Δt)] niejawny schemat Eulera [globalny błąd O(Δt)] u(t) f(t,u) f(t,u) u(t) [t+ Δt,u(t+Δt)]
|
|
- Stanisława Sobczyk
- 8 lat temu
- Przeglądów:
Transkrypt
1 jawny schemat Eulera [globalny błąd O(Δt)] niejawny schemat Eulera [globalny błąd O(Δt)] u(t) f(t,u) [t,u(t)] )]dokładne d u(t) () f(t,u) [t+ Δt,u(t+Δt)] [t+ Δt,u(t+Δt)] Δt)] Δt t Δt t u(t) [t,u(t)] dokładne f(t,u) przesunięcie wyliczane na podstawie średniej arytmetycznej z chwil t i t+δt [wzór trapezów] [t+ Δt,u(t+Δt)] Δt t
2 dokładność wzóru trapezów a jawnego schematu Eulera: Równanie: Warunek początkowy: u 1 =u(t 1 =0)=1 Rozwiązanie: Punkt t 2 =0.5 u 2 =? [dokładnie: ] Euler jawny yjeden krok: u 2=u 1+Δt t 1u 1=u 1= 1 wzór trapezów u 2 =u 1 +(t 1 u 1 +t 2 u 2 ) Δt /2 = u 1 +t 2 u 2 Δt /2 jawny Euler u 2 := u 1 +u 2 / iteracja funkcjonalna wynik 8/7 niejawny Euler: 4/3=1.333 (pokazać) nieco gorzej niż jawny TR wygląda na bardziej dokładny d od E:
3 Oszacować błąd lokalny wzoru trapezów 1. rozw. Taylora wstecz 2. dla dowolnej funkcji ciągłej f(t)=f(t+δt)+o(δt) (wstawimy, rząd błędu pozostanie trzeci) 3. Rozwiązać na u(t+δt) Euler miał rząd obcięcia Δt 2 pozbyć się go.
4 3. Rozwiązać na u(t+δt) [przepisane] 4. Uśrednić z rozwinięciem Taylora do przodu 5. Wynik 6. Korzystamy z równania jawny i niejawny Euler lokalny błąd rzędu drugiego (rząd dokładności 1) wzór trapezów lokalny błąd rzędu trzeciego (rząd dokładności 2)
5 stabilność bezwzględną wzoru trapezów problem modelowy: WP: u(t=0)=1. rozwiązanie u=exp(λt) zbiór punktów na p. Gaussa, które są nie dalej od ( 2,0) niż od (2,0)
6 region bzwz. stabilności wzoru trapezów Δt Im (λ) Δt Re(λ) Wniosek: dla λ<0 wzór trapezów bezwzględnie stabilny dla dowolnego kroku czasowego! A stabilny druga bariera Dahlquista: maksymalny rząd dokładności metody A stabilnej =2 schemat trapezów jest najdokładniejszą metodą A stabilną spośród liniowych metod wielokrokowych Implementowana np. w SPICE.
7 region bzwz. stabilności Eulera: koło o promieniu 1 Δt Im (λ) i środku ( 1,0) Δt Re(λ) region bzwz. stabilności wzoru trapezów Δt Im (λ) niejawna metoda Eulera: region bezwzględnej stabilności Δt Im (λ) Δt Re(λ) między metodami można przechodzić w sposób ciągły 1 1 Δt Re(λ) θ=0,1,1/2 Euler jawny, niejawny i wzór trapezów odpowiednio w wykładzie na temat niejawnych formuł RK zobaczymy, że dokładność rzędu 2 uzyskana tylko dla θ=1/2 region stabilności?
8 iteracja funkcjonalna a wzór trapezów problem początkowy: u = 100u, u(0)=1 z rozwiązaniem dokładnym u(t)=exp( 100 t ) Δt= = graniczny dla zbieżności IF dla niejawnego Eulera 1,0, 0.5, 0.25, 0.375, , , , , , ,..., wzór trapezów = używa prawej strony z poprzedniego kroku czasowego z wagą 0.5 co nieco stabilizuje iterację. niestety iteracja funkcjonalna dla Δt=0.02 już przestaje być zbieżna (+1, 1,+1, 1,itd..) wzór trapezów zwiększa zakres zbieżności iteracji dwukrotnie (wyraz podkreślony stabilizuje iteracje) ale to wciąż mało metoda Newtona Raphsona pozostaje
9 poznane metody: 1) 2) 3) ) Poznane metody: jednokrokowe (1 3), jawna (1) i niejawne (2 3), pierwszego (1 2) i drugiego (3) rzędu dokładności d ś Metody (2 3) A stabilne, metoda (2) nadstabilna jawne metody różnicowe wysokiej dokładności??
10 jawne metody jednokrokowe wyższego rzędu dokładności niż jawny Euler u =f(t,u), u(0)=u u 0 rozwinięcie Taylora ponownie: liczymy pochodne: RRróżniczkujemy po czasie z RR. czyli podobnie Zależnie od tego gdzie się zatrzymamy uzyskamy błąd lokalny żądanego rzędu
11 Zależnie od tego gdzie się zatrzymamy uzyskamy błąd lokalny zadanego rzędu np. pomysł: mało przydatny w praktyce ze względu na konieczność analitycznego wyliczenia pochodnych cząstkowych f. Dla metod ogólnych: nie powinniśmy liczyć, że f jest dane wzorem
12 podejście alternatywne: inspirowane całkowaniem prawa strona = funkcja tylko t z rozwiązaniem: jeśli zastąpimy całkę kwadraturą prostokątów z wywołaniem funkcji w lewym końcu przedziału t n 1 t n u(t n )=u(t n 1 )+Δt f(t n 1 )+ O(Δt 2 ) rozpoznajemy jawny schemat Eulera kwadratura prostokątów z wywołaniem funkcji w prawym końcu przedziału u(t )=u(t 2 n )u(t n 1 )+Δt f(t n ) + O(Δt ) t n 1 t rozpoznajemy niejawny schemat Eulera n kwadratura trapezów u(t n )=u(t n 1 )+Δt f(t n )/2+ Δt f(t n 1 )/2 + O(Δt 3 ) rozpoznajemy niejawny schemat trapezów t n 1 t n
13 reguła punktu środkowego wzór prostokątów z wywołaniem funkcji w środku przedziału (dokładny dla funkcji liniowej, znoszenie błędów) t n 1 t n 1/2 t n uogólniony wzór na równanie równania u =f(t,u) np. ze schematu Eulera: ale skąd rozwiązanie w środku przedziału? bł d l k l E l O(Δt 2 ) ł kt ś dk błąd lokalny Eulera O(Δt 2 ), czy reguła punktu środkowego zachowa trzeci rząd błędu lokalnego?
