Analı zis elo ada sok

Wielkość: px
Rozpocząć pokaz od strony:

Download "Analı zis elo ada sok"

Transkrypt

1 Vajda Istva n Neumann Ja nos Informatika Kar O budai Egyetem / 3

2 Polinomok Felhaszna ljuk: Hatva nyfu ggve nyek differencia lha nyadosa. O sszeada sra, kivona sra e s konstanssal valo szorza sra vonatkozo differencia la si szaba lyok. Pe lda: (x + 3x + 6) (x ) + 3(x) + (6) x x + 3 / 3

3 Polinomok Felhaszna ljuk: Hatva nyfu ggve nyek differencia lha nyadosa. O sszeada sra, kivona sra e s konstanssal valo szorza sra vonatkozo differencia la si szaba lyok. Pe lda: (x + 3x + 6) (x ) + 3(x) + (6) x x + 3 / 3

4 To rtkitevo s hatva nyok p f (x) x, ahol p, Z e s >. p p x x f (x) f (x ) lim f (x ) lim x x x x x x x x p p p x x + x x x x lim x x x x x + x x x lim x x x x p +x +x p p x x x x p px x p p p p x x 3 / 3

5 To rtkitevo s hatva nyok p Teha t az f (x) x, ahol p, Z e s > fu ggve ny deriva ltfu ggve nye: p f (x) p x Megjegyze s: Vegyu k e szre, hogy formailag ugyanazt a szaba lyt kell alkalmaznunk, mint a pozitı v ege sz kitevo ju hatva nyok esete ben. Pe lda k: Ha f (x) x 6, akkor f (x) x 6 x x 6 A g (x) x felı rhato g (x) x alakban, ı gy deriva ltfu ggve nye g (x) x. x 4 / 3

6 Raciona lis to rtfu ggve nyek Ke t polinom ha nyadosake nt ı rhato k fel: r (x) r (x) Pe lda: Ha r (x) r (x) p(x) (x) p (x)(x) p(x) (x) (x) 3x +, akkor x + (3x + ) (x + ) (3x + )(x + ) (x + ) 3x x + 6 3(x + ) (3x + ) x (x + ) (x + ) 5 / 3

7 Trigonometrikus fu ggve nyek Kora bban ma r la ttuk, hogy (sin(x)) cos(x). Legyen most f (x) cos x. Ekkor f (x) f (x ) cos(x) cos(x ) lim x x x x x x sin x x sin x+x x + x sin x x lim sin x x sin(x ) x x x x f (x) lim x x Teha t f (x) sin(x). 6 / 3

8 Trigonometrikus fu ggve nyek (tg(x)) (ctg(x)) sin(x) cos(x) cos(x) sin(x) (sin(x)) cos(x) (sin(x))(cos(x)) cos (x) cos (x) + sin (x) cos (x) cos (x) (cos(x)) sin(x) (cos(x))(sin(x)) sin (x) sin (x) cos (x) sin (x) sin (x) 7 / 3

9 Trigonometrikus fu ggve nyek (tg(x)) (ctg(x)) sin(x) cos(x) cos(x) sin(x) (sin(x)) cos(x) (sin(x))(cos(x)) cos (x) cos (x) + sin (x) cos (x) cos (x) (cos(x)) sin(x) (cos(x))(sin(x)) sin (x) sin (x) cos (x) sin (x) sin (x) 7 / 3

10 Ciklometrikus fu ggve nyek Legyen f : Df π, π, f (x) sin(x). Mivel f monoton e s folytonos, tova bba az e rtelmeze si tartoma ny belso pontjaiban differencia lhato e s a deriva ltja sehol sem, eze rt az inverz fu ggve ny differencia la si szaba lya szerint az f (x) arcsin(x) fu ggve ny is differencia lhato a ], [ intervallumban e s (f ) (x ) (arcsin(x)) xx cos(arcsin(x )) f )(x ) x sin (arcsin(x )) (f 8 / 3

