równanie falowe (dla struny), cząstkowe, hiperboliczne [dynamika Newtonowska ośrodka ciągłego]

Wielkość: px
Rozpocząć pokaz od strony:

Download "równanie falowe (dla struny), cząstkowe, hiperboliczne [dynamika Newtonowska ośrodka ciągłego]"

Transkrypt

1 równanie falowe (dla struny), cząstkowe, hiperboliczne [dynamika Newtonowska ośrodka ciągłego] u(x,t) x=l x=p x+dx T x T siła naciągu struny T (kierunek poziomy): (II zasada Newtona F=ma)

2 u(x,t) x=l x=p x+dx uwaga: T x T dx (prędkość rozchodzenia się drgań)

3 c stałe: Ogólne rozwiązanie dla nieskończonego ośrodka (d Alamberta) dowolna funkcja drgania rozchodzące się bez zmiany kształtu [brak dyspersji w równaniu falowym] Liniowość równania: Zasada superpozycji.

4 Liniowość równania i zasada superpozycji: Sygnały rozchodzą się niezależnie od siebie t F=exp(-(x-.5+ct)) +exp(-(x+.5-ct)) x Sygnały mijają się bez zmiany kształtu [(jedna fala przenika drugą.] ponieważ równanie liniowe: jeśli wskażemy bazę zupełną funkcji ze znaną ewolucją czasową = problem rozwiązany baza: mody normalne (fale stojące) (drgania własne)

5 baza: mody normalne (fale stojące) (drgania własne) Dwupunktowe warunki brzegowe u(,t)=u(l,t)= x=l x= Poszukajmy rozwiązań, w których tylko amplituda (a nie kształt fali) nie zależy od czasu: u(x,t)=x(x)t(t) t= t=t t=t t=t T(t)=cos( t+ )= C cos( t)+d sin( t) [gdy gęstość struny zmienna c może być funkcją położenia]

6 Równanie na część przestrzenną fal stojących (drania własne, drgania normalne) Dla c niezależnego od x: k-liczba falowa, wektor falowy k = / tutaj długość fali k= / c Xn(x)=sin(knx) WB: spełnione, gdy X()=X(L)= kn=n /L Fale stojące: Między warunkami brzegowymi całkowita liczba połówek długości fal.. L

7 warunki brzegowe: kwantyzacja k kwantyzacja w Xn(x)=sin(knx), Tn=sin(wnt) kn=n /L k= / c T T oznacza naciąg struny n =ckn przestrzenne drgania własne nie zależą od c, ale częstości tak. Wiemy, że niższe tony dają struny o większej grubości [ Wiemy również, że im silniej struna naciągnięta tym wyższy dźwięk.

8 Drgania własne dla zmiennej gęstości struny W przypadku ogólnym [c=c(x)] przyda się rachunek numeryczny. Wyliczyć Xn oraz n (x) Dyskretyzujemy drugą pochodną, liczymy Xn(x+dx)

9 Równanie własne z warunkami brzegowymi: Metoda strzałów. w parametr równania dokładna wartość własna w< w= w> w X wstawić warunek brzegowy, ale co wstawić w X?? dla drgań własnych wstawiamy w X cokolwiek Funkcje własne określone co do stałej normalizacyjnej. (zmieni się tylko normalizacja, równanie własne = jednorodne)

10 Test metody dla (x)= (L=, T=) Analityczne: kn=n /L k= / L k /L k /L k= X /L k = k / L x x 8 4 X (L ) k Miejsca zerowe wartości własne przy których funkcje własne spełniają prawy warunek brzegowy

11 Przykład: (x)=+4 x-/) (struna cięższa przy mocowaniach). 4 4 X X = częstości własne równoodległe Częstości własne maleją z (cięższa struna) duże częstości grupują się w pary X 4 X - x W każdej parze: funkcja parzysta i nieparzysta. Środek struny prawie nieważki, na częstości wpływ ma kształt funkcji przy brzegach a tam zbliżony dla każdej funkcji z pary

12 Drgania własne a ogólne rozwiązania równania falowego Równanie ogólne: Warunki początkowe: u(x,t=) oraz v(x,t=)=du/dt Zadać wychylenie i prędkości rozłożyć warunki początkowe na drgania własne problem zależności czasowych jest rozwiązany

13 Drgania normalne a ogólne rozwiązania równania falowego Równanie ogólne: Warunki początkowe: u(x,t=) oraz v(x,t=)=du/dt Zadać wychylenie i prędkości rozłożyć warunki początkowe na drgania własne problem zależności czasowych jest rozwiązany w chwili t=, za kształt struny odpowiadają współczynniki cn a za prędkość współczynniki sn

14 Superpozycja drgań własnych: Warunki początkowe dla drgań własnych jednorodnej struny: Dyskretna sinusowa transformata Fouriera

15 rozkład na mody normalne na przedziale (,L) Rozwinięcie w szereg Fouriera: g(x) = okresowa, odcinkowo ciągła z okresem T: Rozkład na drgania normalne a szereg Fouriera: drgania podległe warunkom brzegowym g()=g(l)=. L nie ma interpretacji okresu (może być pół długości fali).

16 Warunki Dirichleta zbieżności szeregu Fouriera Rozwinięcie Fouriera zbieżne w sensie jednorodnym N o ile g(x) ) całkowalna w kwadracie ) odcinkowo ciągła rozwinięcie Fouriera dąży do g(x) prawie wszędzie tzn poza punktami dyskretnymi punktami (rozwinięcie Fouriera jest wszędzie ciągłe!) Twierdzenie Dirichleta: W punktach nieciągłości szereg Fouriera zbieżny do g(x)=[ g(x-)+g(x+) ] / Okazuje się, że tw. Dirichleta nie rozwiązuje wszystkich problemów

17 dla struny: pewien praktyczny problem z kanciastymi (nieróżniczkowalnymi) warunkami początkowymi. Fala prostokątna - - W punkcie nieciągłości = [g(-)+g(+) ]/ = (- + ) / =

18 N=5 N=5 N=55 Nad nieciągłością wartość schodka przestrzelona o około 8% - - +w N=5 N=55 N= Na PC pracujemy ze skończonymi bazami: Zjawisko Gibbsa w=.8949 (stała Wibrahama-Gibbsa)...4 x.6 Równania różniczkowego przez rozkład warunku początkowego na drgania własne nie rozwiążemy dokładnie, jeśli ten jest nieciągły.