14 sprawdźmy to rozważając bardziej ogólny schemat: obliczone na początku kroku obliczone gdzieś w środku przedziału (t n 1,t n ) z odpowiednio oszacowanym rozwiązaniem u dla tego t (wzór typu Eulera) jest to jawny dwustopniowy schemat Rungego Kutty. potencjalna wyższa dokładność od jawnego Eulera kosztem dwóch wywołań f (podobnie jak we wzorze trapezów, ale RK: jawny) b1,b2,a,c parametry metody jakie muszą być aby RK2 (2 = rząd dokładności) reguła punktu środkowego: należy do tej klasy z b 1 =0, b 2 =1, c=1/2, a =1/2
15 Jawne metody Rungego Kutty dwustopniowe: wybór parametrów (*) u =f(t,u) jak dobrać b 1,b 2,c,a? metodą brutalnej siły tak aby rozwinięcie Taylora metody zgadzało się z rozwinięciem Taylora dokładnego równania różniczkowego do wyrazów tak wysokiego rzędu ę jak to tylko możliwe przypominamy: rozwinięcie Taylora dla funkcji dwóch zmiennych wstawiamy rozwiązanie dokładne u(t n ), u(t n 1 ) do (*) i rozwijamy względem t n 1, u n 1
16 to trzeba rozwinąć wstawmy k 2 do rozwinięcia. Zachowajmy człony do Δt 2: (wszystko liczone w t n 1,u n 1 ) rozwinięcie Taylora rozwiązania dokładnego uzyskaliśmy kilka slajdów wcześniej czyli: rząd Δt: b 1 +b 2 =1, rząd Δt 2 : b 2 c=b 2 a=1/2 czyli reguła punktu środkowego: b 1 =0, b 2 =1, c=1/2, a =1/2 ma błąd lokalny rzędu O(Δt 3 ) 1 2 mamy metodę równie dokładną co wzór trapezów ale jawną (co ma swoje zalety i wady) Wyższy rząd błędu do uzyskania tylko w metodach o większej niż 2 liczbie stopni
17 cztery parametry i trzy równania b 1 +b 2 =1 b 2 c=b 2 a=1/2 pozostaje swoboda w wyborze parametrów reguła punktu środkowego RK2 b 1 =0, b 2 =1, c=1/2, a =1/2 dwa zastosowania jawnego schematu Eulera albo (przesunięty indeks) oszacowanie wstępne w punkcie pośrednim (błąd lokalny rzędu drugiego) oszacowanie docelowe (błąd lokalny oszacowania: rzędu trzeciego) u(t) [t,u(t)] dokładne [t+δt/2,y(t+δt/2)] 1) Szacujemy metodą Eulera punkt środkowy [t+δt/2,u(t+δt/2)] korzystając z f(t,u) w lewym końcu przedziału 2) Wykorzystujemy wartość f w tym punkcie do wyliczenia zmiany y na całym przedziale Δt Δt t
18 RK punktu środkowego:b 1 +b 2 =1, b 2 cba1/2 c=b 2 a=1/2 inny wybór: b 1 =b 2 =1/2, wtedy musi a=c=1 metoda podobna do wzoru trapezów (ale jawna) u(t) [t,u(t)] dokładne 1) Szacujemy metodą Eulera punkt końcowy [t+δt,u(t+δt)] korzystając z f(t,u) w lewym końcu przedziału 2) krok z t do t+δt wykonujemy biorąc średnią arytmetyczną z f na początku i końcu Δt t metoda RK2 trapezów
19 dla błędu lokalnego O(Δt 3 ) potrzeba aby, rząd Δt: b 1 +b 2 =1, rząd Δt 2 : b 2 c=b 2 a=1/2 punkt środkowy b2=1, b1=0 [b1+b2]=1 czy ma sens b1=1, 1 b2=0?
