EFEKTY DYSPERSYJNE ZNIEKSZTAŁCAJĄCE KRÓTKIE IMPULSY LASEROWE. prof. Halina Abramczyk Laboratory of Laser Molecular Spectroscopy
|
|
- Iwona Zofia Andrzejewska
- 8 lat temu
- Przeglądów:
Transkrypt
1 EFEKTY DYSPERSYJNE ZNIEKSZTAŁCAJĄCE KRÓTKIE IMPUSY ASEROWE
2 T t N t
3 Dwa główe mehaizmy powoująe ziekształeie impulsów laserowyh: ) GVD-group veloity isspersio ) SMP-self phase moulatio 3
4 E E τ () 0 t / τ t e ( ) ( ) 0 / q E E e E i () ( ) t t E e t m / trasformata Fouriera 0 impuls laserowy o kształie Gaussowskim o ługośi trwaia impulsu t m τ / ( l ) impuls w omeie zęstośi o kształie Gaussowskim szerokośi połówkowej / ( l ) / q 4
5 Co się staie gy impuls przejzie przez filtr? filtr t m t m IMPUS UEGNIE POSZERZENIU 5
6 JAK DZIAŁA FITR? PRZEPUSZCZA TYKO CZESTOŚCI Z ZAKRESU F F 6
7 t m E ( t ) E ( ) A ( ) e i t trasformata Fouriera E τ / 0 t τ e ' ' t A { } / ( ) exp ( ) 0 F τ τ + ' Fτ ' t imp τ Czyli ' / ( l ) t F imp 0 7
8 Elemet optyzy moyfikuje ie tylko amplituę, ale rówież fazę Φ impulsu r r i t+ kr i wt+φ -ługość rogi optyzej W kosekweji fale łuższe poruszają się z ią prękośią iż fale krótsze i impuls zostaje ziekształoy t m A(), Φ Ae ( ) ( ) Φ E ' k Ae ( t ) E ( ) A ( ) e iφ e i t 8
9 Prękość fazowa υ k ( ) Prękość grupowa υ g k 0 9
10 Ψ υ k ph υ g k k0 + k ( ) i ( ) ( ) ( kz t z, t ) A k e k 0 k0 k 0 k k k0 + k prękość fazowa la fali płaskiej prękość grupowa la pazki falowej k Ψ si z t k k 0 0 exp z t k 0 (, t) A ( k ) ( ik z t) z
11 Jak już amieiliśmy elemet optyzy moyfikuje ie tylko amplituę, ale rówież fazę a wię ziekształa ługość trwaia impulsu iφ it t m Φ t Φ E () ( ) ( t A e ) E( ) e Φ Φ ( ) + ( )... powazi o przesuięia fazowego powazi o opóźieia zasowego impulsu opiero te wyraz zmieia ługość trwaia impulsu
12 Ψ rr i () ( t+ kr ) Ae i( t+φ) t Ae Φ k poieważ π k oraz λν, πν λ k π π
13 Rozwińmy fazę Φw szereg Taylora Φ Φ Φ Φ Φ k ( ) + ( )... Φ 0 ost k υg k Φ Czyli pierwsza pohoa ma ses zasu przejśia przez ośroek o grubośi i współzyiku załamaia υ g ma ses prękośi grupowej. t g ( ) 3
14 4 Dopiero trzei zło ma wpływ a tzw. yspersję prękośi grupowej GVD zyli gy: 0 0 Φ Φ ie występuje GVD występuje GVD ( ) + + Φ k k
15 Pokażemy, że gy 0, zyli gy ost Nie występuje efekt GVD NIE WYSTĘPUJE GVD WYSTĘPUJE EFEKT GVD λ 5
16 współzyik załamaia λ) ( (/λ)) (/λ)) (/λ) 3 6 UV 4 λ ługość fali λ λ IR Zależość współzyika załamaia o ługośi fali. Jeak w rzezywistośi współzyik załamaia igy ie jest liiowy, zyli elemet optyzy zawsze wykazuje efekt GVD 6