19 Na PC pracujemy ze skończonymi bazami... Zbieżność szeregu Fouriera w sensie bezwzględnym Szereg jest bezwzględnie zbieżny jeśli można go obciąć na pewnym wyrazie rozwinięcia: Rozwinięcie fali prostokątnej nie jest bezwzględnie zbieżne: Bo ogólny szereg harmoniczny jest rozbieżny g (x ) - s c h o d k o w a, b h (x )= e x p (-x ), a n Wniosek: w skończonej bazie funkcji własnych możemy rozwiązywać tylko problemy z warunkiem początkowym, którego rozwinięcie w szereg Fouriera jest bezwzględnie zbieżne n n 4

20 Metoda różnic skończonych = uwalnia nas od problemu rozkładu na drgania własne Rozwiązanie numeryczne: dzielimy strunę na N fragmentów, dla każdego z nich rozwiązujemy równania Newtona (zabieg odwrotny do wyprowadzenia równania różniczkowego) v(x,t) - prędkość u(x,t) - wychylenie z równania falowego:

21 Schemat Verleta (popularny dla symulacji dynamiki molekularnej) V m Schemat Verleta Phys. Rev. 59, 98 (967) F Pomysł: rozwinąć położenie r w chwili t+ t i t- t w szereg Taylora tylko o jeden rząd mniej dokładny niż RK4

22 Schemat położeniowy Verleta Jeśli chodzi nam tylko o tor ruchu: świetny schemat. Nie używa prędkości, ale ta często potrzebna potrzebna: np do wyliczenia energii, ale również : sił (np. oporu, Lorentza) jeśli siły niezależne od prędkości, a informacja o nich potrzebna jest do innych celów można - wykonać krok do t+ t, a potem rząd błędu wyższy, wciąż dokładnie dla ruchu jednostajnie przyspieszonego a stałe między t a t jeśli siły zależą od prędkości: nie wykonamy kroku do t+ t, możemy co najwyżej: kiepsko: wynik dokładny tylko dla a=

23 prędkościowa wersja schematu Verleta (dający prędkości jednocześnie z położeniami) Położenia poświęcamy jeden rząd dokładności: Potrzebny przepis na prędkość w chwili t + t z błędem O( t): Rozwinąć r w Taylora względem punktu t+ t: Dodać stronami: Wzory podkreślone na czerwono Verlet prędkościowy.

24 Rozwiązania numeryczne. (laboratorium) L= u(x,t=)=exp[-(x-.5)] v(x,t=)=.5 x. u(x,t) t= t=.4.5 t=. t Odbicie ze zmianą fazy (idzie górą, wraca dołem) t=.. v(x,t) x.5 x u (x,t) t

25 Rozwiązanie numeryczne. Może się swobodnie przesuwać po mocowaniu Swobodne warunki brzegowe: na brzegach na strunę nie działa żadna siła pionowa: Warunek brzegowy Neumana (na pochodną) zamiast Dirichleta (na wartość funkcji) Odbicie bez zmiany fazy: idzie górą, górą wraca..8 u.5.6 u v x.8.

26 energia drgania: kinetyczna Potencjalna: odkształcenie struny Dla (x)= Dla pojedynczego modu własnego =kc T= c Kinetyczna na potencjalną się zmienia, całkowita zachowana

27 Analiza chwilowa drgania ) ) ) Można prześledzić zależności czasowe i z nich wydobyć częstości własne Co jeśli drgania są np. gasnące? Jeśli sens ma tylko częstość przestrzenna, a nie czasowa? Analiza chwilowa drgania na podstawie wychylenia zależności położeniowych = wychylenia g(x) i prędkości h(x) w danej chwili.

28 Równanie fali tłumionej a > = stała tłumienia c niezależna od położenia Opory związane z prędkością struny [np. powietrza] Warunki brzegowe u(x=,t)=u(x=l,t)= Warunki początkowe u(x,t) oraz v(x,t). Mody normalne dla fali tłumionej: Poszukajmy rozwiązania metodą separacji zmiennych u(x,t)=x(x)t(t) Część przestrzenna bez zmian! Xn(x)=sin(knx) kn=n /L k= /c

29 Część przestrzenna: rozwiązujemy dla T=exp(rt), równanie charakterystyczne: exp(rt) [ r+ar+wn] =, szukamy rozwiązań na r możliwe przypadki: pierwiastki rzeczywiste, jeden podwójny, obydwa zespolone Warunki początkowe: Struna spoczywa w chwili początkowej Rozwiązanie określone co do stałej multiplikatywnej (równanie jednorodne)

30 n= nc / L L=, c=, n= a=8, i = przetłumione pozostałe tłumione Słabe tłumienie a<..5. T (t) T (t) Drganie z a =.5 a=. n n=.4. 4 Poza zanikiem drgania widzimy zmniejszenie częstości Najpierw zgasną wyższe tłumienia

31 Rozwiązanie równania fali tłumionej rozwiązanie ogólne: Położeniowa analiza Fourierowska - rozkład na mody normalne w danej chwili : cn(t) = część przestrzenna nie zmienia się pod wpływem tłumienia. w ogólności zależne od czasu aby wydobyć cn : drugie równanie wydzielimy przez wn, podniesiemy w kwadracie i dodamy

32 udział względny: Przykład: L= W chwili początkowej pakiet f(x,t=)=exp(-(x-.5)) x a= t E e n e r g ia a=.5 E=K+P (kinetyczna+potencjalna) a =.5 P 8 K 4.5 a=4.5 a= t Spadek E najszybszy gdy K największe

33 a=. 4 n= c n t n=n 4 Parzyste n nie wnoszą przyczynku (symetria) Wszystkie mody tłumione równie silnie.6 n=. n. c t 4 oscylujący udział modów normalnych r n a=.5.4 n= 7 t 4 im wyższe n tym bardziej stały względny udział

34 .8 a= a= r n r n n= 5 7 t 4. 7 a= większe od i n= r n n t t 4 6 n= n=. 5 a=4, większe tylko od r.. 7 t 4

