metoda różnic skończonych, zamiast rozkładu na drgania własne (który może być wolnozbieżny) v(x,t) - prędkość

Wielkość: px
Rozpocząć pokaz od strony:

Download "metoda różnic skończonych, zamiast rozkładu na drgania własne (który może być wolnozbieżny) v(x,t) - prędkość"

Transkrypt

1 równanie falowe ciąg dalszy metoda różnic skończonych, zamiast rozkładu na drgania własne (który może być wolnozbieżny) Rozwiązanie numeryczne: dzielimy strunę na N fragmentów, dla każdego z nich rozwiązujemy równania Newtona (zabieg odwrotny do wyprowadzenia równania różniczkowego) v(x,t) - prędkość u(x,t) - wychylenie z równania falowego:

2 Schemat Verleta (popularny dla symulacji dynamiki molekularnej) m F V Schemat Verleta Phys. Rev. 59, 98 (967) Pomysł: rozwinąć położenie r w chwili t+δt i t-δt w szereg Taylora t lk j d d tylko o jeden rząd mniej dokładny niż RK4

3 Schemat Verleta Jeśli chodzi nam tylko o tor ruchu: świetny schemat. Nie używa prędkości, ale ta często potrzebna potrzebna: np do wyliczenia energii, ale również : sił (np. oporu, Lorentza) jeśli siły niezależne od prędkości, a informacja o nich potrzebna jest do innych celów można - wykonać krok do t+δt, a potem rządbłędu wyższy, wciąż dokładnie dla ruchu jednostajnie przyspieszonego a stałe między ę t a Δt jeśli siły zależą od prędkości: nie wykonamy kroku do t+δt, możemy co najwyżej: kiepsko: wynik dokładny tylko dla a=0

4 prędkościowa wersja schematu Verleta (dający ypę prędkości jednocześnie z położeniami) Położenia poświęcamy jeden rząd dokładności: Potrzebny przepis na prędkość w chwili t + Δtzbłędem z O(Δt 2 ): Rozwinąć r w Taylora względem punktu t+ Δt: Dodać stronami: (wzór potencjalnie niejawny) Wzory podkreślone na czerwono Verlet prędkościowy.

5 Verlet prędkościowy Inny (popularny) zapis wzorów w czerwonej ramce uwaga: jeśli siły (przyspieszenia) zależą od prędkości ostatnie równanie jest niejawne

6 Rozwiązania numeryczne. (laboratorium) L= u(x,t=0)=exp[-00(x-)2] v(x,t=0)=0 (,) u(x,t) 05 x 0.0 t=0 t=0.4 t=0. 2 t 3 Odbicie ze zmianą fazy (idzie górą, wraca dołem) t= v(x t) v(x,t) x 05 x u(x,t) t

7 Rozwiązanie numeryczne 2. Swobodne warunki brzegowe: na brzegach na strunę nie działa żadna siła pionowa: Może się swobodnie przesuwać po mocowaniu Warunek brzegowy Neumana (na pochodną) zamiast Dirichleta (na wartość funkcji).00 Odbicie bez zmiany fazy: idzie górą, górą wraca 0.80 u 0.60 u v x

8 energia drgania: kinetyczna Potencjalna: odkształcenie struny Dla ρ(x)=ρ( ) Dla pojedynczego modu własnego ω=kc T 0 =ρc 2 Kinetyczna na potencjalną się zmienia, całkowita zachowana

9 Analiza chwilowa drgania Rozwiązując równanie falowe schematem Verleta można z zależności czasowych wydobyć częstości własne bez konieczności rozwiązywania równania własnego Gdy drgania tłumione - częstość przestrzenna modów własnych nie ulega zmianie (zobaczymy), ale czasowa tak. Analiza chwilowa drgania na podstawie wychylenia zależności położeniowych = Analiza chwilowa drgania na podstawie wychylenia zależności położeniowych wychylenia g(x) i prędkości h(x) w danej chwili.

10 Równanie fali tłumionej a >0 = stała ł tłumienia i c niezależna od położenia Opory związane z prędkością struny [np. powietrza] Warunki brzegowe u(x=0,t)=u(x=l,t)=0 Warunki początkowe u(x,t) oraz v(x,t). Mody normalne dla fali tłumionej: Poszukajmy rozwiązania metodą separacji zmiennych u(x,t)=x(x)t(t) część przestrzenna bez zmian! X n (x)=sin(k n x) k n =nπ /L k=ω /c

11 Część przestrzenna: wstawiamy T=exp(rt), równanie charakterystyczne: exp(rt) [ r 2 +2ar+w n2 ] = 0, szukamy rozwiązań ą na r możliwe przypadki: 2 pierwiastki rzeczywiste, jeden podwójny, obydwa zespolone Warunki początkowe: Struna spoczywa w chwili początkowej Rozwiązanie określone co do stałej multiplikatywnej (równanie jednorodne)

12 ω n = ncπ /L L=, c=, ω n = nπ Słabe tłumienie a<ω a=8, ω i ω2 = przetłumione pozostałe tłumione a= a=0.2.0 Drganie z ω 0.8 n= T (t) Poza zanikiem drgania widzimy zmniejszenie częstości T (t) Najpierw zgasną wyższe tłumienia

13 Rozwiązanie równania fali tłumionej rozwiązanie ogólne: Położeniowa ł ż analiza Fourierowska -rozkład na mody normalne w danej chwili : c n (t) = część przestrzenna nie zmienia się pod wpływem tłumienia. aby wydobyć c n : drugie równanie w ogólności ś wydzielimy przez ω n, podniesiemy zależne od czasu w kwadracie i dodamy

14 udział względny: x t Przykład: L= E=K+P K+P(kinetyczna+potencjalna) t W chwili początkowej pakiet f(x,t=0)=exp(-00(x-) 2 ) a= a=2 a=4 a= ene ergia P 8 4 E K a= t Spadek E najszybszy gdy K największe

15 a= n= c n t Parzyste n nie wnoszą przyczynku (symetria) a= 2 c n r n n= ω n =nπ n= t t Wszystkie mody tłumione równie silnie oscylujący y udział modów normalnych im wyższe ω n tym bardziej stały względny udział

