Programowanie ilorazowe #1

Wielkość: px
Rozpocząć pokaz od strony:

Download "Programowanie ilorazowe #1"

Transkrypt

1 Programowanie ilorazowe #1 Problem programowania ilorazowego (PI) jest przykłaem problemu programowania matematyznego nieliniowego, który można skuteznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem programowania liniowego

2 Programowanie ilorazowe #2 Ogólna postać problemów PI: min / ma p.o.: A {,, =} b ehy problemu: kierunek optymalizaji w funkji elu: minimalizaja lub maksymalizaja funkja elu jest ilorazem wóh wyrażeń liniowyh oraz i nosi nazwę (a z nią ały problem) ilorazowej lub hiperboliznej wartość funkji elu jest określona tylko la tyh, la któryh, przyjmujemy jenak oatkowo, że >

3 Programowanie ilorazowe #3 Linearyzaja problemów PI: problemy PI należą o grupy problemów programowania matematyznego nieliniowego, który można skuteznie zlinearyzować zlinearyzować zyli zapisać (i rozwiązać) jako problem programowania liniowego, którego rozwiązanie bęzie jenoześnie rozwiązaniem problemu nieliniowego (lub rozwiązaniem, na postawie którego można jenoznaznie ozytać rozwiązanie problemu liniowego) linearyzaja problemu PI została poana przez Charnes a i Cooper a linearyzaja ta polega na wprowazeniu nowyh zmiennyh (o jest realizowane przez postawienie)

4 Programowanie ilorazowe #4 Linearyzaja problemów PI: załóżmy, że funkja elu pewnego konkretnego problemu ilorazowego ma być maksymalizowana w oblizu obowiązująego założenia, że u > wiaomo, iż zwiększanie wartośi bezwzglęnej ilorazowej funkji elu może być osiągane poprzez: zwiększanie wartośi bezwzglęnej funkji zmniejszanie wartośi funkji niestety, funkje te (pomijają trywialne przypaki) truno jest jenoześnie kontrolować, w rezultaie zego zwiększanie wartośi funkji zęsto prowazi o jenozesnego zwiększania się wartośi funkji (i tym samym nie zmienia zasanizo wartośi funkji ilorazowej) powstaje problem ałośiowego kontrolowania wartośi ilorazowej

5 Programowanie ilorazowe #5 Linearyzaja problemów PI: problem ałośiowego kontrolowania wartośi ilorazowej pewnym rozwiązaniem tego problemu byłoby ustalenie wartośi funkji, zięki zemu ała kontrola wartośi ilorazu sprowaziłaby się o kontrolowania wartośi funkji ustalenie takie można zrealizować przyjmują na przykła, że =1 (warunek ten jest to zgony z założeniem >) w praktye oznazałoby to oanie ogranizenia: =1 rozwiązanie takie ogranizyłoby jenak opuszzalne wektory o tylko takih, które spełniają =1, i ostateznie otrzymane rozwiązanie nie byłoby w ogólnośi rozwiązaniem optymalnym oryginalnego problemu

6 Programowanie ilorazowe #6 Linearyzaja problemów PI: problem ałośiowego kontrolowania wartośi ilorazowej pewnym rozwiązaniem tego problemu byłoby ustalenie wartośi funkji, zięki zemu ała kontrola wartośi ilorazu sprowaziłaby się o kontrolowania wartośi funkji można to zrealizować przyjmują na przykła, że =1 (ogranizenie to jest to zgone z założeniem >) rozwiązanie takie ogranizyłoby jenak opuszzalne wektory o tylko takih, które spełniają =1, i ostateznie otrzymane rozwiązanie nie byłoby w ogólnośi rozwiązaniem optymalnym oryginalnego problemu wynika z tego, że to konkretne rozwiązanie nie jest właśiwe, ale metoa (oprowazania mianownika o wartośi stałej) jest właśiwa gyby wię uało się zaproponować jakieś zaanie równoważne oryginalnemu, w którym wartość mianownika byłaby ustalona, to problem kontrolowania funkji ilorazowej byłby rozwiązany

7 Programowanie ilorazowe #7 Linearyzaja problemów PI: okazuje się, że rozwiązanie znajujemy zięki postawieniu: la każego j: u j = oraz oatkowo u = j 1 z faktu, że > wynika, że u >, wobe zego możliwe jest oblizenie wartośi wyrażenia u j /u : j u j /u = = 1 j (wyrażenie to pozwala na otworzenie wartośi zmiennyh j na postawie wartośi zmiennyh u j )

8 Programowanie ilorazowe #8 Linearyzaja problemów PI: funkja elu przyjmuje wtey postać: jak wię wiać, ilorazowa funkja elu została wyrażona w kategoriah nowyh zmiennyh, przy zym (o jest istotne!) przyjęła ona postać zwykłej funkji liniowej jest to zgone z metoą ustalania mianownika funkji ilorazowej, ponieważ mianownik ten, po wyrażeniu go w kategoriah nowyh zmiennyh przyjmuje postać: u u i spełnia: 1 u = = = u 1 = = = u u

9 Programowanie ilorazowe #9 Linearyzaja problemów PI: jenoześnie ogranizenia typu = przyjmują postać: A b 1 A = b = A = b Au= b u ientyznie la ogranizeń typu oraz : ostateznie wszystkie ogranizenia można je zapisać jako: Au b u {,, =}