20 Metody Rungego Kutty, forma ogólna są to metody jednokrokowe, czyli można zapisać: metoda RK w s odsłonach (stage) (unikamy słowa krok ) z wzory przedstawiane w formie tabel Butchera c A b
21 Metody Rungego Kutty, forma ogólna czasem zapisywane w postaci: tutaj U i przybliżone rozwiązanie w chwili t n 1 +c i Δt zazwyczaj niższej dokładności niż rozwiązanie ą końcowe
22 jawne metody Rungego Kutty jawne: a ij =0 dla j i obcięte sumowanie: odsłona i ta wyliczana na podstawie tylko wcześniejszych odsłon historycznie i wszystkie RK były ł jawne, uogólnienie i okazało ł się przydatne dla problemów sztywnych
23 Wyprowadzanie formuł RK (a,b,c) 1) Rozwijamy rozwiązanie dokładne w szereg Taylora względem t n 1 2) Podstawiamy rozwiązanie dokładne do ogólnej formy RK i rozwijamy względem t n 1 3) Wartości parametrów a,b,c uzyskujemy z porównania. zazwyczaj w sposób niejednoznaczny najbardziej popularne: jawne formuły 4 etapowe RK4: o 4 tym stopniu zbieżności (4 tym rzędzie dokładności) i 5 tym rzędzie ę błędu ę lokalnego ogólna tabela Butchera: dla jawnych RK4 c 1 =0 (dla każdej jawnej RK, zaczynamy k 1 od wyliczenia prawej strony w kroku początkowym)
24 klasyczna formuła RK4: u(t) k 1 u k 2 k 3 k 4 4 wywołania f na krok, błąd lokalny O(Δt 5 ) gdy f tylko funkcja czasu RK4 gdy f tylko funkcja czasu RK4 redukuje się do formuły Simpsona :
25 Jawne schematy RK dla układu równań różniczkowych 2 zmienne zależne u 1, u 2, 2 prawe strony f 1, f 2 zapis wektorowy u n 1, u n, f, U 1, U 2,... U N są wektorami o 2 składowych 2 równania, s odsłon (i=12 1,2,...,s)
26 Tabela Butchera dla klasycznej jawnej RK /2 1/ /2 0 1/ /6 1/3 1/3 1/6
27 Dlaczego RK4 najbardziej popularna: Liczba kroków a rząd zbieżności jawnych metod RK: rząd minimalna liczba odsłon RK4 wyjątkowo opłacalna RK1 metoda RK w jednej odsłonie b1+b2=1, przy b 1 =1, b2=0 dostaniemy jawnego Eulera warunek a*b2=c*b2 =1/2 nie będzie spełniony jawnyschemat Eulera to jawnametoda RK1
28 jawny Euler tabela Butchera RK2 trapezów tapeó b 1 =b 2 =1/2, a=c=1 RK2 punktu środkowego /2 1/
29 Szacowanie błędu ę lokalnego w metodach jednokrokowych Po co? 1) W rachunkach numerycznych musimy znać oszacowanie błędu 2) Aby ustawić krok czasowy tak, aby błąd był akceptowalny 3) Gdy oszacowanie jest w miarę dokładne: można poprawić wynik
30 Oszacowanie błędu lokalnego w metodach jednokrokowych W każdym kroku generujemy nowy błąd w rachunkach. Znamy jego rząd. dla RK: wstawialiśmy rozwiązanie dokładne do schematu i je rozwijaliśmy w szereg T. wybór b 1 =0, b 2 =1, c=1/2, a =1/2 dawał RK2 punktu środkowego 1 2 Rozwijając do jednego rzędu wyżej z Δt uzyskamy oszacowanie błędu lokalnego d n = u(t n ) u n [przy założeniu, że u(t n 1 ) = u n 1 ] świetny i wzór choć ć mało ł praktyczny
31 Oszacowanie błędu (lokalnego) w metodach jednokrokowych metodą rzędu p z chwili t n 1 wykonujemy krok do t n może zależeć od t n 1 oraz u n 1, ale nie zależy od Δt folia wcześniej szacowanie błędu: 1) ekstrapolacja Richardsona (step doubling) 2) osadzanie (embedding)
32 ekstrapolacja Richardsona dwa kroki Δt: dostaniemy lepsze oszacowanie u(t n+1 ) t n 1 t n t n+1 Δt Δt jeden krok 2Δt: dostaniemy gorsze oszacowanie u(t n+1 ) t n 1 t n+1 2Δt szacujemy C n z porównania obydwu rozwiązań
33 ekstrapolacja Richardsona błąd lokalny u(t n ) u n =d n jest: wykonujemy krok następny od t n do t n+1 odchylenie wyniku numerycznego od dokładnego u(t n+1 ) u n+1 = γ d n +d n+1 1) zakładamy, że krok jest na tyle mały, że stała błędu ę się ę nie zmienia C n C n+1 (lub, ze w jednym kroku zmienia się o O(Δt)] wtedy błąd lokalny popełniony w chwili t n+1 jest d n+1 d n. 2) gdy krok mały: współczynnik wzmocnienia błędu γ 1 (błąd ą popełniony p w kroku pierwszym nie jest istotnie wzmacniany) Przy tym założeniu: błąd po drugim kroku suma błędów γ d n +d n+1 2d n,
34 ekstrapolacja Richardsona t n 1 t n t n+1 Δt Δt to chwili t n+1 dojdziemy z t n 1 w pojedynczym kroku 2Δt t n 1 t n+1 2Δt dostaniemy gorsze oszacowanie u(t n+1 ) chcemy poznać C n (to + znajomość p da nam oszacowanie błędu): odejmujemy niebieskie wzory tak aby wyeliminować rozwiązanie dokładne (nam niedostępne)
35 ekstrapolacja Richardsona błąd wykonany po dwóch krokach Δt wynosi więc: pierwszy wniosek: jeśli znamy rząd metody p to potrafimy go podnieść o jeden
36 ekstrapolacja Richardsona podnosimy rząd dokładności metody algorytm
37 Przykład: r. dokładne: ekstrapolacja Richardsona Euler (p=1) błąd lokalny O(Δt 2 ) Euler po poprawce: błąd lokalny l O(Δt 3 ) kreski: RK2 punktu środkowego (p=2), b.lok. O(Δt 3 ) znając rząd dokładności możemy radykalnie poprawić dokładność metody przy natdatku (50 procent) numeryki
38 Euler ekstrapolacja Richardsona RK2 RK2 z odciętym błędem
39 Oszacowanie błędu lokalnego w metodach jednokrokowych 1) ekstrapolacja Richardsona (step doubling) 2) osadzanie (embedding) cel: szacujemy błąd lokalny metody rzędu p przy pomocy lepszej metody, np. rzędu p+1 obydwie metody szacują rozwiązanie w tych samych chwilach czasowych co daje oszacowanie błędu gorszej metody nie nadaje się do poprawiania schematu p po cóż zresztą poprawiać gdy mamy p+1
40 celem szacowania błędu nie jest poprawa wyniku, (dla poprawy p zawsze można Δt zmienić) lecz adaptacja Δt : stały krok zawsze może okazać się zbyt wielki albo zbyt mały. JAKI KROK CZASOWY SYMULACJI USTAWIĆ JAKI KROK CZASOWY SYMULACJI USTAWIĆ gdy coś ciekawego zdarza się tylko czasem?
