Równanie falowe. elektro magnetyczne) równanie falowe (dla struny) u(x,t) x=p. x=l. T 2 (II zasada Newtona F=ma) x+dx. x T 1

Wielkość: px
Rozpocząć pokaz od strony:

Download "Równanie falowe. elektro magnetyczne) równanie falowe (dla struny) u(x,t) x=p. x=l. T 2 (II zasada Newtona F=ma) x+dx. x T 1"

Transkrypt

1 Równanie falowe Równanie dyfuzji oraz dyfuzji adwekcji typowe paraboliczne Dziś zajmiemy się typowym równaniem hiperbolicznym równanie falowe (dla struny) (opisuje dążenie do równowagi). (oscylacje: mechaniczne, elektryczne, elektro magnetyczne) x=l u(x,t) x=p x+dx β T 2 (II zasada Newtona F=ma) α x T siła naciągu struny T (kierunek poziomy):

2 Równanie dyfuzji oraz dyfuzji adwekcji typowe paraboliczne Dziś zajmiemy się typowym równaniem hiperbolicznym równanie falowe (dla struny) (dążenie do równowagi). (oscylacje) x=l u(x,t) x=p x+dx β uwaga: α x T 2 T dx 0 (prędkość rozchodzenia się drgań) 2

3 c stałe: Ogólne rozwiązanie dla nieskończonego ośrodka (d Alamberta) dowolna funkcja drgania rozchodzące się bez zmiany kształtu [brak dyspersji w równaniu falowym] Liniowość równania: zasada superpozycji 3

4 Liniowość równania i zasada superpozycji: Sygnały rozchodzą się niezależnie od siebie F=exp( (x 0.5+ct) ( 2 ) +exp( (x+0.5 ct) 2 ) t x Sygnały mijają się bez zmiany kształtu [(jedna fala przenika drugą.] ponieważ równanie liniowe: jeśli wskażemy bazę zupełną funkcji ze znaną ewolucją czasową = problem rozwiązany baza: mody normalne (fale stojące) (drgania własne) 4

5 baza: mody normalne (fale stojące) (drgania własne) Dwupunktowe warunki brzegowe u(0,t)=u(l,t)=0 x=l x=0 x0 Poszukajmy rozwiązań, w których tylko amplituda (a nie kształt fali) nie zależy od czasu: u(x,t)=x(x)t(t) t0 t=0 t=t2 t=t3 t=t T(t)=cos(ω t+φ)= C cos(ω t)+d sin(ω t) [gdy gęstość struny zmienna c może być funkcją położenia] 5

6 Równanie na część przestrzenną fal stojących (drania własne, drgania normalne) Dla c niezależnego od x: X n () (x)=sin(ki (k n x) k liczba cbafalowa, a, wektor falowy k = 2π/ λ tutaj λ długość fali k=ω / c WB: spełnione, gdy X(0)=X(L)=0 k n =nπ /L Fale stojące: Między warunkami brzegowymi całkowita liczba połówek długości fal.. 0 L 6

7 warunki brzegowe: kwantyzacja k kwantyzacja w X n (x)=sin(k n x), T n =sin(w n t), cos(w n t) T k n =nπ /L k=ω / c ω n =ck n T oznacza naciąg struny przestrzenne drgania własne nie zależą od c, ale częstości tak. Wiemy, że niższe tony dają struny o większej grubości [ ρ ]. Wiemy również, ż że im silniej struna naciągnięta tym wyższy dźwięk. 7

8 Drgania własne dla zmiennej gęstości struny W przypadku ogólnym [c=c(x)] przyda się rachunek numeryczny. Wyliczyć X n oraz ω n ρ(x) Dyskretyzujemy drugą pochodną, liczymy X n (x+dx) 8

9 Równanie własne z warunkami brzegowymi: Metoda strzałów. w parametr równania ω dokładna wartość własna w=ω w<ω w>ω w X 0 wstawić warunek brzegowy ale co wstawić za X?? (dla równania Poissona opisywanego dla metody Numerowa to był poważny problem) dla drgań własnych wstawiamy cokolwiek (równanie własne jest jednorodne rozwiązania określone co do stałej multiplikatywnej ) 9

10 Test metody dla ρ(x)= (L=, T 0 =) Analityczne: k n =nπ /L X k=k k k=.5π/l k =0.5π/L k= 0.66 =k =π/l 6 π/l X (L L) 80 Miejsca zerowe wartości własne przy których funkcje własne 40 spełniają prawy warunek brzegowy 0 L k=k 2 =2π/L x x ω / π 0

11 Przykład: ρ(x)=+4α(x /2) 2 (struna cięższa przy mocowaniach) X X 4 π ω / X α=500 X 3-0 x α α=0 częstości ę własne równoodległe Częstości własne maleją z α (cięższa struna) duże α częstości grupują się w pary W każdej parze: funkcja parzysta i nieparzysta. Środek struny prawie nieważki, na częstości wpływ ma kształt funkcji przy brzegach a tam zbliżony dla każdej funkcji z pary

12 Drgania własne a ogólne rozwiązania równania falowego Równanie ogólne: Warunki początkowe: u(x,t=0) oraz v(x,t=0)=du/dt Zadać wychylenie i prędkości rozłożyć ł ż ć warunki początkowe na drgania własneł problem zależności czasowych jest rozwiązany 2

13 Drgania normalne a ogólne rozwiązania równania falowego Równanie ogólne: Warunki początkowe: u(x,t=0) oraz v(x,t=0)=du/dt Zadać wychylenie i prędkości ę rozłożyć warunki początkowe na drgania własne problem zależności czasowych jest rozwiązany w chwili t=0, za kształt struny odpowiadają współczynniki c n a za prędkość współczynniki s n 3

14 Superpozycja drgań własnych: Warunki początkowe Uwaga: dla równań dyfuzji i adwekcji warunek początkowy był tylko jeden czasowy rząd równania był =. Dla równania drugiego rzędu w czasie, wartość u(x,t=0) nie wystarczy dla jednoznacznego określenia rozwiązania. dla drgań własnych jednorodnej struny: Dyskretna sinusowa transformata Fouriera 4

15 rozkład na mody normalne na przedziale (0,L) Rozwinięcie w szereg Fouriera: g(x) = okresowa, odcinkowo ciągła z okresem T: Rozkład na drgania normalne a szereg Fouriera: drgania podległe warunkom brzegowym g(0)=g(l)=0. dla naszego problemu L to długość struny i nie ma interpretacji okresu (na strunie mieści się połowa długości fali). 5