35 Laboratorium: R. hiperboliczne z niejednorodnością: Drgania tłumione z siłą wymuszającą F Siła przyłożona punktowo niejednorodność Wymuszenie periodycznie zmienne

36 Dla t= struna spoczywa (v(x,t)=)w położeniu równowagi (u(x,t)=) Prędkość dźwięku = Siła przyłożona w środku struny x=/ u(x,t).5 a= w= pojawia się stan ustalony = drgania periodyczne. a= w= x.5 a= w= czas W stanie ustalonym ruch jest periodyczny z okresem siły wymuszającej (mode locking). 8 9

37 Stan ustalony a energia struny Średnia energia w stanie ustalonym: Siła przyłożona w środku struny x=/ Rezonans a= <E> n= n= Brakuje wn?? W środku studni = węzeł dla parzystych n w / pi

38 Mody z parzystym n wzbudzone gdy punkt przyłożenia przesunąć ze środka x =.5 <E> a= Krzywa rezonansowa w przybliżeniu opisana przez sumę funkcji Lorentza x = w / pi Siła sprzężenia = kwadrat wartości modu normalnego w miejscu przyłożenia siły:

39 Średnie energie stanu ustalonego a wzory lorentowskie a= a= <E> <E> <E> a= x = w / pi <E> x = w / pi a= a= a= a= a= w / pi.5 4 x = w / pi Rezonans a stała tłumienia

40 Laboratorium : odbicie pakietu od granicy ośrodków V=.5 położenie czas V=

41 V= położenie czas

42 Część energii, która pozostaje po lżejszej stronie struny = po odbiciu

43 Domena zależności (Domain of Dependence) i kryterium stabilności CFL (Courant-Friedrichs-Lewy) t x domena zależności: tylko zdarzenia z trójkąta ograniczonego charakterystykami mogą mieć wpływ na rozwiązanie w punkcie P

44 Numeryczna domena zależności [NUMERYCZNA PRZESZŁOŚĆ] schemat żabiego skoku: czas położenie kryterium stabilności CFL (Courant-Friedrichs-Lewy)

45 kryterium stabilności CFL (Courant-Friedrichs-Lewy) numeryczna dokładna aby przekroczyć kryterium CFL (prędkość dźwięku): schematy niejawne dla równań mechaniki standardowy schemat niejawny = schemat Newmarka

46 dla dt=dx najlepszy wybór (jawny, Verlet). Verlet dla dt=dx*. widzimy eksplozję rozwiązania z maksymalną zmiennością przestrzenną: Newmark jest po to aby przekroczyć kryterium CFL

47 algorytm Newmarka (uogólnienie prędkościowego Verleta, o szerszym zastosowaniu, nie tylko dynamika molekularna, ale standardowy niejawny dla równań mechaniki) w Verlecie prędkościowym używaliśmy przepisów: [dla Verleta =/] u(t+dt)=u(t)+v(t)dt+dt/ a(t) v(t+dt)=v(t)+dt [(- )a(t)+ a(t+dt)] Czyli: w Verlecie: jawna formuła na położenie, potencjalnie niejawna na prędkość ta nie wystarczy dla bezwzględnej stabilności przy kroku czasowym cdt>dx (zobaczymy analizą v.neumanna) dla Newmarka: wprowadzamy niejawność (ważenie przyspieszeń z teraźniejszości i przyszłości) również do wzoru na położenia: u(t+dt)=u(t)+v(t)dt+dt/ [(- )a(t)+ a(t+dt)] Algorytm prędkościowy Newmarka źródło: WJT DANIEL, computational mechanics (997) 7 zróbmy z tego formułę położeniową: wyeliminować prędkości :

48 u(t+dt)=u(t)+v(t)dt+dt/ [(- )a(t)+ a(t+dt)] (*) v(t+dt)=v(t)+dt [(- )a(t)+ a(t+dt)] dla kroku poprzedniego= u(t)=u(t-dt)+v(t-dt)dt+dt/ [(- )a(t-dt)+ a(t)] dla kroku poprzedniego = v(t)=v(t-dt)+dt [(- )a(t-dt)+ a(t)] u(t)=u(t-dt)+v(t)dt+dt/ [(- )a(t-dt)+ a(t)]-dt[(- )a(t-dt)+ a(t)] u(t)=u(t-dt)+v(t)dt+dt/ [( - )a(t-dt)+( a(t)] u(t-dt)=u(t)-v(t)dt-dt/ [( - )a(t-dt)+( a(t)] (*) dodamy stronami gwiazdki

49 u(t+dt)=u(t)+v(t)dt+dt/ [(- )a(t)+ a(t+dt)] + stronami u(t-dt)=u(t)-v(t)dt+dt/ [(- + )a(t-dt)+( a(t)] skasujemy prędkość u(t-dt)+u(t+dt)=u(t) +dt/[ a(t+dt)+(-4 + )a(t)+(- + )a(t-dt)] u(t+dt)=u(t) -u(t-dt)+dt[ a(t+dt)+(/- + )a(t)+(- + )a(t-dt)] algorytm Newmark = wersja położeniowa, dwa parametry dla porównania Verlet położeniowy wagi przy przyspieszeniu: = (wszystkie wybory dają schemat, który w granicy małego dt redukuje się do Verleta) Newmark sprowadza się do Verleta gdy =/, = (maks dokładność lokalny błąd czwartego rzędu) rola, zobaczymy jak się sprawdzają w praktyce

50 u(t+dt)=u(t) -u(t-dt)+dt[ a(t+dt)+(/- + )a(t)+(- + )a(t-dt)] u(t+dt)=u(t) -u(t-dt)+dt[ a(t+dt)+ a(t)+ a(t-dt)] jak wykonać krok czasowy? sposób rozwiązywania zależy od wyrażanie na a dla struny: Po przegrupowaniu wyrazów: układ równań liniowych z macierzą trójprzekątniową stencil:

51 schemat Newmark MRS, struna dt=dx węzłów Verlet ( )( ) ( ) czas dokładny dla dt=dx najlepszy wybór (jawny, Verlet) położenie

52 węzłów rola (dt=.5dx, =.5) = MRS: schemat Newmark rola parametrów metody > wynosi stabilność poza kryterium CFL, kosztem generacji wyższych częstości przestrzennych >/ ogranicza wzmacnianie wyższych częstości kosztem dyssypacji (zaniku całego pakietu) </ s. niestabilny zostawmy =/ i manipulujmy betą