17 Mówimy, ze materiał wykazuje GVD>0 (positively hirpe) gy skłaowe o większyh ługośiah fali przemieszzają się szybiej iż skłaowe o miejszyh ługośiah. GVD > 0, υ z g > υ g λ GVD < 0, υ z g < υ g 7
18 Aby impuls laserowy przehoząy przez elemet optyzy ie został ziekształoy, opóźieie grupowe t g (zyli zas przejśia przez elemet optyzy) musi być iezależe o zęstośi. Wtey prękość grupowa jest taka sama la różyh zęstośi ( różyh ługośi fali). t υ g g ost Aby te waruek był spełioy musi być spełioy jee z waruków: Φ 0, 0 tg ost, υg ost Wszystkie te waruki ozazają to samo:współzyik załamaia powiie zmieiać się liiowo jako fukja ługośi fali. 8
19 Pokażemy, że jeżeli λ 0 To rzezywiśie skłaowe o różyh ługośiah fali węrują z tą samą prękośią grupową i elemet optyzy ie wykazuje efektu GVD, a impuls laserowy przehozi przez elemet ieziekształoy (jego zas trwaia jest taki sam). υ g, t k g h k, λ υ g π k, 9
20 0 Dla fali o ługośi λ : t g λ λ π λ λ λ Aalogizie la fali o ługośi λ + t g λ λ
21 Czyli różia zasu przebiegu la fali λ i λ wyosi: t tg λ + λ λ t t g 0 gy λ ( ) + λ () ost zyli λ λ wtey λ λ λ λ 0 wstawiają o () otrzymujemy t g λ ( λ λ ) + ( ) 0 λ A wię wszystkie skłaowe impulsu (fale łuższe i fale krótsze) przehozą przez elemet optyzy z taką samą prękośią grupową!
22 Jakie rozwiązaie ależy zastosować aby zlikwiować GVD?
23 Jak okoać kompresji GVD la laserów pikosekuowyh? Iterferometr Gires-Tourois t i Czas powójego przejśia przez iterferometr R<00% R00% µm (mikrometry) 3
24 Moża pokazać, że la iterferometru Giresa-Tourois, opóźieie grupowe tg wyraża się wzorem: t g ( ) t i ( + R( ) ) ( R( ) ) 4R( ) + ( R( ) ) () si t i Czyli zależy o zęstośi, bo R zależy o Φ Φ poieważ t g oblizamy zyli zło opowiaająy za GVD. Moża pokazać, postawiają o () Φ t i 4
25 zas opóźieia grupowego t g (fs ) GVD>0 GVD<0 t g ługość fali (m) Φ 5
26 Iym efektem, który powouje wyłużeie impulsu zasowego jest automoulaja fazy Φ(). Zjawisko to ozaza się skrótem SPM (self phase moulatio).zjawisko to wyika z faktu, że współzyik załamaia () w zakresie optyki ieliiowej zależy o atężeia promieiowaia I. ( ) ( ) ( )I 0 + Czło () wprowaza oatkową oatią yspersję prękośi grupowej GVD 6
G:\AA_Wyklad 2000\FIN\DOC\Fourier.doc. Drgania i fale II rok Fizyki BC. zawierają fazy i amplitudy.