16 6 Warunki Dirichleta zbieżności szeregu Fouriera Rozwinięcie Fouriera zbieżne w sensie jednorodnym N o ile g(x) ) całkowalna w kwadracie 2) odcinkowo ciągła rozwinięcie Fouriera dąży do g(x) prawie wszędzie tzn. poza punktami dyskretnymi punktami (rozwinięcie Fouriera jest wszędzie ciągłe!) Twierdzenie Dirichleta: W punktach nieciągłości szereg Fouriera zbieżny do g(x)=[ g(x 0)+g(x+0) ] / 2 tw. Dirichleta nie rozwiązuje wszystkich problemów

17 7 dla struny: pewien praktyczny problem z kanciastymi (nieróżniczkowalnymi) warunkami początkowymi. π 0 π Fala prostokątna ą W punkcie nieciągłości = [g(0 )+g(0+) ]/2 = ( + ) / 2 =0

18 Nd Nad nieciągłością i ł ś i wartość schodka przestrzelona o około 8% N=5 N=5 N=55 +2w ππ 0 π N=5 N=55 N=00 Zjawisko Gibbsa w= (stała Wibrahama Gibbsa) Na PC pracujemy ze skończonymi bazami: Równania różniczkowego przez rozkład warunku początkowego na drgania własne nie rozwiążemy dokładnie, jeśli ten jest nieciągły x 8

19 Na PC pracujemy ze skończonymi bazami... Zbieżność szeregu Fouriera w sensie bezwzględnym ę Szereg jest bezwzględnie zbieżny jeśli można go obciąć na pewnym wyrazie rozwinięcia: Rozwinięcie fali prostokątnej nie jest bezwzględnie zbieżne: 2 g(x) - schodkowa, bn Bo ogólny szereg harmoniczny jest rozbieżny 0 h(x)=exp(-x 2 ), a n Wniosek: w skończonej bazie funkcji własnych możemy rozwiązywać tylko problemy z warunkiem początkowym, 0 kó którego rozwinięcie w szereg Fouriera jest bezwzględnie zbieżne n 9

20 równanie falowe ciąg dalszy metoda różnic skończonych, zamiast rozkładu na drgania własne (który może być wolnozbieżny) Rozwiązanie numeryczne: dzielimy strunę na N fragmentów, dla każdego z nich rozwiązujemy równania Newtona (zabieg odwrotny do wyprowadzenia równania różniczkowego) v(x,t) - prędkość u(x,t) - wychylenie z równania falowego: 20

21 2 Schemat Verleta (popularny dla symulacji dynamiki molekularnej) m F V Schemat Verleta Phys. Rev. 59, 98 (967) Pomysł: rozwinąć położenie r w chwili t+δt i t-δt w szereg Taylora tylko o jeden rząd mniej dokładny niż RK4

22 Schemat Verleta Jeśli chodzi nam tylko o tor ruchu: świetny schemat. Nie używa prędkości, ale ta często potrzebna potrzebna: np do wyliczenia energii, ale również : sił (np. oporu, Lorentza) jeśli siły niezależne od prędkości, a informacja o nich potrzebna jest do innych celów można - wykonać krok do t+δt, a potem rządbłędu wyższy, wciąż dokładnie dla ruchu jednostajnie przyspieszonego a stałe między ę t a Δt jeśli siły zależą od prędkości: nie wykonamy kroku do t+δt, możemy co najwyżej: kiepsko: wynik dokładny tylko dla a=0 22

23 23 prędkościowa wersja schematu Verleta (dający ypę prędkości jednocześnie z położeniami) Położenia poświęcamy jeden rząd dokładności: Potrzebny przepis na prędkość w chwili t + Δtzbłędem z O(Δt 2 ): Rozwinąć r w Taylora względem punktu t+ Δt: Dodać stronami: (wzór potencjalnie niejawny) Wzory podkreślone na czerwono Verlet prędkościowy.

24 24 Verlet prędkościowy Inny (popularny) zapis wzorów w czerwonej ramce uwaga: jeśli siły (przyspieszenia) zależą od prędkości ostatnie równanie jest niejawne

25 Rozwiązania numeryczne. (laboratorium) L= u(x,t=0)=exp[-00(x-0.5)2] v(x,t=0)=0 u(x,t) (,) x 0.0 t=0 0.5 t=0.4 t=0. 2 t 3 Odbicie ze zmianą fazy (idzie górą, wraca dołem) t= v(x t) v(x,t) x x u(x,t) t

26 26 Rozwiązanie numeryczne 2. Swobodne warunki brzegowe: na brzegach na strunę nie działa żadna siła pionowa: Może się swobodnie przesuwać po mocowaniu Warunek brzegowy Neumana (na pochodną) zamiast Dirichleta (na wartość funkcji).00 Odbicie bez zmiany fazy: idzie górą, górą wraca 0.80 u u v x

27 energia drgania: kinetyczna Potencjalna: odkształcenie struny Dla ρ(x)=ρ( ) Dla pojedynczego modu własnego ω=kc T 0 =ρc 2 Kinetyczna na potencjalną się zmienia, całkowita zachowana 27

28 Analiza chwilowa drgania Rozwiązując równanie falowe schematem Verleta można z zależności czasowych wydobyć częstości własne bez konieczności rozwiązywania równania własnego Gdy drgania tłumione - częstość przestrzenna modów własnych nie ulega zmianie (zobaczymy), ale czasowa tak. Analiza chwilowa drgania na podstawie wychylenia zależności położeniowych = wychylenia g(x) i prędkości h(x) w danej chwili. 28

29 Równanie fali tłumionej a >0 = stała ł tłumienia i c niezależna od położenia Opory związane z prędkością struny [np. powietrza] Warunki brzegowe u(x=0,t)=u(x=l,t)=0 Warunki początkowe u(x,t) oraz v(x,t). Mody normalne dla fali tłumionej: Poszukajmy rozwiązania metodą separacji zmiennych u(x,t)=x(x)t(t) część przestrzenna bez zmian! X n (x)=sin(k n x) k n =nπ /L k=ω /c 29

30 30 Część przestrzenna: wstawiamy T=exp(rt), równanie charakterystyczne: exp(rt) [ r 2 +2ar+w n2 ] = 0, szukamy rozwiązań ą na r możliwe przypadki: 2 pierwiastki rzeczywiste, jeden podwójny, obydwa zespolone Warunki początkowe: Struna spoczywa w chwili początkowej Rozwiązanie określone co do stałej multiplikatywnej (równanie jednorodne)

31 ω n = ncπ /L L=, c=, ω n = nπ Drganie Słabe tłumienie a<ω a=8, ω i ω2 = przetłumione pozostałe tłumione a=0.5 a=0.2.0 z ω 0.8 n= 0.5 T (t) Poza zanikiem drgania widzimy zmniejszenie częstości T (t) Najpierw zgasną wyższe tłumienia 3