10 Programowanie ilorazowe #1 Linearyzaja problemów PI: ałość problemu wyrażonego w kategoriah nowyh zmiennyh przestawia się ostateznie następująo: min/ma u u p.o.: u u = 1 Au b u {,, =} u u > powyższy problem nie jest jenak problemem liniowym, a to ze wzglęu na ogranizenie u > (ogranizenia tego typu nie są opuszzalne w problemah liniowyh)

11 Programowanie ilorazowe #11 Linearyzaja problemów PI: latego wprowaza się pewne uproszzenie i zastępuje ogranizenie u > ogranizeniem opuszzalnym w problemah liniowyh, zyli ogranizeniem: u w rezultaie powstaje problem liniowy: min/ma u u p.o.: u u = 1 Au b u {,, =} u u powyższy problem jest zlinearyzowaną wersją problemu ilorazowego, zyli takim problemem liniowym, z którego rozwiązania można ozytać rozwiązanie problemu ilorazowego

12 Programowanie ilorazowe #12 Linearyzaja problemów PI: rozwiązanie oryginalnego problemu ilorazowego realizuje się wię następująo: 1. Przekształa się problem ilorazowy o postai zlinearyzowanej 2. Rozwiązuje się postać zlinearyzowaną 3. Jeżeli po rozwiązaniu problemu zlinearyzowanego zahozi u > to otwarza się rozwiązanie problemu ilorazowego wykorzystują zależność: j = j u = 1 u j

Programowanie celowe #1

Programowanie celowe #1 Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne Instrukja do ćwizeń laboratoryjnyh z przedmiotu: adania operayjne Temat ćwizenia: Komputerowe wspomaganie rozwiązywania zadań programowania liniowego, dobór struktury asortymentowej Zahodniopomorski Uniwersytet

Bardziej szczegółowo

Wielokryteriowa optymalizacja liniowa (WPL)

Wielokryteriowa optymalizacja liniowa (WPL) arek isyński BO UŁ 007 - Wielokryteriowa optymaliaja liniowa (WPL) -. Wielokryteriowa optymaliaja liniowa (WPL) Zadaniem WPL naywamy następująe adanie optymaliaji liniowej: a a m L O L L O L L a a n n

Bardziej szczegółowo

Programowanie nieliniowe

Programowanie nieliniowe Rozdział 5 Programowanie nieliniowe Programowanie liniowe ma zastosowanie w wielu sytuacjach decyzyjnych, jednak często zdarza się, że zależności zachodzących między zmiennymi nie można wyrazić za pomocą

Bardziej szczegółowo

UNIWESRYTET EKONOMICZNY WE WROCŁAWIU HOSSA ProCAPITAL WYCENA OPCJI. Sebastian Gajęcki WYDZIAŁ NAUK EKONOMICZNYCH

UNIWESRYTET EKONOMICZNY WE WROCŁAWIU HOSSA ProCAPITAL WYCENA OPCJI. Sebastian Gajęcki WYDZIAŁ NAUK EKONOMICZNYCH UNIWESRYTET EKONOMICZNY WE WROCŁAWIU HOSSA ProCAPITAL WYCENA OPCJI Sebastian Gajęcki WYDZIAŁ NAUK EKONOMICZNYCH WPROWADZENIE Opcje są instrumentem pochonym, zatem takim, którego cena zależy o ceny instrumentu

Bardziej szczegółowo

Temat wykładu: Całka nieoznaczona. Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy

Temat wykładu: Całka nieoznaczona. Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy Temat wykładu: Całka nieoznazona Kody kolorów: żółty nowe pojęie pomarańzowy uwaga kursywa komentarz * materiał nadobowiązkowy A n n a R a j f u r a, M a t e m a t y k a Zagadnienia. Terminologia i oznazenia.

Bardziej szczegółowo

FUNKCJA KWADRATOWA. Poziom podstawowy

FUNKCJA KWADRATOWA. Poziom podstawowy FUNKCJA KWADRATOWA Poziom podstawowy Zadanie ( pkt) Wykres funkji y = ax + bx+ przehodzi przez punkty: A = (, ), B= (, ), C = (,) a) Wyznaz współzynniki a, b, (6 pkt) b) Zapisz wzór funkji w postai kanoniznej

Bardziej szczegółowo

Przekształcenie całkowe Fouriera

Przekształcenie całkowe Fouriera Przekształcenie całkowe Fouriera Postać zespolona szeregu Fouriera Niech ana bęzie funkcja f spełniająca w przeziale [, ] warunki Dirichleta. Wtey szereg Fouriera tej funkcji jest o niej zbieżny, tj. przy

Bardziej szczegółowo

KO OF Szczecin:

KO OF Szczecin: XXXI OLIMPIADA FIZYCZNA (1981/198) Stopień III, zaanie teoretyczne T Źróło: Nazwa zaania: Działy: Słowa kluczowe: Komitet Główny Olimpiay Fizycznej; Anrzej Kotlicki; Anrzej Naolny: Fizyka w Szkole, nr

Bardziej szczegółowo

Zadania z badań operacyjnych Przygotowanie do kolokwium pisemnego

Zadania z badań operacyjnych Przygotowanie do kolokwium pisemnego Zaania z baań operacyjnych Przygotowanie o kolokwium pisemnego 1..21 Zaanie 1.1. Dane jest zaanie programowania liniowego: 4x 1 + 3x 2 max 2x 1 + 2x 2 1 x 1 + 2x 2 4 4x 2 8 x 1, x 2 Sprowazić zaanie o

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA. Wydział Elektroniki i Technik Informacyjnych ROZPRAWA DOKTORSKA. mgr inż. Paweł Chudzian

POLITECHNIKA WARSZAWSKA. Wydział Elektroniki i Technik Informacyjnych ROZPRAWA DOKTORSKA. mgr inż. Paweł Chudzian POLITECHNIKA WARSZAWSKA Wydział Elektroniki i Tehnik Informayjnyh ROZPRAWA DOKTORSKA mgr inż. Paweł Chudzian Optymalizaja parametrów przekształenia jadrowego w zadaniah klasyfikaji Promotor prof. nzw.