Elemety aalizy ourierowskiej: W przypadku drgań było: () t A + A ( ω t + φ ) + A os( 2ω t + φ ) gdzie + A ω 0 os 2 2 os( ω t + φ ) +... 2π Moża zapisać jako: [ ] () t A + C exp( iω t) + C ( iω t) gdzie
Elementy optyki. Odbicie i załamanie fal. Siatka dyfrakcyjna. Zasada Huygensa Zasada Fermata. Interferencja Dyfrakcja
Elemety optyki Odbiie i załamaie fal Zasada Huygesa Zasada Fermata Iterfereja Dyfrakja Siatka dyfrakyja Frot fali złązeie promień padająy Odbiie i załamaie fal elektromagetyzyh a graiah dwóh ośrodków Normala
Dyspersja światłowodów
Dyspersja światłowoów Prezetaja zawiera kopie folii omawiayh a wykłazie. Niiejsze opraowaie hroioe jest prawem autorskim. Wykorzystaie iekomeryje ozwoloe po warukiem poaia źróła. Sergiusz Patela 998-003
Elementy optyki. Odbicie i załamanie fal Zasada Huygensa Zasada Fermata Interferencja Dyfrakcja Siatka dyfrakcyjna
Elemety optyki Odbiie i załamaie fal Zasada Huygesa Zasada Fermata Iterfereja Dyfrakja Siatka dyfrakyja Frot fali złązeie promień padająy Odbiie i załamaie fal elektromagetyzyh a graiah dwóh ośrodków Normala
WSTĘP DO OPTYKI FOURIEROWSKIEJ
1100-4BW1, rok akademicki 018/19 WSTĘP DO OPTYKI FOURIEROWSKIEJ dr hab. Rafał Kasztelanic Wykład 4 Przestrzeń swobodna jako filtr częstości przestrzennych Załóżmy, że znamy rozkład pola na fale monochromatyczne
Dyspersja światłowodów
Dyspersja światłowoów Prezetaja zawiera kopie folii omawiayh a wykłazie. Niiejsze opraowaie hroioe jest prawem autorskim. Wykorzystaie iekomeryje ozwoloe po warukiem poaia źróła. Sergiusz Patela 998-003
ELEMENTY OPTYKI GEOMETRYCZNEJ
ELEMENTY OPTYKI GEOMETRYCZNEJ Optyka to dział fizyki, zajmujący się badaiem atury światła, początkowo tylko widzialego, a obecie rówież promieiowaia z zakresów podczerwiei i adfioletu. Optyka - geometrycza
Szeregi liczbowe i ich własności. Kryteria zbieżności szeregów. Zbieżność bezwzględna i warunkowa. Mnożenie szeregów.
Materiały dydaktyze Aaliza Matematyza (Wykład 3) Szeregi lizbowe i ih własośi. Kryteria zbieżośi szeregów. Zbieżość bezwzględa i warukowa. Możeie szeregów. Defiija. Nieh {a } N będzie iągiem lizbowym.
Zadania z Matematyka 2 - SIMR 2008/ szeregi zadania z rozwiązaniami. n 1. n n. ( 1) n n. n n + 4
Zadaia z Matematyka - SIMR 00/009 - szeregi zadaia z rozwiązaiami. Zbadać zbieżość szeregu Rozwiązaie: 0 4 4 + 6 0 : Dla dostateczie dużych 0 wyrazy szeregu są ieujeme 0 a = 4 4 + 6 0 0 Stosujemy kryterium
ANEMOMETRIA LASEROWA
1 Wstęp ANEMOMETRIA LASEROWA Anemometria laserowa pozwala na bezdotykowy pomiar prędkośi zastezek (elementów) rozpraszajayh światło Źródłem światła jest laser, którego wiazka jest dzielona się nadwiewiazki
Równania Maxwella. roth t
, H wektory natężenia pola elektrycznego i magnetycznego D, B wektory indukcji elektrycznej i magnetycznej J gęstość prądu elektrycznego Równania Maxwella D roth t B rot+ t J Dla ośrodka izotropowego D
Laboratorium Optyki Nieliniowej
Spis treści 1. Wprowadzenie... 1. Dyspersja prędkości grupowej... 5 A. Wydłużenie impulsu... 6 3. Pomiar czasu trwania impulsu... 1 B. Autokorelator interferometryczny... 13 C. Autokorelator natężeniowy...
Propagacja impulsu. Literatura. B.E.A. Saleh i M.C. Teich: Fundamentals of Photonics. John Wiley & Sons, Inc. New York 1991, rozdział 5 ( 5.
Literatura Propagacja impulsu B.E.A. Saleh i M.C. Teich: Funamentals of Photonics. John Wiley & Sons, Inc. New York 99, roiał 5 ( 5.6) pomocnica alecana naukowa Propagacja impulsu w ośroku yspersyjnym
ν = c/λ [s -1 = Hz] ν = [cm -1 ] ZASADY ZALICZENIA PRZEDMIOTU MBS c = m/s cos x H = H o E = E o cos x c = λν 1 ν = _ λ
ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM Z MBS. ROZWIĄZYWANIE WIDM kolokwium NMR 23 kwietia 208 IR maja 208 złożoe czerwca 208 poiedziałek czwartek piątek 9.3 22.3 23.3 26.3 5. 6. 9. 2. 3. H NMR 23.