32 32 Rozwiązanie równania fali tłumionej rozwiązanie ogólne: Położeniowa ł ż analiza Fourierowska -rozkład na mody normalne w danej chwili : c n (t) = część przestrzenna nie zmienia się pod wpływem tłumienia. aby wydobyć c n : drugie równanie w ogólności ś wydzielimy przez ω n, podniesiemy zależne od czasu w kwadracie i dodamy

33 udział względny: x t Przykład: L= E=K+P K+P(kinetyczna+potencjalna) t W chwili początkowej pakiet f(x,t=0)=exp(-00(x-0.5) 2 ) a=0.5 a=2 a=4 a= ene ergia P 8 4 E K a= t Spadek E najszybszy gdy K największe

34 a= n= c n t Parzyste n nie wnoszą przyczynku (symetria) a=0.5 2 c n r n n= ω n =nπ n= t t Wszystkie mody tłumione równie silnie oscylujący y udział modów normalnych im wyższe ω n tym bardziej stały względny udział 34

35 a= n= a= n= 2 r n r n t a=4, większe tylko od ω r n n= t a=2 większe od ω i ω 3 2 r n t n= t 35

36 Laboratorium: R. hiperboliczne z niejednorodnością: Drgania tłumione z siłą wymuszającą F Siła przyłożona punktowo niejednorodność wymuszenie periodycznie zmienne 36

37 Dla t=0 struna spoczywa (v(x,t)=0)w położeniu równowagi (u(x,t)=0) Prędkość dźwięku = Siła przyłożona w środku struny x0=/2 u(x,t) ( ) a= w=0.5π pojawia się stan ustalony = drgania periodyczne. aa= w=2π x a=3 w=2π czas W stanie t i ustalonym t l ruchh jest j t periodyczny i d z okresem k siły wymuszającej (mode locking). 37

38 Stan ustalony a energia struny Średnia energia w stanie ustalonym: Siła przyłożona w środku struny x 0 =/2 Rezonans a= Brakuje w 2n?? Dlaczego? <E> w / pi 38

39 Stan ustalony a energia struny Średnia energia w stanie ustalonym: Siła przyłożona w środku struny x 0 =/2 Rezonans n= a= n=2 <E> Brakuje w 2n?? W środku studni = węzeł dla parzystych n w / pi 39

40 mody z parzystym n wzbudzone gdy punkt przyłożenia przesunąć ą ze środka a= x = <E> Krzywa rezonansowa w przybliżeniu opisana przez sumę funkcji Lorentza x = w / pi Siła sprzężenia = kwadrat wartości modu normalnego w miejscu przyłożenia siły: 40

41 Średnie energie stanu ustalonego a wzory lorentowskie a= a= a= <E> <E> <E> x = w / pi x = w / pi x 0 = w / pi <E E> a= a=.5 a=2 a=3 a=4 Rezonans a stała tłumienia w / pi 4

42 Laboratorium 2: odbicie pakietu od granicy ośrodków ρ 0 = V= położenie 0.5 V= czas

43 V= ρ 0 =2 ρ 0 = położenie ρ 0 = ρ 0 = czas 43

44 Część energii, która pozostaje po lżejszej stronie struny ρ= po odbiciu ρ 0 =2 44

45 Domena zależności (Domain of Dependence) i kryterium stabilności CFL (Courant-Friedrichs-Lewy) t x domena zależności: tylko zdarzenia z trójkąta ograniczonego charakterystykami mogą mieć wpływ na rozwiązanie w punkcie P 45

46 Numeryczna domena zależności [NUMERYCZNA PRZESZŁOŚĆ] kryterium stabilności CFL (Courant-Friedrichs-Lewy) schemat Verleta dla przyspieszenia danego przez prawą stronę równania: czas położenie 46

47 47 kryterium stabilności CFL (Courant-Friedrichs-Lewy) numeryczna dokładna warunek: jak dla adwekcji aby przekroczyć ć kryterium CFL (prędkość dźwięku): schematy niejawne ne dla równań mechaniki standardowy schemat niejawny = schemat Newmarka (dlaczego Crank-Nicolson się nie stosuje?)

48 algorytm Newmarka (uogólnienie prędkościowego Verleta, standardowy chemat niejawny dla równań opisujących układy dynamiczne) w Verlecie prędkościowym używamy przepisów: z γ=/2 u(t+dt)=u(t)+v(t)dt+dt 2 /2 a(t) v(t+dt)=v(t)+dt [(-γ)a(t)+γa(t+dt)] Czyli: w Verlecie: jawna formuła na położenie, potencjalnie niejawna na prędkość ta nie wystarczy dla bezwzględnej stabilności przy kroku czasowym cdt>dx (zobaczymy analizą v.neumanna) dla Newmarka: wprowadzamy niejawność (ważenie przyspieszeń z teraźniejszości i przyszłości) również do wzoru na położenia: u(t+dt)=u(t)+v(t)dt+dt 2 /2 [(-2β)a(t)+2βa(t+dt)] algorytm prędkościowy Newmarka źródło: WJT DANIEL, computational mechanics 20 (997) 272 zróbmy z tego formułę położeniową: bez prędkości, za to dwupoziomową (t+dt) względem t, t-dt wyeliminować prędkości : 48

49 u(t+dt)=u(t)+v(t)dt+dt 2 /2 [(-2β)a(t)+2βa(t+dt)] (*) v(t+dt)=v(t)+dt [(-γ)a(t)+γa(t+dt)] dla kroku poprzedniego= u(t)=u(t-dt)+v(t-dt)dt+dt 2 /2 [(-2β)a(t-dt)+2βa(t)] dla kroku poprzedniego = v(t)=v(t-dt)+dt [(-γ)a(t-dt)+γa(t)] u(t)=u(t-dt)+v(t)dt+dt 2 /2 [(-2β)a(t-dt)+2βa(t)]-dt 2 [(-γ)a(t-dt)+γa(t)] u(t)=u(t-dt)+v(t)dt+dt 2 /2 [(2γ-2β )a(t-dt)+(2β 2γ)a(t)] u(t-dt)=u(t)-v(t)dt-dt 2 /2 [(2γ-2β )a(t-dt)+(2β 2γ)a(t)] (*) dodamy stronami gwiazdki aby usunąć prędkość ze schematu 49