41 Automatyczna kontrola kroku czasowego dla metod jednokrokowych Program może sam dobierać krok czasowy w zależności od tego co dzieje się w symulacji. Chcemy utrzymać błąd na poziomie zbliżonym do parametru tol. nie większy aby zachować wymaganą dokładność, nie mniejszy aby nie tracić ć czasu casuna rachunki zbyt dokładne Szacujemy błąd lokalny E (ekstrapolacja Richardsona lub metody embedding) E=C[Δt] p+1 chcemy zmienić krok odpowiednio do naszych wymagań z Δt do Δt(nowy) tol=c[δt(nowy)] p+1 Δt(nowy)=(tol/E) 1/(p+1) Δt Δt(nowy)=(S) (S tol /E) 1/(p+1) Δt dla bezpieczeństwa ń S<1 wzór zwiększy zbyt mały krok i vice versa uwaga: błąd jest szacowany, zawsze warto dorzucić sztywne ograniczenia na Δt
42 Automatyczna kontrola kroku czasowego dla metod jednokrokowych symulacja ustawiająca krok czasowy może wyglądać np. tak: u 0 = warunek początkowy t 0 =0 n=1 do { jeśli E<tol { tn:=tn+δt n:=n+1 (oznacza akceptację wyniku) } Δt:=(S tol /E) 1/(p+1) Δt } while ( t<t)
43 Przykład: oscylator harmoniczny używane oszacowanie błędu z RK2 Uwaga: tutaj rozwiązania nie poprawiamy przez ekstrapolacje kt tolerancja błędu obcięcia tol=0.1 start RK2 V (t) V (t t) tol=1e 2 x 2 V 2 Δt x (t) x (t) (t) V tol=1e 3 x (t) algorytm ustawia minimalny krok czasowy gdy zmiany prędkości lub położenia są maksymalne
44 wyniki Konrada Rekiecia RK4 spirala się skręca zamiast rozkręcać E(t) RK2 tol=.1 RK4 przy założonej tolerancji RK4 wcale nie jest dokładniejsze od RK2
45 dt... tylko pozwala stawiać dłuższe kroki
pozbyć się ograniczenia na krok czasowy ze strony bezwzględnej stabilności: niejawna metoda Eulera
pozbyć się ograniczenia na krok czasowy ze strony bezwzględnej stabilności: niejawna metoda Eulera jawna metoda Eulera niejawna metoda Eulera jawna metoda Eulera (funkcjonuje jak podstawienie) funkcjonuje
t. sztywny problem w pojedynczym równaniu: u(t)=cos(t) dla dużych ż t rozwiązanie i ustalone
Problem opisany RRZ jest sztywny gdy: 1.... jest charakteryzowany yróżnymi skalami czasowymi. 2. Stabilność bezwzględna nakłada silniejsze ograniczenia na krok czasowy niż dokładność. 3. Metody jawne się
u(t) RRZ: u (t)=f(t,u) Jednokrokowy schemat różnicowy
u(t) t Dt RRZ: u (t)=f(t,u) Jednokrokowy schemat różnicowy u(t+dt)=u(t)+f(t,u(t),dt) klasyczna formuła RK4: u(t) k 1 u k 2 k 3 k 4 4 wywołania f na krok, błąd lokalny O(Dt 5 ) gdy f tylko funkcja czasu
Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1
Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1 Tomasz Chwiej 6 czerwca 2016 1 Równania różniczkowe zwyczajne Zastosowanie szeregu Taylora do konstrukcji ilorazów różnicowych: iloraz
równania funkcyjne opisujące relacje spełniane przez pochodne nieznanej (poszukiwanej) funkcji
Równania różniczkowe: równania funkcyjne opisujące relacje spełniane przez pochodne nieznanej (poszukiwanej) funkcji cząstkowe: funkcja więcej niż jednej zmienna, np.: czas i położenie np. wychylenie u(x,t)
Metoda różnic wstecznych: interpolujemy u wielomianem od chwili n-k aż do n-1
Metoda różnic wstecznych: interpolujemy u wielomianem od chwili n-k aż do n-1 następnie żądamy, aby jego pochodna w chwili n spełniała równania różniczkowe (kolokacja) z tego warunku wyliczamy z niego
użyteczne, gdy problem nie wymaga zmiany dt ważne: schematy do rozwiązywania równań cząstkowych mają często wielokrokowy charakter
Liniowe metody wielokrokowe dla równań zwyczajnych starsze niż RKo50lat użyteczne, gdy problem nie wymaga zmiany dt ważne: schematy do rozwiązywania równań cząstkowych mają często wielokrokowy charakter
Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr zimowy 2017/2018
Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr zimowy 2017/2018 Tomasz Chwiej 22 stycznia 2019 1 Równania różniczkowe zwyczajne Zastosowanie szeregu Taylora do konstrukcji ilorazów
II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski
II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski 1 1 Różniczkowanie numeryczne Rozważmy funkcję f(x) określoną na sieci równoodległyc węzłów. Funkcja f(x) może być dana za pomocą wzoru analitycznego
x y
Przykłady pytań na egzamin końcowy: (Uwaga! Skreślone pytania nie obowiązują w tym roku.). Oblicz wartość interpolacji funkcjami sklejanymi (przypadek (case) a), dla danych i =[- 4 5], y i =[0 4 -]. Jaka
Całkowanie numeryczne
Całkowanie numeryczne Poniżej omówione zostanie kilka metod przybliżania operacji całkowania i różniczkowania w szczególności uzależnieniu pochodnej od jej różnic skończonych gdy równanie różniczkowe mamy
y i b) metoda różnic skończonych nadal problem nieliniowy 2 go rzędu z warunkiem Dirichleta
b) metoda różnic skończonych nadal problem nieliniowy 2 go rzędu z warunkiem Dirichleta przedział (a,b) dzielimy na siatkę, powiedzmy o stałym kroku: punkty siatki: u A y i w metodzie strzałów używamy
Całkowanie numeryczne przy użyciu kwadratur
Całkowanie numeryczne przy użyciu kwadratur Plan wykładu: 1. Kwadratury Newtona-Cotesa a) wzory: trapezów, parabol etc. b) kwadratury złożone 2. Ekstrapolacja a) ekstrapolacja Richardsona b) metoda Romberga
OBLICZANIE POCHODNYCH FUNKCJI.