Ψ(x, t) punkt zamocowania liny zmienna t, rozkład zaburzeń w czasie. x (lub t)
RUCH FALOWY 1 Fale sejsmiczne Fale morskie Kamerton Interferencja RÓWNANIE FALI Fala rozchodzenie się zaburzeń w ośrodku materialnym lub próżni: fale podłużne i poprzeczne w ciałach stałych, fale podłużne
Fotometria. F. obiektywna = radiometria: Jaka ENERGIA dopływa ze źródła. F. subiektywna: Jak JASNO świeci to źródło? (w ocenie przeciętnego człowieka)
Fotometria F. obiektywa = radiometria: Jaka NRGIA dopływa ze źródła F. subiektywa: Jak JASNO świei to źródło? (w oeie przeiętego złowieka) Potrzebujemy kilku defiiji: defiija Gęstość spektrala (widmo)
Rysunek 1: Fale stojące dla struny zamocowanej na obu końcach; węzły są zaznaczone liniami kropkowanymi, a strzałki przerywanymi
Aaliza fal złożoych Autorzy: Zbigiew Kąkol, Bartek Wiedlocha Przyjrzyjmy się drgaiu poprzeczemu struy. Jeżeli strua zamocowaa a obu końcach zostaie ajpierw wygięta, a astępie puszczoa, to wzdłuż struy
WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU. Wprowadzenie. = =
WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Wprowadzeie. Przy przejśiu światła z jedego ośrodka do drugiego występuje zjawisko załamaia zgodie z prawem Selliusa siα
PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,,
PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA Ruch cząstki ieograiczoy z klasyczego puktu widzeia W tym przypadku V = cost, przejmiemy V ( x ) = 0, cząstka porusza się wzdłuż osi x. Rozwiązujemy
Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14
IV. Transmisja. /~bezet
Światłowody IV. Transmisja BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet 1. Tłumienność 10 7 10 6 Tłumienność [db/km] 10 5 10 4 10 3 10 2 10 SiO 2 Tłumienność szkła w latach (za A.
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
Przekształcenie całkowe Fouriera
Przekształcenie całkowe Fouriera Postać zespolona szeregu Fouriera Niech ana bęzie funkcja f spełniająca w przeziale [, ] warunki Dirichleta. Wtey szereg Fouriera tej funkcji jest o niej zbieżny, tj. przy
=. (6.56) Czas trwania impulsu t imp określony jest zależnością
Zjawiska dyspersyjne mająe wpływ na zas rwania impulsów pikosekundowyh i femosekundowyh. Dyspersja prędkośi grupowej (GVD) Halina Abramzyk, Wsęp do spekroskopii laserowej, PWN, 000 W paragrafie 6.3 pokazaliśmy,
Wprowadzenie do optyki nieliniowej
Wprowadzenie do optyki nieliniowej Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone pod warunkiem podania
Równania liniowe rzędu drugiego stałych współczynnikach
Rówaia liiowe rzędu drugiego stałyh współzyikah Rówaiem różizkowym zwyzajym liiowym drugiego rzędu azywamy rówaie postai p( t) y q( t) y r( t), (1) gdzie p( t), q( t), r( t ) są daymi fukjami Rówaie to,
Fizyka Laserów wykład 5. Czesław Radzewicz
Fizyka Laserów wykład 5 Czesław Radzewicz rezonatory optyczne, optyczne wnęki rezonansowe rezonatory otwarte: Fabry-Perot E t E 0 R 0.99 T 1 0 E r R R R 0. R 0.9 E t = TE 0 e iδφ R 0.5 R 0.9 E t Gires-Tournois
FILTRY ANALOGOWE Spis treści
FILTRY AALOGOWE Spis treśi. Modele iltrów aalogowyh. Idealy iltr doloprzepustowy 3. Rzezywiste iltry doloprzepustowe 4. Stabilość iltrów 5. Filtr Butterwortha 6. Filtr Czebyszewa 7. Filtry eliptyze 8.