53 węzłów MRS poza CFL: dt > cdx dt=.5dx, =.5, schemat staje się stabilny dla >.5 b =. 5 b =. b = b= rosnące beta generuje wyższe częstości wniosek: najlepszy minimalne przy którym schemat jeszcze stabilny czy można je wyznaczyć analitycznie?.5

54 Projektowanie schematu Newmarka dla zadanego kroku czasowego. dobrać minimalne aby metoda była stabilna dla danego dt? Będziemy wiedzieli, że po wyższe nie warto sięgać. analiza von Neumanna dla =/ u(t+dt)=u(t) -u(t-dt)+dt[ a(t+dt)+(/- + )a(t)+(- + )a(t-dt)] u(t+dt)-dt a(t+dt) =u(t) -u(t-dt)+dt[(- )a(t)+ a(t-dt)] Ansatz von Neumanna:

55 Sytuacja będzie taka: dopóki < : pierwiastki, o module nie większym od gdy > metoda stanie się niestabilna

56 -<c< zawsze żeby dwa urojone: <? daje ten sam wynik >/4 metoda stabilna dla dowolnego t [ ponieważ c < ] uwaga: możemy sobie teraz sprawdzić stabilność Verleta dla dt=dx oraz beta=, ¼+/(c) < [ok.]

57 dobór beta zapewniającego stabilność schematu Newmark w MRS dla zadanego kroku czasowego dt=.5 dx

58 dobór beta zapewniającego stabilność schematu Newmark w MRS dla zadanego kroku czasowego. /4. 5 / dt=5dx. 4 dt=dx c

59 struna, b. wiele chwil czasowych. dt=5dx =.5. MRS, Newmark, =/ dt=5dx = bo beta była zbyt mała:

metoda różnic skończonych, zamiast rozkładu na drgania własne (który może być wolnozbieżny) v(x,t) - prędkość

metoda różnic skończonych, zamiast rozkładu na drgania własne (który może być wolnozbieżny) v(x,t) - prędkość równanie falowe ciąg dalszy metoda różnic skończonych, zamiast rozkładu na drgania własne (który może być wolnozbieżny) Rozwiązanie numeryczne: dzielimy strunę na N fragmentów, dla każdego z nich rozwiązujemy

Bardziej szczegółowo

Równanie falowe. elektro magnetyczne) równanie falowe (dla struny) u(x,t) x=p. x=l. T 2 (II zasada Newtona F=ma) x+dx. x T 1

Równanie falowe. elektro magnetyczne) równanie falowe (dla struny) u(x,t) x=p. x=l. T 2 (II zasada Newtona F=ma) x+dx. x T 1 Równanie falowe Równanie dyfuzji oraz dyfuzji adwekcji typowe paraboliczne Dziś zajmiemy się typowym równaniem hiperbolicznym równanie falowe (dla struny) (opisuje dążenie do równowagi). (oscylacje: mechaniczne,

Bardziej szczegółowo

warunki brzegowe u(x=0,t)=u(x=1,t)=0 problem: dane u(x,t=t) szukane: u(x,t=0)

warunki brzegowe u(x=0,t)=u(x=1,t)=0 problem: dane u(x,t=t) szukane: u(x,t=0) odwrotny problem przewodnictwa cieplnego problem prosty : zadajemy warunki brzegowe oraz początkowe pytanie: co stanie się w przyszłości (tak wprowadzane są problemy w teorii równań różniczkowych) W praktyce,

Bardziej szczegółowo

Inżynierskie metody numeryczne II. Konsultacje: wtorek 8-9:30. Wykład

Inżynierskie metody numeryczne II. Konsultacje: wtorek 8-9:30. Wykład Inżynierskie metody numeryczne II Konsultacje: wtorek 8-9:30 Wykład Metody numeryczne dla równań hiperbolicznych Równanie przewodnictwa cieplnego. Prawo Fouriera i Newtona. Rozwiązania problemów 1D metodą

Bardziej szczegółowo

TEORIA DRGAŃ Program wykładu 2016

TEORIA DRGAŃ Program wykładu 2016 TEORIA DRGAŃ Program wykładu 2016 I. KINEMATYKA RUCHU POSTE POWEGO 1. Ruch jednowymiarowy 1.1. Prędkość (a) Prędkość średnia (b) Prędkość chwilowa (prędkość) 1.2. Przyspieszenie (a) Przyspieszenie średnie

Bardziej szczegółowo

Dyskretyzacja równania dyfuzji cd. jawny Euler niejawny Euler. schemat Cranka Nicolsona: CN to odpowiednik wzoru trapezów dla dy/dt=f(t)

Dyskretyzacja równania dyfuzji cd. jawny Euler niejawny Euler. schemat Cranka Nicolsona: CN to odpowiednik wzoru trapezów dla dy/dt=f(t) Dyskretyzacja równania dyfuzji cd. jawny Euler niejawny Euler t +O(Δt) (błąd dyskretyzacji) t+δt +O(Δt) schemat Cranka Nicolsona: +O(Δt 2 ) CN to odpowiednik wzoru trapezów dla dy/dt=f(t) Dyskretyzacja

Bardziej szczegółowo

Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr zimowy 2017/2018

Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr zimowy 2017/2018 Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr zimowy 2017/2018 Tomasz Chwiej 22 stycznia 2019 1 Równania różniczkowe zwyczajne Zastosowanie szeregu Taylora do konstrukcji ilorazów

Bardziej szczegółowo

Metoda rozdzielania zmiennych

Metoda rozdzielania zmiennych Rozdział 12 Metoda rozdzielania zmiennych W tym rozdziale zajmiemy się metodą rozdzielania zmiennych, którą można zastosować, aby wyrazić jawnymi wzorami rozwiązania pewnych konkretnych równań różniczkowych

Bardziej szczegółowo

Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1

Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1 Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1 Tomasz Chwiej 6 czerwca 2016 1 Równania różniczkowe zwyczajne Zastosowanie szeregu Taylora do konstrukcji ilorazów różnicowych: iloraz