16 a= n= a= n= 2 r n r n t a=4, większe tylko od ω r n n= t a=2 większe od ω i ω 3 2 r n t n= t

17 Laboratorium: R. hiperboliczne z niejednorodnością: Drgania tłumione z siłą wymuszającą F Siła przyłożona punktowo niejednorodność wymuszenie periodycznie zmienne

18 Dla t=0 struna spoczywa (v(x,t)=0)w położeniu równowagi (u(x,t)=0) Prędkość dźwięku = Siła przyłożona w środku struny x0=/2 ( ) u(x,t) a= w=π pojawia się stan ustalony = drgania periodyczne. aa= w=2π x 0 a=3 w=2π czas W stanie t i ustalonym t l ruchh jest j t periodyczny i d z okresem k siły wymuszającej (mode locking)

19 Stan ustalony a energia struny Średnia energia w stanie ustalonym: Siła przyłożona w środku struny x 0 =/2 Rezonans a= Brakuje w 2n?? Dlaczego? <E> w / pi

20 Stan ustalony a energia struny Średnia energia w stanie ustalonym: Siła przyłożona w środku struny x 0 =/2 Rezonans n= a= n=2 <E> Brakuje w 2n?? W środku studni = węzeł dla parzystych n w / pi

21 mody z parzystym n wzbudzone gdy punkt przyłożenia przesunąć ą ze środka a= x = 05 0 <E> Krzywa rezonansowa w przybliżeniu opisana przez sumę funkcji Lorentza x = w / pi Siła sprzężenia = kwadrat wartości modu normalnego w miejscu przyłożenia siły:

22 Średnie energie stanu ustalonego a wzory lorentowskie a= a= a= <E> <E> <E> x = w / pi x = w / pi x 0 = w / pi <E E> a= a=.5 a=2 a=3 a=4 Rezonans a stała tłumienia w / pi

23 Laboratorium 2: odbicie pakietu od granicy ośrodków ρ 0 = V= położenie V= czas

24 V= ρ 0 =2 ρ 0 = położenie ρ 0 = ρ 0 = czas

25 Część energii, która pozostaje po lżejszej stronie struny ρ= po odbiciu ρ 0 =2

26 Domena zależności (Domain of Dependence) i kryterium stabilności CFL (Courant-Friedrichs-Lewy) t x domena zależności: tylko zdarzenia z trójkąta ograniczonego charakterystykami mogą mieć wpływ na rozwiązanie w punkcie P

27 Numeryczna domena zależności [NUMERYCZNA PRZESZŁOŚĆ] kryterium stabilności CFL (Courant-Friedrichs-Lewy) schemat Verleta dla przyspieszenia danego przez prawą stronę równania: czas położenie

28 kryterium stabilności CFL (Courant-Friedrichs-Lewy) numeryczna dokładna warunek: jak dla adwekcji aby przekroczyć ć kryterium CFL (prędkość dźwięku): schematy niejawne ne dla równań mechaniki standardowy schemat niejawny = schemat Newmarka (dlaczego Crank-Nicolson się nie stosuje?)

29 algorytm Newmarka (uogólnienie prędkościowego Verleta, standardowy chemat niejawny dla równań opisujących układy dynamiczne) w Verlecie prędkościowym używamy przepisów: z γ=/2 u(t+dt)=u(t)+v(t)dt+dt 2 /2 a(t) v(t+dt)=v(t)+dt [(-γ)a(t)+γa(t+dt)] Czyli: w Verlecie: jawna formuła na położenie, potencjalnie niejawna na prędkość ta nie wystarczy dla bezwzględnej stabilności przy kroku czasowym cdt>dx (zobaczymy analizą v.neumanna) dla Newmarka: wprowadzamy niejawność (ważenie przyspieszeń z teraźniejszości i przyszłości) również do wzoru na położenia: u(t+dt)=u(t)+v(t)dt+dt 2 /2 [(-2β)a(t)+2βa(t+dt)] algorytm prędkościowy Newmarka źródło: WJT DANIEL, computational mechanics 20 (997) 272 zróbmy z tego formułę położeniową: bez prędkości, za to dwupoziomową (t+dt) względem t, t-dt wyeliminować prędkości :

30 u(t+dt)=u(t)+v(t)dt+dt 2 /2 [(-2β)a(t)+2βa(t+dt)] (*) v(t+dt)=v(t)+dt [(-γ)a(t)+γa(t+dt)] dla kroku poprzedniego= u(t)=u(t-dt)+v(t-dt)dt+dt 2 /2 [(-2β)a(t-dt)+2βa(t)] dla kroku poprzedniego = v(t)=v(t-dt)+dt [(-γ)a(t-dt)+γa(t)] u(t)=u(t-dt)+v(t)dt+dt 2 /2 [(-2β)a(t-dt)+2βa(t)]-dt 2 [(-γ)a(t-dt)+γa(t)] u(t)=u(t-dt)+v(t)dt+dt 2 /2 [(2γ-2β )a(t-dt)+(2β 2γ)a(t)] u(t-dt)=u(t)-v(t)dt-dt 2 /2 [(2γ-2β )a(t-dt)+(2β 2γ)a(t)] (*) dodamy stronami gwiazdki aby usunąć prędkość ze schematu

31 u(t+dt)=u(t)+v(t)dt+dt 2 /2 [(-2β)a(t)+2βa(t+dt)] + stronami u(t-dt)=u(t)-v(t)dt+dt 2 /2 [(-2γ+2β+)a(t-dt)+(2γ 2β)a(t)] skasujemy prędkość u(t-dt)+u(t+dt)=2u(t) +dt 2 /2[2βa(t+dt)+(-4β+2γ)a(t)+(-2γ+2β+)a(t-dt)] u(t+dt)=2u(t) -u(t-dt)+dt 2 [βa(t+dt)+(/2-2β+γ)a(t)+(-γ+β+/2)a(t-dt)] dla porównania Verlet położeniowy algorytm Newmark = wersja położeniowa, dwa parametry γβ γ,β wagi przy przyspieszeniu: β+/2 2β+γ γ+β+/2= (wszystkie wybory dają schemat, który w granicy małego dt redukuje się do Verleta) Newmark sprowadza się do Verleta gdy γ=/2, β=0 (maks dokładność lkl lokalny błąd czwartego rzędu) d) rola γ, β zobaczymy jak się sprawdzają w praktyce