Bardziej szczegółowo

Krzywe stożkowe. 1 Powinowactwo prostokątne. 2 Elipsa. Niech l będzie ustaloną prostą i k ustaloną liczbą dodatnią.

Krzywe stożkowe. 1 Powinowactwo prostokątne. 2 Elipsa. Niech l będzie ustaloną prostą i k ustaloną liczbą dodatnią. Krzywe stożkowe 1 Powinowatwo prostokątne Nieh l będzie ustaloną prostą i k ustaloną lizbą dodatnią. Definija 1.1. Powinowatwem prostokątnym o osi l i stosunku k nazywamy przekształenie płaszzyzny, które

Bardziej szczegółowo

Dyskretna transformata falkowa z wykorzystaniem falek Haara. Alfréd Haar

Dyskretna transformata falkowa z wykorzystaniem falek Haara. Alfréd Haar Dyskretna transformata falkowa z wykorzystaniem falek Haara Alfréd Haar 88-9 Przypomnijmy, że istotą DWT jest podział pierwotnego sygnału za pomoą pary filtrów (górnoprzepustowego i dolnoprzepustowego)

Bardziej szczegółowo

WYKŁAD nr Ekstrema funkcji jednej zmiennej o ciągłych pochodnych. xˆ ( ) 0

WYKŁAD nr Ekstrema funkcji jednej zmiennej o ciągłych pochodnych. xˆ ( ) 0 WYKŁAD nr 4. Zaanie programowania nieliniowego ZP. Ekstrema unkcji jenej zmiennej o ciągłych pochonych Przypuśćmy ze punkt jest punktem stacjonarnym unkcji gzie punktem stacjonarnym nazywamy punkt la którego

Bardziej szczegółowo

ROZDZIAŁ 5. Renty życiowe

ROZDZIAŁ 5. Renty życiowe ROZDZIAŁ 5 Renty życiowe Rentą życiową nazywamy ciąg płatności który ustaje w chwili śmierci pewnej osoby (zwykle ubezpieczonego) Mówiąc o rencie życiowej nie zaznaczamy czy osoba której przyszły czas

Bardziej szczegółowo

I.2 Promieniowanie Ciała Doskonale Czarnego

I.2 Promieniowanie Ciała Doskonale Czarnego I. Promieniowanie Ciała Doskonale Czarnego Jan Królikowski Fizyka IVBC 1 CIAŁO DOSKONALE CZARNE (CDCz) CDCz jest to takie iało, którego zdolność absorpyjna a(, T) nie zależy od długośi fali i wynosi 100%.

Bardziej szczegółowo

ZAPYTANIE OFERTOWE. Olsztyn, 14.08.2013r. EDUCO Jacek Kowalski ul. Janowicza 30B/1 10-692 Olsztyn. Szanowni Państwo,

ZAPYTANIE OFERTOWE. Olsztyn, 14.08.2013r. EDUCO Jacek Kowalski ul. Janowicza 30B/1 10-692 Olsztyn. Szanowni Państwo, Olsztyn, 14.08.2013r. EDUCO Jaek Kowalski ul. Janowiza 30B/1 10-692 Olsztyn ZAPYTANIE OFERTOWE Szanowni Państwo, w związku z otrzymaniem przez firmę EDUCO Jaek Kowalski. ofinansowania na realizaję projektu

Bardziej szczegółowo

ZASTOSOWANIE TEORII ZBIORÓW PRZYBLIŻONYCH DO PODEJMOWANIA DECYZJI

ZASTOSOWANIE TEORII ZBIORÓW PRZYBLIŻONYCH DO PODEJMOWANIA DECYZJI ZASTOSOWANIE TEORII ZBIORÓW PRZYBLIŻONYCH DO PODEJMOWANIA DECYZJI STANISŁAW KOWALIK Katera Zarzązania i Inżynieria Bezpiezeństwa, Politehnika Śląska Streszzenie W pray przestawiono postawowe pojęia z teorii

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNENE TRANSPORTOWE Definicja: Program liniowy to model, w którym warunki ograniczające oraz funkcja celu są funkcjami liniowymi. W skład każdego programu liniowego wchodzą: zmienne decyzyjne, ograniczenia

Bardziej szczegółowo

1 Renty życiowe. 1.1 Podstawowe renty życiowe

1 Renty życiowe. 1.1 Podstawowe renty życiowe Renty życiowe Renta życiowa jest serią płatności okonywanych w czasie życia ubezpieczonego Jej wartość teraźniejsza jest zienną losową (bo zależy o przyszłego czasu życia T, oznaczaną Y Postawowe renty

Bardziej szczegółowo

Geometria Różniczkowa II wykład dziesiąty

Geometria Różniczkowa II wykład dziesiąty Geometria Różniczkowa II wykła ziesiąty Wykła ziesiąty rozpoczyna serię wykłaów poświęconych geometrii symplektycznej. Zajmować się bęziemy głównie zastosowaniami geometrii symplektycznej w mechanice,

Bardziej szczegółowo

Do wprowadzania symboli pochodnych można wykorzystać paletę Calculus lub skróty klawiszowe: SHIFT+? - wprowadza symbol pierwszej pochodnej.