Fotonika kurs magisterski grupa R41 semestr VII Specjalność: Inżynieria fotoniczna. Egzamin ustny: trzy zagadnienia do objaśnienia
Dr inż. Tomasz Kozacki Prof. dr hab.inż. Romuald Jóźwicki Zakład Techniki Optycznej Instytut Mikromechaniki i Fotoniki pokój 513a ogłoszenia na tablicach V-tego piętra kurs magisterski grupa R41 semestr
Podstawowe pojęcia optyki geometrycznej. c prędkość światła w próżni v < c prędkość światła w danym ośrodku
Optyka geometrycza Podstawowe pojęcia optyki geometryczej Bezwzględy współczyik załamaia c prędkość światła w próżi v < c prędkość światła w daym ośrodku c v > 1 Aksjomaty Światło w ośrodku jedorodym propaguje
Solitony i zjawiska nieliniowe we włóknach optycznych
Solitony i zjawiska nieliniowe we włóknach optycznych Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone
u t 1 v u(x,t) - odkształcenie, v - prędkość rozchodzenia się odkształceń (charakterystyczna dla danego ośrodka) Drgania sieci krystalicznej FONONY
Drgaia sieci krystaliczej FONONY 1. model klasyczy (iekwatowy) a) model ośrodka ciągłego (model Debye a) - przypadek jedowymiarowy - drgaia struy drgaia mogą być podłuże (guma, sprężya) i dwie prostopadłe
Wykład I Krzysztof Golec-Biernat Optyka 1 / 16
Optyka Wykład I Krzysztof Golec-Biernat Fale 1 Uniwersytet Rzeszowski, 4 października 2017 Wykład I Krzysztof Golec-Biernat Optyka 1 / 16 Uwagi wstępne 30 h wykładu wykład przy pomocy transparencji lub
Obliczenie liczby zwojów w uzwojeniu wtórnym 1 pkt n n I = U I
WOJEWÓDZKI KONKRS FIZYCZNY DLA CZNIÓW GIMNAZJÓW W ROK SZKOLNYM 205/206 STOPIEŃ WOJEWÓDZKI KLCZ ODPOWIEDZI I SCHEMAT PNKTOWANIA waga: Poprawe rozwiązaie zadań, iym sposobem iż poday w kryteriah, powoduje
Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 13, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 13, 16.11.017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 1 - przypomnienie
Rejestracja i rekonstrukcja fal optycznych. Hologram zawiera pełny zapis informacji o fali optycznej jej amplitudzie i fazie.
HOLOGRAFIA prof dr hab inŝ Krzysztof Patorski Krzysztof Rejestracja i rekonstrukcja fal optycznych Hologram zawiera pełny zapis informacji o fali optycznej jej amplitudzie i fazie a) Laser b) odniesienia
GŁÓWNE CECHY ŚWIATŁA LASEROWEGO
GŁÓWNE CECHY ŚWIATŁA LASEROWEGO Światło może być rozumiane jako: Strumień fotonów o energii E Fala elektromagnetyczna. = hν i pędzie p h = = hν c Najprostszym przypadkiem fali elektromagnetycznej jest
LASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 5 Temat: Interferometr Michelsona 7.. Cel i zakres ćwiczenia 7 INTERFEROMETR MICHELSONA Celem ćwiczenia jest zapoznanie się z budową i
Optyczny dualizm przestrzenno-czasowy: zastosowania w optyce kwantowej
Sympozjum IFD, 28.11.2016 Optyczny dualizm przestrzenno-czasowy: zastosowania w optyce kwantowej Michał Karpiński Zakład Optyki IFD UW Optical Quantum Technologies Group, Clarendon Laboratory, University
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 1 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16
Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,
Fizyka 12. Janusz Andrzejewski
Fizyka 1 Janusz Andrzejewski Przypomnienie: Drgania procesy w których pewna wielkość fizyczna na przemian maleje i rośnie Okresowy ruch drgający (periodyczny) - jeżeli wartości wielkości fizycznych zmieniające
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16
KADD Metoda najmniejszych kwadratów
Metoda ajmiejszych kwadratów Pomiary bezpośredie o rówej dokładości o różej dokładości średia ważoa Pomiary pośredie Zapis macierzowy Dopasowaie prostej Dopasowaie wielomiau dowolego stopia Dopasowaie
Funkcja generująca rozkład (p-two)
Fucja geerująca rozład (p-wo Defiicja: Fucją geerującą rozład (prawdopodobieńswo (FGP dla zmieej losowej przyjmującej warości całowie ieujeme, azywamy: [ ] g E P Twierdzeie: (o jedozaczości Jeśli i są