11 Ciklometrikus fu ggve nyek Teha t az f (x) arcsin(x) fu ggve ny deriva ltfu ggve nye az (f ) : Df ], [, (f ) (x) x fu ggve ny. Megjegyze sek: A fenti levezete sben a cos(arcsin(x )) kifejeze st jogosan helyettesı tettu k sin (arcsin(x ))-lal, mert π π arcsin(x ), ı gy cos(arcsin(x )) nem vehet fel negatı v e rte ket. Figyelju k meg, hogy az arcsin(x) fu ggve ny a e s pontokban nem differencia lhato, ba r ezekben a pontokban is e rtelmezett. 9 / 3

12 Ciklometrikus fu ggve nyek Teha t az f (x) arcsin(x) fu ggve ny deriva ltfu ggve nye az (f ) : Df ], [, (f ) (x) x fu ggve ny. Megjegyze sek: A fenti levezete sben a cos(arcsin(x )) kifejeze st jogosan helyettesı tettu k sin (arcsin(x ))-lal, mert π π arcsin(x ), ı gy cos(arcsin(x )) nem vehet fel negatı v e rte ket. Figyelju k meg, hogy az arcsin(x) fu ggve ny a e s pontokban nem differencia lhato, ba r ezekben a pontokban is e rtelmezett. 9 / 3

13 Ciklometrikus fu ggve nyek Legyen f : Df [, π], f (x) cos(x). Mivel f monoton e s folytonos, tova bba az e rtelmeze si tartoma ny belso pontjaiban differencia lhato e s a deriva ltja sehol sem, eze rt az inverz fu ggve ny differencia la si szaba lya szerint az f (x) arccos(x) fu ggve ny is differencia lhato a ], [ intervallumban e s (f ) (x ) (arccos(x)) xx sin(arccos(x )) (f f )(x ) p cos (arccos(x )) x Teha t (f ) (x) (arccos(x)) x / 3

14 Ciklometrikus fu ggve nyek h π πi Legyen f : Df,, f (x) tg(x). Mivel f monoton e s folytonos, tova bba az e rtelmeze si tartoma ny minden pontja ban differencia lhato e s a deriva ltja sehol sem, eze rt az inverz fu ggve ny differencia la si szaba lya szerint az f (x) arctg(x) fu ggve ny is differencia lhato a valo s sza mok halmaza n e s (f ) (x ) (arctg(x)) xx (f f )(x ) cos (arctg(x)) Teha t (f ) (x) (arctg(x)) cos (arctg(x)) + tg (arctg(x)) + x + x / 3

15 Ciklometrikus fu ggve nyek Legyen f : Df [, π], f (x) ctg(x). Mivel f monoton e s folytonos, tova bba az e rtelmeze si tartoma ny minden pontja ban differencia lhato e s a deriva ltja sehol sem, eze rt az inverz fu ggve ny differencia la si szaba lya szerint az f (x) arcctg(x) fu ggve ny is differencia lhato a valo s sza mok halmaza n e s (f ) (x ) (arcctg(x)) xx (f f )(x ) sin (arcctg(x)) sin (arcctg(x)) Teha t (f ) (x) (arcctg(x)) + ctg (arcctg(x)) + x + x / 3

16 Egy hata re rte k lim ln( + t) t, t mert lim+ ln( + t) lim ln + u u t t u ln(e), e s v u lim ln( + t) lim ln + lim ln v u u v t ln(e) ln e t 3 / 3

17 Exponencia lis fu ggve ny Legyen f (x) e x e s x. f (x ) (e x ) x (e x ) ex x x lim e x t jelo le ssel e x + t e s x ln( + t), ı gy: t lim t ln( + t) t f (x ) lim t lim ln( + t) t ln( + t) t Teha t az f (x) e x fu ggve ny deriva ltja a helyen. 4 / 3

18 Exponencia lis fu ggve ny Legyen f (x) e x. f (x ) (e x ) xx lim x x e x e x e x x lim e x x x x x x x x x h jelo le ssel: f (x ) lim e x h eh eh e x lim e x h h h Teha t az f (x) e x fu ggve ny deriva ltja ba rmely helyen megegyezik a helyettesı te si e rte ke vel, azaz (e x ) e x. 5 / 3