Do wprowadzania symboli pochodnych można wykorzystać paletę Calculus lub skróty klawiszowe: SHIFT+? - wprowadza symbol pierwszej pochodnej. 1. Pochone funkcji Mathca umożliwia obliczenie pochonej funkcji w zaanym punkcie oraz wyznaczenie pochonej funkcji w sposób symboliczny. 1.1 Wyznaczanie wartości pochonej w punkcie Aby wyznaczyć pochoną

Bardziej szczegółowo

2... Pˆ - teoretyczna wielkość produkcji (wynikająca z modelu). X X,..., b b,...,

2... Pˆ - teoretyczna wielkość produkcji (wynikająca z modelu). X X,..., b b,..., Główne zynniki produkji w teorii ekonoii: praa żywa (oznazenia: L, ), praa uprzediotowiona (kapitał) (oznazenia: K, ), zieia (zwłaszza w rolnitwie). Funkja produkji Cobba-Douglasa: b b b P ˆ b... k 0 k

Bardziej szczegółowo

Elementy Modelowania Matematycznego

Elementy Modelowania Matematycznego Elementy Modelowania Matematycznego Wykład 8 Programowanie nieliniowe Spis treści Programowanie nieliniowe Zadanie programowania nieliniowego Zadanie programowania nieliniowego jest identyczne jak dla

Bardziej szczegółowo

Teoretyczne podstawy udarów wspinaczkowych

Teoretyczne podstawy udarów wspinaczkowych Teoretyzne postawy uarów wspinazkowyh Marek Kujawiński Współzesny sprzęt wspinazkowy jest tak mony, że na pewno wytrzyma - to oraz zęśiej wypowiaana i promowana przez wielu wspinazy opinia, a przeież nie

Bardziej szczegółowo

Programowanie liniowe metoda sympleks

Programowanie liniowe metoda sympleks Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2009 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 13

Bardziej szczegółowo

Pole magnetyczne ma tę własność, że jego dywergencja jest wszędzie równa zeru.

Pole magnetyczne ma tę własność, że jego dywergencja jest wszędzie równa zeru. Dywergenja i rotaja pola magnetyznego Linie wektora B nie mają pozątku, ani końa. tąd wynika twierdzenie Gaussa dla wektora B : Φ = B d = B trumień wektora indukji magnetyznej przez dowolną powierzhnię

Bardziej szczegółowo

Metoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład):

Metoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): 1 Narysuj na płaszczyźnie zbiór dopuszczalnych rozwiazań. 2 Narysuj funkcję

Bardziej szczegółowo

Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE

Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE 6. Ćwiczenia komputerowe Ćwiczenie 6.1

Bardziej szczegółowo

Teoretyczne podstawy programowania liniowego

Teoretyczne podstawy programowania liniowego Teoretyczne podstawy programowania liniowego Elementy algebry liniowej Plan Kombinacja liniowa Definicja Kombinacja liniowa wektorów (punktów) x 1, x 2,, x k R n to wektor x R n k taki, że x = i=1 λ i

Bardziej szczegółowo

Programowanie liniowe metoda sympleks

Programowanie liniowe metoda sympleks Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 13. wykład z algebry liniowej Warszawa, styczeń 2018 Mirosław Sobolewski (UW) Warszawa, 2018 1 /

Bardziej szczegółowo

Temperatura czarnej kulki umieszczonej w ognisku soczewki i ogrzanej promieniami słonecznymi zadanie z XXIX Olimpiady fizycznej 1979/1980 1

Temperatura czarnej kulki umieszczonej w ognisku soczewki i ogrzanej promieniami słonecznymi zadanie z XXIX Olimpiady fizycznej 1979/1980 1 6 FOTON 130, Jeień 015 Temperatura czarnej kulki umiezczonej w ogniku oczewki i ogrzanej promieniami łonecznymi zaanie z XXIX Olimpiay fizycznej 1979/1980 1 Taeuz Molena topień III, zaanie teoretyczne

Bardziej szczegółowo

U L T R A ZAKŁAD BADAŃ MATERIAŁÓW

U L T R A ZAKŁAD BADAŃ MATERIAŁÓW U L T R A ZAKŁAD BADAŃ MATERIAŁÓW Zał 1 instr Nr02/01 str. 53-621 Wrocław, Głogowska 4/55, tel/fax 071 3734188 52-404 Wrocław, Harcerska 42, tel. 071 3643652 www.ultrasonic.home.pl tel. kom. 0 601 710290

Bardziej szczegółowo

Rozdział 1 PROGRAMOWANIE LINIOWE

Rozdział 1 PROGRAMOWANIE LINIOWE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.2 Ćwiczenia komputerowe Ćwiczenie 1.1 Wykorzystując

Bardziej szczegółowo

Programowanie liniowe metoda sympleks

Programowanie liniowe metoda sympleks Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2012 Mirosław Sobolewski (UW) Warszawa, 2012 1 / 12

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Struktury i Algorytmy Wspomagania Decyzji Zadanie projektowe 2 Czas realizacji: 6 godzin Maksymalna liczba

Bardziej szczegółowo

Rozdział 2 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE

Rozdział 2 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 2 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE 2.2 Ćwiczenia komputerowe Ćwiczenie

Bardziej szczegółowo

MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 5: RENTY ŻYCIOWE

MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 5: RENTY ŻYCIOWE MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 5: RENTY ŻYCIOWE Rentą życiową nazywamy ciąg płatności który ustaje w chwili śmierci pewnej osoby (zwykle ubezpieczonego) Mówiąc o rencie życiowej nie zaznaczamy