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 13, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 13, 6.03.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 1 - przypomnienie stosy
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 6, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 6, 0.03.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 5 - przypomnienie ciągłość
Ośrodki dielektryczne optycznie nieliniowe
Ośrodki dielektryczne optycznie nieliniowe Równania Maxwella roth rot D t B t = = przy czym tym razem wektor indukcji elektrycznej D ε + = ( ) Wektor polaryzacji jest nieliniową funkcją natężenia pola
Metody Optyczne w Technice. Wykład 5 Interferometria laserowa
Metody Optyczne w Technice Wykład 5 nterferometria laserowa Promieniowanie laserowe Wiązka monochromatyczna Duża koherencja przestrzenna i czasowa Niewielka rozbieżność wiązki Duża moc Największa możliwa
Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie
napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.
Przykład Obliczenie wskaźnika plastyczności przy skręcaniu
Przykład 10.5. Obliczeie wskaźika plastyczości przy skręcaiu Obliczyć wskaźiki plastyczości przy skręcaiu dla astępujących przekrojów: a) -kąta foremego b) przekroju złożoego 6a 16a 9a c) przekroju ciekościeego
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 7 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet
= arc tg - eliptyczność. Polaryzacja światła. Prawo Snelliusa daje kąt. Co z amplitudą i polaryzacją? Drgania i fale II rok Fizyka BC
4-0-0 G:\AA_Wyklad 000\FIN\DOC\Polar.doc Drgaia i fale II rok Fizyka C Polaryzacja światła ( b a) arc tg - eliptyczość Prawo Selliusa daje kąt. Co z amplitudą i polaryzacją? 4-0-0 G:\AA_Wyklad 000\FIN\DOC\Polar.doc
Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów
Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 1 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera.
W-1 (Jaroszewicz) 14 slajdów Podstawy Akustyki Drgania normalne a fale stojące Składanie fal harmonicznych: prędkość grupowa, dyspersja fal, superpozycja Fouriera, paczka falowa Fale akustyczne w powietrzu
V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy I Etap ZADANIA 27 lutego 2013r.
V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizka się licz I Etap ZDNI 7 lutego 3r.. Dwa pociski wstrzeloo jeocześie w tę saą stroę z wóch puktów oległch o o. Pierwsz pocisk wstrzeloo z prękością o po kąte α. Z jaką
OPTYKA NIELINIOWA. Halina Abramczyk Laboratory of Laser Molecular Spectroscopy
OPTYKA NILINIOWA Halia Abamczyk Laboaoy of W zakesie opyki liiowej aężeie pomieiowaia są iewielkie (0.-00W/cm ) i wywołuje aężeia pola elekyczego: 8 π I 0 0 3 V / cm c P ( χ ) polayzacja ( χ ) aężeie pola
Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 11, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 11, 09.11.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 10 - przypomnienie
Piotr Targowski i Bernard Ziętek GENERACJA II HARMONICZNEJ ŚWIATŁA
Instytut Fizyki Uniwersytet Mikołaja Kopernika Piotr Targowski i Bernard Ziętek Pracownia Optoelektroniki GENERACJA II HARMONICZNEJ ŚWIATŁA Zadanie VI Zakład Optoelektroniki Toruń 004 I. Cel zadania Celem
Szeregi liczbowe. 15 stycznia 2012
Szeregi liczbowe 5 styczia 0 Szeregi o wyrazach dodatich. Waruek koieczy zbieżości szeregu Defiicja.Abyszereg a < byłzbieżyciąga musizbiegaćdo0. Jest to waruek koieczy ale ie dostateczy. Jak wiecie z wykładu(i
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 11, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 11, 19.03.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 10 - przypomnienie
Ćwiczenie 10/11. Holografia syntetyczna - płytki strefowe.