50 u(t+dt)=u(t)+v(t)dt+dt 2 /2 [(-2β)a(t)+2βa(t+dt)] + stronami u(t-dt)=u(t)-v(t)dt+dt 2 /2 [(-2γ+2β+)a(t-dt)+(2γ 2β)a(t)] skasujemy prędkość u(t-dt)+u(t+dt)=2u(t) +dt 2 /2[2βa(t+dt)+(-4β+2γ)a(t)+(-2γ+2β+)a(t-dt)] u(t+dt)=2u(t) -u(t-dt)+dt 2 [βa(t+dt)+(/2-2β+γ)a(t)+(-γ+β+/2)a(t-dt)] dla porównania Verlet położeniowy algorytm Newmark = wersja położeniowa, dwa parametry γβ γ,β wagi przy przyspieszeniu: β+/2 2β+γ γ+β+/2= (wszystkie wybory dają schemat, który w granicy małego dt redukuje się do Verleta) Newmark sprowadza się do Verleta gdy γ=/2, β=0 (maks dokładność lkl lokalny błąd czwartego rzędu) d) rola γ, β zobaczymy jak się sprawdzają w praktyce 50

51 u(t+dt)=2u(t) -u(t-dt)+dt 2 [βa(t+dt)+(/2-2β+γ)a(t)+(-γ+β+/2)a(t-dt)] u(t+dt)=2u(t) -u(t-dt)+dt 2 [βa(t+dt)+αa(t)+δa(t-dt)] jak wykonać krok czasowy? sposób rozwiązywania zależy od wyrażanie na a dla struny: Po przegrupowaniu wyrazów: układ równań liniowych z macierzą trójprzekątniową stencil: 5

52 dokładny schemat Newmark MRS, struna dt=dx 0 węzłów Verlet (β=0, γ=/2) (β=/2, γ=/2) (β=/2, γ=) β=.9 γ=/2 czas położenie dla dt=dx najlepszy wybór β=0, γ=/2 (jawny, Verlet) 52

53 dla dt=dx najlepszy wybór β=0, γ=/2 (jawny, Verlet) Verlet dla dt=dx* widzimy eksplozję rozwiązania z maksymalną malną zmiennością przestrzenną: Newmark jest po to aby przekroczyć kryterium CFL 53

54 rola γ (dt=.5dx, β=0.5) γ= węzłów MRS: schemat Newmark rola parametrów metody β>0 wynosi stabilność poza kryterium CFL, kosztem generacji wyższych częstości przestrzennych γ>/2 ogranicza wzmacnianie wyższych częstości kosztem dyssypacji (zaniku całego pakietu) γ</2 schemat jest niestabilny zostawmy γ=/2 (jak dla Verleta) i manipulujmy β 54

55 0 węzłów MRS poza CFL: dt > cdx dt=.5dx, γ=0.5, schemat staje się stabilny dla β>0.5 b 5 b=.5 b 2 b=.2 b 25 b= b= rosnące beta generuje wyższe częstości wniosek: najlepszy minimalne β przy którym schemat jeszcze stabilny czy można je wyznaczyć analitycznie?

56 Projektowanie schematu Newmarka dla zadanego kroku czasowego. dobrać minimalne β aby metoda była stabilna dla danego dt? Będziemy wiedzieli, że po wyższe β nie warto sięgać. analiza von Neumanna dla γ=/2 u(t+dt)=2u(t) (t) -u(t-dt)+dt 2 [βa(t+dt)+(/2-2β+γ)a(t)+(-γ+β+/2)a(t-dt)] 2β+ )(t)+( +β+/2) (tdt)] u(t+dt)-dt 2 βa(t+dt) =2u(t) -u(t-dt)+dt 2 [(-2β)a(t)+βa(t-dt)] Ansatz von Neumanna: 56

57 Sytuacja będzie taka: dopóki Δ<0 : 2 pierwiastki, o module nie większym od gdy Δ>0 metoda stanie się niestabilna 57

58 -2<c<0 zawsze żeby b pod pierwiastkiem i liczba ujemna potrzeba aby: λ 2 <? daje ten sam wynik β>/4 metoda stabilna dla dowolnego t [ ponieważ c < 0] uwaga: możemy sobie teraz sprawdzić stabilność Verleta dla dt=dx oraz beta=0, ¼+/(2c) <0 [ok.] 58

59 dobór beta zapewniającego stabilność schematu Newmark w MRS dla zadanego kroku czasowego dt=.5dx β c 59

60 dobór beta zapewniającego stabilność schematu Newmark w MRS dla zadanego kroku czasowego / / dt=dx dt=5dx c

61 2.00 struna, b. wiele chwil czasowych dt=5dx.00 β=.25 MRS, Newmark, γ=/ dt=5dx β=.24 bo beta była zbyt mała: Ze schematem Newmarka spotkamy się ponownie przy omawianiu MES, Pokażemy, że umożliwia on skuteczne prowadzenie Rachunków dla lokalnie zagęszczonej siatki

metoda różnic skończonych, zamiast rozkładu na drgania własne (który może być wolnozbieżny) v(x,t) - prędkość

metoda różnic skończonych, zamiast rozkładu na drgania własne (który może być wolnozbieżny) v(x,t) - prędkość równanie falowe ciąg dalszy metoda różnic skończonych, zamiast rozkładu na drgania własne (który może być wolnozbieżny) Rozwiązanie numeryczne: dzielimy strunę na N fragmentów, dla każdego z nich rozwiązujemy

Bardziej szczegółowo

równanie falowe (dla struny), cząstkowe, hiperboliczne [dynamika Newtonowska ośrodka ciągłego]

równanie falowe (dla struny), cząstkowe, hiperboliczne [dynamika Newtonowska ośrodka ciągłego] równanie falowe (dla struny), cząstkowe, hiperboliczne [dynamika Newtonowska ośrodka ciągłego] u(x,t) x=l x=p x+dx T x T siła naciągu struny T (kierunek poziomy): (II zasada Newtona F=ma) u(x,t) x=l x=p

Bardziej szczegółowo

warunki brzegowe u(x=0,t)=u(x=1,t)=0 problem: dane u(x,t=t) szukane: u(x,t=0)

warunki brzegowe u(x=0,t)=u(x=1,t)=0 problem: dane u(x,t=t) szukane: u(x,t=0) odwrotny problem przewodnictwa cieplnego problem prosty : zadajemy warunki brzegowe oraz początkowe pytanie: co stanie się w przyszłości (tak wprowadzane są problemy w teorii równań różniczkowych) W praktyce,

Bardziej szczegółowo

Dyskretyzacja równania dyfuzji cd. jawny Euler niejawny Euler. schemat Cranka Nicolsona: CN to odpowiednik wzoru trapezów dla dy/dt=f(t)

Dyskretyzacja równania dyfuzji cd. jawny Euler niejawny Euler. schemat Cranka Nicolsona: CN to odpowiednik wzoru trapezów dla dy/dt=f(t) Dyskretyzacja równania dyfuzji cd. jawny Euler niejawny Euler t +O(Δt) (błąd dyskretyzacji) t+δt +O(Δt) schemat Cranka Nicolsona: +O(Δt 2 ) CN to odpowiednik wzoru trapezów dla dy/dt=f(t) Dyskretyzacja