32 u(t+dt)=2u(t) -u(t-dt)+dt 2 [βa(t+dt)+(/2-2β+γ)a(t)+(-γ+β+/2)a(t-dt)] u(t+dt)=2u(t) -u(t-dt)+dt 2 [βa(t+dt)+αa(t)+δa(t-dt)] jak wykonać krok czasowy? sposób rozwiązywania zależy od wyrażanie na a dla struny: Po przegrupowaniu wyrazów: układ równań liniowych z macierzą trójprzekątniową stencil:

33 dokładny schemat Newmark MRS, struna dt=dx 0 węzłów Verlet (β=0, γ=/2) (β=/2, γ=/2) (β=/2, γ=) β=.9 γ=/2 czas położenie dla dt=dx najlepszy wybór β=0, γ=/2 (jawny, Verlet)

34 dla dt=dx najlepszy wybór β=0, γ=/2 (jawny, Verlet) Verlet dla dt=dx* widzimy eksplozję rozwiązania z maksymalną malną zmiennością przestrzenną: Newmark jest po to aby przekroczyć kryterium CFL

35 rola γ (dt=.5dx, β=) γ= węzłów MRS: schemat Newmark rola parametrów metody β>0 wynosi stabilność poza kryterium CFL, kosztem generacji wyższych częstości przestrzennych γ>/2 ogranicza wzmacnianie wyższych częstości kosztem dyssypacji (zaniku całego pakietu) γ</2 schemat jest niestabilny zostawmy γ=/2 (jak dla Verleta) i manipulujmy β

36 0 węzłów MRS poza CFL: dt > cdx dt=.5dx, γ=, schemat staje się stabilny dla β> b 5 b=.5 b 2 b=.2 b 25 b= b= rosnące beta generuje wyższe częstości wniosek: najlepszy minimalne β przy którym schemat jeszcze stabilny czy można je wyznaczyć analitycznie?

37 Projektowanie schematu Newmarka dla zadanego kroku czasowego. dobrać minimalne β aby metoda była stabilna dla danego dt? Będziemy wiedzieli, że po wyższe β nie warto sięgać. analiza von Neumanna dla γ=/2 u(t+dt)=2u(t) (t) -u(t-dt)+dt 2 [βa(t+dt)+(/2-2β+γ)a(t)+(-γ+β+/2)a(t-dt)] 2β+ )(t)+( +β+/2) (tdt)] u(t+dt)-dt 2 βa(t+dt) =2u(t) -u(t-dt)+dt 2 [(-2β)a(t)+βa(t-dt)] Ansatz von Neumanna:

38 Sytuacja będzie taka: dopóki Δ<0 : 2 pierwiastki, o module nie większym od gdy Δ>0 metoda stanie się niestabilna

39 -2<c<0 zawsze żeby b pod pierwiastkiem i liczba ujemna potrzeba aby: λ 2 <? daje ten sam wynik β>/4 metoda stabilna dla dowolnego t [ ponieważ c < 0] uwaga: możemy sobie teraz sprawdzić stabilność Verleta dla dt=dx oraz beta=0, ¼+/(2c) <0 [ok.]

40 dobór beta zapewniającego stabilność schematu Newmark w MRS dla zadanego kroku czasowego dt=.5dx β c

41 dobór beta zapewniającego stabilność schematu Newmark w MRS dla zadanego kroku czasowego / / dt=dx dt=5dx c

42 2.00 struna, b. wiele chwil czasowych dt=5dx.00 β=.25 MRS, Newmark, γ=/ dt=5dx β=.24 bo beta była zbyt mała: Ze schematem Newmarka spotkamy się ponownie przy omawianiu MES, Pokażemy, że umożliwia on skuteczne prowadzenie Rachunków dla lokalnie zagęszczonej siatki

Równanie falowe. elektro magnetyczne) równanie falowe (dla struny) u(x,t) x=p. x=l. T 2 (II zasada Newtona F=ma) x+dx. x T 1

Równanie falowe. elektro magnetyczne) równanie falowe (dla struny) u(x,t) x=p. x=l. T 2 (II zasada Newtona F=ma) x+dx. x T 1 Równanie falowe Równanie dyfuzji oraz dyfuzji adwekcji typowe paraboliczne Dziś zajmiemy się typowym równaniem hiperbolicznym równanie falowe (dla struny) (opisuje dążenie do równowagi). (oscylacje: mechaniczne,

Bardziej szczegółowo

równanie falowe (dla struny), cząstkowe, hiperboliczne [dynamika Newtonowska ośrodka ciągłego]

równanie falowe (dla struny), cząstkowe, hiperboliczne [dynamika Newtonowska ośrodka ciągłego] równanie falowe (dla struny), cząstkowe, hiperboliczne [dynamika Newtonowska ośrodka ciągłego] u(x,t) x=l x=p x+dx T x T siła naciągu struny T (kierunek poziomy): (II zasada Newtona F=ma) u(x,t) x=l x=p

Bardziej szczegółowo

warunki brzegowe u(x=0,t)=u(x=1,t)=0 problem: dane u(x,t=t) szukane: u(x,t=0)

warunki brzegowe u(x=0,t)=u(x=1,t)=0 problem: dane u(x,t=t) szukane: u(x,t=0) odwrotny problem przewodnictwa cieplnego problem prosty : zadajemy warunki brzegowe oraz początkowe pytanie: co stanie się w przyszłości (tak wprowadzane są problemy w teorii równań różniczkowych) W praktyce,

Bardziej szczegółowo

Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr zimowy 2017/2018

Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr zimowy 2017/2018 Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr zimowy 2017/2018 Tomasz Chwiej 22 stycznia 2019 1 Równania różniczkowe zwyczajne Zastosowanie szeregu Taylora do konstrukcji ilorazów

