanego szumu z obrazu Poprawa ostrości Usunięcie określonych wad obrazu Poprawa obrazu o złej jakości technicznej Rekonstrukcja

Bardziej szczegółowo

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach. WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

Bardziej szczegółowo

Podstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10.

Podstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10. ZAMIANA LICZB MIĘDZY SYSTEMAMI DWÓJKOWYM I DZIESIĘTNYM Aby zamienić liczbę z systemu dwójkowego (binarnego) na dziesiętny (decymalny) należy najpierw przypomnieć sobie jak są tworzone liczby w ww systemach

Bardziej szczegółowo

Filtracja obrazu operacje kontekstowe

Filtracja obrazu operacje kontekstowe Filtracja obrazu operacje kontekstowe Podział metod filtracji obrazu Metody przestrzenne i częstotliwościowe Metody liniowe i nieliniowe Główne zadania filtracji Usunięcie niepożądanego szumu z obrazu

Bardziej szczegółowo

Programowanie ilorazowe #1

Programowanie ilorazowe #1 Programowanie ilorazowe #1 Problem programowania ilorazowego (PI) jest przykłaem problemu programowania matematyznego nieliniowego, który można skuteznie zlinearyzować, tzn. zapisać (i rozwiązać) jako

Bardziej szczegółowo

Metoda simpleks. Gliwice

Metoda simpleks. Gliwice Sprowadzenie modelu do postaci bazowej Sprowadzenie modelu do postaci bazowej Przykład 4 Model matematyczny z Przykładu 1 sprowadzić do postaci bazowej. FC: ( ) Z x, x = 6x + 5x MAX 1 2 1 2 O: WB: 1 2

Bardziej szczegółowo

ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU

ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU obraz dr inż. Jacek Naruniec Analiza Składowych Niezależnych (ICA) Independent Component Analysis Dąży do wyznaczenia zmiennych niezależnych z obserwacji Problem opiera

Bardziej szczegółowo

Metody Przetwarzania Danych Meteorologicznych Ćwiczenia 14

Metody Przetwarzania Danych Meteorologicznych Ćwiczenia 14 Danych Meteorologicznych Sylwester Arabas (ćwiczenia do wykładu dra Krzysztofa Markowicza) Instytut Geofizyki, Wydział Fizyki Uniwersytetu Warszawskiego 18. stycznia 2010 r. Zadanie 14.1 : polecenie znalezienie

Bardziej szczegółowo

Zaawansowane algorytmy i struktury danych

Zaawansowane algorytmy i struktury danych Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań praktycznych z egzaminów. Strona 1 z 12 Pytania praktyczne z kolokwium zaliczeniowego z 19 czerwca 2014 (studia dzienne)

Bardziej szczegółowo

Przetwarzanie sygnałów

Przetwarzanie sygnałów Przetwarzanie sygnałów Ćwiczenie 5 Filtry o nieskończonej odpowiedzi impulsowej (NOI) Spis treści 1 Wprowadzenie 1 1.1 Filtry jednobiegunowe....................... 1 1.2 Filtry wąskopasmowe........................

Bardziej szczegółowo

Transformata Fouriera

Transformata Fouriera Transformata Fouriera Program wykładu 1. Wprowadzenie teoretyczne 2. Algorytm FFT 3. Zastosowanie analizy Fouriera 4. Przykłady programów Wprowadzenie teoretyczne Zespolona transformata Fouriera Jeżeli

Bardziej szczegółowo

PROCESORY SYGNAŁOWE - LABORATORIUM. Ćwiczenie nr 04

PROCESORY SYGNAŁOWE - LABORATORIUM. Ćwiczenie nr 04 PROCESORY SYGNAŁOWE - LABORATORIUM Ćwiczenie nr 04 Obsługa buforów kołowych i implementacja filtrów o skończonej i nieskończonej odpowiedzi impulsowej 1. Bufor kołowy w przetwarzaniu sygnałów Struktura

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

Arytmetyka. Działania na liczbach, potęga, pierwiastek, logarytm

Arytmetyka. Działania na liczbach, potęga, pierwiastek, logarytm Arytmetyka Działania na liczbach, potęga, pierwiastek, logarytm Zbiory liczbowe Zbiór liczb naturalnych N = {1,2,3,4, }. Zbiór liczb całkowitych Z = {, 3, 2, 1,0,1,2,3, }. Zbiory liczbowe Zbiór liczb wymiernych

Bardziej szczegółowo

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn Metody numeryczne Wykład 3 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Pojęcia podstawowe Algebra