Bardziej szczegółowo

Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony

Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony Ruch drgający Ruch harmoniczny prosty, tłumiony i wymuszony Ruchem drgającym nazywamy ruch ciała zachodzący wokół stałego położenia równowagi. Ruchy drgające dzielimy na ruchy: okresowe, nieokresowe. Ruch

Bardziej szczegółowo

Metody rozwiązania równania Schrödingera

Metody rozwiązania równania Schrödingera Metody rozwiązania równania Schrödingera Równanie Schrödingera jako algebraiczne zagadnienie własne Rozwiązanie analityczne dla skończonej i nieskończonej studni potencjału Problem rozwiązania równania

Bardziej szczegółowo

Metoda różnic skończonych dla

Metoda różnic skończonych dla Metoda różnic skończonych dla cząstkowych równań różniczkowych na laboratorium rozwiązywać będziemy typowe równania: dyfuzji (również przewodnictwo cieplne) paraboliczne równanie Poissona (np. pole elektrostatyczne,

Bardziej szczegółowo

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera Jucatan, Mexico, February 005 W-10 (Jaroszewicz) 14 slajdów Podstawy Akustyki Drgania normalne a fale stojące Składanie fal harmonicznych: prędkość grupowa, dyspersja fal, superpozycja Fouriera, paczka

Bardziej szczegółowo

IX. MECHANIKA (FIZYKA) KWANTOWA

IX. MECHANIKA (FIZYKA) KWANTOWA IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji

Bardziej szczegółowo

Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska

Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html DRGANIA HARMONICZNE

Bardziej szczegółowo

Wykład FIZYKA I. 11. Fale mechaniczne. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 11. Fale mechaniczne.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 11. Fale mechaniczne Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html FALA Falą nazywamy każde rozprzestrzeniające

Bardziej szczegółowo

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Siły oporu (tarcia)

Bardziej szczegółowo

Równania różniczkowe cząstkowe drugiego rzędu

Równania różniczkowe cząstkowe drugiego rzędu Równania różniczkowe cząstkowe drugiego rzędu Marcin Orchel Spis treści 1 Wstęp 1 1.1 Metoda faktoryzacji (rozdzielania zmiennych)................ 5 1.2 Metoda funkcji Greena.............................

Bardziej szczegółowo

13 Równanie struny drgającej. Równanie przewodnictwa ciepła.

13 Równanie struny drgającej. Równanie przewodnictwa ciepła. Równanie struny drgającej. Równanie przewodnictwa ciepła 13 1 13 Równanie struny drgającej. Równanie przewodnictwa ciepła. 13.1 Równanie struny drgającej Równanie różniczkowe liniowe drugiego rzędu typu

Bardziej szczegółowo

4.2 Analiza fourierowska(f1)

4.2 Analiza fourierowska(f1) Analiza fourierowska(f1) 179 4. Analiza fourierowska(f1) Celem doświadczenia jest wyznaczenie współczynników szeregu Fouriera dla sygnałów okresowych. Zagadnienia do przygotowania: szereg Fouriera; sygnał

Bardziej szczegółowo

Podstawy fizyki wykład 7

Podstawy fizyki wykład 7 Podstawy fizyki wykład 7 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Drgania Drgania i fale Drgania harmoniczne Siła sprężysta Energia drgań Składanie drgań Drgania tłumione i wymuszone Fale

Bardziej szczegółowo

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach

Bardziej szczegółowo

Rozdział 8. Analiza fourierowska. 8.1 Rozwinięcie w szereg Fouriera

Rozdział 8. Analiza fourierowska. 8.1 Rozwinięcie w szereg Fouriera Rozdział 8 Analiza fourierowska 8.1 Rozwinięcie w szereg Fouriera Rozważmy funkcję rzeczywistą f określoną na okręgu o promieniu jednostkowym. Parametryzując okrąg przy pomocy kąta φ [, π] otrzymujemy

Bardziej szczegółowo

Metody numeryczne I Równania nieliniowe

Metody numeryczne I Równania nieliniowe Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem

Bardziej szczegółowo

adwekcja rzadko występuje w formie czystej przeważnie: łącznie z dyfuzją na razie znamy tylko dyfuzję numeryczną Adwekcja=unoszenie

adwekcja rzadko występuje w formie czystej przeważnie: łącznie z dyfuzją na razie znamy tylko dyfuzję numeryczną Adwekcja=unoszenie adwekcja rzadko występuje w formie czystej przeważnie: łącznie z dyfuzją na razie znamy tylko dyfuzję numeryczną dziś: dyfuzja prawdziwa Dyfuzja+adwekcja: występuje w problemach transportu masy i energii

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 5

INSTRUKCJA DO ĆWICZENIA NR 5 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 5 PRZEDMIOT TEMAT OPRACOWAŁ MODELOWANIE UKŁADÓW MECHANICZNYCH Badania analityczne układu mechanicznego

Bardziej szczegółowo

x y

x y Przykłady pytań na egzamin końcowy: (Uwaga! Skreślone pytania nie obowiązują w tym roku.). Oblicz wartość interpolacji funkcjami sklejanymi (przypadek (case) a), dla danych i =[- 4 5], y i =[0 4 -]. Jaka

Bardziej szczegółowo

Systemy. Krzysztof Patan

Systemy. Krzysztof Patan Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej

Bardziej szczegółowo

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi

Bardziej szczegółowo

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi

Bardziej szczegółowo

Metody Obliczeniowe Mikrooptyki i Fotoniki

Metody Obliczeniowe Mikrooptyki i Fotoniki Metody Obliczeniowe Mikrooptyki i Fotoniki https://www.igf.fuw.edu.pl/pl/courses/lectures/metody-obliczen-95-021c/ Podstawy metody różnic skończonych (Basics of finite-difference methods) Podstawy metody

Bardziej szczegółowo

Fizyka 12. Janusz Andrzejewski

Fizyka 12. Janusz Andrzejewski Fizyka 1 Janusz Andrzejewski Przypomnienie: Drgania procesy w których pewna wielkość fizyczna na przemian maleje i rośnie Okresowy ruch drgający (periodyczny) - jeżeli wartości wielkości fizycznych zmieniające

Bardziej szczegółowo

Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych. P. F. Góra

Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych. P. F. Góra Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Co to znaczy rozwiazać równanie? Przypuśmy, że postawiono przed nami problem rozwiazania