Bardziej szczegółowo

Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1

Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1 Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1 Tomasz Chwiej 6 czerwca 2016 1 Równania różniczkowe zwyczajne Zastosowanie szeregu Taylora do konstrukcji ilorazów różnicowych: iloraz

Bardziej szczegółowo

Inżynierskie metody numeryczne II. Konsultacje: wtorek 8-9:30. Wykład

Inżynierskie metody numeryczne II. Konsultacje: wtorek 8-9:30. Wykład Inżynierskie metody numeryczne II Konsultacje: wtorek 8-9:30 Wykład Metody numeryczne dla równań hiperbolicznych Równanie przewodnictwa cieplnego. Prawo Fouriera i Newtona. Rozwiązania problemów 1D metodą

Bardziej szczegółowo

Metoda różnic skończonych dla

Metoda różnic skończonych dla Metoda różnic skończonych dla cząstkowych równań różniczkowych na laboratorium rozwiązywać będziemy typowe równania: dyfuzji (również przewodnictwo cieplne) paraboliczne równanie Poissona (np. pole elektrostatyczne,

Bardziej szczegółowo

Równania różniczkowe cząstkowe drugiego rzędu

Równania różniczkowe cząstkowe drugiego rzędu Równania różniczkowe cząstkowe drugiego rzędu Marcin Orchel Spis treści 1 Wstęp 1 1.1 Metoda faktoryzacji (rozdzielania zmiennych)................ 5 1.2 Metoda funkcji Greena.............................

Bardziej szczegółowo

równania funkcyjne opisujące relacje spełniane przez pochodne nieznanej (poszukiwanej) funkcji

równania funkcyjne opisujące relacje spełniane przez pochodne nieznanej (poszukiwanej) funkcji Równania różniczkowe: równania funkcyjne opisujące relacje spełniane przez pochodne nieznanej (poszukiwanej) funkcji cząstkowe: funkcja więcej niż jednej zmienna, np.: czas i położenie np. wychylenie u(x,t)

Bardziej szczegółowo

TEORIA DRGAŃ Program wykładu 2016

TEORIA DRGAŃ Program wykładu 2016 TEORIA DRGAŃ Program wykładu 2016 I. KINEMATYKA RUCHU POSTE POWEGO 1. Ruch jednowymiarowy 1.1. Prędkość (a) Prędkość średnia (b) Prędkość chwilowa (prędkość) 1.2. Przyspieszenie (a) Przyspieszenie średnie

Bardziej szczegółowo

Metody Obliczeniowe Mikrooptyki i Fotoniki

Metody Obliczeniowe Mikrooptyki i Fotoniki Metody Obliczeniowe Mikrooptyki i Fotoniki https://www.igf.fuw.edu.pl/pl/courses/lectures/metody-obliczen-95-021c/ Podstawy metody różnic skończonych (Basics of finite-difference methods) Podstawy metody

Bardziej szczegółowo

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi

Bardziej szczegółowo

Δt)] niejawny schemat Eulera [globalny błąd O(Δt)] u(t) f(t,u) f(t,u) u(t) [t+ Δt,u(t+Δt)]

Δt)] niejawny schemat Eulera [globalny błąd O(Δt)] u(t) f(t,u) f(t,u) u(t) [t+ Δt,u(t+Δt)] jawny schemat Eulera [globalny błąd O(Δt)] niejawny schemat Eulera [globalny błąd O(Δt)] u(t) f(t,u) [t,u(t)] )]dokładne d u(t) () f(t,u) [t+ Δt,u(t+Δt)] [t+ Δt,u(t+Δt)] Δt)] Δt t Δt t u(t) [t,u(t)] dokładne

Bardziej szczegółowo

Metoda różnic skończonych dla

Metoda różnic skończonych dla Metoda różnic skończonych dla cząstkowych równań różniczkowych na laboratorium rozwiązywać będziemy typowe równania: dyfuzji (również przewodnictwo cieplne) paraboliczne równanie Poissona (np. pole elektrostatyczne,

Bardziej szczegółowo

Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony

Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony Ruch drgający Ruch harmoniczny prosty, tłumiony i wymuszony Ruchem drgającym nazywamy ruch ciała zachodzący wokół stałego położenia równowagi. Ruchy drgające dzielimy na ruchy: okresowe, nieokresowe. Ruch

Bardziej szczegółowo

Ustaliliśmy, że do rozwiązywania równania adwekcji lepiej nadaje się mniej dokładny schemat upwind niż ten z ilorazem centralnym

Ustaliliśmy, że do rozwiązywania równania adwekcji lepiej nadaje się mniej dokładny schemat upwind niż ten z ilorazem centralnym Ustaliliśmy, że do rozwiązywania równania adwekcji lepiej nadaje się mniej dokładny schemat upwind niż ten z ilorazem centralnym α=vdt/dx upwind: centralny: stabilny, stabilny bezwzględnie stabilny, ale

Bardziej szczegółowo

Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska

Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html DRGANIA HARMONICZNE

Bardziej szczegółowo

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Siły oporu (tarcia)

Bardziej szczegółowo

Metody rozwiązania równania Schrödingera

Metody rozwiązania równania Schrödingera Metody rozwiązania równania Schrödingera Równanie Schrödingera jako algebraiczne zagadnienie własne Rozwiązanie analityczne dla skończonej i nieskończonej studni potencjału Problem rozwiązania równania

Bardziej szczegółowo

Metoda różnic wstecznych: interpolujemy u wielomianem od chwili n-k aż do n-1

Metoda różnic wstecznych: interpolujemy u wielomianem od chwili n-k aż do n-1 Metoda różnic wstecznych: interpolujemy u wielomianem od chwili n-k aż do n-1 następnie żądamy, aby jego pochodna w chwili n spełniała równania różniczkowe (kolokacja) z tego warunku wyliczamy z niego