19 Exponencia lis fu ggve nyek Legyen f (x) ax, ahol a >. a esete n f konstans fu ggve ny, ı gy f (konstans ). Ha a 6, akkor feheszna lva az ax e ln(a) x (a ) e x ln(a) x e x ln(a) o sszefu gge st: e x ln(a) ln(a) ax ln(a) Megjegyze sek: A deriva la s sora n felhaszna ltuk az o sszetett fu ggve ny differencia la si szaba lya t. A kapott ax ln(a) eredme ny e rve nyes az a esetben is. 6 / 3

20 Exponencia lis fu ggve nyek Legyen f (x) ax, ahol a >. a esete n f konstans fu ggve ny, ı gy f (konstans ). Ha a 6, akkor feheszna lva az ax e ln(a) x (a ) e x ln(a) x e x ln(a) o sszefu gge st: e x ln(a) ln(a) ax ln(a) Megjegyze sek: A deriva la s sora n felhaszna ltuk az o sszetett fu ggve ny differencia la si szaba lya t. A kapott ax ln(a) eredme ny e rve nyes az a esetben is. 6 / 3

21 Logaritmus fu ggve nyek Legyen f (x) ax, ahol a > e s a 6. Ekkor f (x) loga x. Mivel f monoton e s folytonos, tova bba az e rtelmeze si tartoma ny minden pontja ban differencia lhato e s a deriva ltja sehol sem, eze rt az inverz fu ggve ny differencia la si szaba lya szerint az f (x) loga x fu ggve ny is differencia lhato a pozitı v valo s sza mok halmaza n e s f (x) (x ) (loga x) xx (f f )(x ) x ln(a) ln(a) aloga x Megjegyze s: Az a e specia lis esetben az (ln(x)) o sszefu gge st x kapjuk. 7 / 3

22 Logaritmus fu ggve nyek Legyen f (x) ax, ahol a > e s a 6. Ekkor f (x) loga x. Mivel f monoton e s folytonos, tova bba az e rtelmeze si tartoma ny minden pontja ban differencia lhato e s a deriva ltja sehol sem, eze rt az inverz fu ggve ny differencia la si szaba lya szerint az f (x) loga x fu ggve ny is differencia lhato a pozitı v valo s sza mok halmaza n e s f (x) (x ) (loga x) xx (f f )(x ) x ln(a) ln(a) aloga x Megjegyze s: Az a e specia lis esetben az (ln(x)) o sszefu gge st x kapjuk. 7 / 3

23 Hiperbolikus fu ggve nyek Legyen f (x) sh(x). Ekkor f (x) (sh(x)) e x e x (e x ) (e x ) e x + e x ch(x) (e x ) + (e x ) e x e x sh(x) Legyen g (x) ch(x). Ekkor g (x) (ch(x)) e x + e x 8 / 3

24 Hiperbolikus fu ggve nyek Legyen f (x) sh(x). Ekkor f (x) (sh(x)) e x e x (e x ) (e x ) e x + e x ch(x) (e x ) + (e x ) e x e x sh(x) Legyen g (x) ch(x). Ekkor g (x) (ch(x)) e x + e x 8 / 3

25 Hiperbolikus fu ggve nyek Legyen f (x) th x. Ekkor f (x) (th(x)) sh(x) ch(x) (sh(x)) ch(x) (sh(x))(ch(x)) ch (x) ch (x) sh (x) ch (x) ch (x) Legyen g (x) cth(x). Ekkor g (x) (cth(x)) ch(x) sh(x) (ch(x)) sh x (ch(x))(sh(x)) sh (x) sh (x) ch (x) sh (x) sh (x) 9 / 3

26 Hiperbolikus fu ggve nyek Legyen f (x) th x. Ekkor f (x) (th(x)) sh(x) ch(x) (sh(x)) ch(x) (sh(x))(ch(x)) ch (x) ch (x) sh (x) ch (x) ch (x) Legyen g (x) cth(x). Ekkor g (x) (cth(x)) ch(x) sh(x) (ch(x)) sh x (ch(x))(sh(x)) sh (x) sh (x) ch (x) sh (x) sh (x) 9 / 3

