Równanie falowe. elektro magnetyczne) równanie falowe (dla struny) u(x,t) x=p. x=l. T 2 (II zasada Newtona F=ma) x+dx. x T 1
|
|
- Zdzisław Skowroński
- 6 lat temu
- Przeglądów:
Transkrypt
1 Równanie falowe Równanie dyfuzji oraz dyfuzji adwekcji typowe paraboliczne Dziś zajmiemy się typowym równaniem hiperbolicznym równanie falowe (dla struny) (opisuje dążenie do równowagi). (oscylacje: mechaniczne, elektryczne, elektro magnetyczne) x=l u(x,t) x=p x+dx β T 2 (II zasada Newtona F=ma) α x T siła naciągu struny T (kierunek poziomy):
2 Równanie dyfuzji oraz dyfuzji adwekcji typowe paraboliczne Dziś zajmiemy się typowym równaniem hiperbolicznym równanie falowe (dla struny) (dążenie do równowagi). (oscylacje) x=l u(x,t) x=p x+dx β uwaga: α x T 2 T dx 0 (prędkość rozchodzenia się drgań) 2
3 c stałe: Ogólne rozwiązanie dla nieskończonego ośrodka (d Alamberta) dowolna funkcja drgania rozchodzące się bez zmiany kształtu [brak dyspersji w równaniu falowym] Liniowość równania: zasada superpozycji 3
4 Liniowość równania i zasada superpozycji: Sygnały rozchodzą się niezależnie od siebie F=exp( (x 0.5+ct) ( 2 ) +exp( (x+0.5 ct) 2 ) t x Sygnały mijają się bez zmiany kształtu [(jedna fala przenika drugą.] ponieważ równanie liniowe: jeśli wskażemy bazę zupełną funkcji ze znaną ewolucją czasową = problem rozwiązany baza: mody normalne (fale stojące) (drgania własne) 4
5 baza: mody normalne (fale stojące) (drgania własne) Dwupunktowe warunki brzegowe u(0,t)=u(l,t)=0 x=l x=0 x0 Poszukajmy rozwiązań, w których tylko amplituda (a nie kształt fali) nie zależy od czasu: u(x,t)=x(x)t(t) t0 t=0 t=t2 t=t3 t=t T(t)=cos(ω t+φ)= C cos(ω t)+d sin(ω t) [gdy gęstość struny zmienna c może być funkcją położenia] 5
6 Równanie na część przestrzenną fal stojących (drania własne, drgania normalne) Dla c niezależnego od x: X n () (x)=sin(ki (k n x) k liczba cbafalowa, a, wektor falowy k = 2π/ λ tutaj λ długość fali k=ω / c WB: spełnione, gdy X(0)=X(L)=0 k n =nπ /L Fale stojące: Między warunkami brzegowymi całkowita liczba połówek długości fal.. 0 L 6
7 warunki brzegowe: kwantyzacja k kwantyzacja w X n (x)=sin(k n x), T n =sin(w n t), cos(w n t) T k n =nπ /L k=ω / c ω n =ck n T oznacza naciąg struny przestrzenne drgania własne nie zależą od c, ale częstości tak. Wiemy, że niższe tony dają struny o większej grubości [ ρ ]. Wiemy również, ż że im silniej struna naciągnięta tym wyższy dźwięk. 7
8 Drgania własne dla zmiennej gęstości struny W przypadku ogólnym [c=c(x)] przyda się rachunek numeryczny. Wyliczyć X n oraz ω n ρ(x) Dyskretyzujemy drugą pochodną, liczymy X n (x+dx) 8
9 Równanie własne z warunkami brzegowymi: Metoda strzałów. w parametr równania ω dokładna wartość własna w=ω w<ω w>ω w X 0 wstawić warunek brzegowy ale co wstawić za X?? (dla równania Poissona opisywanego dla metody Numerowa to był poważny problem) dla drgań własnych wstawiamy cokolwiek (równanie własne jest jednorodne rozwiązania określone co do stałej multiplikatywnej ) 9
10 Test metody dla ρ(x)= (L=, T 0 =) Analityczne: k n =nπ /L X k=k k k=.5π/l k =0.5π/L k= 0.66 =k =π/l 6 π/l X (L L) 80 Miejsca zerowe wartości własne przy których funkcje własne 40 spełniają prawy warunek brzegowy 0 L k=k 2 =2π/L x x ω / π 0
11 Przykład: ρ(x)=+4α(x /2) 2 (struna cięższa przy mocowaniach) X X 4 π ω / X α=500 X 3-0 x α α=0 częstości ę własne równoodległe Częstości własne maleją z α (cięższa struna) duże α częstości grupują się w pary W każdej parze: funkcja parzysta i nieparzysta. Środek struny prawie nieważki, na częstości wpływ ma kształt funkcji przy brzegach a tam zbliżony dla każdej funkcji z pary
12 Drgania własne a ogólne rozwiązania równania falowego Równanie ogólne: Warunki początkowe: u(x,t=0) oraz v(x,t=0)=du/dt Zadać wychylenie i prędkości rozłożyć ł ż ć warunki początkowe na drgania własneł problem zależności czasowych jest rozwiązany 2