Bardziej szczegółowo

numeryczne rozwiązywanie równań całkowych r i

numeryczne rozwiązywanie równań całkowych r i numeryczne rozwiązywanie równań całkowych r i Γ Ω metoda elementów brzegowych: punktem wyjściowym było rozwiązanie równania całkowego na brzegu obszaru całkowania równanie: wygenerowane z równania różniczkowego

Bardziej szczegółowo

Drgania wymuszone - wahadło Pohla

Drgania wymuszone - wahadło Pohla Zagadnienia powiązane Częstość kołowa, częstotliwość charakterystyczna, częstotliwość rezonansowa, wahadło skrętne, drgania skrętne, moment siły, moment powrotny, drgania tłumione/nietłumione, drgania

Bardziej szczegółowo

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas 3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to

Bardziej szczegółowo

Stabilność II Metody Lapunowa badania stabilności

Stabilność II Metody Lapunowa badania stabilności Metody Lapunowa badania stabilności Interesuje nas w sposób szczególny system: Wprowadzamy dla niego pojęcia: - stabilności wewnętrznej - odnosi się do zachowania się systemu przy zerowym wejściu, czyli

Bardziej szczegółowo

Automatyka i robotyka

Automatyka i robotyka Automatyka i robotyka Wykład 5 - Stabilność układów dynamicznych Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 43 Plan wykładu Wprowadzenie Stabilność modeli

Bardziej szczegółowo

4.2 Analiza fourierowska(f1)

4.2 Analiza fourierowska(f1) Analiza fourierowska(f1) 179 4. Analiza fourierowska(f1) Celem doświadczenia jest wyznaczenie współczynników szeregu Fouriera dla sygnałów okresowych. Zagadnienia do przygotowania: szereg Fouriera; sygnał

Bardziej szczegółowo

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 7

INSTRUKCJA DO ĆWICZENIA NR 7 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 7 PRZEDMIOT TEMAT OPRACOWAŁ LABORATORIUM MODELOWANIA Przykładowe analizy danych: przebiegi czasowe, portrety

Bardziej szczegółowo

y i b) metoda różnic skończonych nadal problem nieliniowy 2 go rzędu z warunkiem Dirichleta

y i b) metoda różnic skończonych nadal problem nieliniowy 2 go rzędu z warunkiem Dirichleta b) metoda różnic skończonych nadal problem nieliniowy 2 go rzędu z warunkiem Dirichleta przedział (a,b) dzielimy na siatkę, powiedzmy o stałym kroku: punkty siatki: u A y i w metodzie strzałów używamy

Bardziej szczegółowo

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 8 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo

Metoda elementów brzegowych

Metoda elementów brzegowych Metoda elementów brzegowych Tomasz Chwiej, Alina Mreńca-Kolasińska 9 listopada 8 Wstęp Rysunek : a) Geometria układu z zaznaczonymi: elementami brzegu (czerwony), węzłami (niebieski). b) Numeracja: elementów

Bardziej szczegółowo

Podstawy fizyki sezon 1 VII. Ruch drgający

Podstawy fizyki sezon 1 VII. Ruch drgający Podstawy fizyki sezon 1 VII. Ruch drgający Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Ruch skutkiem działania

Bardziej szczegółowo

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Procesy wykładniczego wzrostu i spadku (np populacja bakterii, rozpad radioaktywny, wymiana ciepła) można modelować równaniem

Bardziej szczegółowo

Rozdział 23 KWANTOWA DYNAMIKA MOLEKULARNA Wstęp. Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1

Rozdział 23 KWANTOWA DYNAMIKA MOLEKULARNA Wstęp. Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 3 KWANTOWA DYNAMIKA MOLEKULARNA 3.1 Wstęp Metoda ta umożliwia opis układu złożonego z wielu jonów i elektronów w stanie podstawowym. Hamiltonian układu

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2018 Wstęp Stabilność O układzie możemy mówić, że jest stabilny jeżeli jego odpowiedź na wymuszenie (zakłócenie)

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność - definicja 1 O układzie możemy mówić, że jest stabilny gdy wytrącony ze stanu równowagi

Bardziej szczegółowo

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki

Bardziej szczegółowo

FLAC Fast Lagrangian Analysis of Continua

FLAC Fast Lagrangian Analysis of Continua FLAC Fast Lagrangian Analysis of Continua Program FLAC jest oparty o metodę róŝnic skończonych. Metoda RóŜnic Skończonych (MRS) jest chyba najstarszą metodą numeryczną. W metodzie tej kaŝda pochodna w

Bardziej szczegółowo

Ruch jednowymiarowy. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Ruch jednowymiarowy. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Ruch jednowymiarowy Autorzy: Zbigniew Kąkol Kamil Kutorasiński 017 Ruch jednowymiarowy Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Dział Fizyki zajmujący się opisem ruchu ciał nazywamy kinematyką. Definicja

Bardziej szczegółowo

PODSTAWY FIZYKI LASERÓW Wstęp

PODSTAWY FIZYKI LASERÓW Wstęp PODSTAWY FIZYKI LASERÓW Wstęp LASER Light Amplification by Stimulation Emission of Radiation Składa się z: 1. ośrodka czynnego. układu pompującego 3.Rezonator optyczny - wnęka rezonansowa Generatory: liniowe

Bardziej szczegółowo

Dyskretyzacja równania dyfuzji cd. jawny Euler niejawny Euler. schemat Cranka Nicolsona: CN to odpowiednik wzoru trapezów dla dy/dt=f(t)

Dyskretyzacja równania dyfuzji cd. jawny Euler niejawny Euler. schemat Cranka Nicolsona: CN to odpowiednik wzoru trapezów dla dy/dt=f(t) Dyskretyzacja równania dyfuzji cd. jawny Euler niejawny Euler t +O(Δt) (błąd dyskretyzacji) t+δt +O(Δt) schemat Cranka Nicolsona: +O(Δt 2 ) CN to odpowiednik wzoru trapezów dla dy/dt=f(t) Dyskretyzacja

Bardziej szczegółowo

17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek

17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 17 KLASYCZNA DYNAMIKA MOLEKULARNA 17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek Rozważamy układ N punktowych cząstek