Bardziej szczegółowo

Metrologia Techniczna

Metrologia Techniczna Zakła Metrologii i Baań Jakości Wrocław, nia Rok i kierunek stuiów Grupa (zień tygonia i gozina rozpoczęcia zajęć) Metrologia Techniczna Ćwiczenie... Imię i nazwisko Imię i nazwisko Imię i nazwisko Błęy

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na

Bardziej szczegółowo

1 Przykładowe klasy zagadnień liniowych

1 Przykładowe klasy zagadnień liniowych & " 1 PRZYKŁADOWE KLASY ZAGADNIEŃ LINIOWYCH 1 1 Przykładowe klasy zagadnień liniowych Liniowy model produkcji Zakład może prowadzić rodzajów działalności np. produkować różnych wyrobów). Do prowadzenia

Bardziej szczegółowo

Składowe odpowiedzi czasowej. Wyznaczanie macierzy podstawowej

Składowe odpowiedzi czasowej. Wyznaczanie macierzy podstawowej Składowe odpowiedzi zasowej. Wyznazanie maierzy podstawowej Analizowany układ przedstawia rys.. q (t A q 2, q 2 przepływy laminarne: h(t q 2 (t q 2 h, q 2 2 h 2 ( Przykładowe dane: A, 2, 2 2 (2 h2(t q

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Programowanie Dynamiczne dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 14 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych.

Bardziej szczegółowo

Porównanie właściwości wybranych wektorowych regulatorów prądu w stanach dynamicznych w przekształtniku AC/DC

Porównanie właściwości wybranych wektorowych regulatorów prądu w stanach dynamicznych w przekształtniku AC/DC Piotr FALKOWSKI, Marian Roch DUBOWSKI Politechnika Białostocka, Wyział Elektryczny, Katera Energoelektroniki i Napęów Elektrycznych Porównanie właściwości wybranych wektorowych regulatorów prąu w stanach

Bardziej szczegółowo

Pytanie 2 Belkę przedstawioną na rysunku, obciążono momentem skupionym M = 3 [knm] w punkcie C. Odległości wynoszą a=2 [m], b=1 [m].

Pytanie 2 Belkę przedstawioną na rysunku, obciążono momentem skupionym M = 3 [knm] w punkcie C. Odległości wynoszą a=2 [m], b=1 [m]. Pytanie 1 Belkę przedstawioną na rysunku, obiążono siłą P = 3 [kn]. Odległośi wynoszą a= [m], b=1 [m]. A a Reakje podpór dla belki wynoszą: A) R A = [kn], R B =1 [kn] B) R A =1 [kn], R B = [kn] C) RA=

Bardziej szczegółowo

Wyk lad 3 Grupy cykliczne

Wyk lad 3 Grupy cykliczne Wyk la 3 Grupy cykliczne Definicja 3.1. Niech a bezie elementem grupy (G,, e). Jeżeli istnieje liczba naturalna k taka, że a k = e, to najmniejsza taka liczbe naturalna k nazywamy rzeem elementu a. W przeciwnym

Bardziej szczegółowo

LXIV Olimpiada Matematyczna

LXIV Olimpiada Matematyczna LXIV Olimpiada Matematyzna Rozwiązania zadań konkursowyh zawodów stopnia drugiego 22 lutego 203 r. (pierwszy dzień zawodów) Zadanie. Dane są lizby ałkowite b i oraz trójmian f(x) = x 2 +bx+. Udowodnić,

Bardziej szczegółowo

Wykład Pole magnetyczne, indukcja elektromagnetyczna

Wykład Pole magnetyczne, indukcja elektromagnetyczna Wykła 5 5. Pole magnetyczne, inukcja elektromagnetyczna Prawo Ampera Chcemy teraz znaleźć pole magnetyczne wytwarzane przez powszechnie występujące rozkłay prąów, takich jak przewoniki prostoliniowe, cewki

Bardziej szczegółowo

Metoda obrazów wielki skrypt przed poświąteczny, CZĘŚĆ POTRZEBNA DO OFa

Metoda obrazów wielki skrypt przed poświąteczny, CZĘŚĆ POTRZEBNA DO OFa Metoa obrazów wielki skrypt prze poświąteczny, CZĘŚĆ POTRZEBNA DO OFa 1. Równania i warunki brzegowe Dlaczego w ogóle metoa obrazów ziała? W elektrostatyce o policzenia wszystkiego wystarczą 2 rzeczy:

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2018 CZĘŚĆ PRAKTYCZNA

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2018 CZĘŚĆ PRAKTYCZNA Arkusz zawiera informacje prawnie chronione o momentu rozpoczęcia egzaminu Ukła graficzny CKE 2017 Nazwa kwalifikacji: Organizacja prac rybackich w akwakulturze Oznaczenie kwalifikacji: R.15 Numer zaania:

Bardziej szczegółowo

Relaksacja. Chem. Fiz. TCH II/19 1

Relaksacja. Chem. Fiz. TCH II/19 1 Relasaja Relasaja oznaza powrót uładu do stanu równowagi po zaburzeniu równowagi pierwotnej jaimś bodźem (wielośią zewnętrzną zmieniająą swoją wartość soowo, np. stężenie jednego z reagentów, iśnienie