13 Drgania normalne a ogólne rozwiązania równania falowego Równanie ogólne: Warunki początkowe: u(x,t=0) oraz v(x,t=0)=du/dt Zadać wychylenie i prędkości ę rozłożyć warunki początkowe na drgania własne problem zależności czasowych jest rozwiązany w chwili t=0, za kształt struny odpowiadają współczynniki c n a za prędkość współczynniki s n 3
14 Superpozycja drgań własnych: Warunki początkowe Uwaga: dla równań dyfuzji i adwekcji warunek początkowy był tylko jeden czasowy rząd równania był =. Dla równania drugiego rzędu w czasie, wartość u(x,t=0) nie wystarczy dla jednoznacznego określenia rozwiązania. dla drgań własnych jednorodnej struny: Dyskretna sinusowa transformata Fouriera 4
15 rozkład na mody normalne na przedziale (0,L) Rozwinięcie w szereg Fouriera: g(x) = okresowa, odcinkowo ciągła z okresem T: Rozkład na drgania normalne a szereg Fouriera: drgania podległe warunkom brzegowym g(0)=g(l)=0. dla naszego problemu L to długość struny i nie ma interpretacji okresu (na strunie mieści się połowa długości fali). 5
16 6 Warunki Dirichleta zbieżności szeregu Fouriera Rozwinięcie Fouriera zbieżne w sensie jednorodnym N o ile g(x) ) całkowalna w kwadracie 2) odcinkowo ciągła rozwinięcie Fouriera dąży do g(x) prawie wszędzie tzn. poza punktami dyskretnymi punktami (rozwinięcie Fouriera jest wszędzie ciągłe!) Twierdzenie Dirichleta: W punktach nieciągłości szereg Fouriera zbieżny do g(x)=[ g(x 0)+g(x+0) ] / 2 tw. Dirichleta nie rozwiązuje wszystkich problemów
17 7 dla struny: pewien praktyczny problem z kanciastymi (nieróżniczkowalnymi) warunkami początkowymi. π 0 π Fala prostokątna ą W punkcie nieciągłości = [g(0 )+g(0+) ]/2 = ( + ) / 2 =0
18 Nd Nad nieciągłością i ł ś i wartość schodka przestrzelona o około 8% N=5 N=5 N=55 +2w ππ 0 π N=5 N=55 N=00 Zjawisko Gibbsa w= (stała Wibrahama Gibbsa) Na PC pracujemy ze skończonymi bazami: Równania różniczkowego przez rozkład warunku początkowego na drgania własne nie rozwiążemy dokładnie, jeśli ten jest nieciągły x 8
19 Na PC pracujemy ze skończonymi bazami... Zbieżność szeregu Fouriera w sensie bezwzględnym ę Szereg jest bezwzględnie zbieżny jeśli można go obciąć na pewnym wyrazie rozwinięcia: Rozwinięcie fali prostokątnej nie jest bezwzględnie zbieżne: 2 g(x) - schodkowa, bn Bo ogólny szereg harmoniczny jest rozbieżny 0 h(x)=exp(-x 2 ), a n Wniosek: w skończonej bazie funkcji własnych możemy rozwiązywać tylko problemy z warunkiem początkowym, 0 kó którego rozwinięcie w szereg Fouriera jest bezwzględnie zbieżne n 9
20 równanie falowe ciąg dalszy metoda różnic skończonych, zamiast rozkładu na drgania własne (który może być wolnozbieżny) Rozwiązanie numeryczne: dzielimy strunę na N fragmentów, dla każdego z nich rozwiązujemy równania Newtona (zabieg odwrotny do wyprowadzenia równania różniczkowego) v(x,t) - prędkość u(x,t) - wychylenie z równania falowego: 20
21 2 Schemat Verleta (popularny dla symulacji dynamiki molekularnej) m F V Schemat Verleta Phys. Rev. 59, 98 (967) Pomysł: rozwinąć położenie r w chwili t+δt i t-δt w szereg Taylora tylko o jeden rząd mniej dokładny niż RK4
22 Schemat Verleta Jeśli chodzi nam tylko o tor ruchu: świetny schemat. Nie używa prędkości, ale ta często potrzebna potrzebna: np do wyliczenia energii, ale również : sił (np. oporu, Lorentza) jeśli siły niezależne od prędkości, a informacja o nich potrzebna jest do innych celów można - wykonać krok do t+δt, a potem rządbłędu wyższy, wciąż dokładnie dla ruchu jednostajnie przyspieszonego a stałe między ę t a Δt jeśli siły zależą od prędkości: nie wykonamy kroku do t+δt, możemy co najwyżej: kiepsko: wynik dokładny tylko dla a=0 22
23 23 prędkościowa wersja schematu Verleta (dający ypę prędkości jednocześnie z położeniami) Położenia poświęcamy jeden rząd dokładności: Potrzebny przepis na prędkość w chwili t + Δtzbłędem z O(Δt 2 ): Rozwinąć r w Taylora względem punktu t+ Δt: Dodać stronami: (wzór potencjalnie niejawny) Wzory podkreślone na czerwono Verlet prędkościowy.