Bardziej szczegółowo

pozbyć się ograniczenia na krok czasowy ze strony bezwzględnej stabilności: niejawna metoda Eulera

pozbyć się ograniczenia na krok czasowy ze strony bezwzględnej stabilności: niejawna metoda Eulera pozbyć się ograniczenia na krok czasowy ze strony bezwzględnej stabilności: niejawna metoda Eulera jawna metoda Eulera niejawna metoda Eulera jawna metoda Eulera (funkcjonuje jak podstawienie) funkcjonuje

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Wstęp

Bardziej szczegółowo

RUCH HARMONICZNY. sin. (r.j.o) sin

RUCH HARMONICZNY. sin. (r.j.o) sin RUCH DRGAJĄCY Ruch harmoniczny Rodzaje drgań Oscylator harmoniczny Energia oscylatora harmonicznego Wahadło matematyczne i fizyczne Drgania tłumione Drgania wymuszone i zjawisko rezonansu Politechnika

Bardziej szczegółowo

Metody numeryczne I Równania nieliniowe

Metody numeryczne I Równania nieliniowe Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem

Bardziej szczegółowo

adwekcja rzadko występuje w formie czystej przeważnie: łącznie z dyfuzją na razie znamy tylko dyfuzję numeryczną Adwekcja=unoszenie

adwekcja rzadko występuje w formie czystej przeważnie: łącznie z dyfuzją na razie znamy tylko dyfuzję numeryczną Adwekcja=unoszenie adwekcja rzadko występuje w formie czystej przeważnie: łącznie z dyfuzją na razie znamy tylko dyfuzję numeryczną dziś: dyfuzja prawdziwa Dyfuzja+adwekcja: występuje w problemach transportu masy i energii

Bardziej szczegółowo

FLAC Fast Lagrangian Analysis of Continua. Marek Cała Katedra Geomechaniki, Budownictwa i Geotechniki

FLAC Fast Lagrangian Analysis of Continua. Marek Cała Katedra Geomechaniki, Budownictwa i Geotechniki FLAC Fast Lagrangian Analysis of Continua Program FLAC jest oparty o metodę różnic skończonych. Metoda Różnic Skończonych (MRS) jest chyba najstarszą metodą numeryczną. W metodzie tej każda pochodna w

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI BUDOWLANYCH

DYNAMIKA KONSTRUKCJI BUDOWLANYCH DYNAMIKA KONSTRUKCJI BUDOWLANYCH Roman Lewandowski Wydawnictwo Politechniki Poznańskiej, Poznań 2006 Książka jest przeznaczona dla studentów wydziałów budownictwa oraz inżynierów budowlanych zainteresowanych

Bardziej szczegółowo

Laboratorium Mechaniki Technicznej

Laboratorium Mechaniki Technicznej Laboratorium Mechaniki Technicznej Ćwiczenie nr 5 Badanie drgań liniowych układu o jednym stopniu swobody Katedra Automatyki, Biomechaniki i Mechatroniki 90-924 Łódź, ul. Stefanowskiego 1/15, budynek A22

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 5

INSTRUKCJA DO ĆWICZENIA NR 5 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 5 PRZEDMIOT TEMAT OPRACOWAŁ MODELOWANIE UKŁADÓW MECHANICZNYCH Badania analityczne układu mechanicznego

Bardziej szczegółowo

Podstawy fizyki wykład 7

Podstawy fizyki wykład 7 Podstawy fizyki wykład 7 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Drgania Drgania i fale Drgania harmoniczne Siła sprężysta Energia drgań Składanie drgań Drgania tłumione i wymuszone Fale

Bardziej szczegółowo

BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH

BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH Ćwiczenie 4 BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH 4.1. Wiadomości ogólne 4.1.1. Równanie podłużnej fali dźwiękowej i jej prędkość w prętach Rozważmy pręt o powierzchni A kołowego przekroju poprzecznego.

Bardziej szczegółowo

Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych. P. F. Góra

Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych. P. F. Góra Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Co to znaczy rozwiazać równanie? Przypuśmy, że postawiono przed nami problem rozwiazania

Bardziej szczegółowo

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez

Bardziej szczegółowo

VII. Drgania układów nieliniowych

VII. Drgania układów nieliniowych VII. Drgania układów nieliniowych 1. Drgania anharmoniczne spowodowane symetryczna siła zwrotna 1.1 Różniczkowe równanie ruchu Rozważamy teraz drgania swobodne masy m przytwierdzonej do sprężyny o współczynniku

Bardziej szczegółowo

Wykład 3 Równania rózniczkowe cd

Wykład 3 Równania rózniczkowe cd 7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy

Bardziej szczegółowo

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach

Bardziej szczegółowo

Siły wewnętrzne - związki różniczkowe

Siły wewnętrzne - związki różniczkowe Siły wewnętrzne - związki różniczkowe Weźmy dowolny fragment belki obciążony wzdłuż osi obciążeniem n(x) oraz poprzecznie obciążeniem q(x). Na powyższym rysunku zwroty obciążeń są zgodne z dodatnimi zwrotami

Bardziej szczegółowo

Metoda Różnic Skończonych (MRS)

Metoda Różnic Skończonych (MRS) Metoda Różnic Skończonych (MRS) METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek () Równania różniczkowe zwyczajne

Bardziej szczegółowo

Drgania i fale II rok Fizyk BC

Drgania i fale II rok Fizyk BC 00--07 5:34 00\FIN00\Drgzlo00.doc Drgania złożone Zasada superpozycji: wychylenie jest sumą wychyleń wywołanych przez poszczególne czynniki osobno. Zasada wynika z liniowości związku między wychyleniem

Bardziej szczegółowo

13 Równanie struny drgającej. Równanie przewodnictwa ciepła.

13 Równanie struny drgającej. Równanie przewodnictwa ciepła. Równanie struny drgającej. Równanie przewodnictwa ciepła 13 1 13 Równanie struny drgającej. Równanie przewodnictwa ciepła. 13.1 Równanie struny drgającej Równanie różniczkowe liniowe drugiego rzędu typu