Bardziej szczegółowo

PROGRAMOWANIE KWADRATOWE

PROGRAMOWANIE KWADRATOWE PROGRAMOWANIE KWADRATOWE Programowanie kwadratowe Zadanie programowania kwadratowego: Funkcja celu lub/i co najmniej jedno z ograniczeń jest funkcją kwadratową. 2 Programowanie kwadratowe Nie ma uniwersalnej

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

WPPT 2r., sem. letni KOLOKWIUM 1 Wroc law, 19 kwietnia 2011

WPPT 2r., sem. letni KOLOKWIUM 1 Wroc law, 19 kwietnia 2011 A N A L I Z A F U N K C J O N A L N A WPPT r, sem letni KOLOKWIUM Wroc law, 9 kwietnia 0 ZADANIE ab W pewnej przestrzeni mamy wie metryki i przy czym czyni nasz a przestrzeń zwart a a jest s labsza o (tzn

Bardziej szczegółowo

KOOF Szczecin: www.of.szc.pl

KOOF Szczecin: www.of.szc.pl LVIII OLIMPIADA FIZYCZNA (2008/2009). Stopień II, zaanie oświaczalne D. Źróło: Autor: Nazwa zaania: Działy: Słowa kluczowe: Komitet Główny Olimpiay Fizycznej. Ernest Groner Komitet Główny Olimpiay Fizycznej,

Bardziej szczegółowo

Ćwiczenie 5. Nieliniowe obwody rezonansowe

Ćwiczenie 5. Nieliniowe obwody rezonansowe Anrzej Leśnicki Laboratorium Sygnałów Analogowych, Ćwiczenie 5 /8. Wstęp Ćwiczenie 5 Nieliniowe obwoy rezonansowe Obwó rezonansowy zawierający konensator o nieliniowej pojemności lub inuktor o nieliniowej

Bardziej szczegółowo

Wykład 30 Szczególne przekształcenie Lorentza

Wykład 30 Szczególne przekształcenie Lorentza Wykład Szzególne przekształenie Lorentza Szzególnym przekształeniem Lorentza (właśiwym, zahowująym kierunek zasu) nazywa się przekształenie między dwoma inerjalnymi układami odniesienia K i K w przypadku

Bardziej szczegółowo

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1)

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1) ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL 1. Problem Rozważmy układ dwóch równań z dwiema niewiadomymi (x 1, x 2 ): 1 x1 sin x2 x2 cos x1 (1) Nie jest

Bardziej szczegółowo

Umowa o korzystanie z usług Serwisu Transakcyjno-Informacyjnego zwana dalej Umową

Umowa o korzystanie z usług Serwisu Transakcyjno-Informacyjnego zwana dalej Umową Umowa o korzystanie z usług Serwisu Transakyjno-Informayjnego zwana alej Umową Nowy Klient 1 Aneks Zmiana Danyh Klienta * zawarta w niu... pomięzy: ProServie Agent Transferowy Spółka z ogranizoną opowiezialnośią

Bardziej szczegółowo

//warunki początkowe m=500; T=30; c=0.4; t=linspace(0,t,m); y0=[-2.5;2.5];

//warunki początkowe m=500; T=30; c=0.4; t=linspace(0,t,m); y0=[-2.5;2.5]; 4.3. Przykłady wykorzystania funkcji bibliotecznych 73 MATLAB % definiowanie funkcji function [dx]=vderpol(t,y) global c; dx=[y(2); c*(1-y(1)^2)*y(2)-y(1)]; SCILAB // definiowanie układu function [f]=vderpol(t,y,c)

Bardziej szczegółowo

3. FUNKCJA LINIOWA. gdzie ; ół,.

3. FUNKCJA LINIOWA. gdzie ; ół,. 1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta

Bardziej szczegółowo

Elementy Modelowania Matematycznego Wykład 7 Programowanie nieliniowe i całkowitoliczbowe

Elementy Modelowania Matematycznego Wykład 7 Programowanie nieliniowe i całkowitoliczbowe Spis treści Elementy Modelowania Matematycznego Wykład 7 i całkowitoliczbowe Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 Spis treści Spis treści 1 Wstęp

Bardziej szczegółowo

4. WYZNACZANIE PARAMETRÓW HYDRAULICZNYCH STUDNI

4. WYZNACZANIE PARAMETRÓW HYDRAULICZNYCH STUDNI 4. WYZNACZANIE PARAMETRÓW HYDRAULICZNYCH STUDNI Na wielkość depresji zwieriadła wody w pompowanej studni wpływ mają zjawiska hydraulizne wywołane przepływem laminarnym, występująym w ujętej warstwie wodonośnej

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Łukasz Kowalik Instytut Informatyki, Uniwersytet Warszawski April 8, 2016 Łukasz Kowalik (UW) LP April 8, 2016 1 / 15 Problem diety Tabelka wit. A (µg) wit. B1 (µg) wit. C (µg) (kcal)

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2010 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 15 Homo oeconomicus=

Bardziej szczegółowo

Definicja odwzorowania ciągłego i niektóre przykłady

Definicja odwzorowania ciągłego i niektóre przykłady Odwzorowania Pojęcie odwzorowania pomiędzy dwoma zbiorami było już definiowane, ale dawno, więc nie od rzeczy będzie przypomnieć, że odwzorowaniem nazywamy sposób przyporządkowania (niekoniecznie każdemu)

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY

MATEMATYKA POZIOM ROZSZERZONY EGZAMIN MATURALNY W ROKU SZKOLNYM 06/07 FORMUŁA OD 05 ( NOWA MATURA ) MATEMATYKA POZIOM ROZSZERZONY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 07 Kluz punktowania zadań zamkniętyh Numer zadania