27 Hiperbolikus fu ggve nyek inverzei Legyen f (x) sh(x), ekkor f (x) arsh(x). Mivel f monoton e s folytonos, tova bba az e rtelmeze si tartoma ny minden pontja ban differencia lhato e s a deriva ltja sehol sem, eze rt az inverz fu ggve ny differencia la si szaba lya szerint az f (x) arsh(x) fu ggve ny is differencia lhato a valo s sza mok halmaza n e s f (x) (x ) (arsh(x)) xx (f f )(x ) ch(arsh(x )) + x + sh (arsh(x )) Teha t (arsh(x)) + x / 3

28 Hiperbolikus fu ggve nyek inverzei f (x) ch(x), ekkor f (x) arch(x). Legyen f : Df [, [, Mivel f monoton e s folytonos, tova bba a ], [ halmazon differencia lhato e s a deriva ltja sehol sem, eze rt az inverz fu ggve ny differencia la si szaba lya szerint az f (x) arch(x) fu ggve ny is differencia lhato az ], [ halmazon e s f (x) (x ) (arch(x)) xx (f f )(x ) sh(arch(x )) x ch (arch(x )) Teha t (arch(x)) x / 3

29 Hiperbolikus fu ggve nyek inverzei Legyen f (x) th(x), ekkor f (x) arth(x). Mivel f monoton e s folytonos, tova bba mindenu tt differencia lhato e s a deriva ltja sehol sem, eze rt az inverz fu ggve ny differencia la si szaba lya szerint az f (x) arth x fu ggve ny is differencia lhato a ], [ intervallumon e s f (x) (x ) (arth(x)) ch (arth(x )) Teha t (arth(x)) xx (f f )(x ) ch (arth(x )) x th (arth(x )) x / 3

30 Hiperbolikus fu ggve nyek inverzei Legyen f (x) cth(x), ekkor f (x) arcth(x). Mivel f monoton e s folytonos a ], [ e s az ], [ intervallumok mindegyike n, tova bba mindenu tt differencia lhato is ezeken az intervallumokon e s a deriva ltja sehol sem, eze rt az inverz fu ggve ny differencia la si szaba lya szerint az f (x) arcth(x) fu ggve ny is differencia lhato a ], [ ], [ halmazon e s f (x) (x ) (arcth(x)) (f f )(x ) sh (arcth(x )) sh (arcth(x )) Teha t (arth(x)) xx x cth (arcth(x )) x 3 / 3

Zadania z analizy matematycznej - sem. II Całki nieoznaczone

Zadania z analizy matematycznej - sem. II Całki nieoznaczone Zadania z analizy matematycznej - sem. II Całki nieoznaczone Definicja 1 (funkcja pierwotna i całka nieoznaczona). Niech f : I R. Mówimy, że F : I R jest funkcją pierwotną funkcji f, jeśli F jest różniczkowalna

Bardziej szczegółowo

Funkcja f jest ograniczona, jeśli jest ona ograniczona z

Funkcja f jest ograniczona, jeśli jest ona ograniczona z FUNKCJE JEDNEJ ZMIENNEJ. PODSTAWOWE POJĘCIA. PODSTAWOWE FUNKCJE ELEMENTARNE R - zbiór liczb rzeczywistych, D R, P R Definicja. Jeżeli każdemu elementowi ze zbioru D jest przyporządkowany dokładnie jeden

Bardziej szczegółowo

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0.

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0. Matematyka ZLic - 3 Pochodne i różniczki funkcji jednej zmiennej Definicja Pochodną funkcji f w punkcie x, nazwiemy liczbę oznaczaną symbolem f x lub df x dx, równą granicy właściwej f x lim h - o ile

Bardziej szczegółowo

Matematická analýza II pro kombinované studium. Konzultace první a druhá. RNDr. Libuše Samková, Ph.D. pf.jcu.cz

Matematická analýza II pro kombinované studium. Konzultace první a druhá. RNDr. Libuše Samková, Ph.D.   pf.jcu.cz Učební texty ke konzultacím předmětu Matematická analýza II pro kombinované studium Konzultace první a druhá RNDr. Libuše Samková, Ph.D. e-mail: lsamkova@ pf.jcu.cz webová stránka: home.pf.jcu.cz/ lsamkova/