Bardziej szczegółowo

Cyfrowe przetwarzanie i kompresja danych

Cyfrowe przetwarzanie i kompresja danych Cyfrowe przetwarzane kompresja danyh dr nż.. Wojeh Zają Wykład 4. Dyskretna transformata kosnusowa Shemat przetwarzana danyh w systeme yfrowym Cyfryzaja danyh Dekorelaja kwantyzaja ompresja FEC + przeplot

Bardziej szczegółowo

Szybka transformacja Fouriera (FFT Fast Fourier Transform)

Szybka transformacja Fouriera (FFT Fast Fourier Transform) Szybka transformacja Fouriera (FFT Fast Fourier Transform) Plan wykładu: 1. Transformacja Fouriera, iloczyn skalarny 2. DFT - dyskretna transformacja Fouriera 3. FFT szybka transformacja Fouriera a) algorytm

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne

UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a11x1 a12x2... a1nxn b1 a21x1 a22x2... a2nxn b2... an 1x1 an2x2...

Bardziej szczegółowo

Zadania do wykonania. Rozwiązując poniższe zadania użyj pętlę for.

Zadania do wykonania. Rozwiązując poniższe zadania użyj pętlę for. Zadania do wykonania Rozwiązując poniższe zadania użyj pętlę for. 1. apisz program, który przesuwa w prawo o dwie pozycje zawartość tablicy 10-cio elementowej liczb całkowitych tzn. element t[i] dla i=2,..,9

Bardziej szczegółowo

3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B

3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B 1. Dla macierzy a) A = b) A = c) A = d) A = 3 1 + i 1 i i i 0 i i 0 1 + i 1 i 0 0 0 0 1 0 1 0 1 + i 1 i Wyznaczyć macierze spełniające własność komutacji: A, X = B. Obliczyć pierwiaski z macierzy: A =

Bardziej szczegółowo

przedmiot kierunkowy (podstawowy / kierunkowy / inny HES) obieralny (obowiązkowy / nieobowiązkowy) polski semestr VI

przedmiot kierunkowy (podstawowy / kierunkowy / inny HES) obieralny (obowiązkowy / nieobowiązkowy) polski semestr VI Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2018/2019

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 13 stycznia 2012 P. Modliński, GiK PW Rozw.

Bardziej szczegółowo

A-2. Filtry bierne. wersja

A-2. Filtry bierne. wersja wersja 04 2014 1. Zakres ćwiczenia Celem ćwiczenia jest zrozumienie propagacji sygnałów zmiennych w czasie przez układy filtracji oparte na elementach rezystancyjno-pojemnościowych. Wyznaczenie doświadczalne

Bardziej szczegółowo

Akustyka muzyczna ANALIZA DŹWIĘKÓW MUZYCZNYCH

Akustyka muzyczna ANALIZA DŹWIĘKÓW MUZYCZNYCH Akustyka muzyczna ANALIZA DŹWIĘKÓW MUZYCZNYCH Dźwięk muzyczny Dźwięk muzyczny sygnał wytwarzany przez instrument muzyczny. Najważniejsze parametry: wysokość związana z częstotliwością podstawową, barwa

Bardziej szczegółowo

Logika rozmyta - wprowadzenie

Logika rozmyta - wprowadzenie Metody Sztuznej Inteligenji w Sterowaniu Ćwizenie 4 Logika rozmyta - wprowadzenie Przygotował: mgr inż. Marin Peli Instytut Tehnologii Mehaniznej Politehnika Poznańska Poznań, 2011 1 Logika rozmyta Logika

Bardziej szczegółowo

Obliczenia naukowe Wykład nr 8

Obliczenia naukowe Wykład nr 8 Obliczenia naukowe Wykład nr 8 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [] D. Kincaid, W. Cheney, Analiza numeryczna,

Bardziej szczegółowo

Grafika Komputerowa Wykład 2. Przetwarzanie obrazów. mgr inż. Michał Chwesiuk 1/38

Grafika Komputerowa Wykład 2. Przetwarzanie obrazów. mgr inż. Michał Chwesiuk 1/38 Wykład 2 Przetwarzanie obrazów mgr inż. 1/38 Przetwarzanie obrazów rastrowych Jedna z dziedzin cyfrowego obrazów rastrowych. Celem przetworzenia obrazów rastrowych jest użycie edytujących piksele w celu

Bardziej szczegółowo

Równanie przewodnictwa cieplnego (II)

Równanie przewodnictwa cieplnego (II) Wykład 5 Równanie przewodnictwa cieplnego (II) 5.1 Metoda Fouriera dla pręta ograniczonego 5.1.1 Pierwsze zagadnienie brzegowe dla pręta ograniczonego Poszukujemy rozwiązania równania przewodnictwa spełniającego

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne

UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a + a +... + ann b a + a +... + ann b... an + an+... + annn bn który