Bardziej szczegółowo

Drgania i fale II rok Fizyk BC

Drgania i fale II rok Fizyk BC 00--07 5:34 00\FIN00\Drgzlo00.doc Drgania złożone Zasada superpozycji: wychylenie jest sumą wychyleń wywołanych przez poszczególne czynniki osobno. Zasada wynika z liniowości związku między wychyleniem

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Wstęp

Bardziej szczegółowo

Metoda różnic skończonych dla

Metoda różnic skończonych dla Metoda różnic skończonych dla cząstkowych równań różniczkowych na laboratorium rozwiązywać będziemy typowe równania: dyfuzji (również przewodnictwo cieplne) paraboliczne równanie Poissona (np. pole elektrostatyczne,

Bardziej szczegółowo

1. Po upływie jakiego czasu ciało drgające ruchem harmonicznym o okresie T = 8 s przebędzie drogę równą: a) całej amplitudzie b) czterem amplitudom?

1. Po upływie jakiego czasu ciało drgające ruchem harmonicznym o okresie T = 8 s przebędzie drogę równą: a) całej amplitudzie b) czterem amplitudom? 1. Po upływie jakiego czasu ciało drgające ruchem harmonicznym o okresie T = 8 s przebędzie drogę równą: a) całej amplitudzie b) czterem amplitudom? 2. Ciało wykonujące drgania harmoniczne o amplitudzie

Bardziej szczegółowo

Nieskończona jednowymiarowa studnia potencjału

Nieskończona jednowymiarowa studnia potencjału Nieskończona jednowymiarowa studnia potencjału Zagadnienie dane jest następująco: znaleźć funkcje własne i wartości własne operatora energii dla cząstki umieszczonej w nieskończonej studni potencjału,

Bardziej szczegółowo

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne Szeregi potęgowe i trygonometryczne Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne str. 1/36 Szereg potęgowy Szeregiem potęgowym o

Bardziej szczegółowo

Metody numeryczne rozwiązywania równań różniczkowych

Metody numeryczne rozwiązywania równań różniczkowych Metody numeryczne rozwiązywania równań różniczkowych Marcin Orchel Spis treści Wstęp. Metody przybliżone dla równań pierwszego rzędu................ Metoda kolejnych przybliżeń Picarda...................2

Bardziej szczegółowo

KURS SZEREGI. Lekcja 10 Szeregi Fouriera ZADANIE DOMOWE. Strona 1

KURS SZEREGI. Lekcja 10 Szeregi Fouriera ZADANIE DOMOWE.   Strona 1 KURS SZEREGI Lekcja 1 Szeregi Fouriera ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Zaznacz poprawną odpowiedź: a) Szereg Fouriera

Bardziej szczegółowo

Podstawy fizyki sezon 1 VII. Ruch drgający

Podstawy fizyki sezon 1 VII. Ruch drgający Podstawy fizyki sezon 1 VII. Ruch drgający Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Ruch skutkiem działania

Bardziej szczegółowo

y i b) metoda różnic skończonych nadal problem nieliniowy 2 go rzędu z warunkiem Dirichleta

y i b) metoda różnic skończonych nadal problem nieliniowy 2 go rzędu z warunkiem Dirichleta b) metoda różnic skończonych nadal problem nieliniowy 2 go rzędu z warunkiem Dirichleta przedział (a,b) dzielimy na siatkę, powiedzmy o stałym kroku: punkty siatki: u A y i w metodzie strzałów używamy

Bardziej szczegółowo

Wykład 3 Równania rózniczkowe cd

Wykład 3 Równania rózniczkowe cd 7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy

Bardziej szczegółowo

Automatyka i robotyka

Automatyka i robotyka Automatyka i robotyka Wykład 5 - Stabilność układów dynamicznych Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 43 Plan wykładu Wprowadzenie Stabilność modeli

Bardziej szczegółowo

RUCH HARMONICZNY. sin. (r.j.o) sin

RUCH HARMONICZNY. sin. (r.j.o) sin RUCH DRGAJĄCY Ruch harmoniczny Rodzaje drgań Oscylator harmoniczny Energia oscylatora harmonicznego Wahadło matematyczne i fizyczne Drgania tłumione Drgania wymuszone i zjawisko rezonansu Politechnika

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2018 Wstęp Stabilność O układzie możemy mówić, że jest stabilny jeżeli jego odpowiedź na wymuszenie (zakłócenie)

Bardziej szczegółowo

POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny

POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny Funkcja Falowa Postulat 1 Dla każdego układu istnieje funkcja falowa (funkcja współrzędnych i czasu), która jest ciągła, całkowalna w kwadracie,

Bardziej szczegółowo

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24) Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne

Bardziej szczegółowo

równania funkcyjne opisujące relacje spełniane przez pochodne nieznanej (poszukiwanej) funkcji

równania funkcyjne opisujące relacje spełniane przez pochodne nieznanej (poszukiwanej) funkcji Równania różniczkowe: równania funkcyjne opisujące relacje spełniane przez pochodne nieznanej (poszukiwanej) funkcji cząstkowe: funkcja więcej niż jednej zmienna, np.: czas i położenie np. wychylenie u(x,t)

Bardziej szczegółowo

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 7 BADANIE ODPOWIEDZI USTALONEJ NA OKRESOWY CIĄG IMPULSÓW 1. Cel ćwiczenia Obserwacja przebiegów wyjściowych

Bardziej szczegółowo

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera.

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera. W-1 (Jaroszewicz) 14 slajdów Podstawy Akustyki Drgania normalne a fale stojące Składanie fal harmonicznych: prędkość grupowa, dyspersja fal, superpozycja Fouriera, paczka falowa Fale akustyczne w powietrzu

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e

Bardziej szczegółowo

Ruch drgajacy. Drgania harmoniczne. Drgania harmoniczne... Drgania harmoniczne... Notatki. Notatki. Notatki. Notatki. dr inż.