24 24 Verlet prędkościowy Inny (popularny) zapis wzorów w czerwonej ramce uwaga: jeśli siły (przyspieszenia) zależą od prędkości ostatnie równanie jest niejawne
25 Rozwiązania numeryczne. (laboratorium) L= u(x,t=0)=exp[-00(x-0.5)2] v(x,t=0)=0 u(x,t) (,) x 0.0 t=0 0.5 t=0.4 t=0. 2 t 3 Odbicie ze zmianą fazy (idzie górą, wraca dołem) t= v(x t) v(x,t) x x u(x,t) t
26 26 Rozwiązanie numeryczne 2. Swobodne warunki brzegowe: na brzegach na strunę nie działa żadna siła pionowa: Może się swobodnie przesuwać po mocowaniu Warunek brzegowy Neumana (na pochodną) zamiast Dirichleta (na wartość funkcji).00 Odbicie bez zmiany fazy: idzie górą, górą wraca 0.80 u u v x
27 energia drgania: kinetyczna Potencjalna: odkształcenie struny Dla ρ(x)=ρ( ) Dla pojedynczego modu własnego ω=kc T 0 =ρc 2 Kinetyczna na potencjalną się zmienia, całkowita zachowana 27
28 Analiza chwilowa drgania Rozwiązując równanie falowe schematem Verleta można z zależności czasowych wydobyć częstości własne bez konieczności rozwiązywania równania własnego Gdy drgania tłumione - częstość przestrzenna modów własnych nie ulega zmianie (zobaczymy), ale czasowa tak. Analiza chwilowa drgania na podstawie wychylenia zależności położeniowych = wychylenia g(x) i prędkości h(x) w danej chwili. 28
29 Równanie fali tłumionej a >0 = stała ł tłumienia i c niezależna od położenia Opory związane z prędkością struny [np. powietrza] Warunki brzegowe u(x=0,t)=u(x=l,t)=0 Warunki początkowe u(x,t) oraz v(x,t). Mody normalne dla fali tłumionej: Poszukajmy rozwiązania metodą separacji zmiennych u(x,t)=x(x)t(t) część przestrzenna bez zmian! X n (x)=sin(k n x) k n =nπ /L k=ω /c 29
30 30 Część przestrzenna: wstawiamy T=exp(rt), równanie charakterystyczne: exp(rt) [ r 2 +2ar+w n2 ] = 0, szukamy rozwiązań ą na r możliwe przypadki: 2 pierwiastki rzeczywiste, jeden podwójny, obydwa zespolone Warunki początkowe: Struna spoczywa w chwili początkowej Rozwiązanie określone co do stałej multiplikatywnej (równanie jednorodne)
31 ω n = ncπ /L L=, c=, ω n = nπ Drganie Słabe tłumienie a<ω a=8, ω i ω2 = przetłumione pozostałe tłumione a=0.5 a=0.2.0 z ω 0.8 n= 0.5 T (t) Poza zanikiem drgania widzimy zmniejszenie częstości T (t) Najpierw zgasną wyższe tłumienia 3
32 32 Rozwiązanie równania fali tłumionej rozwiązanie ogólne: Położeniowa ł ż analiza Fourierowska -rozkład na mody normalne w danej chwili : c n (t) = część przestrzenna nie zmienia się pod wpływem tłumienia. aby wydobyć c n : drugie równanie w ogólności ś wydzielimy przez ω n, podniesiemy zależne od czasu w kwadracie i dodamy
33 udział względny: x t Przykład: L= E=K+P K+P(kinetyczna+potencjalna) t W chwili początkowej pakiet f(x,t=0)=exp(-00(x-0.5) 2 ) a=0.5 a=2 a=4 a= ene ergia P 8 4 E K a= t Spadek E najszybszy gdy K największe
34 a= n= c n t Parzyste n nie wnoszą przyczynku (symetria) a=0.5 2 c n r n n= ω n =nπ n= t t Wszystkie mody tłumione równie silnie oscylujący y udział modów normalnych im wyższe ω n tym bardziej stały względny udział 34
35 a= n= a= n= 2 r n r n t a=4, większe tylko od ω r n n= t a=2 większe od ω i ω 3 2 r n t n= t 35
36 Laboratorium: R. hiperboliczne z niejednorodnością: Drgania tłumione z siłą wymuszającą F Siła przyłożona punktowo niejednorodność wymuszenie periodycznie zmienne 36
37 Dla t=0 struna spoczywa (v(x,t)=0)w położeniu równowagi (u(x,t)=0) Prędkość dźwięku = Siła przyłożona w środku struny x0=/2 u(x,t) ( ) a= w=0.5π pojawia się stan ustalony = drgania periodyczne. aa= w=2π x a=3 w=2π czas W stanie t i ustalonym t l ruchh jest j t periodyczny i d z okresem k siły wymuszającej (mode locking). 37
38 Stan ustalony a energia struny Średnia energia w stanie ustalonym: Siła przyłożona w środku struny x 0 =/2 Rezonans a= Brakuje w 2n?? Dlaczego? <E> w / pi 38
39 Stan ustalony a energia struny Średnia energia w stanie ustalonym: Siła przyłożona w środku struny x 0 =/2 Rezonans n= a= n=2 <E> Brakuje w 2n?? W środku studni = węzeł dla parzystych n w / pi 39
40 mody z parzystym n wzbudzone gdy punkt przyłożenia przesunąć ą ze środka a= x = <E> Krzywa rezonansowa w przybliżeniu opisana przez sumę funkcji Lorentza x = w / pi Siła sprzężenia = kwadrat wartości modu normalnego w miejscu przyłożenia siły: 40
41 Średnie energie stanu ustalonego a wzory lorentowskie a= a= a= <E> <E> <E> x = w / pi x = w / pi x 0 = w / pi <E E> a= a=.5 a=2 a=3 a=4 Rezonans a stała tłumienia w / pi 4
42 Laboratorium 2: odbicie pakietu od granicy ośrodków ρ 0 = V= położenie 0.5 V= czas
43 V= ρ 0 =2 ρ 0 = położenie ρ 0 = ρ 0 = czas 43
44 Część energii, która pozostaje po lżejszej stronie struny ρ= po odbiciu ρ 0 =2 44
45 Domena zależności (Domain of Dependence) i kryterium stabilności CFL (Courant-Friedrichs-Lewy) t x domena zależności: tylko zdarzenia z trójkąta ograniczonego charakterystykami mogą mieć wpływ na rozwiązanie w punkcie P 45
46 Numeryczna domena zależności [NUMERYCZNA PRZESZŁOŚĆ] kryterium stabilności CFL (Courant-Friedrichs-Lewy) schemat Verleta dla przyspieszenia danego przez prawą stronę równania: czas położenie 46
47 47 kryterium stabilności CFL (Courant-Friedrichs-Lewy) numeryczna dokładna warunek: jak dla adwekcji aby przekroczyć ć kryterium CFL (prędkość dźwięku): schematy niejawne ne dla równań mechaniki standardowy schemat niejawny = schemat Newmarka (dlaczego Crank-Nicolson się nie stosuje?)