Bardziej szczegółowo

Analiza matematyczna dla informatyków 3 Zajęcia 14

Analiza matematyczna dla informatyków 3 Zajęcia 14 Analiza matematyczna dla informatyków 3 Zajęcia 14 Metoda rozwiązywania (Jednorodne równanie różniczkowe liniowe rzędu n o stałych współczynnikach). gdzie a 0,..., a n 1 C. Wielomian charakterystyczny:

Bardziej szczegółowo

14. Teoria względności

14. Teoria względności . Teoria wzglęnośi.. Prękość w ukłaah inerjalnyh. Y Z Z Y V V V X X Wzglęe ukłau O unkt aterialny a szybkość x t' Natoiast wzglęe ukłau O a szybkość x t. Skoro x γ (x t ) to x γ (x t ) Natoiast x' x' t

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Badania operacyjne Problem Model matematyczny Metoda rozwiązania Znaleźć optymalny program produkcji. Zmaksymalizować 1 +3 2 2 3 (1) Przy ograniczeniach 3 1 2 +2 3 7 (2) 2 1 +4 2 12 (3) 4 1 +3 2 +8 3 10

Bardziej szczegółowo

Badania Operacyjne Ćwiczenia nr 2 (Materiały)

Badania Operacyjne Ćwiczenia nr 2 (Materiały) Zbiór rozwiązań dopuszczalnych programu liniowego Zbiór rozwiązań dopuszczalnych programu linowego to taki zbiór, który spełnia warunki ograniczające (funkcyjne oraz brzegowe) programu liniowego. Przy

Bardziej szczegółowo

O nauczaniu oceny niepewności standardowej

O nauczaniu oceny niepewności standardowej 8 O nauczaniu oceny niepewności stanarowej Henryk Szyłowski Wyział Fizyki UAM, Poznań PROBLEM O lat 90. ubiegłego wieku istnieją mięzynaroowe normy oceny niepewności pomiarowych [, ], zawierające jenolitą

Bardziej szczegółowo

Statystyczna kontrola procesu karty kontrolne Shewharta.

Statystyczna kontrola procesu karty kontrolne Shewharta. tatystyza kotrola proesu karty kotrole hewharta. Każe przesiębiorstwo proukyje, ąży o tego, aby proukty które wytwarza były jak ajlepszej jakośi. W zisiejszyh zasah, to właśie jakość pozwala utrzymać się

Bardziej szczegółowo

Rozwiązania, seria 5.

Rozwiązania, seria 5. Rozwiązania, seria 5. 26 listopada 2012 Zadanie 1. Zbadaj, dla jakich wartości parametru r R wektor (r, r, 1) lin{(2, r, r), (1, 2, 2)} R 3? Rozwiązanie. Załóżmy, że (r, r, 1) lin{(2, r, r), (1, 2, 2)}.

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium Zadanie nr 3 Osada autor: A Gonczarek Celem poniższego zadania jest zrealizowanie fragmentu komputerowego przeciwnika w grze strategiczno-ekonomicznej

Bardziej szczegółowo

Pomiary bezpośrednie Błędy graniczne przyrządów pomiarowych pomiary napięcia i prądu przyrządami analogowymi i cyfrowymi

Pomiary bezpośrednie Błędy graniczne przyrządów pomiarowych pomiary napięcia i prądu przyrządami analogowymi i cyfrowymi Pomiary bezpośrednie Błędy granizne przyrządów pomiarowyh pomiary napięia i prądu przyrządami analogowymi i yfrowymi 1. Cel ćwizenia Poznanie źródeł informaji o warunkah uŝytkowania przyrządów pomiarowyh,

Bardziej szczegółowo

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,

Bardziej szczegółowo

XXXV OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne

XXXV OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne XXXV OLIMPIADA FIZYCZNA ETAP III Zadanie doświadzalne ZADANIE D1 Nazwa zadania: Wyznazanie iepła pierwiastków (azot, ołów) Wyznaz iepło rowania iekłego azotu oraz iepło właśiwe ołowiu (wartość średnią

Bardziej szczegółowo

Firma JCo wytwarza dwa wyroby na dwóch maszynach. Jednostka wyrobu 1 wymaga 2 godzin pracy na maszynie 1 i 1 godziny pracy na maszynie 2.

Firma JCo wytwarza dwa wyroby na dwóch maszynach. Jednostka wyrobu 1 wymaga 2 godzin pracy na maszynie 1 i 1 godziny pracy na maszynie 2. Przykład Elementy analizy wrażliwości Firma JCo wytwarza dwa wyroby na dwóch maszynach. Jednostka wyrobu 1 wymaga 2 godzin pracy na maszynie 1 i 1 godziny pracy na maszynie 2. Dla wyrobu 2 czasy te wynosza

Bardziej szczegółowo

Wybrane metody przybliżonego. wyznaczania rozwiązań (pierwiastków) równań nieliniowych

Wybrane metody przybliżonego. wyznaczania rozwiązań (pierwiastków) równań nieliniowych Wykład trzeci 1 Wybrane metody przybliżonego wyznaczania rozwiązań pierwiastków równań nieliniowych 2 Metody rozwiązywania równań nieliniowych = 0 jest unkcją rzeczywistą zmiennej rzeczywistej Rozwiązanie

Bardziej szczegółowo

Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w

Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w Metoda Simpleks Jak wiadomo, problem PL z dowolną liczbą zmiennych można rozwiązać wyznaczając wszystkie wierzchołkowe punkty wielościanu wypukłego, a następnie porównując wartości funkcji celu w tych

Bardziej szczegółowo

Definicja problemu programowania matematycznego

Definicja problemu programowania matematycznego Definicja problemu programowania matematycznego minimalizacja lub maksymalizacja funkcji min (max) f(x) gdzie: x 1 x R n x 2, czyli: x = [ ] x n przy ograniczeniach (w skrócie: p.o.) p.o. g i (x) = b i

Bardziej szczegółowo

Kombinacje liniowe wektorów.