Ruch drgajacy. Drgania harmoniczne. Drgania harmoniczne... Drgania harmoniczne... Notatki. Notatki. Notatki. Notatki. dr inż. Ruch drgajacy dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Ruch drgajacy Drgania harmoniczne Drgania oscylacje to cykliczna

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XIV: Metody Monte Carlo 19 stycznia 2016 Przybliżone obliczanie całki oznaczonej Rozważmy całkowalną funkcję f : [0, 1] R. Chcemy znaleźć przybliżoną wartość liczbową całki 1 f (x) dx. 0 Jeden ze

Bardziej szczegółowo

18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa

18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa Kinematyka 1. Podstawowe własności wektorów 5 1.1 Dodawanie (składanie) wektorów 7 1.2 Odejmowanie wektorów 7 1.3 Mnożenie wektorów przez liczbę 7 1.4 Wersor 9 1.5 Rzut wektora 9 1.6 Iloczyn skalarny wektorów

Bardziej szczegółowo

pozbyć się ograniczenia na krok czasowy ze strony bezwzględnej stabilności: niejawna metoda Eulera

pozbyć się ograniczenia na krok czasowy ze strony bezwzględnej stabilności: niejawna metoda Eulera pozbyć się ograniczenia na krok czasowy ze strony bezwzględnej stabilności: niejawna metoda Eulera jawna metoda Eulera niejawna metoda Eulera jawna metoda Eulera (funkcjonuje jak podstawienie) funkcjonuje

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Procesy wykładniczego wzrostu i spadku (np populacja bakterii, rozpad radioaktywny, wymiana ciepła) można modelować równaniem

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 7

INSTRUKCJA DO ĆWICZENIA NR 7 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 7 PRZEDMIOT TEMAT OPRACOWAŁ LABORATORIUM MODELOWANIA Przykładowe analizy danych: przebiegi czasowe, portrety

Bardziej szczegółowo

Równanie Schrödingera

Równanie Schrödingera Równanie Schrödingera Maciej J. Mrowiński 29 lutego 2012 Zadanie RS1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = 0 ma następującą postać: A(a Ψ(x,0) = 2 x 2 ) gdy x [ a,a] 0 gdy x / [ a,a]

Bardziej szczegółowo

KADD Metoda najmniejszych kwadratów funkcje nieliniowe

KADD Metoda najmniejszych kwadratów funkcje nieliniowe Metoda najmn. kwadr. - funkcje nieliniowe Metoda najmniejszych kwadratów Funkcje nieliniowe Procedura z redukcją kroku iteracji Przykłady zastosowań Dopasowanie funkcji wykładniczej Dopasowanie funkcji

Bardziej szczegółowo

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w

Bardziej szczegółowo

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów.

Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów. Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów. Plan wykładu: 1. Wyznaczanie pojedynczych pierwiastków rzeczywistych równań nieliniowych metodami a) połowienia (bisekcji)

Bardziej szczegółowo

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.

Bardziej szczegółowo

BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH

BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH Ćwiczenie 4 BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH 4.1. Wiadomości ogólne 4.1.1. Równanie podłużnej fali dźwiękowej i jej prędkość w prętach Rozważmy pręt o powierzchni A kołowego przekroju poprzecznego.

Bardziej szczegółowo

Stabilność II Metody Lapunowa badania stabilności

Stabilność II Metody Lapunowa badania stabilności Metody Lapunowa badania stabilności Interesuje nas w sposób szczególny system: Wprowadzamy dla niego pojęcia: - stabilności wewnętrznej - odnosi się do zachowania się systemu przy zerowym wejściu, czyli

Bardziej szczegółowo

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. 1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność - definicja 1 O układzie możemy mówić, że jest stabilny gdy wytrącony ze stanu równowagi

Bardziej szczegółowo

Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski

Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski Wykład 9: Fale cz. 1 dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Klasyfikacja fal fale mechaniczne zaburzenie przemieszczające się w ośrodku sprężystym, fale elektromagnetyczne

Bardziej szczegółowo

Analiza matematyczna dla informatyków 3 Zajęcia 14

Analiza matematyczna dla informatyków 3 Zajęcia 14 Analiza matematyczna dla informatyków 3 Zajęcia 14 Metoda rozwiązywania (Jednorodne równanie różniczkowe liniowe rzędu n o stałych współczynnikach). gdzie a 0,..., a n 1 C. Wielomian charakterystyczny:

Bardziej szczegółowo

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Równania różniczkowe pierwszego rzędu Równaniem różniczkowym zwyczajnym pierwszego rzędu nazywamy równanie postaci (R) y = f(x, y). Najogólniejszą

Bardziej szczegółowo

Drania i fale. Przykład drgań. Drgająca linijka, ciało zawieszone na sprężynie, wahadło matematyczne.

Drania i fale. Przykład drgań. Drgająca linijka, ciało zawieszone na sprężynie, wahadło matematyczne. Drania i fale 1. Drgania W ruchu drgającym ciało wychyla się okresowo w jedną i w drugą stronę od położenia równowagi (cykliczna zmiana). W położeniu równowagi siły działające na ciało równoważą się. Przykład

Bardziej szczegółowo

Fale mechaniczne i akustyka

Fale mechaniczne i akustyka Fale mechaniczne i akustyka Wstęp: siła jako element decydujący o rodzaju ruchu Na pierwszym wykładzie, dynamiki Newtona omawiając II zasadę dr d r F r,, t = m dt dt powiedzieliśmy, że o tym, jakim ruchem

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

Mechanika Kwantowa. Maciej J. Mrowiński. 24 grudnia Funkcja falowa opisująca stan pewnej cząstki ma następującą postać: 2 x 2 )

Mechanika Kwantowa. Maciej J. Mrowiński. 24 grudnia Funkcja falowa opisująca stan pewnej cząstki ma następującą postać: 2 x 2 ) Mechanika Kwantowa Maciej J. Mrowiński 4 grudnia 11 Zadanie MK1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = ma następującą postać: A(a Ψ(x,) = x ) gdy x [ a,a] gdy x / [ a,a] gdzie a +. Wyznacz

Bardziej szczegółowo

IV. Transmisja. /~bezet

IV. Transmisja.  /~bezet Światłowody IV. Transmisja BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet 1. Tłumienność 10 7 10 6 Tłumienność [db/km] 10 5 10 4 10 3 10 2 10 SiO 2 Tłumienność szkła w latach (za A.