48 algorytm Newmarka (uogólnienie prędkościowego Verleta, standardowy chemat niejawny dla równań opisujących układy dynamiczne) w Verlecie prędkościowym używamy przepisów: z γ=/2 u(t+dt)=u(t)+v(t)dt+dt 2 /2 a(t) v(t+dt)=v(t)+dt [(-γ)a(t)+γa(t+dt)] Czyli: w Verlecie: jawna formuła na położenie, potencjalnie niejawna na prędkość ta nie wystarczy dla bezwzględnej stabilności przy kroku czasowym cdt>dx (zobaczymy analizą v.neumanna) dla Newmarka: wprowadzamy niejawność (ważenie przyspieszeń z teraźniejszości i przyszłości) również do wzoru na położenia: u(t+dt)=u(t)+v(t)dt+dt 2 /2 [(-2β)a(t)+2βa(t+dt)] algorytm prędkościowy Newmarka źródło: WJT DANIEL, computational mechanics 20 (997) 272 zróbmy z tego formułę położeniową: bez prędkości, za to dwupoziomową (t+dt) względem t, t-dt wyeliminować prędkości : 48
49 u(t+dt)=u(t)+v(t)dt+dt 2 /2 [(-2β)a(t)+2βa(t+dt)] (*) v(t+dt)=v(t)+dt [(-γ)a(t)+γa(t+dt)] dla kroku poprzedniego= u(t)=u(t-dt)+v(t-dt)dt+dt 2 /2 [(-2β)a(t-dt)+2βa(t)] dla kroku poprzedniego = v(t)=v(t-dt)+dt [(-γ)a(t-dt)+γa(t)] u(t)=u(t-dt)+v(t)dt+dt 2 /2 [(-2β)a(t-dt)+2βa(t)]-dt 2 [(-γ)a(t-dt)+γa(t)] u(t)=u(t-dt)+v(t)dt+dt 2 /2 [(2γ-2β )a(t-dt)+(2β 2γ)a(t)] u(t-dt)=u(t)-v(t)dt-dt 2 /2 [(2γ-2β )a(t-dt)+(2β 2γ)a(t)] (*) dodamy stronami gwiazdki aby usunąć prędkość ze schematu 49
50 u(t+dt)=u(t)+v(t)dt+dt 2 /2 [(-2β)a(t)+2βa(t+dt)] + stronami u(t-dt)=u(t)-v(t)dt+dt 2 /2 [(-2γ+2β+)a(t-dt)+(2γ 2β)a(t)] skasujemy prędkość u(t-dt)+u(t+dt)=2u(t) +dt 2 /2[2βa(t+dt)+(-4β+2γ)a(t)+(-2γ+2β+)a(t-dt)] u(t+dt)=2u(t) -u(t-dt)+dt 2 [βa(t+dt)+(/2-2β+γ)a(t)+(-γ+β+/2)a(t-dt)] dla porównania Verlet położeniowy algorytm Newmark = wersja położeniowa, dwa parametry γβ γ,β wagi przy przyspieszeniu: β+/2 2β+γ γ+β+/2= (wszystkie wybory dają schemat, który w granicy małego dt redukuje się do Verleta) Newmark sprowadza się do Verleta gdy γ=/2, β=0 (maks dokładność lkl lokalny błąd czwartego rzędu) d) rola γ, β zobaczymy jak się sprawdzają w praktyce 50
51 u(t+dt)=2u(t) -u(t-dt)+dt 2 [βa(t+dt)+(/2-2β+γ)a(t)+(-γ+β+/2)a(t-dt)] u(t+dt)=2u(t) -u(t-dt)+dt 2 [βa(t+dt)+αa(t)+δa(t-dt)] jak wykonać krok czasowy? sposób rozwiązywania zależy od wyrażanie na a dla struny: Po przegrupowaniu wyrazów: układ równań liniowych z macierzą trójprzekątniową stencil: 5
52 dokładny schemat Newmark MRS, struna dt=dx 0 węzłów Verlet (β=0, γ=/2) (β=/2, γ=/2) (β=/2, γ=) β=.9 γ=/2 czas położenie dla dt=dx najlepszy wybór β=0, γ=/2 (jawny, Verlet) 52
53 dla dt=dx najlepszy wybór β=0, γ=/2 (jawny, Verlet) Verlet dla dt=dx* widzimy eksplozję rozwiązania z maksymalną malną zmiennością przestrzenną: Newmark jest po to aby przekroczyć kryterium CFL 53
54 rola γ (dt=.5dx, β=0.5) γ= węzłów MRS: schemat Newmark rola parametrów metody β>0 wynosi stabilność poza kryterium CFL, kosztem generacji wyższych częstości przestrzennych γ>/2 ogranicza wzmacnianie wyższych częstości kosztem dyssypacji (zaniku całego pakietu) γ</2 schemat jest niestabilny zostawmy γ=/2 (jak dla Verleta) i manipulujmy β 54
55 0 węzłów MRS poza CFL: dt > cdx dt=.5dx, γ=0.5, schemat staje się stabilny dla β>0.5 b 5 b=.5 b 2 b=.2 b 25 b= b= rosnące beta generuje wyższe częstości wniosek: najlepszy minimalne β przy którym schemat jeszcze stabilny czy można je wyznaczyć analitycznie?