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e

Bardziej szczegółowo

Fale mechaniczne i akustyka

Fale mechaniczne i akustyka Fale mechaniczne i akustyka Wstęp: siła jako element decydujący o rodzaju ruchu Na pierwszym wykładzie, dynamiki Newtona omawiając II zasadę dr d r F r,, t = m dt dt powiedzieliśmy, że o tym, jakim ruchem

Bardziej szczegółowo

4. UKŁADY II RZĘDU. STABILNOŚĆ. Podstawowe wzory. Układ II rzędu ze sprzężeniem zwrotnym Standardowy schemat. Transmitancja układu zamkniętego

4. UKŁADY II RZĘDU. STABILNOŚĆ. Podstawowe wzory. Układ II rzędu ze sprzężeniem zwrotnym Standardowy schemat. Transmitancja układu zamkniętego 4. UKŁADY II RZĘDU. STABILNOŚĆ Podstawowe wzory Układ II rzędu ze sprzężeniem zwrotnym Standardowy schemat (4.1) Transmitancja układu zamkniętego częstotliwość naturalna współczynnik tłumienia Odpowiedź

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura

Bardziej szczegółowo

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera.

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera. W-1 (Jaroszewicz) 14 slajdów Podstawy Akustyki Drgania normalne a fale stojące Składanie fal harmonicznych: prędkość grupowa, dyspersja fal, superpozycja Fouriera, paczka falowa Fale akustyczne w powietrzu

Bardziej szczegółowo

Fizyka 12. Janusz Andrzejewski

Fizyka 12. Janusz Andrzejewski Fizyka 1 Janusz Andrzejewski Przypomnienie: Drgania procesy w których pewna wielkość fizyczna na przemian maleje i rośnie Okresowy ruch drgający (periodyczny) - jeżeli wartości wielkości fizycznych zmieniające

Bardziej szczegółowo

użyteczne, gdy problem nie wymaga zmiany dt ważne: schematy do rozwiązywania równań cząstkowych mają często wielokrokowy charakter

użyteczne, gdy problem nie wymaga zmiany dt ważne: schematy do rozwiązywania równań cząstkowych mają często wielokrokowy charakter Liniowe metody wielokrokowe dla równań zwyczajnych starsze niż RKo50lat użyteczne, gdy problem nie wymaga zmiany dt ważne: schematy do rozwiązywania równań cząstkowych mają często wielokrokowy charakter

Bardziej szczegółowo

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających

Bardziej szczegółowo

Siła sprężystości - przypomnienie

Siła sprężystości - przypomnienie Siła sprężystości - przypomnienie Pomiary siły sprężystości wykonane kilka wykładów wcześniej (z uwzględnieniem kierunku siły). F = kx = 0.13x 0 F x cm mg Prawo Hooke a Ciało m na idealnie gładkiej powierzchni

Bardziej szczegółowo

Równania różniczkowe cząstkowe. Wojciech Szewczuk

Równania różniczkowe cząstkowe. Wojciech Szewczuk Równania różniczkowe cząstkowe Równania różniczkowe cząstkowe - wstęp u x = lim x u(x + x, y) u(x, y) x u u(x, y + y) u(x, y) y = lim y y () (2) 2 u x 2 + 2xy 2 u y 2 + u = 3 u x 2 y + x 2 u + 8u = 5y

Bardziej szczegółowo

1. Po upływie jakiego czasu ciało drgające ruchem harmonicznym o okresie T = 8 s przebędzie drogę równą: a) całej amplitudzie b) czterem amplitudom?

1. Po upływie jakiego czasu ciało drgające ruchem harmonicznym o okresie T = 8 s przebędzie drogę równą: a) całej amplitudzie b) czterem amplitudom? 1. Po upływie jakiego czasu ciało drgające ruchem harmonicznym o okresie T = 8 s przebędzie drogę równą: a) całej amplitudzie b) czterem amplitudom? 2. Ciało wykonujące drgania harmoniczne o amplitudzie

Bardziej szczegółowo

x y

x y Przykłady pytań na egzamin końcowy: (Uwaga! Skreślone pytania nie obowiązują w tym roku.). Oblicz wartość interpolacji funkcjami sklejanymi (przypadek (case) a), dla danych i =[- 4 5], y i =[0 4 -]. Jaka

Bardziej szczegółowo

DRGANIA ELEMENTÓW KONSTRUKCJI

DRGANIA ELEMENTÓW KONSTRUKCJI DRGANIA ELEMENTÓW KONSTRUKCJI (Wprowadzenie) Drgania elementów konstrukcji (prętów, wałów, belek) jak i całych konstrukcji należą do ważnych zagadnień dynamiki konstrukcji Przyczyna: nawet niewielkie drgania

Bardziej szczegółowo

t. sztywny problem w pojedynczym równaniu: u(t)=cos(t) dla dużych ż t rozwiązanie i ustalone

t. sztywny problem w pojedynczym równaniu: u(t)=cos(t) dla dużych ż t rozwiązanie i ustalone Problem opisany RRZ jest sztywny gdy: 1.... jest charakteryzowany yróżnymi skalami czasowymi. 2. Stabilność bezwzględna nakłada silniejsze ograniczenia na krok czasowy niż dokładność. 3. Metody jawne się

Bardziej szczegółowo

Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice.

Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. 1 Wahadło matematyczne. Wahadłem matematycznym nazywamy punkt materialny o masie m zawieszony na długiej, cienkiej

Bardziej szczegółowo

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2 Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,

Bardziej szczegółowo

Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów

Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe

Bardziej szczegółowo

KADD Minimalizacja funkcji

KADD Minimalizacja funkcji Minimalizacja funkcji Poszukiwanie minimum funkcji Foma kwadratowa Metody przybliżania minimum minimalizacja Minimalizacja w n wymiarach Metody poszukiwania minimum Otaczanie minimum Podział obszaru zawierającego

Bardziej szczegółowo

Równania różniczkowe liniowe rzędu pierwszego

Równania różniczkowe liniowe rzędu pierwszego Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to

Bardziej szczegółowo

Sposoby modelowania układów dynamicznych. Pytania

Sposoby modelowania układów dynamicznych. Pytania Sposoby modelowania układów dynamicznych Co to jest model dynamiczny? PAScz4 Modelowanie, analiza i synteza układów automatyki samochodowej równania różniczkowe, różnicowe, równania równowagi sił, momentów,

Bardziej szczegółowo

Rozwiązywanie równań różniczkowych zwyczajnych za pomocą komputera

Rozwiązywanie równań różniczkowych zwyczajnych za pomocą komputera Rozwiązywanie równań różniczkowych zwyczajnych za pomocą komputera Arkadiusz Syta A. Syta (Politechnika Lubelska) 1 / 19 Wstęp Przegląd wybranych pakietów oprogramowania i funkcji Rozwiązywanie równań

Bardziej szczegółowo

Układ RLC z diodą. Zadanie: Nazwisko i imię: Nr. albumu: Grzegorz Graczyk. Nazwisko i imię: Nr. albumu:

Układ RLC z diodą. Zadanie: Nazwisko i imię: Nr. albumu: Grzegorz Graczyk. Nazwisko i imię: Nr. albumu: Politechnika Łódzka TIMS Kierunek: Informatyka rok akademicki: 2009/2010 sem. 3. grupa II Zadanie: Układ z diodą Termin: 5 I 2010 Nr. albumu: 150875 Nazwisko i imię: Grzegorz Graczyk Nr. albumu: 151021

Bardziej szczegółowo

KADD Metoda najmniejszych kwadratów funkcje nieliniowe

KADD Metoda najmniejszych kwadratów funkcje nieliniowe Metoda najmn. kwadr. - funkcje nieliniowe Metoda najmniejszych kwadratów Funkcje nieliniowe Procedura z redukcją kroku iteracji Przykłady zastosowań Dopasowanie funkcji wykładniczej Dopasowanie funkcji

Bardziej szczegółowo

Dynamika manipulatora. Robert Muszyński Janusz Jakubiak Instytut Cybernetyki Technicznej Politechnika Wrocławska. Podstawy robotyki wykład VI

Dynamika manipulatora. Robert Muszyński Janusz Jakubiak Instytut Cybernetyki Technicznej Politechnika Wrocławska. Podstawy robotyki wykład VI Podstawy robotyki Wykład VI Robert Muszyński Janusz Jakubiak Instytut Cybernetyki Technicznej Politechnika Wrocławska Dynamika opisuje sposób zachowania się manipulatora poddanego wymuszeniu w postaci

Bardziej szczegółowo

- prędkość masy wynikająca z innych procesów, np. adwekcji, naprężeń itd.

- prędkość masy wynikająca z innych procesów, np. adwekcji, naprężeń itd. 4. Równania dyfuzji 4.1. Prawo zachowania masy cd. Równanie dyfuzji jest prostą konsekwencją prawa zachowania masy, a właściwie to jest to prawo zachowania masy zapisane dla procesu dyfuzji i uwzględniające

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Pojęcia podstawowe Punkt materialny Ciało, którego rozmiary można w danym zagadnieniu zaniedbać. Zazwyczaj przyjmujemy, że punkt materialny powinien być dostatecznie mały. Nie jest

Bardziej szczegółowo

18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa

18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa Kinematyka 1. Podstawowe własności wektorów 5 1.1 Dodawanie (składanie) wektorów 7 1.2 Odejmowanie wektorów 7 1.3 Mnożenie wektorów przez liczbę 7 1.4 Wersor 9 1.5 Rzut wektora 9 1.6 Iloczyn skalarny wektorów

Bardziej szczegółowo

Zajęcia nr. 3 notatki

Zajęcia nr. 3 notatki Zajęcia nr. 3 notatki 22 kwietnia 2005 1 Funkcje liczbowe wprowadzenie Istnieje nieskończenie wiele funkcji w matematyce. W dodaktu nie wszystkie są liczbowe. Rozpatruje się funkcje które pobierają argumenty

Bardziej szczegółowo

ś ę ę ęż Ć Ł ę ę ę ś ść ż ś ż ę ś ś ę Ż ć ć ś ę ż ś ę Ś Ą Ś ś ę ś ż ż

ś ę ę ęż Ć Ł ę ę ę ś ść ż ś ż ę ś ś ę Ż ć ć ś ę ż ś ę Ś Ą Ś ś ę ś ż ż Ż ę ż ś ę Ś ć ś ść ż ę ę Ś Ą ś ź ć ę ś ć ś ę ę ś ś Ą ść ść ę Ą ż ę ś ś ę ę ć ę ę ś ż Ś Ś ę Ś Ą ś ę ć ś ę ź ś ę ę ź ż ź ść Ż ę ż ż ść ż ż Ł Ź ż ę ś ż ż ę ę ę ę ś ś ŚĆ ę ę ż ś ś ę ś ę ę ęż Ć Ł ę ę ę ś ść

Bardziej szczegółowo

Podstawy fizyki wykład 4

Podstawy fizyki wykład 4 Podstawy fizyki wykład 4 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada

Bardziej szczegółowo

Metoda największej wiarygodności

Metoda największej wiarygodności Metoda największej wiarygodności Próbki w obecności tła Funkcja wiarygodności Iloraz wiarygodności Pomiary o różnej dokładności Obciążenie Informacja z próby i nierówność informacyjna Wariancja minimalna

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania optyki półklasycznej Posłużymy się teraz równaniem (2.4), i Ψ t = ĤΨ ażeby wyprowadzić

Bardziej szczegółowo

WYKAZ TEMATÓW Z LABORATORIUM DRGAŃ MECHANICZNYCH dla studentów semestru IV WM

WYKAZ TEMATÓW Z LABORATORIUM DRGAŃ MECHANICZNYCH dla studentów semestru IV WM WYKAZ TEMATÓW Z LABORATORIUM DRGAŃ MECHANICZNYCH dla studentów semestru IV WM 1. Wprowadzenie do zajęć. Równania Lagrange'a II rodzaju Ćwiczenie wykonywane na podstawie rozdziału 3 [1] 2. Drgania swobodne

Bardziej szczegółowo