Bardziej szczegółowo

Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1

Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1 Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1 Tomasz Chwiej 6 czerwca 2016 1 Równania różniczkowe zwyczajne Zastosowanie szeregu Taylora do konstrukcji ilorazów różnicowych: iloraz

Bardziej szczegółowo

Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr zimowy 2017/2018

Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr zimowy 2017/2018 Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr zimowy 2017/2018 Tomasz Chwiej 22 stycznia 2019 1 Równania różniczkowe zwyczajne Zastosowanie szeregu Taylora do konstrukcji ilorazów

Bardziej szczegółowo

Inżynierskie metody numeryczne II. Konsultacje: wtorek 8-9:30. Wykład

Inżynierskie metody numeryczne II. Konsultacje: wtorek 8-9:30. Wykład Inżynierskie metody numeryczne II Konsultacje: wtorek 8-9:30 Wykład Metody numeryczne dla równań hiperbolicznych Równanie przewodnictwa cieplnego. Prawo Fouriera i Newtona. Rozwiązania problemów 1D metodą

Bardziej szczegółowo

Metoda różnic skończonych dla

Metoda różnic skończonych dla Metoda różnic skończonych dla cząstkowych równań różniczkowych na laboratorium rozwiązywać będziemy typowe równania: dyfuzji (również przewodnictwo cieplne) paraboliczne równanie Poissona (np. pole elektrostatyczne,

Bardziej szczegółowo

TEORIA DRGAŃ Program wykładu 2016

TEORIA DRGAŃ Program wykładu 2016 TEORIA DRGAŃ Program wykładu 2016 I. KINEMATYKA RUCHU POSTE POWEGO 1. Ruch jednowymiarowy 1.1. Prędkość (a) Prędkość średnia (b) Prędkość chwilowa (prędkość) 1.2. Przyspieszenie (a) Przyspieszenie średnie

Bardziej szczegółowo

Metody rozwiązania równania Schrödingera

Metody rozwiązania równania Schrödingera Metody rozwiązania równania Schrödingera Równanie Schrödingera jako algebraiczne zagadnienie własne Rozwiązanie analityczne dla skończonej i nieskończonej studni potencjału Problem rozwiązania równania

Bardziej szczegółowo

Metoda rozdzielania zmiennych

Metoda rozdzielania zmiennych Rozdział 12 Metoda rozdzielania zmiennych W tym rozdziale zajmiemy się metodą rozdzielania zmiennych, którą można zastosować, aby wyrazić jawnymi wzorami rozwiązania pewnych konkretnych równań różniczkowych

Bardziej szczegółowo

równania funkcyjne opisujące relacje spełniane przez pochodne nieznanej (poszukiwanej) funkcji

równania funkcyjne opisujące relacje spełniane przez pochodne nieznanej (poszukiwanej) funkcji Równania różniczkowe: równania funkcyjne opisujące relacje spełniane przez pochodne nieznanej (poszukiwanej) funkcji cząstkowe: funkcja więcej niż jednej zmienna, np.: czas i położenie np. wychylenie u(x,t)

Bardziej szczegółowo

Równania różniczkowe cząstkowe drugiego rzędu

Równania różniczkowe cząstkowe drugiego rzędu Równania różniczkowe cząstkowe drugiego rzędu Marcin Orchel Spis treści 1 Wstęp 1 1.1 Metoda faktoryzacji (rozdzielania zmiennych)................ 5 1.2 Metoda funkcji Greena.............................

Bardziej szczegółowo

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera.

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera. W-1 (Jaroszewicz) 14 slajdów Podstawy Akustyki Drgania normalne a fale stojące Składanie fal harmonicznych: prędkość grupowa, dyspersja fal, superpozycja Fouriera, paczka falowa Fale akustyczne w powietrzu

Bardziej szczegółowo

Metoda różnic skończonych dla

Metoda różnic skończonych dla Metoda różnic skończonych dla cząstkowych równań różniczkowych na laboratorium rozwiązywać będziemy typowe równania: dyfuzji (również przewodnictwo cieplne) paraboliczne równanie Poissona (np. pole elektrostatyczne,

Bardziej szczegółowo

Podstawy fizyki wykład 7

Podstawy fizyki wykład 7 Podstawy fizyki wykład 7 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Drgania Drgania i fale Drgania harmoniczne Siła sprężysta Energia drgań Składanie drgań Drgania tłumione i wymuszone Fale

Bardziej szczegółowo

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający

Bardziej szczegółowo

Rozdział 8. Analiza fourierowska. 8.1 Rozwinięcie w szereg Fouriera

Rozdział 8. Analiza fourierowska. 8.1 Rozwinięcie w szereg Fouriera Rozdział 8 Analiza fourierowska 8.1 Rozwinięcie w szereg Fouriera Rozważmy funkcję rzeczywistą f określoną na okręgu o promieniu jednostkowym. Parametryzując okrąg przy pomocy kąta φ [, π] otrzymujemy

Bardziej szczegółowo

Fizyka 12. Janusz Andrzejewski

Fizyka 12. Janusz Andrzejewski Fizyka 1 Janusz Andrzejewski Przypomnienie: Drgania procesy w których pewna wielkość fizyczna na przemian maleje i rośnie Okresowy ruch drgający (periodyczny) - jeżeli wartości wielkości fizycznych zmieniające

Bardziej szczegółowo

Drgania i fale II rok Fizyk BC

Drgania i fale II rok Fizyk BC 00--07 5:34 00\FIN00\Drgzlo00.doc Drgania złożone Zasada superpozycji: wychylenie jest sumą wychyleń wywołanych przez poszczególne czynniki osobno. Zasada wynika z liniowości związku między wychyleniem

Bardziej szczegółowo

Podstawy fizyki sezon 1 VII. Ruch drgający

Podstawy fizyki sezon 1 VII. Ruch drgający Podstawy fizyki sezon 1 VII. Ruch drgający Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Ruch skutkiem działania

Bardziej szczegółowo

Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów

Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe

Bardziej szczegółowo

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2 Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,

Bardziej szczegółowo

Równanie Schrödingera

Równanie Schrödingera Równanie Schrödingera Maciej J. Mrowiński 29 lutego 2012 Zadanie RS1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = 0 ma następującą postać: A(a Ψ(x,0) = 2 x 2 ) gdy x [ a,a] 0 gdy x / [ a,a]

Bardziej szczegółowo

4.2 Analiza fourierowska(f1)

4.2 Analiza fourierowska(f1) Analiza fourierowska(f1) 179 4. Analiza fourierowska(f1) Celem doświadczenia jest wyznaczenie współczynników szeregu Fouriera dla sygnałów okresowych. Zagadnienia do przygotowania: szereg Fouriera; sygnał