56 Projektowanie schematu Newmarka dla zadanego kroku czasowego. dobrać minimalne β aby metoda była stabilna dla danego dt? Będziemy wiedzieli, że po wyższe β nie warto sięgać. analiza von Neumanna dla γ=/2 u(t+dt)=2u(t) (t) -u(t-dt)+dt 2 [βa(t+dt)+(/2-2β+γ)a(t)+(-γ+β+/2)a(t-dt)] 2β+ )(t)+( +β+/2) (tdt)] u(t+dt)-dt 2 βa(t+dt) =2u(t) -u(t-dt)+dt 2 [(-2β)a(t)+βa(t-dt)] Ansatz von Neumanna: 56
57 Sytuacja będzie taka: dopóki Δ<0 : 2 pierwiastki, o module nie większym od gdy Δ>0 metoda stanie się niestabilna 57
58 -2<c<0 zawsze żeby b pod pierwiastkiem i liczba ujemna potrzeba aby: λ 2 <? daje ten sam wynik β>/4 metoda stabilna dla dowolnego t [ ponieważ c < 0] uwaga: możemy sobie teraz sprawdzić stabilność Verleta dla dt=dx oraz beta=0, ¼+/(2c) <0 [ok.] 58
59 dobór beta zapewniającego stabilność schematu Newmark w MRS dla zadanego kroku czasowego dt=.5dx β c 59
60 dobór beta zapewniającego stabilność schematu Newmark w MRS dla zadanego kroku czasowego / / dt=dx dt=5dx c
61 2.00 struna, b. wiele chwil czasowych dt=5dx.00 β=.25 MRS, Newmark, γ=/ dt=5dx β=.24 bo beta była zbyt mała: Ze schematem Newmarka spotkamy się ponownie przy omawianiu MES, Pokażemy, że umożliwia on skuteczne prowadzenie Rachunków dla lokalnie zagęszczonej siatki
metoda różnic skończonych, zamiast rozkładu na drgania własne (który może być wolnozbieżny) v(x,t) - prędkość
równanie falowe ciąg dalszy metoda różnic skończonych, zamiast rozkładu na drgania własne (który może być wolnozbieżny) Rozwiązanie numeryczne: dzielimy strunę na N fragmentów, dla każdego z nich rozwiązujemy
równanie falowe (dla struny), cząstkowe, hiperboliczne [dynamika Newtonowska ośrodka ciągłego]
równanie falowe (dla struny), cząstkowe, hiperboliczne [dynamika Newtonowska ośrodka ciągłego] u(x,t) x=l x=p x+dx T x T siła naciągu struny T (kierunek poziomy): (II zasada Newtona F=ma) u(x,t) x=l x=p
warunki brzegowe u(x=0,t)=u(x=1,t)=0 problem: dane u(x,t=t) szukane: u(x,t=0)
odwrotny problem przewodnictwa cieplnego problem prosty : zadajemy warunki brzegowe oraz początkowe pytanie: co stanie się w przyszłości (tak wprowadzane są problemy w teorii równań różniczkowych) W praktyce,
Dyskretyzacja równania dyfuzji cd. jawny Euler niejawny Euler. schemat Cranka Nicolsona: CN to odpowiednik wzoru trapezów dla dy/dt=f(t)
Dyskretyzacja równania dyfuzji cd. jawny Euler niejawny Euler t +O(Δt) (błąd dyskretyzacji) t+δt +O(Δt) schemat Cranka Nicolsona: +O(Δt 2 ) CN to odpowiednik wzoru trapezów dla dy/dt=f(t) Dyskretyzacja
Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1
Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1 Tomasz Chwiej 6 czerwca 2016 1 Równania różniczkowe zwyczajne Zastosowanie szeregu Taylora do konstrukcji ilorazów różnicowych: iloraz
Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr zimowy 2017/2018
Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr zimowy 2017/2018 Tomasz Chwiej 22 stycznia 2019 1 Równania różniczkowe zwyczajne Zastosowanie szeregu Taylora do konstrukcji ilorazów
Inżynierskie metody numeryczne II. Konsultacje: wtorek 8-9:30. Wykład
Inżynierskie metody numeryczne II Konsultacje: wtorek 8-9:30 Wykład Metody numeryczne dla równań hiperbolicznych Równanie przewodnictwa cieplnego. Prawo Fouriera i Newtona. Rozwiązania problemów 1D metodą
Metoda różnic skończonych dla
Metoda różnic skończonych dla cząstkowych równań różniczkowych na laboratorium rozwiązywać będziemy typowe równania: dyfuzji (również przewodnictwo cieplne) paraboliczne równanie Poissona (np. pole elektrostatyczne,
TEORIA DRGAŃ Program wykładu 2016
TEORIA DRGAŃ Program wykładu 2016 I. KINEMATYKA RUCHU POSTE POWEGO 1. Ruch jednowymiarowy 1.1. Prędkość (a) Prędkość średnia (b) Prędkość chwilowa (prędkość) 1.2. Przyspieszenie (a) Przyspieszenie średnie
Metody rozwiązania równania Schrödingera
Metody rozwiązania równania Schrödingera Równanie Schrödingera jako algebraiczne zagadnienie własne Rozwiązanie analityczne dla skończonej i nieskończonej studni potencjału Problem rozwiązania równania
Metoda rozdzielania zmiennych
Rozdział 12 Metoda rozdzielania zmiennych W tym rozdziale zajmiemy się metodą rozdzielania zmiennych, którą można zastosować, aby wyrazić jawnymi wzorami rozwiązania pewnych konkretnych równań różniczkowych
równania funkcyjne opisujące relacje spełniane przez pochodne nieznanej (poszukiwanej) funkcji
Równania różniczkowe: równania funkcyjne opisujące relacje spełniane przez pochodne nieznanej (poszukiwanej) funkcji cząstkowe: funkcja więcej niż jednej zmienna, np.: czas i położenie np. wychylenie u(x,t)
Równania różniczkowe cząstkowe drugiego rzędu
Równania różniczkowe cząstkowe drugiego rzędu Marcin Orchel Spis treści 1 Wstęp 1 1.1 Metoda faktoryzacji (rozdzielania zmiennych)................ 5 1.2 Metoda funkcji Greena.............................
Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera.