Bardziej szczegółowo

O MACIERZACH I UKŁADACH RÓWNAŃ

O MACIERZACH I UKŁADACH RÓWNAŃ O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a

Bardziej szczegółowo

b) bc a Rys. 1. Tablice Karnaugha dla funkcji o: a) n=2, b) n=3 i c) n=4 zmiennych.

b) bc a Rys. 1. Tablice Karnaugha dla funkcji o: a) n=2, b) n=3 i c) n=4 zmiennych. DODATEK: FUNKCJE LOGICZNE CD. 1 FUNKCJE LOGICZNE 1. Tablice Karnaugha Do reprezentacji funkcji boolowskiej n-zmiennych można wykorzystać tablicę prawdy o 2 n wierszach lub np. tablice Karnaugha. Tablica

Bardziej szczegółowo

Metody i analiza danych

Metody i analiza danych 2015/2016 Metody i analiza danych Macierze Laboratorium komputerowe 2 Anna Kiełbus Zakres tematyczny 1. Funkcje wspomagające konstruowanie macierzy 2. Dostęp do elementów macierzy. 3. Działania na macierzach

Bardziej szczegółowo

= Zapiszemy poniższy układ w postaci macierzy. 8+$+ 2&=4 " 5 3$ 7&=0 5$+7&=4

= Zapiszemy poniższy układ w postaci macierzy. 8+$+ 2&=4  5 3$ 7&=0 5$+7&=4 17. Układ równań 17.1 Co nazywamy układem równań liniowych? Jak zapisać układ w postaci macierzowej (pokazać również na przykładzie) Co to jest rozwiązanie układu? Jaki układ nazywamy jednorodnym, sprzecznym,

Bardziej szczegółowo

TRANSFORMATA FALKOWA. Joanna Świebocka-Więk

TRANSFORMATA FALKOWA. Joanna Świebocka-Więk TRANSFORMATA FALKOWA Joanna Świebocka-Więk Plan prezentacji 1. Fala a falka czyli porównanie transformaty Fouriera i falkowej 2. Funkcja falkowa a funkcja skalująca 3. Ciągła transformata falkowa 1. Skala

Bardziej szczegółowo

FFT i dyskretny splot. Aplikacje w DSP

FFT i dyskretny splot. Aplikacje w DSP i dyskretny splot. Aplikacje w DSP Marcin Jenczmyk m.jenczmyk@knm.katowice.pl Wydział Matematyki, Fizyki i Chemii 10 maja 2014 M. Jenczmyk Sesja wiosenna KNM 2014 i dyskretny splot 1 / 17 Transformata

Bardziej szczegółowo

2. DZIAŁANIA NA WIELOMIANACH

2. DZIAŁANIA NA WIELOMIANACH WIELOMIANY 1. Stopieo wielomianu. Działania na wielomianach 2. Równość wielomianów. 3. Pierwiastek wielomianu. Rozkład wielomianu na czynniki 4. Równania wielomianowe. 1.STOPIEŃ WIELOMIANU Wielomian to

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)

Bardziej szczegółowo

Splot i korelacja są podstawowymi pojęciami przetwarzania sygnałów.

Splot i korelacja są podstawowymi pojęciami przetwarzania sygnałów. Splot i korelacja są podstawowymi pojęciami przetwarzania synałów. Splot jest bazową operacją dla filtracji cyfrowej, pozwołającej na zwiększenie stosunku mocy synału do mocy zakłóceń. Korelacja pozwala

Bardziej szczegółowo

Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, Spis treści

Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, Spis treści Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, 2013 Spis treści Słowo wstępne 8 Wymagania egzaminacyjne 9 Wykaz symboli graficznych 10 Lekcja 1. Podstawowe prawa

Bardziej szczegółowo

Maciej Piotr Jankowski

Maciej Piotr Jankowski Reduced Adder Graph Implementacja algorytmu RAG Maciej Piotr Jankowski 2005.12.22 Maciej Piotr Jankowski 1 Plan prezentacji 1. Wstęp 2. Implementacja 3. Usprawnienia optymalizacyjne 3.1. Tablica ekspansji

Bardziej szczegółowo

Podstawy Przetwarzania Sygnałów

Podstawy Przetwarzania Sygnałów Adam Szulc 188250 grupa: pon TN 17:05 Podstawy Przetwarzania Sygnałów Sprawozdanie 6: Filtracja sygnałów. Filtry FIT o skończonej odpowiedzi impulsowej. 1. Cel ćwiczenia. 1) Przeprowadzenie filtracji trzech

Bardziej szczegółowo

WEKTORY I WARTOŚCI WŁASNE MACIERZY. = λ c (*) problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej

WEKTORY I WARTOŚCI WŁASNE MACIERZY. = λ c (*) problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej WEKTORY I WARTOŚCI WŁASNE MACIERZY Ac λ c (*) ( A λi) c nietrywialne rozwiązanie gdy det A λi problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej A - macierzowa

Bardziej szczegółowo

Wyk lad 4 Macierz odwrotna i twierdzenie Cramera

Wyk lad 4 Macierz odwrotna i twierdzenie Cramera Wyk lad 4 Macierz odwrotna i twierdzenie Cramera 1 Odwracanie macierzy I n jest elementem neutralnym mnożenia macierzy w zbiorze M n (R) tzn A I n I n A A dla dowolnej macierzy A M n (R) Ponadto z twierdzenia

Bardziej szczegółowo

Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński

Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński Obliczenia Naukowe Wykład 12: Zagadnienia na egzamin Bartek Wilczyński 6.6.2016 Tematy do powtórki Arytmetyka komputerów Jak wygląda reprezentacja liczb w arytmetyce komputerowej w zapisie cecha+mantysa

Bardziej szczegółowo

Przetwarzanie Sygnałów. Zastosowanie Transformaty Falkowej w nadzorowaniu

Przetwarzanie Sygnałów. Zastosowanie Transformaty Falkowej w nadzorowaniu Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka Zastosowanie Transformaty Falkowej

Bardziej szczegółowo

Przestrzenie wektorowe

Przestrzenie wektorowe Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:

Bardziej szczegółowo

Zad. 3: Układ równań liniowych

Zad. 3: Układ równań liniowych 1 Cel ćwiczenia Zad. 3: Układ równań liniowych Wykształcenie umiejętności modelowania kluczowych dla danego problemu pojęć. Definiowanie właściwego interfejsu klasy. Zwrócenie uwagi na dobór odpowiednich

Bardziej szczegółowo

Procesy Chemiczne. Ćw. W4 Adsorpcja z roztworów na węglu aktywnym. Nadmiarowe izotermy adsorpcji. Politechnika Wrocławska

Procesy Chemiczne. Ćw. W4 Adsorpcja z roztworów na węglu aktywnym. Nadmiarowe izotermy adsorpcji. Politechnika Wrocławska Politehnika Wroławska Proesy Chemizne Ćw. W4 Adsorpja z roztworów na węglu aktywnym. Nadmiarowe izotermy adsorpji Opraowane przez: Ewa Loren-Grabowska Wroław 2011 I. ADSORPCJA Równowagowe izotermy adsorpji

Bardziej szczegółowo

SIECI NEURONOWE RADIALNE W ESTYMACJI ZMIENNYCH STANU NIELINIOWEGO UKŁADU DWUMASOWEGO

SIECI NEURONOWE RADIALNE W ESTYMACJI ZMIENNYCH STANU NIELINIOWEGO UKŁADU DWUMASOWEGO Prae Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektryznyh Nr 60 Politehniki Wroławskiej Nr 60 Studia i Materiały Nr 7 007 Marin KAMIŃSKI *, Teresa ORŁOWSKA-KOWALSKA * Siei neuronowe radialne, estymatory

Bardziej szczegółowo

Rozwiązania, seria 5.

Rozwiązania, seria 5. Rozwiązania, seria 5. 26 listopada 2012 Zadanie 1. Zbadaj, dla jakich wartości parametru r R wektor (r, r, 1) lin{(2, r, r), (1, 2, 2)} R 3? Rozwiązanie. Załóżmy, że (r, r, 1) lin{(2, r, r), (1, 2, 2)}.

Bardziej szczegółowo

Kodowanie transformujace. Kompresja danych. Tomasz Jurdziński. Wykład 11: Transformaty i JPEG

Kodowanie transformujace. Kompresja danych. Tomasz Jurdziński. Wykład 11: Transformaty i JPEG Tomasz Wykład 11: Transformaty i JPEG Idea kodowania transformujacego Etapy kodowania 1 Wektor danych x 0,...,x N 1 przekształcamy (odwracalnie!) na wektor c 0,...,c N 1, tak aby: energia była skoncentrowana

Bardziej szczegółowo

MACIERZE. ZWIĄZEK Z ODWZOROWANIAMI LINIOWYMI.

MACIERZE. ZWIĄZEK Z ODWZOROWANIAMI LINIOWYMI. MAIERZE. ZWIĄZEK Z ODWZOROWANIAMI LINIOWYMI. k { 1,,..., k} Definicja 1. Macierzą nazyway każde odwzorowanie określone na iloczynie kartezjański.wartość tego odwzorowania na parze (i,j) k j oznaczay aij

Bardziej szczegółowo