Bardziej szczegółowo

Wykład 3 Równania rózniczkowe cd

Wykład 3 Równania rózniczkowe cd 7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy

Bardziej szczegółowo

Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony

Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony Ruch drgający Ruch harmoniczny prosty, tłumiony i wymuszony Ruchem drgającym nazywamy ruch ciała zachodzący wokół stałego położenia równowagi. Ruchy drgające dzielimy na ruchy: okresowe, nieokresowe. Ruch

Bardziej szczegółowo

Ustaliliśmy, że do rozwiązywania równania adwekcji lepiej nadaje się mniej dokładny schemat upwind niż ten z ilorazem centralnym

Ustaliliśmy, że do rozwiązywania równania adwekcji lepiej nadaje się mniej dokładny schemat upwind niż ten z ilorazem centralnym Ustaliliśmy, że do rozwiązywania równania adwekcji lepiej nadaje się mniej dokładny schemat upwind niż ten z ilorazem centralnym α=vdt/dx upwind: centralny: stabilny, stabilny bezwzględnie stabilny, ale

Bardziej szczegółowo

13 Równanie struny drgającej. Równanie przewodnictwa ciepła.

13 Równanie struny drgającej. Równanie przewodnictwa ciepła. Równanie struny drgającej. Równanie przewodnictwa ciepła 13 1 13 Równanie struny drgającej. Równanie przewodnictwa ciepła. 13.1 Równanie struny drgającej Równanie różniczkowe liniowe drugiego rzędu typu

Bardziej szczegółowo

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach

Bardziej szczegółowo

Ruch drgajacy. Drgania harmoniczne. Drgania harmoniczne... Drgania harmoniczne... Notatki. Notatki. Notatki. Notatki. dr inż.

Ruch drgajacy. Drgania harmoniczne. Drgania harmoniczne... Drgania harmoniczne... Notatki. Notatki. Notatki. Notatki. dr inż. Ruch drgajacy dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Ruch drgajacy Drgania harmoniczne Drgania oscylacje to cykliczna

Bardziej szczegółowo

y i b) metoda różnic skończonych nadal problem nieliniowy 2 go rzędu z warunkiem Dirichleta

y i b) metoda różnic skończonych nadal problem nieliniowy 2 go rzędu z warunkiem Dirichleta b) metoda różnic skończonych nadal problem nieliniowy 2 go rzędu z warunkiem Dirichleta przedział (a,b) dzielimy na siatkę, powiedzmy o stałym kroku: punkty siatki: u A y i w metodzie strzałów używamy

Bardziej szczegółowo

adwekcja rzadko występuje w formie czystej przeważnie: łącznie z dyfuzją na razie znamy tylko dyfuzję numeryczną Adwekcja=unoszenie

adwekcja rzadko występuje w formie czystej przeważnie: łącznie z dyfuzją na razie znamy tylko dyfuzję numeryczną Adwekcja=unoszenie adwekcja rzadko występuje w formie czystej przeważnie: łącznie z dyfuzją na razie znamy tylko dyfuzję numeryczną dziś: dyfuzja prawdziwa Dyfuzja+adwekcja: występuje w problemach transportu masy i energii

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 7

INSTRUKCJA DO ĆWICZENIA NR 7 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 7 PRZEDMIOT TEMAT OPRACOWAŁ LABORATORIUM MODELOWANIA Przykładowe analizy danych: przebiegi czasowe, portrety

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi

Bardziej szczegółowo

Fale mechaniczne i akustyka

Fale mechaniczne i akustyka Fale mechaniczne i akustyka Wstęp: siła jako element decydujący o rodzaju ruchu Na pierwszym wykładzie, dynamiki Newtona omawiając II zasadę dr d r F r,, t = m dt dt powiedzieliśmy, że o tym, jakim ruchem

Bardziej szczegółowo

Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska

Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html DRGANIA HARMONICZNE

Bardziej szczegółowo

numeryczne rozwiązywanie równań całkowych r i

numeryczne rozwiązywanie równań całkowych r i numeryczne rozwiązywanie równań całkowych r i Γ Ω metoda elementów brzegowych: punktem wyjściowym było rozwiązanie równania całkowego na brzegu obszaru całkowania równanie: wygenerowane z równania różniczkowego

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Wstęp

Bardziej szczegółowo

RUCH HARMONICZNY. sin. (r.j.o) sin

RUCH HARMONICZNY. sin. (r.j.o) sin RUCH DRGAJĄCY Ruch harmoniczny Rodzaje drgań Oscylator harmoniczny Energia oscylatora harmonicznego Wahadło matematyczne i fizyczne Drgania tłumione Drgania wymuszone i zjawisko rezonansu Politechnika

Bardziej szczegółowo

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Siły oporu (tarcia)

Bardziej szczegółowo

Metody numeryczne I Równania nieliniowe

Metody numeryczne I Równania nieliniowe Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem

Bardziej szczegółowo

Automatyka i robotyka

Automatyka i robotyka Automatyka i robotyka Wykład 5 - Stabilność układów dynamicznych Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 43 Plan wykładu Wprowadzenie Stabilność modeli

Bardziej szczegółowo

Ψ(x, t) punkt zamocowania liny zmienna t, rozkład zaburzeń w czasie. x (lub t)

Ψ(x, t) punkt zamocowania liny zmienna t, rozkład zaburzeń w czasie. x (lub t) RUCH FALOWY 1 Fale sejsmiczne Fale morskie Kamerton Interferencja RÓWNANIE FALI Fala rozchodzenie się zaburzeń w ośrodku materialnym lub próżni: fale podłużne i poprzeczne w ciałach stałych, fale podłużne

Bardziej szczegółowo

VII. Drgania układów nieliniowych

VII. Drgania układów nieliniowych VII. Drgania układów nieliniowych 1. Drgania anharmoniczne spowodowane symetryczna siła zwrotna 1.1 Różniczkowe równanie ruchu Rozważamy teraz drgania swobodne masy m przytwierdzonej do sprężyny o współczynniku

Bardziej szczegółowo

Metody Obliczeniowe Mikrooptyki i Fotoniki

Metody Obliczeniowe Mikrooptyki i Fotoniki Metody Obliczeniowe Mikrooptyki i Fotoniki https://www.igf.fuw.edu.pl/pl/courses/lectures/metody-obliczen-95-021c/ Podstawy metody różnic skończonych (Basics of finite-difference methods) Podstawy metody

Bardziej szczegółowo

Mechanika Kwantowa. Maciej J. Mrowiński. 24 grudnia Funkcja falowa opisująca stan pewnej cząstki ma następującą postać: 2 x 2 )