Kombinacje liniowe wektorów. Kombinacje liniowe wektorów Definicja: Niech V będzie przestrzenią liniową nad ciałem F, niech A V Zbiór wektorów A nazywamy liniowo niezależnym, jeżeli m N v,, v m A a,, a m F [a v + + a m v m = θ a =

Bardziej szczegółowo

Ekonometria - ćwiczenia 10

Ekonometria - ćwiczenia 10 Ekonometria - ćwiczenia 10 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 14 grudnia 2012 Wprowadzenie Optymalizacja liniowa Na

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja Politechnika Wrocławska, Wydział Informatyki i Zarządzania Optymalizacja Dla podanych niżej problemów decyzyjnych (zad.1 zad.5) należy sformułować zadania optymalizacji, tj.: określić postać zmiennych

Bardziej szczegółowo

Twórczość uczniowska na egzaminie gimnazjalnym z zakresu matematyki

Twórczość uczniowska na egzaminie gimnazjalnym z zakresu matematyki Urszula Mazur Szkoła Podstawowa nr 85 w Krakowie Okręgowa Komisja Egzaminacyjna w Krakowie Twórczość uczniowska na egzaminie gimnazjalnym z zakresu matematyki Czy egzamin gimnazjalny z matematyki może

Bardziej szczegółowo

Definicja szybkości reakcji

Definicja szybkości reakcji Definija szybkośi reakji Szybkość reakji definiuje się jako stosunek zmiany stężenia substratów lub produktów reakji do zasu potrzebnego do zajśia tej zmiany. v zas zmiana stężenia potrzebny do zajśia

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych ozważmy układ n równań liniowych o współczynnikach a ij z n niewiadomymi i : a + a +... + an n d a a an d a + a +... + a n n d a a a n d an + an +... + ann n d n an an a nn n d

Bardziej szczegółowo

Ważny przykład oscylator harmoniczny

Ważny przykład oscylator harmoniczny 6.03.00 6. Ważny przykła oscylator harmoniczny 73 Rozział 6 Ważny przykła oscylator harmoniczny 6. Wprowazenie Klasyczny, jenowymiarowy oscylator harmoniczny opowiaa potencjałowi energii potencjalnej:

Bardziej szczegółowo

Modelowanie i Analiza Danych Przestrzennych

Modelowanie i Analiza Danych Przestrzennych Moelowanie i Analiza anych Przestrzennych Wykła Anrzej Leśniak Katera Geoinformatyki i Informatyki Stosowanej Akaemia Górniczo-utnicza w Krakowie Prawopoobieństwo i błą pomiarowy Jak zastosować rachunek

Bardziej szczegółowo

WAHADŁO FIZYCZNE ZE ZMIENNĄ OSIĄ ZAWIESZENIA

WAHADŁO FIZYCZNE ZE ZMIENNĄ OSIĄ ZAWIESZENIA WAHADŁO FIZYCZNE ZE ZMIENNĄ OSIĄ ZAWIESZENIA I. Cel ćwiczenia: zapoznanie z własnościami ruchu rająceo w oparciu o wahało fizyczne, wyznaczenie przyspieszenia ziemskieo i ramienia bezwłaności wahała. II.

Bardziej szczegółowo

Arytmetyka finansowa Wykład z dnia 30.04.2013

Arytmetyka finansowa Wykład z dnia 30.04.2013 Arytmetyka fnansowa Wykła z na 30042013 Wesław Krakowak W tym rozzale bęzemy baać wartość aktualną rent pewnych, W szczególnośc, wartość obecną renty, a równeż wartość końcową Do wartośc końcowej renty

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA ELEMENTY TEORII GRAFÓW Literatura: N.Deo Teoria grafów i e zastosowania... PWN (1980) Ross, Wright Matematyka yskretna PWN (199) R.Wilson Wprowazenie o teorii grafów PWN (1999) J.Kulikowski Zarys teorii

Bardziej szczegółowo

Regulamin Promocji Multioferta

Regulamin Promocji Multioferta Regulamin Promocji Multioferta 2012 z nia 5 czerwca 2012 r. obowiązuje o 5 czerwca 2012 r. o 31 sierpnia 2012 r. lub o owołania 1 Zasay ogólne 1. Niniejszy Regulamin Promocji Multioferta 2012 z nia 5 czerwca

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2015 Mirosław Sobolewski (UW) Warszawa, 2015 1 / 16 Homo oeconomicus=

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych

Rozwiązywanie układów równań liniowych Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy

Bardziej szczegółowo

Regulamin konkursu Graj o przygodę z Suzuki Finance. Postanowienia ogólne 1

Regulamin konkursu Graj o przygodę z Suzuki Finance. Postanowienia ogólne 1 I Postanowienia ogólne 1 1. Niniejszy Regulamin określa warunki, na jakih odbywa się Konkurs Graj o przygodę z Suzuki Finane. 2. Organizatorem Konkursu Graj o przygodę z Suzuki Finane jest Santander Consumer

Bardziej szczegółowo