Ćwiczeie 10/11 Holografia sytetycza - płytki strefowe. Wprowadzeie teoretycze W klasyczej holografii optyczej, gdzie hologram powstaje w wyiku rejestracji pola iterferecyjego, rekostruuje się jedyie takie
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Mateusz Winkowski, Jan Szczepanek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 06.10.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Jan Szczepanek Radosław Łapkiewicz Równania Maxwella r-nie
INTERFERENCJA WIELOPROMIENIOWA
INTERFERENCJA WIELOPROMIENIOWA prof. dr hab. inż. Krzysztof Patorski W tej części wykładu rozważymy przypadek koherentnej superpozycji większej liczby wiązek niż dwie. Najważniejszym interferometrem wielowiązkowym
falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich
Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji
Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,
VII MIĘDZYNARODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretyczne T3.
KOOF Szczeci: www.of.szc.pl VII MIĘDZYNAODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretycze T3. Źródło: Komitet Główy Olimpiady Fizyczej; Olimpiada Fizycza XXIII XXIV, WSiP Warszawa 1977 Autor: Waldemar Gorzkowski
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 22, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład, 18.05.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 1 - przypomnienie oddziaływanie
3. Regresja liniowa Założenia dotyczące modelu regresji liniowej
3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi
RÓWNANIA RÓŻNICZKOWE WYKŁAD 11
RÓWNANIA RÓŻNICZKOWE WYKŁAD Szeregi potęgowe Defiicja Fukcja y = f () jest klasy C jeżeli jest -krotie różiczkowala i jej -ta pochoda jest fukcją ciągłą. Defiicja Fukcja y = f () jest klasy C, jeżeli jest
ZASADY ZALICZENIA PRZEDMIOTU MBS
ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM - MBS 1. ROZWIĄZYWANIE WIDM kolokwium NMR 25 kwietnia 2016 IR 30 maja 2016 złożone 13 czerwca 2016 wtorek 6.04 13.04 20.04 11.05 18.05 1.06 8.06 coll coll
Zasada działania, właściwości i parametry światłowodów. Sergiusz Patela Podstawowe właściwości światłowodów 1
Zasada działaia, właściwości i parametry światłowodów Sergiusz Patela 1999-003 Podstawowe właściwości światłowodów 1 Parametry światłowodów - klasyfikacja Parametry włókie światłowodowych: 1. Optycze tłumieie,
ROZDZIAŁ Zjawiska nieliniowe. 4. Zjawiska nieliniowe
ROZDZIAŁ 4 4. Zjawiska nieliniowe 4.. Zjawiska nieliniowe drugiego rzędu 4.. Zjawiska nieliniowe trzeciego rzędu 4.3. Wymuszone rozpraszanie Ramana 4.4. Rozpraszanie Brillouina 4.5. Mieszanie czterofalowe
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 12, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 1, 3.03.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek rnest Grodner Wykład 11 - przypomnienie superpozycja
Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu
Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 18, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 18, 23.04.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 17 - przypomnienie
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 6..003 r. Zadaie. W kolejych okresach czasu t =,, 3, 4, 5 ubezpieczoy, charakteryzujący się parametrem ryzyka Λ, geeruje szkód. Dla daego Λ = λ zmiee N, N,..., N 5 są
DYFRAKCJA NA POJEDYNCZEJ I PODWÓJNEJ SZCZELINIE
YFRAKCJA NA POJEYNCZEJ POWÓJNEJ SZCZELNE. Cel ćwiczenia: zapoznanie ze zjawiskiem yfrakcji światła na pojeynczej i powójnej szczelinie. Pomiar ługości fali światła laserowego, oległości mięzy śrokami szczelin
Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 18, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 18, 07.12.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 17 - przypomnienie
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 17, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 17, 01.12.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 16 - przypomnienie
Zjawisko interferencji fal
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich
PODSTAWY MATEMATYKI FINANSOWEJ
PODSTAWY MATEMATYKI INANSOWEJ WZORY I POJĘCIA PODSTAWOWE ODSETKI, A STOPA PROCENTOWA KREDYTU (5) ODSETKI OD KREDYTU KWOTA KREDYTU R R- rocza stopa oprocetowaia kredytu t - okres trwaia kredytu w diach
FIZYKA LASERÓW. AKCJA LASEROWA (dynamika) TEK, IFAiIS UMK, Toruń
FIZYKA LASERÓW AKCJA LASEROWA (dynamika) BERNARD ZIĘTEK, TEK, IFAiIS UMK, Toruń 1. Oscylacje relaksacyjne Równania wyjściowe Dynamika laserów Załóżmy, że Zaniedbujemy wyrazy wyższego niż II rząd Bernard
I kolokwium z Analizy Matematycznej
I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4
Wykłady 10: Kryształy fotoniczne, fale Blocha, fotoniczna przerwa wzbroniona, zwierciadła Bragga i odbicie omnidirectional
Fotonika Wykłady 10: Kryształy fotoniczne, fale Blocha, fotoniczna przerwa wzbroniona, zwierciadła Bragga i odbicie omnidirectional Plan: Jednowymiarowe kryształy fotoniczne Fale Blocha, fotoniczna struktura
Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 12, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład, 0..07 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład - przypomnienie superpozycja
WSTĘP DO OPTYKI FOURIEROWSKIEJ
1100-4BW12, rok akademicki 2018/19 WSTĘP DO OPTYKI FOURIEROWSKIEJ dr hab. Rafał Kasztelanic Hologramy generowane komputerowo - CGH Widmo obrazu: G x, y FT g x, y mające być zapisane na hologramie, dyskretyzujemy
Elektrodynamika. Część 8. Fale elektromagnetyczne. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 17.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Równania Maxwella r-nie falowe
VI AKCJA LASEROWA. IFAiIS UMK, Toruń
VI AKCJA LASEROWA BERNARD ZIĘTEK, IFAiIS UMK, Toruń Sekwencja wydarzeń w układzie lasera 1. Emisja spontaniczna 2. Inwersja obsadzeń 3. Wzmocniona emisja spontaniczna 4. Zwierciadło kieruje do wzmacniacza
Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji.
Zad. 1.1. Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1.a. Funkcja: ϕ = sin2x Zad. 1.1.b. Funkcja: ϕ = e x 2 2 Operator: f = d2 dx
Techniczne podstawy promienników
Techniczne podstawy promienników podczerwieni Technical Information,, 17.02.2009, Seite/Page 1 Podstawy techniczne Rozdz. 1 1 Rozdział 1 Zasady promieniowania podczerwonego - Podstawy fizyczne - Widmo,
Styk montażowy. Rozwiązania konstrukcyjnego połączenia
Styk motażowy Rozwiązaia kostrukcyjego połączeia Z uwagi a przyjęcie schematu statyczego połączeie ależy tak kształtować, aby te połączeie przeosiło momet zgiający oraz siłę poprzeczą. Jako styk motażowy,
Podstawy fizyki kwantowej i budowy materii
Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 5 7 listopada 2016 A.F.Żarnecki Podstawy
Funkcja falowa i związek między gęstością mocy i funkcją falową to postulaty skalarnego modelu falowego światła.
WPROWADZENIE OPTYKA FALOWA prof. dr hab. inż. Krzysztof Patorski Światło propaguje się w postaci fal. W próżni prędkość światła wynosi około 3.0 x 10 8 m/s (co odpowiada 30 cm/ns lub 0.3 mm/ps). Wyróżnia
Równania Maxwella. Wstęp E B H J D
Równania Maxwella E B t, H J D t, D, B 0 Równania materiałowe B 0 H M, D 0 E P, J E, gdzie: 0 przenikalność elektryczną próżni ( 0 8854 10 1 As/Vm), 0 przenikalność magetyczną próżni ( 0 4 10 7 Vs/Am),