W-1 (Jaroszewicz) 14 slajdów Podstawy Akustyki Drgania normalne a fale stojące Składanie fal harmonicznych: prędkość grupowa, dyspersja fal, superpozycja Fouriera, paczka falowa Fale akustyczne w powietrzu
Metoda różnic skończonych dla
Metoda różnic skończonych dla cząstkowych równań różniczkowych na laboratorium rozwiązywać będziemy typowe równania: dyfuzji (również przewodnictwo cieplne) paraboliczne równanie Poissona (np. pole elektrostatyczne,
Podstawy fizyki wykład 7
Podstawy fizyki wykład 7 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Drgania Drgania i fale Drgania harmoniczne Siła sprężysta Energia drgań Składanie drgań Drgania tłumione i wymuszone Fale
MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający
Rozdział 8. Analiza fourierowska. 8.1 Rozwinięcie w szereg Fouriera
Rozdział 8 Analiza fourierowska 8.1 Rozwinięcie w szereg Fouriera Rozważmy funkcję rzeczywistą f określoną na okręgu o promieniu jednostkowym. Parametryzując okrąg przy pomocy kąta φ [, π] otrzymujemy
Fizyka 12. Janusz Andrzejewski
Fizyka 1 Janusz Andrzejewski Przypomnienie: Drgania procesy w których pewna wielkość fizyczna na przemian maleje i rośnie Okresowy ruch drgający (periodyczny) - jeżeli wartości wielkości fizycznych zmieniające
Drgania i fale II rok Fizyk BC
00--07 5:34 00\FIN00\Drgzlo00.doc Drgania złożone Zasada superpozycji: wychylenie jest sumą wychyleń wywołanych przez poszczególne czynniki osobno. Zasada wynika z liniowości związku między wychyleniem
Podstawy fizyki sezon 1 VII. Ruch drgający
Podstawy fizyki sezon 1 VII. Ruch drgający Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Ruch skutkiem działania
Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów
Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe
1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2
Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,
Równanie Schrödingera
Równanie Schrödingera Maciej J. Mrowiński 29 lutego 2012 Zadanie RS1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = 0 ma następującą postać: A(a Ψ(x,0) = 2 x 2 ) gdy x [ a,a] 0 gdy x / [ a,a]
4.2 Analiza fourierowska(f1)
Analiza fourierowska(f1) 179 4. Analiza fourierowska(f1) Celem doświadczenia jest wyznaczenie współczynników szeregu Fouriera dla sygnałów okresowych. Zagadnienia do przygotowania: szereg Fouriera; sygnał
Wykład 3 Równania rózniczkowe cd
7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy
Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony
Ruch drgający Ruch harmoniczny prosty, tłumiony i wymuszony Ruchem drgającym nazywamy ruch ciała zachodzący wokół stałego położenia równowagi. Ruchy drgające dzielimy na ruchy: okresowe, nieokresowe. Ruch
Ustaliliśmy, że do rozwiązywania równania adwekcji lepiej nadaje się mniej dokładny schemat upwind niż ten z ilorazem centralnym
Ustaliliśmy, że do rozwiązywania równania adwekcji lepiej nadaje się mniej dokładny schemat upwind niż ten z ilorazem centralnym α=vdt/dx upwind: centralny: stabilny, stabilny bezwzględnie stabilny, ale
13 Równanie struny drgającej. Równanie przewodnictwa ciepła.
Równanie struny drgającej. Równanie przewodnictwa ciepła 13 1 13 Równanie struny drgającej. Równanie przewodnictwa ciepła. 13.1 Równanie struny drgającej Równanie różniczkowe liniowe drugiego rzędu typu
LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych
LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach
Ruch drgajacy. Drgania harmoniczne. Drgania harmoniczne... Drgania harmoniczne... Notatki. Notatki. Notatki. Notatki. dr inż.
Ruch drgajacy dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Ruch drgajacy Drgania harmoniczne Drgania oscylacje to cykliczna
y i b) metoda różnic skończonych nadal problem nieliniowy 2 go rzędu z warunkiem Dirichleta
b) metoda różnic skończonych nadal problem nieliniowy 2 go rzędu z warunkiem Dirichleta przedział (a,b) dzielimy na siatkę, powiedzmy o stałym kroku: punkty siatki: u A y i w metodzie strzałów używamy
adwekcja rzadko występuje w formie czystej przeważnie: łącznie z dyfuzją na razie znamy tylko dyfuzję numeryczną Adwekcja=unoszenie
adwekcja rzadko występuje w formie czystej przeważnie: łącznie z dyfuzją na razie znamy tylko dyfuzję numeryczną dziś: dyfuzja prawdziwa Dyfuzja+adwekcja: występuje w problemach transportu masy i energii
INSTRUKCJA DO ĆWICZENIA NR 7
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 7 PRZEDMIOT TEMAT OPRACOWAŁ LABORATORIUM MODELOWANIA Przykładowe analizy danych: przebiegi czasowe, portrety
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi
Fale mechaniczne i akustyka
Fale mechaniczne i akustyka Wstęp: siła jako element decydujący o rodzaju ruchu Na pierwszym wykładzie, dynamiki Newtona omawiając II zasadę dr d r F r,, t = m dt dt powiedzieliśmy, że o tym, jakim ruchem
Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska
Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html DRGANIA HARMONICZNE
numeryczne rozwiązywanie równań całkowych r i
numeryczne rozwiązywanie równań całkowych r i Γ Ω metoda elementów brzegowych: punktem wyjściowym było rozwiązanie równania całkowego na brzegu obszaru całkowania równanie: wygenerowane z równania różniczkowego
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Wstęp
RUCH HARMONICZNY. sin. (r.j.o) sin
RUCH DRGAJĄCY Ruch harmoniczny Rodzaje drgań Oscylator harmoniczny Energia oscylatora harmonicznego Wahadło matematyczne i fizyczne Drgania tłumione Drgania wymuszone i zjawisko rezonansu Politechnika
Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Siły oporu (tarcia)
Metody numeryczne I Równania nieliniowe
Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem
Automatyka i robotyka
Automatyka i robotyka Wykład 5 - Stabilność układów dynamicznych Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 43 Plan wykładu Wprowadzenie Stabilność modeli
Ψ(x, t) punkt zamocowania liny zmienna t, rozkład zaburzeń w czasie. x (lub t)
RUCH FALOWY 1 Fale sejsmiczne Fale morskie Kamerton Interferencja RÓWNANIE FALI Fala rozchodzenie się zaburzeń w ośrodku materialnym lub próżni: fale podłużne i poprzeczne w ciałach stałych, fale podłużne
VII. Drgania układów nieliniowych
VII. Drgania układów nieliniowych 1. Drgania anharmoniczne spowodowane symetryczna siła zwrotna 1.1 Różniczkowe równanie ruchu Rozważamy teraz drgania swobodne masy m przytwierdzonej do sprężyny o współczynniku
Metody Obliczeniowe Mikrooptyki i Fotoniki
Metody Obliczeniowe Mikrooptyki i Fotoniki https://www.igf.fuw.edu.pl/pl/courses/lectures/metody-obliczen-95-021c/ Podstawy metody różnic skończonych (Basics of finite-difference methods) Podstawy metody
Mechanika Kwantowa. Maciej J. Mrowiński. 24 grudnia Funkcja falowa opisująca stan pewnej cząstki ma następującą postać: 2 x 2 )
Mechanika Kwantowa Maciej J. Mrowiński 4 grudnia 11 Zadanie MK1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = ma następującą postać: A(a Ψ(x,) = x ) gdy x [ a,a] gdy x / [ a,a] gdzie a +. Wyznacz
Wykład FIZYKA I. 11. Fale mechaniczne. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 11. Fale mechaniczne Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html FALA Falą nazywamy każde rozprzestrzeniające
Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Procesy wykładniczego wzrostu i spadku (np populacja bakterii, rozpad radioaktywny, wymiana ciepła) można modelować równaniem
III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.