OBLICZANIE POCHODNYCH FUNKCJI. ROZWIĄZYWANIE RÓWNAŃ RÓŻNICZKOWYCH. ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ LINIOWYCH. Obliczanie pochodnych funkcji. Niech będzie dana funkcja y(x określona i różniczkowalna na przedziale
ciało w potencjale radialnym schemat Eulera orbity kontrola kroku czasowego
Wykład pokazuj acy, że wybór stałego nie zawsze jest dobrym pomysłem. Jak napisać program, który będzie sam sobie dobierał krok czasowy na podstawie narzuconej przez nas tolerancji dokładności orbita komety
Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, Spis treści
Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, 2017 Spis treści Od autorów 11 I. Klasyczne metody numeryczne Rozdział 1. Na początek 15 1.1.
Optymalizacja ciągła
Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej
Metody przybliżonego rozwiązywania równań różniczkowych zwyczajnych
Metody przybliżonego rozwiązywania równań różniczkowych zwyczajnych Rozwiązywanie równań różniczkowych zwyczajnych za pomocą szeregów metody dyskretne Metoda współczynników nieoznaczonych Metoda kolejnego
Obliczenia iteracyjne
Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej
Numeryczne rozwiązywanie równań różniczkowych ( )
Numeryczne rozwiązywanie równań różniczkowych Równanie różniczkowe jest to równanie, w którym występuje pochodna (czyli różniczka). Przykładem najprostszego równania różniczkowego może być: y ' = 2x które
Komputerowa analiza zagadnień różniczkowych 10. Dwupunktowe problemy brzegowe (BVP, Boundary Value Problems)
Komputerowa analiza zagadnień różniczkowych 10. Dwupunktowe problemy brzegowe (BVP, Boundary Value Problems) P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Wprowadzenie Rozważmy
Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e
Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne
Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur
S Y L A B U S P R Z E D M I O T U
"Z A T W I E R D Z A M Prof. dr hab. inż. Radosław TRĘBIŃSKI dm Dziekan Wydziału Mechatroniki i Lotnictwa Warszawa, dnia... S Y L A B U S P R Z E D M I O T U NAZWA PRZEDMIOTU: NUMERYCZNE METODY OBLICZENIOWE
Laboratorium 5 Przybliżone metody rozwiązywania równań nieliniowych
Uniwersytet Zielonogórski Wydział Informatyki, Elektrotechniki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych Elektrotechnika niestacjonarne-zaoczne pierwszego stopnia z tyt. inżyniera
Metoda różnic skończonych dla
Metoda różnic skończonych dla cząstkowych równań różniczkowych na laboratorium rozwiązywać będziemy typowe równania: dyfuzji (również przewodnictwo cieplne) paraboliczne równanie Poissona (np. pole elektrostatyczne,
PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION
Mirosław GUZIK Grzegorz KOSZŁKA PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION W artykule przedstawiono niektóre
Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe. P. F. Góra
Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Co można zrobić z układem równań... tak, aby jego rozwiazania się nie zmieniły? Rozważam
Metody numeryczne I Równania nieliniowe
Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 7a. Metody wielokrokowe
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 7a. Metody wielokrokowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Motywacja Metody wielokrokowe sa
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 6 Rozwiązywanie równań nieliniowych Rozwiązaniem lub pierwiastkiem równania f(x) = 0 lub g(x) = h(x)
Metody numeryczne. materiały do wykładu dla studentów
Metody numeryczne materiały do wykładu dla studentów 5. Przybliżone metody rozwiązywania równań 5.1 Lokalizacja pierwiastków 5.2 Metoda bisekcji 5.3 Metoda iteracji 5.4 Metoda stycznych (Newtona) 5.5 Metoda
Metody numeryczne równań różniczkowych zwyczajnych
Metody numeryczne równań różniczkowych zwyczajnych Marcin Jenczmyk m.jenczmyk@knm.katowice.pl 9 maja 2015 M. Jenczmyk XXX Sesja KNM Metody numeryczne R.R.Z. 1 / 18 Omawiany problem dotyczyć będzie numerycznego
numeryczne rozwiązywanie równań całkowych r i
numeryczne rozwiązywanie równań całkowych r i Γ Ω metoda elementów brzegowych: punktem wyjściowym było rozwiązanie równania całkowego na brzegu obszaru całkowania równanie: wygenerowane z równania różniczkowego
użyteczne, gdy rachunek nie wymaga zmiany kroku całkowania a wykonanie każdego kroku jest kosztowne
Liniowe metody wielokrokowe starsze niż RK o 50 lat użyteczne, gdy rachunek nie wymaga zmiany kroku całkowania a wykonanie każdego kroku jest kosztowne (wysoka dokładność, d przy małej ł jliczbie wezwań
Komputerowa analiza zagadnień różniczkowych 3. Metody Eulera, metody punktu środkowego i metody trapezowe
Komputerowa analiza zagadnień różniczkowych 3. Metody Eulera, metody punktu środkowego i metody trapezowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2011 Problem Cauchy ego dy dx = f(x, y) (1) y(x
ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH
Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym
Wstęp do metod numerycznych 9a. Układy równań algebraicznych. P. F. Góra
Wstęp do metod numerycznych 9a. Układy równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Układy równań algebraicznych Niech g:r N równanie R N będzie funkcja klasy co najmniej
Wstęp do równań różniczkowych
Wstęp do równań różniczkowych Wykład 1 Lech Sławik Instytut Matematyki PK Literatura 1. Arnold W.I., Równania różniczkowe zwyczajne, PWN, Warszawa, 1975. 2. Matwiejew N.M., Metody całkowania równań różniczkowych
Laboratorium II: Modelowanie procesów fizycznych Skrypt do ćwiczeń
PJWSTK/KMKT-07082006 Laboratorium II: Modelowanie procesów fizycznych Katedra Metod Komputerowych Techniki Polsko Japońska Wyższa Szkoła Technik Komputerowych I. KINETYKA Kinetyka zajmuje się ruchem ciał
Wstęp do równań różniczkowych
Wstęp do równań różniczkowych Wykład 1 Lech Sławik Instytut Matematyki PK Literatura 1. Arnold W.I., Równania różniczkowe zwyczajne, PWN, Warszawa, 1975. 2. Matwiejew N.M., Metody całkowania równań różniczkowych
Interpolacja i modelowanie krzywych 2D i 3D
Interpolacja i modelowanie krzywych 2D i 3D Dariusz Jacek Jakóbczak Politechnika Koszalińska Wydział Elektroniki i Informatyki Zakład Podstaw Informatyki i Zarządzania e-mail: Dariusz.Jakobczak@tu.koszalin.pl
Metoda Runge-Kutta-Fehlberga i sterowanie długością kroku
Metoda Runge-Kutta-Fehlberga i sterowanie długością kroku Cel: Dla zadanej tolerancji e wybrać minimalną liczbę węzłów, wystarczającą do utrzymania globalnego błedu w ramach tolerancji. Błąd globalny trudny
Prawa fizyki: zapisywane w postaci równań różniczkowych (Newtona, Maxwella, dyfuzji, falowe, Poissona, Laplace a, Naviera-Stokesa, Schroedingera)
Numeryczne techniki rozwiązywania równań fizyki I D10/325, bszafran@agh.edu.pl Wykłady będą dostępne z: http://galaxy.uci.agh.edu.pl/~bszafran/ Konsultacje: poniedziałek 8-9:30 cel przedmiotu: przygotowanie
Zwięzły kurs analizy numerycznej
Spis treści Przedmowa... 7 1. Cyfry, liczby i błędy podstawy analizy numerycznej... 11 1.1. Systemy liczbowe... 11 1.2. Binarna reprezentacja zmiennoprzecinkowa... 16 1.3. Arytmetyka zmiennopozycyjna...
RÓWNANIA NIELINIOWE Maciej Patan
RÓWNANIA NIELINIOWE Maciej Patan Uniwersytet Zielonogórski Przykład 1 Prędkość v spadającego spadochroniarza wyraża się zależnością v = mg ( 1 e c t) m c gdzie g = 9.81 m/s 2. Dla współczynnika oporu c
dr inż. Damian Słota Gliwice r. Instytut Matematyki Politechnika Śląska
Program wykładów z metod numerycznych na semestrze V stacjonarnych studiów stopnia I Podstawowe pojęcia metod numerycznych: zadanie numeryczne, algorytm. Analiza błędów: błąd bezwzględny i względny, przenoszenie
Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.
Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie
Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów.
Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów. Plan wykładu: 1. Wyznaczanie pojedynczych pierwiastków rzeczywistych równań nieliniowych metodami a) połowienia (bisekcji)
KADD Minimalizacja funkcji
Minimalizacja funkcji Poszukiwanie minimum funkcji Foma kwadratowa Metody przybliżania minimum minimalizacja Minimalizacja w n wymiarach Metody poszukiwania minimum Otaczanie minimum Podział obszaru zawierającego
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Wstęp
BŁĘDY OBLICZEŃ NUMERYCZNYCH
BŁĘDY OBLICZEŃ NUMERYCZNYCH błędy zaokrągleń skończona liczba cyfr (bitów) w reprezentacji numerycznej błędy obcięcia rozwinięcia w szeregi i procesy iteracyjne - w praktyce muszą być skończone błędy metody
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 5. Terminologia. Metody Eulera, metody punktu środkowego i metody trapezowe
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 5. Terminologia. Metody Eulera, metody punktu środkowego i metody trapezowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr
Metody Prognozowania
Wprowadzenie Ewa Bielińska 3 października 2007 Plan 1 Wprowadzenie Czym jest prognozowanie Historia 2 Ciągi czasowe Postępowanie prognostyczne i prognozowanie Predykcja długo- i krótko-terminowa Rodzaje
METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH
METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH Jednym z zastosowań metod numerycznych jest wyznaczenie pierwiastka lub pierwiastków równania nieliniowego. W tym celu stosuje się szereg metod obliczeniowych np:
Komputerowa analiza zagadnień różniczkowych 3. Metody Eulera, metody punktu środkowego i metody trapezowe
Komputerowa analiza zagadnień różniczkowych 3. Metody Eulera, metody punktu środkowego i metody trapezowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Problem Cauchy ego dy dx = f(x, y) (1) y(x