Mechanika Kwantowa. Maciej J. Mrowiński. 24 grudnia Funkcja falowa opisująca stan pewnej cząstki ma następującą postać: 2 x 2 ) Mechanika Kwantowa Maciej J. Mrowiński 4 grudnia 11 Zadanie MK1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = ma następującą postać: A(a Ψ(x,) = x ) gdy x [ a,a] gdy x / [ a,a] gdzie a +. Wyznacz

Bardziej szczegółowo

Wykład FIZYKA I. 11. Fale mechaniczne. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 11. Fale mechaniczne.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 11. Fale mechaniczne Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html FALA Falą nazywamy każde rozprzestrzeniające

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Procesy wykładniczego wzrostu i spadku (np populacja bakterii, rozpad radioaktywny, wymiana ciepła) można modelować równaniem

Bardziej szczegółowo

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi

Bardziej szczegółowo

Metoda elementów brzegowych

Metoda elementów brzegowych Metoda elementów brzegowych Tomasz Chwiej, Alina Mreńca-Kolasińska 9 listopada 8 Wstęp Rysunek : a) Geometria układu z zaznaczonymi: elementami brzegu (czerwony), węzłami (niebieski). b) Numeracja: elementów

Bardziej szczegółowo

Systemy. Krzysztof Patan

Systemy. Krzysztof Patan Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej

Bardziej szczegółowo

Laboratorium Mechaniki Technicznej

Laboratorium Mechaniki Technicznej Laboratorium Mechaniki Technicznej Ćwiczenie nr 5 Badanie drgań liniowych układu o jednym stopniu swobody Katedra Automatyki, Biomechaniki i Mechatroniki 90-924 Łódź, ul. Stefanowskiego 1/15, budynek A22

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy

Bardziej szczegółowo

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera Jucatan, Mexico, February 005 W-10 (Jaroszewicz) 14 slajdów Podstawy Akustyki Drgania normalne a fale stojące Składanie fal harmonicznych: prędkość grupowa, dyspersja fal, superpozycja Fouriera, paczka

Bardziej szczegółowo

Równania różniczkowe cząstkowe (RRCz) równanie eliptyczne równanie Poissona

Równania różniczkowe cząstkowe (RRCz) równanie eliptyczne równanie Poissona Równania różniczkowe cząstkowe (RRCz) równanie eliptyczne równanie Poissona 1. Klasyfikacja RRCz, przykłady 2. Metody numerycznego rozwiązywania równania Poissona a) FFT (met. bezpośrednia) b) metoda różnic

Bardziej szczegółowo

Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych. P. F. Góra

Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych. P. F. Góra Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Co to znaczy rozwiazać równanie? Przypuśmy, że postawiono przed nami problem rozwiazania

Bardziej szczegółowo

Drgania wymuszone - wahadło Pohla

Drgania wymuszone - wahadło Pohla Zagadnienia powiązane Częstość kołowa, częstotliwość charakterystyczna, częstotliwość rezonansowa, wahadło skrętne, drgania skrętne, moment siły, moment powrotny, drgania tłumione/nietłumione, drgania

Bardziej szczegółowo

Metody numeryczne rozwiązywania równań różniczkowych

Metody numeryczne rozwiązywania równań różniczkowych Metody numeryczne rozwiązywania równań różniczkowych Marcin Orchel Spis treści Wstęp. Metody przybliżone dla równań pierwszego rzędu................ Metoda kolejnych przybliżeń Picarda...................2

Bardziej szczegółowo

Metoda Różnic Skończonych (MRS)

Metoda Różnic Skończonych (MRS) Metoda Różnic Skończonych (MRS) METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek () Równania różniczkowe zwyczajne

Bardziej szczegółowo

- prędkość masy wynikająca z innych procesów, np. adwekcji, naprężeń itd.

- prędkość masy wynikająca z innych procesów, np. adwekcji, naprężeń itd. 4. Równania dyfuzji 4.1. Prawo zachowania masy cd. Równanie dyfuzji jest prostą konsekwencją prawa zachowania masy, a właściwie to jest to prawo zachowania masy zapisane dla procesu dyfuzji i uwzględniające

Bardziej szczegółowo

Metoda różnic wstecznych: interpolujemy u wielomianem od chwili n-k aż do n-1

Metoda różnic wstecznych: interpolujemy u wielomianem od chwili n-k aż do n-1 Metoda różnic wstecznych: interpolujemy u wielomianem od chwili n-k aż do n-1 następnie żądamy, aby jego pochodna w chwili n spełniała równania różniczkowe (kolokacja) z tego warunku wyliczamy z niego

Bardziej szczegółowo

IX. MECHANIKA (FIZYKA) KWANTOWA

IX. MECHANIKA (FIZYKA) KWANTOWA IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność - definicja 1 O układzie możemy mówić, że jest stabilny gdy wytrącony ze stanu równowagi

Bardziej szczegółowo

BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH

BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH Ćwiczenie 4 BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH 4.1. Wiadomości ogólne 4.1.1. Równanie podłużnej fali dźwiękowej i jej prędkość w prętach Rozważmy pręt o powierzchni A kołowego przekroju poprzecznego.

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 5

INSTRUKCJA DO ĆWICZENIA NR 5 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 5 PRZEDMIOT TEMAT OPRACOWAŁ MODELOWANIE UKŁADÓW MECHANICZNYCH Badania analityczne układu mechanicznego

Bardziej szczegółowo

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2018 Wstęp Stabilność O układzie możemy mówić, że jest stabilny jeżeli jego odpowiedź na wymuszenie (zakłócenie)

Bardziej szczegółowo

Równania różniczkowe cząstkowe. Wojciech Szewczuk

Równania różniczkowe cząstkowe. Wojciech Szewczuk Równania różniczkowe cząstkowe Równania różniczkowe cząstkowe - wstęp u x = lim x u(x + x, y) u(x, y) x u u(x, y + y) u(x, y) y = lim y y () (2) 2 u x 2 + 2xy 2 u y 2 + u = 3 u x 2 y + x 2 u + 8u = 5y

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania (3.7), pomimo swojej prostoty, nie posiadają poza nielicznymi przypadkami ścisłych rozwiązań,

Bardziej szczegółowo

MECHANIKA II. Drgania wymuszone

MECHANIKA II. Drgania wymuszone MECHANIKA II. Drgania wymuszone Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny Daniel Lewandowski (I-19) MECHANIKA II. Drgania wymuszone 1 / 30 Układ drgajacy o jednym stopniu swobody

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

Δt)] niejawny schemat Eulera [globalny błąd O(Δt)] u(t) f(t,u) f(t,u) u(t) [t+ Δt,u(t+Δt)]

Δt)] niejawny schemat Eulera [globalny błąd O(Δt)] u(t) f(t,u) f(t,u) u(t) [t+ Δt,u(t+Δt)] jawny schemat Eulera [globalny błąd O(Δt)] niejawny schemat Eulera [globalny błąd O(Δt)] u(t) f(t,u) [t,u(t)] )]dokładne d u(t) () f(t,u) [t+ Δt,u(t+Δt)] [t+ Δt,u(t+Δt)] Δt)] Δt t Δt t u(t) [t,u(t)] dokładne

Bardziej szczegółowo

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.