III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi
Metoda elementów brzegowych
Metoda elementów brzegowych Tomasz Chwiej, Alina Mreńca-Kolasińska 9 listopada 8 Wstęp Rysunek : a) Geometria układu z zaznaczonymi: elementami brzegu (czerwony), węzłami (niebieski). b) Numeracja: elementów
Systemy. Krzysztof Patan
Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej
Laboratorium Mechaniki Technicznej
Laboratorium Mechaniki Technicznej Ćwiczenie nr 5 Badanie drgań liniowych układu o jednym stopniu swobody Katedra Automatyki, Biomechaniki i Mechatroniki 90-924 Łódź, ul. Stefanowskiego 1/15, budynek A22
Kinematyka: opis ruchu
Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy
Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera
Jucatan, Mexico, February 005 W-10 (Jaroszewicz) 14 slajdów Podstawy Akustyki Drgania normalne a fale stojące Składanie fal harmonicznych: prędkość grupowa, dyspersja fal, superpozycja Fouriera, paczka
Równania różniczkowe cząstkowe (RRCz) równanie eliptyczne równanie Poissona
Równania różniczkowe cząstkowe (RRCz) równanie eliptyczne równanie Poissona 1. Klasyfikacja RRCz, przykłady 2. Metody numerycznego rozwiązywania równania Poissona a) FFT (met. bezpośrednia) b) metoda różnic
Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych. P. F. Góra
Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Co to znaczy rozwiazać równanie? Przypuśmy, że postawiono przed nami problem rozwiazania
Drgania wymuszone - wahadło Pohla
Zagadnienia powiązane Częstość kołowa, częstotliwość charakterystyczna, częstotliwość rezonansowa, wahadło skrętne, drgania skrętne, moment siły, moment powrotny, drgania tłumione/nietłumione, drgania
Metody numeryczne rozwiązywania równań różniczkowych
Metody numeryczne rozwiązywania równań różniczkowych Marcin Orchel Spis treści Wstęp. Metody przybliżone dla równań pierwszego rzędu................ Metoda kolejnych przybliżeń Picarda...................2
Metoda Różnic Skończonych (MRS)
Metoda Różnic Skończonych (MRS) METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek () Równania różniczkowe zwyczajne
- prędkość masy wynikająca z innych procesów, np. adwekcji, naprężeń itd.
4. Równania dyfuzji 4.1. Prawo zachowania masy cd. Równanie dyfuzji jest prostą konsekwencją prawa zachowania masy, a właściwie to jest to prawo zachowania masy zapisane dla procesu dyfuzji i uwzględniające
Metoda różnic wstecznych: interpolujemy u wielomianem od chwili n-k aż do n-1
Metoda różnic wstecznych: interpolujemy u wielomianem od chwili n-k aż do n-1 następnie żądamy, aby jego pochodna w chwili n spełniała równania różniczkowe (kolokacja) z tego warunku wyliczamy z niego
IX. MECHANIKA (FIZYKA) KWANTOWA
IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność - definicja 1 O układzie możemy mówić, że jest stabilny gdy wytrącony ze stanu równowagi
BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH
Ćwiczenie 4 BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH 4.1. Wiadomości ogólne 4.1.1. Równanie podłużnej fali dźwiękowej i jej prędkość w prętach Rozważmy pręt o powierzchni A kołowego przekroju poprzecznego.
INSTRUKCJA DO ĆWICZENIA NR 5
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 5 PRZEDMIOT TEMAT OPRACOWAŁ MODELOWANIE UKŁADÓW MECHANICZNYCH Badania analityczne układu mechanicznego
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2018 Wstęp Stabilność O układzie możemy mówić, że jest stabilny jeżeli jego odpowiedź na wymuszenie (zakłócenie)
Równania różniczkowe cząstkowe. Wojciech Szewczuk
Równania różniczkowe cząstkowe Równania różniczkowe cząstkowe - wstęp u x = lim x u(x + x, y) u(x, y) x u u(x, y + y) u(x, y) y = lim y y () (2) 2 u x 2 + 2xy 2 u y 2 + u = 3 u x 2 y + x 2 u + 8u = 5y
Funkcja kwadratowa. f(x) = ax 2 + bx + c = a
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania (3.7), pomimo swojej prostoty, nie posiadają poza nielicznymi przypadkami ścisłych rozwiązań,
MECHANIKA II. Drgania wymuszone
MECHANIKA II. Drgania wymuszone Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny Daniel Lewandowski (I-19) MECHANIKA II. Drgania wymuszone 1 / 30 Układ drgajacy o jednym stopniu swobody
Funkcja kwadratowa. f(x) = ax 2 + bx + c,
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \
Zagadnienia brzegowe dla równań eliptycznych
Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta
Δt)] niejawny schemat Eulera [globalny błąd O(Δt)] u(t) f(t,u) f(t,u) u(t) [t+ Δt,u(t+Δt)]
jawny schemat Eulera [globalny błąd O(Δt)] niejawny schemat Eulera [globalny błąd O(Δt)] u(t) f(t,u) [t,u(t)] )]dokładne d u(t) () f(t,u) [t+ Δt,u(t+Δt)] [t+ Δt,u(t+Δt)] Δt)] Δt t Δt t u(t) [t,u(t)] dokładne
Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie
napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.
Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice.
Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. 1 Wahadło matematyczne. Wahadłem matematycznym nazywamy punkt materialny o masie m zawieszony na długiej, cienkiej
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki
Układy równań i równania wyższych rzędów
Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem
Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu
Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi
3.1 Zagadnienie brzegowo-początkowe dla struny ograniczonej. = f(x, t) dla x [0; l], l > 0, t > 0 (3.1)
Temat 3 Metoda Fouriera da równań hiperboicznych 3.1 Zagadnienie brzegowo-początkowe da struny ograniczonej Rozważać będziemy następujące zagadnienie. Znaeźć funkcję u (x, t) spełniającą równanie wraz
Zestaw zadań z Równań różniczkowych cząstkowych I 18/19
Zestaw zadań z Równań różniczkowych cząstkowych I 18/19 Zad 1. Znaleźć rozwiązania ogólne u = u(x, y) następujących równań u x = 1, u y = 2xy, u yy = 6y, u xy = 1, u x + y = 0, u xxyy = 0. Zad 2. Znaleźć
Stabilność II Metody Lapunowa badania stabilności
Metody Lapunowa badania stabilności Interesuje nas w sposób szczególny system: Wprowadzamy dla niego pojęcia: - stabilności wewnętrznej - odnosi się do zachowania się systemu przy zerowym wejściu, czyli
pozbyć się ograniczenia na krok czasowy ze strony bezwzględnej stabilności: niejawna metoda Eulera
pozbyć się ograniczenia na krok czasowy ze strony bezwzględnej stabilności: niejawna metoda Eulera jawna metoda Eulera niejawna metoda Eulera jawna metoda Eulera (funkcjonuje jak podstawienie) funkcjonuje
Wykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova)
Wykład 2 Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) 1. Procesy Markova: definicja 2. Równanie Chapmana-Kołmogorowa-Smoluchowskiego 3. Przykład dyfuzji w kapilarze
Modyfikacja schematu SCPF obliczeń energii polaryzacji
Modyfikacja schematu SCPF obliczeń energii polaryzacji Zakład Metod Obliczeniowych Chemii 11 kwietnia 2006 roku 1 Po co? Jak? 2 Algorytm Analiza zbieżności 3 dla układów symetrycznych 4 Fulleren 5 Po co?
4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)
Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)185 4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania optyki półklasycznej Posłużymy się teraz równaniem (2.4), i Ψ t = ĤΨ ażeby wyprowadzić
POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny
POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny Funkcja Falowa Postulat 1 Dla każdego układu istnieje funkcja falowa (funkcja współrzędnych i czasu), która jest ciągła, całkowalna w kwadracie,
Część 1. Transmitancje i stabilność
Część 1 Transmitancje i stabilność Zastosowanie opisu transmitancyjnego w projektowaniu przekształtników impulsowych Istotne jest przewidzenie wpływu zmian w warunkach pracy (m. in. v g, i) i wielkości
x y
Przykłady pytań na egzamin końcowy: (Uwaga! Skreślone pytania nie obowiązują w tym roku.). Oblicz wartość interpolacji funkcjami sklejanymi (przypadek (case) a), dla danych i =[- 4 5], y i =[0 4 -]. Jaka
2.6.3 Interferencja fal.
RUCH FALOWY 1.6.3 Interferencja fal. Pojęcie interferencja odnosi się do fizycznych efektów nie zakłóconego nakładania się dwóch lub więcej ciągów falowych. Doświadczenie uczy, że fale mogą przebiegać
PODSTAWY FIZYKI LASERÓW Wstęp
PODSTAWY FIZYKI LASERÓW Wstęp LASER Light Amplification by Stimulation Emission of Radiation Składa się z: 1. ośrodka czynnego. układu pompującego 3.Rezonator optyczny - wnęka rezonansowa Generatory: liniowe
Prosty oscylator harmoniczny
Ruch drgający i falowy Siła harmoniczna, drgania swobodne Ruch, który powtarza się w regularnych odstępach czasu, nazywamy ruchem okresowym. Przemieszczenie cząstki w ruchu periodycznym można zawsze wyrazić
czyli o szukaniu miejsc zerowych, których nie ma
zerowych, których nie ma Instytut Fizyki im. Mariana Smoluchowskiego Centrum Badania Systemów Złożonych im. Marka Kaca Uniwersytet Jagielloński Metoda Metoda dla Warszawa, 9 stycznia 2006 Metoda -Raphsona
Metody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 9 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład
Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski
Wykład 9: Fale cz. 1 dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Klasyfikacja fal fale mechaniczne zaburzenie przemieszczające się w ośrodku sprężystym, fale elektromagnetyczne
Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.
1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu
DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
WYZNACZENIE GĘSTOŚCI MATERIAŁU STRUNY
ĆWICZENIE 103 WYZNACZENIE GĘSTOŚCI MATERIAŁU STRUNY Cel ćwiczenia: Wyznaczenie gęstości materiału, z którego jest wykonana badana struna. Zagadnienia: definicja fali, parametry opisujące falę (położenie