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych
Komputerowa analiza zagadnień różniczkowych 6. Metoda diagramowa. Obszary stabilności. P. F. Góra
Komputerowa analiza zagadnień różniczkowych 6. Metoda diagramowa. Obszary stabilności. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2013 Metoda diagramowa Ręczne wyprowadzanie równan wiaż acych współczynniki
Równania różniczkowe metody numeryczne
Instytut Sterowania i Systemów Informatycznyc Universytet Zielonogórski Wykład 9 Metoda Eulera Rozważmy równanie różniczkowe dy(t) = f (t, y(t)), y(t 0 ) = y 0 którego rozwiazanie ccemy wyznaczyć w przedziale
Iteracyjne rozwiązywanie równań
Elementy metod numerycznych Plan wykładu 1 Wprowadzenie Plan wykładu 1 Wprowadzenie 2 Plan wykładu 1 Wprowadzenie 2 3 Wprowadzenie Metoda bisekcji Metoda siecznych Metoda stycznych Plan wykładu 1 Wprowadzenie
Metody Numeryczne w Budowie Samolotów/Śmigłowców Wykład I
Metody Numeryczne w Budowie Samolotów/Śmigłowców Wykład I dr inż. Tomasz Goetzendorf-Grabowski (tgrab@meil.pw.edu.pl) Dęblin, 11 maja 2009 1 Organizacja wykładu 5 dni x 6 h = 30 h propozycja zmiany: 6
automatyka i robotyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
PODSTAWY MODELOWANIA UKŁADÓW DYNAMICZNYCH W JĘZYKACH SYMULACYJNYCH
PODSTAWY MODELOWANIA UKŁADÓW DYNAMICZNYCH W JĘZYKACH SYMULACYJNYCH ( Na przykładzie POWERSIM) M. Berndt-Schreiber 1 Plan Zasady modelowania Obiekty symbole graficzne Dyskretyzacja modelowania Predefiniowane
Interpolacja, aproksymacja całkowanie. Interpolacja Krzywa przechodzi przez punkty kontrolne
Interpolacja, aproksymacja całkowanie Interpolacja Krzywa przechodzi przez punkty kontrolne Aproksymacja Punkty kontrolne jedynie sterują kształtem krzywej INTERPOLACJA Zagadnienie interpolacji można sformułować
Analiza matematyczna dla informatyków 3 Zajęcia 14
Analiza matematyczna dla informatyków 3 Zajęcia 14 Metoda rozwiązywania (Jednorodne równanie różniczkowe liniowe rzędu n o stałych współczynnikach). gdzie a 0,..., a n 1 C. Wielomian charakterystyczny:
inżynierskie metody numeryczne cel przedmiotu:
inżynierskie metody numeryczne cel przedmiotu: przygotowanie do pracy w zakresie numerycznego modelowania zjawisk i urządzeń stosowanego w zagadnieniach techniki (inżynierii) i nauki symulacje obliczeniowe:
inżynierskie metody numeryczne D10/325,
inżynierskie metody numeryczne D10/325, bszafran@agh.edu.pl http://galaxy.uci.agh.edu.pl/~bszafran/imn11 cel przedmiotu: przygotowanie do pracy w zakresie numerycznego modelowania zjawisk i urządzeń stosowanego
inżynierskie metody numeryczne D10/325, Konsultacje 8:00 9:30
inżynierskie metody numeryczne D10/325, bszafran@agh.edu.pl http://galaxy.uci.agh.edu.pl/~bszafran/ Konsultacje 8:00 9:30 cel przedmiotu: przygotowanie do pracy w zakresie numerycznego modelowania zjawisk
Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1
Normy wektorów i macierzy (5.3.1) Niech 1 X =[x x Y y =[y1 x n], oznaczają wektory przestrzeni R n, a yn] niech oznacza liczbę rzeczywistą. Wyrażenie x i p 5.3.1.a X p = p n i =1 nosi nazwę p-tej normy
Czym jest całka? Całkowanie numeryczne
Całkowanie numeryczne jest to zagadnienie z metod elementów skończonych (MES). Korzystając z całkowania numerycznego możemy obliczyć wartość dowolnej całki jednowymiarowej oznaczonej. Wynik jest zawsze
Metody numeryczne rozwiązywania równań różniczkowych
Metody numeryczne rozwiązywania równań różniczkowych Marcin Orchel Spis treści Wstęp. Metody przybliżone dla równań pierwszego rzędu................ Metoda kolejnych przybliżeń Picarda...................2
Rozwiązywanie równań nieliniowych
Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można
Komputerowa analiza zagadnień różniczkowych 5. Metody Rungego-Kutty (II) P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/
Komputerowa analiza zagadnień różniczkowych 5. Metody Rungego-Kutty (II) P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ Metody DIRK Jeśli spodziewamy się problemów ze stabilnościa, w szczególności jeśli
Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych. P. F. Góra
Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Co to znaczy rozwiazać równanie? Przypuśmy, że postawiono przed nami problem rozwiazania
KADD Metoda najmniejszych kwadratów funkcje nieliniowe
Metoda najmn. kwadr. - funkcje nieliniowe Metoda najmniejszych kwadratów Funkcje nieliniowe Procedura z redukcją kroku iteracji Przykłady zastosowań Dopasowanie funkcji wykładniczej Dopasowanie funkcji
UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne
UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a + a +... + ann b a + a +... + ann b... an + an+... + annn bn który
METODY NUMERYCZNE. Wykład 3. Plan. Aproksymacja Interpolacja wielomianowa Przykłady. dr hab.inż. Katarzyna Zakrzewska, prof.agh. Met.Numer.