Bardziej szczegółowo

Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału

Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału Fizyka 2 Wykład 4 1 Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału Niezależne od czasu równanie Schödingera ma postać: 2 d ( x)

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

Ψ(x, t) punkt zamocowania liny zmienna t, rozkład zaburzeń w czasie. x (lub t)

Ψ(x, t) punkt zamocowania liny zmienna t, rozkład zaburzeń w czasie. x (lub t) RUCH FALOWY 1 Fale sejsmiczne Fale morskie Kamerton Interferencja RÓWNANIE FALI Fala rozchodzenie się zaburzeń w ośrodku materialnym lub próżni: fale podłużne i poprzeczne w ciałach stałych, fale podłużne

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów

Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe

Bardziej szczegółowo

u(t) RRZ: u (t)=f(t,u) Jednokrokowy schemat różnicowy

u(t) RRZ: u (t)=f(t,u) Jednokrokowy schemat różnicowy u(t) t Dt RRZ: u (t)=f(t,u) Jednokrokowy schemat różnicowy u(t+dt)=u(t)+f(t,u(t),dt) klasyczna formuła RK4: u(t) k 1 u k 2 k 3 k 4 4 wywołania f na krok, błąd lokalny O(Dt 5 ) gdy f tylko funkcja czasu

Bardziej szczegółowo

PODSTAWY FIZYKI LASERÓW Wstęp

PODSTAWY FIZYKI LASERÓW Wstęp PODSTAWY FIZYKI LASERÓW Wstęp LASER Light Amplification by Stimulation Emission of Radiation Składa się z: 1. ośrodka czynnego. układu pompującego 3.Rezonator optyczny - wnęka rezonansowa Generatory: liniowe

Bardziej szczegółowo

Komputerowa analiza zagadnień różniczkowych 10. Dwupunktowe problemy brzegowe (BVP, Boundary Value Problems)

Komputerowa analiza zagadnień różniczkowych 10. Dwupunktowe problemy brzegowe (BVP, Boundary Value Problems) Komputerowa analiza zagadnień różniczkowych 10. Dwupunktowe problemy brzegowe (BVP, Boundary Value Problems) P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Wprowadzenie Rozważmy

Bardziej szczegółowo

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2 Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,

Bardziej szczegółowo

DRGANIA ELEMENTÓW KONSTRUKCJI

DRGANIA ELEMENTÓW KONSTRUKCJI DRGANIA ELEMENTÓW KONSTRUKCJI (Wprowadzenie) Drgania elementów konstrukcji (prętów, wałów, belek) jak i całych konstrukcji należą do ważnych zagadnień dynamiki konstrukcji Przyczyna: nawet niewielkie drgania

Bardziej szczegółowo

Część 1. Transmitancje i stabilność

Część 1. Transmitancje i stabilność Część 1 Transmitancje i stabilność Zastosowanie opisu transmitancyjnego w projektowaniu przekształtników impulsowych Istotne jest przewidzenie wpływu zmian w warunkach pracy (m. in. v g, i) i wielkości

Bardziej szczegółowo

KADD Minimalizacja funkcji

KADD Minimalizacja funkcji Minimalizacja funkcji Poszukiwanie minimum funkcji Foma kwadratowa Metody przybliżania minimum minimalizacja Minimalizacja w n wymiarach Metody poszukiwania minimum Otaczanie minimum Podział obszaru zawierającego

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI BUDOWLANYCH

DYNAMIKA KONSTRUKCJI BUDOWLANYCH DYNAMIKA KONSTRUKCJI BUDOWLANYCH Roman Lewandowski Wydawnictwo Politechniki Poznańskiej, Poznań 2006 Książka jest przeznaczona dla studentów wydziałów budownictwa oraz inżynierów budowlanych zainteresowanych

Bardziej szczegółowo

- prędkość masy wynikająca z innych procesów, np. adwekcji, naprężeń itd.

- prędkość masy wynikająca z innych procesów, np. adwekcji, naprężeń itd. 4. Równania dyfuzji 4.1. Prawo zachowania masy cd. Równanie dyfuzji jest prostą konsekwencją prawa zachowania masy, a właściwie to jest to prawo zachowania masy zapisane dla procesu dyfuzji i uwzględniające

Bardziej szczegółowo

Metoda różnic wstecznych: interpolujemy u wielomianem od chwili n-k aż do n-1

Metoda różnic wstecznych: interpolujemy u wielomianem od chwili n-k aż do n-1 Metoda różnic wstecznych: interpolujemy u wielomianem od chwili n-k aż do n-1 następnie żądamy, aby jego pochodna w chwili n spełniała równania różniczkowe (kolokacja) z tego warunku wyliczamy z niego

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 8 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo

3.1 Zagadnienie brzegowo-początkowe dla struny ograniczonej. = f(x, t) dla x [0; l], l > 0, t > 0 (3.1)

3.1 Zagadnienie brzegowo-początkowe dla struny ograniczonej. = f(x, t) dla x [0; l], l > 0, t > 0 (3.1) Temat 3 Metoda Fouriera da równań hiperboicznych 3.1 Zagadnienie brzegowo-początkowe da struny ograniczonej Rozważać będziemy następujące zagadnienie. Znaeźć funkcję u (x, t) spełniającą równanie wraz

Bardziej szczegółowo

Rozwiązywanie równań różniczkowych zwyczajnych za pomocą komputera

Rozwiązywanie równań różniczkowych zwyczajnych za pomocą komputera Rozwiązywanie równań różniczkowych zwyczajnych za pomocą komputera Arkadiusz Syta A. Syta (Politechnika Lubelska) 1 / 19 Wstęp Przegląd wybranych pakietów oprogramowania i funkcji Rozwiązywanie równań

Bardziej szczegółowo

Sposoby modelowania układów dynamicznych. Pytania

Sposoby modelowania układów dynamicznych. Pytania Sposoby modelowania układów dynamicznych Co to jest model dynamiczny? PAScz4 Modelowanie, analiza i synteza układów automatyki samochodowej równania różniczkowe, różnicowe, równania równowagi sił, momentów,

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Metody specjalne Monte Carlo 24 listopada 2014 Transformacje specjalne Przykład - symulacja rozkładu geometrycznego Niech X Ex(λ). Rozważmy zmienną losową [X ], która przyjmuje wartości naturalne.

Bardziej szczegółowo