Bardziej szczegółowo

Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice.

Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. 1 Wahadło matematyczne. Wahadłem matematycznym nazywamy punkt materialny o masie m zawieszony na długiej, cienkiej

Bardziej szczegółowo

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi

Bardziej szczegółowo

3.1 Zagadnienie brzegowo-początkowe dla struny ograniczonej. = f(x, t) dla x [0; l], l > 0, t > 0 (3.1)

3.1 Zagadnienie brzegowo-początkowe dla struny ograniczonej. = f(x, t) dla x [0; l], l > 0, t > 0 (3.1) Temat 3 Metoda Fouriera da równań hiperboicznych 3.1 Zagadnienie brzegowo-początkowe da struny ograniczonej Rozważać będziemy następujące zagadnienie. Znaeźć funkcję u (x, t) spełniającą równanie wraz

Bardziej szczegółowo

Zestaw zadań z Równań różniczkowych cząstkowych I 18/19

Zestaw zadań z Równań różniczkowych cząstkowych I 18/19 Zestaw zadań z Równań różniczkowych cząstkowych I 18/19 Zad 1. Znaleźć rozwiązania ogólne u = u(x, y) następujących równań u x = 1, u y = 2xy, u yy = 6y, u xy = 1, u x + y = 0, u xxyy = 0. Zad 2. Znaleźć

Bardziej szczegółowo

Stabilność II Metody Lapunowa badania stabilności

Stabilność II Metody Lapunowa badania stabilności Metody Lapunowa badania stabilności Interesuje nas w sposób szczególny system: Wprowadzamy dla niego pojęcia: - stabilności wewnętrznej - odnosi się do zachowania się systemu przy zerowym wejściu, czyli

Bardziej szczegółowo

pozbyć się ograniczenia na krok czasowy ze strony bezwzględnej stabilności: niejawna metoda Eulera

pozbyć się ograniczenia na krok czasowy ze strony bezwzględnej stabilności: niejawna metoda Eulera pozbyć się ograniczenia na krok czasowy ze strony bezwzględnej stabilności: niejawna metoda Eulera jawna metoda Eulera niejawna metoda Eulera jawna metoda Eulera (funkcjonuje jak podstawienie) funkcjonuje

Bardziej szczegółowo

Wykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova)

Wykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) Wykład 2 Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) 1. Procesy Markova: definicja 2. Równanie Chapmana-Kołmogorowa-Smoluchowskiego 3. Przykład dyfuzji w kapilarze

Bardziej szczegółowo

Modyfikacja schematu SCPF obliczeń energii polaryzacji

Modyfikacja schematu SCPF obliczeń energii polaryzacji Modyfikacja schematu SCPF obliczeń energii polaryzacji Zakład Metod Obliczeniowych Chemii 11 kwietnia 2006 roku 1 Po co? Jak? 2 Algorytm Analiza zbieżności 3 dla układów symetrycznych 4 Fulleren 5 Po co?

Bardziej szczegółowo

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)185 4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania optyki półklasycznej Posłużymy się teraz równaniem (2.4), i Ψ t = ĤΨ ażeby wyprowadzić

Bardziej szczegółowo

POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny

POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny Funkcja Falowa Postulat 1 Dla każdego układu istnieje funkcja falowa (funkcja współrzędnych i czasu), która jest ciągła, całkowalna w kwadracie,

Bardziej szczegółowo

Część 1. Transmitancje i stabilność

Część 1. Transmitancje i stabilność Część 1 Transmitancje i stabilność Zastosowanie opisu transmitancyjnego w projektowaniu przekształtników impulsowych Istotne jest przewidzenie wpływu zmian w warunkach pracy (m. in. v g, i) i wielkości

Bardziej szczegółowo

x y

x y Przykłady pytań na egzamin końcowy: (Uwaga! Skreślone pytania nie obowiązują w tym roku.). Oblicz wartość interpolacji funkcjami sklejanymi (przypadek (case) a), dla danych i =[- 4 5], y i =[0 4 -]. Jaka

Bardziej szczegółowo

2.6.3 Interferencja fal.

2.6.3 Interferencja fal. RUCH FALOWY 1.6.3 Interferencja fal. Pojęcie interferencja odnosi się do fizycznych efektów nie zakłóconego nakładania się dwóch lub więcej ciągów falowych. Doświadczenie uczy, że fale mogą przebiegać

Bardziej szczegółowo

PODSTAWY FIZYKI LASERÓW Wstęp

PODSTAWY FIZYKI LASERÓW Wstęp PODSTAWY FIZYKI LASERÓW Wstęp LASER Light Amplification by Stimulation Emission of Radiation Składa się z: 1. ośrodka czynnego. układu pompującego 3.Rezonator optyczny - wnęka rezonansowa Generatory: liniowe

Bardziej szczegółowo

Prosty oscylator harmoniczny

Prosty oscylator harmoniczny Ruch drgający i falowy Siła harmoniczna, drgania swobodne Ruch, który powtarza się w regularnych odstępach czasu, nazywamy ruchem okresowym. Przemieszczenie cząstki w ruchu periodycznym można zawsze wyrazić

Bardziej szczegółowo

czyli o szukaniu miejsc zerowych, których nie ma

czyli o szukaniu miejsc zerowych, których nie ma zerowych, których nie ma Instytut Fizyki im. Mariana Smoluchowskiego Centrum Badania Systemów Złożonych im. Marka Kaca Uniwersytet Jagielloński Metoda Metoda dla Warszawa, 9 stycznia 2006 Metoda -Raphsona

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 9 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo

Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski

Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski Wykład 9: Fale cz. 1 dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Klasyfikacja fal fale mechaniczne zaburzenie przemieszczające się w ośrodku sprężystym, fale elektromagnetyczne

Bardziej szczegółowo

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. 1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu

Bardziej szczegółowo

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających

Bardziej szczegółowo

WYZNACZENIE GĘSTOŚCI MATERIAŁU STRUNY

WYZNACZENIE GĘSTOŚCI MATERIAŁU STRUNY ĆWICZENIE 103 WYZNACZENIE GĘSTOŚCI MATERIAŁU STRUNY Cel ćwiczenia: Wyznaczenie gęstości materiału, z którego jest wykonana badana struna. Zagadnienia: definicja fali, parametry opisujące falę (położenie

Bardziej szczegółowo