METODY NUMERYCZNE Wykład 3. dr hab.inż. Katarzyna Zakrzewska, prof.agh Met.Numer. wykład 3 1 Plan Aproksymacja Interpolacja wielomianowa Przykłady Met.Numer. wykład 3 2 1 Aproksymacja Metody numeryczne
Metody rozwiązania równania Schrödingera
Metody rozwiązania równania Schrödingera Równanie Schrödingera jako algebraiczne zagadnienie własne Rozwiązanie analityczne dla skończonej i nieskończonej studni potencjału Problem rozwiązania równania
KADD Minimalizacja funkcji
Minimalizacja funkcji n-wymiarowych Forma kwadratowa w n wymiarach Procedury minimalizacji Minimalizacja wzdłuż prostej w n-wymiarowej przestrzeni Metody minimalizacji wzdłuż osi współrzędnych wzdłuż kierunków
Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona) f(x) = 0, gdzie. dla n=2 np.
Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona f(x 0, f ( f, f,..., f n gdzie 2 x ( x, x 2,..., x n dla n2 np. f ( x, y 0 g( x, y 0 dla każdej wielowymiarowej rozwinięcie w szereg Taylora
Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych)
Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Funkcja uwikłana (równanie nieliniowe) jest to funkcja, która nie jest przedstawiona jawnym przepisem, wzorem wyrażającym zależność wartości
1 Symulacja procesów cieplnych 1. 2 Algorytm MES 2. 3 Implementacja rozwiązania 2. 4 Całkowanie numeryczne w MES 3. k z (t) t ) k y (t) t )
pis treści ymulacja procesów cieplnych Algorytm ME 3 Implementacja rozwiązania 4 Całkowanie numeryczne w ME 3 ymulacja procesów cieplnych Procesy cieplne opisuje równanie różniczkowe w postaci: ( k x (t)
Zagadnienia brzegowe dla równań eliptycznych
Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta
Metody numeryczne w przykładach
Metody numeryczne w przykładach Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Regionalne Koło Matematyczne 8 kwietnia 2010 r. Bartosz Ziemkiewicz (WMiI UMK) Metody numeryczne w przykładach
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładów Błędy obliczeń Błędy można podzielić na: modelu, metody, wejściowe (początkowe), obcięcia, zaokrągleń..
Równania różniczkowe zwyczajne
Równania różniczkowe zwyczajne Zajmiemy się teraz problemem numerycznego rozwiązywania równań różniczkowych zwyczajnych o postaci: z warunkeim początkowym. Zauważmy że przykładowe równanie różniczkowe
UKŁADY RÓWNAŃ LINIOWYCH
Projekt dofinansowała Fundacja mbanku UKŁADY RÓWNAŃ LINIOWYCH CZĘŚĆ I Układ równań to przynajmniej dwa równania spięte z lewej strony klamrą, np.: x + 0 Każde z równań musi zawierać przynajmniej jedną
ANALIZA MATEMATYCZNA
ANALIZA MATEMATYCZNA TABLICE Spis treści: 1.) Pochodne wzory 2 2.) Całki wzory 3 3.) Kryteria zbieżności szeregów 4 4.) Przybliżona wartość wyrażenia 5 5.) Równanie płaszczyzny stycznej i prostej normalnej
inżynierskie metody numeryczne D10/325, Konsultacje 8:00 9:30
inżynierskie metody numeryczne D10/325, bszafran@agh.edu.pl http://galaxy.uci.agh.edu.pl/~bszafran/ Konsultacje 8:00 9:30 cel przedmiotu: przygotowanie do pracy w zakresie numerycznego modelowania zjawisk
Metody numeryczne Numerical methods. Elektrotechnika I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13
Inżynierskie metody numeryczne II. Konsultacje: wtorek 8-9:30. Wykład
Inżynierskie metody numeryczne II Konsultacje: wtorek 8-9:30 Wykład Metody numeryczne dla równań hiperbolicznych Równanie przewodnictwa cieplnego. Prawo Fouriera i Newtona. Rozwiązania problemów 1D metodą
Ustaliliśmy, że do rozwiązywania równania adwekcji lepiej nadaje się mniej dokładny schemat upwind niż ten z ilorazem centralnym
Ustaliliśmy, że do rozwiązywania równania adwekcji lepiej nadaje się mniej dokładny schemat upwind niż ten z ilorazem centralnym α=vdt/dx upwind: centralny: stabilny, stabilny bezwzględnie stabilny, ale
INFORMATYKA ELEMENTY METOD NUMERYCZNYCH.
INFORMATYKA ELEMENTY METOD NUMERYCZNYCH http://www.infoceram.agh.edu.pl METODY NUMERYCZNE Metody numeryczne zbiór metod rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane
7. CIĄGI. WYKŁAD 5. Przykłady :
WYKŁAD 5 1 7. CIĄGI. CIĄGIEM NIESKOŃCZONYM nazywamy funkcję określoną na zbiorze liczb naturalnych, dodatnich, a wyrazami ciągu są wartości tej funkcji. CIĄGIEM SKOŃCZONYM nazywamy funkcję określoną na
Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Procesy wykładniczego wzrostu i spadku (np populacja bakterii, rozpad radioaktywny, wymiana ciepła) można modelować równaniem
UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne
UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a11x1 a12x2... a1nxn b1 a21x1 a22x2... a2nxn b2... an 1x1 an2x2...
Zajęcia nr 1: Zagadnienia do opanowania:
Laboratorium komputerowe oraz Ćwiczenia rachunkowe z przedmiotu Metody obliczeniowe Prowadzący: L. Bieniasz (semestr letni 018) Zagadnienia do opanowania przed zajęciami, pomocnicze zadania rachunkowe
Rozwiązywanie układów równań liniowych
Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy
Optymalizacja ciągła
Optymalizacja ciągła 4. Metody kierunków poprawy (metoda spadku wzdłuż gradientu) Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 21.03.2019 1 / 41 Plan wykładu Minimalizacja