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Liczby i funkcje

Zadania z analizy matematycznej - sem. I Liczby i funkcje Zadania z analizy matematycznej - sem. I Liczby i funkcje Definicja 1. Mówimy że: liczba m Z jest dzielnikiem liczby n Z gdy istnieje l Z takie że n = l m. Zapisujemy to symbolem m n; liczba m Z jest wspólnym

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Liczby i funkcje

Zadania z analizy matematycznej - sem. I Liczby i funkcje Zadania z analizy matematycznej - sem. I Liczby i funkcje Definicja 1. Mówimy że: liczba m Z jest dzielnikiem liczby n Z gdy istnieje l Z takie że n = l m. Zapisujemy to symbolem m n; liczba m Z jest wspólnym

Bardziej szczegółowo

Funkcje Andrzej Musielak 1. Funkcje

Funkcje Andrzej Musielak 1. Funkcje Funkcje Andrzej Musielak 1 Funkcje Funkcja liniowa Funkcja liniowa jest postaci f(x) = a x + b, gdzie a, b R Wartość a to tangens nachylenia wykresu do osi Ox, natomiast b to wartość funkcji w punkcie

Bardziej szczegółowo

Analiza Matematyczna MAEW101

Analiza Matematyczna MAEW101 Analiza Matematyczna MAEW0 Wydział Elektroniki Listy zadań nr -7 (część I) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 005 M.Gewert, Z Skoczylas,

Bardziej szczegółowo

Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Fourier transzformáció

Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Fourier transzformáció Matematika Mérnököknek 2. Baran Ágnes, Burai Pál, Noszály Csaba Gyakorlat Fourier transzformáció Baran Ágnes, Burai Pál, Noszály Csaba Matematika Mérnököknek 2. Gyakorlat 1 / 31 Fourier transzformáció

Bardziej szczegółowo

Wykład I. Literatura. Oznaczenia. ot(x 0 ) zbiór wszystkich otoczeń punktu x 0

Wykład I. Literatura. Oznaczenia. ot(x 0 ) zbiór wszystkich otoczeń punktu x 0 Wykład I Literatura Podręczniki 1. G. M. Fitherholz Rachunek różniczkowy i całkowy 2. W. Żakowski Matematyka tom I Zbiory zadań 1. W. Krysicki, L. Włodarski Analiza matematyczna w zadaniach tom I i II

Bardziej szczegółowo

Opracowanie: mgr Jerzy Pietraszko

Opracowanie: mgr Jerzy Pietraszko Analiza Matematyczna Opracowanie: mgr Jerzy Pietraszko Zadanie 1. Oblicz pochodną funkcji: (a) f(x) = x xx (b) f(x) = log sin 4 x cos 4 x (c) f(x) = sin sin x log x 2(2x) (d) f(x) = ( tg ( x + π 2 (e)

Bardziej szczegółowo

Analiza Matematyczna. Przeglad własności funkcji elementarnych

Analiza Matematyczna. Przeglad własności funkcji elementarnych Analiza Matematyczna. Przeglad własności Aleksander Denisiuk denisiuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk 4 marca

Bardziej szczegółowo

Imię i nazwisko... suma punktów... ocena... Grupa 1

Imię i nazwisko... suma punktów... ocena... Grupa 1 Imię i nazwisko suma punktów ocena Grupa 1 Logika Zbiory Funkcje Granice mon i ogr ciągów nr zadania 1 3 4 5 6 7 8 9 10 11 1 13 14 15 B C Punktacja: nr zadania 1 3 4 5 6 7 8 9 10 11 1 13 14 15 5 3 3 B

Bardziej szczegółowo

Funkcje Elementarne. Matematyka. Aleksander Denisiuk. Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza Elblag.

Funkcje Elementarne. Matematyka. Aleksander Denisiuk. Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza Elblag. Matematyka Funkcje Elementarne Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 8-300 Elblag Matematyka p. 1 Funkcje Elementarne Najnowsza wersja tego

Bardziej szczegółowo

Wykład 5. Zagadnienia omawiane na wykładzie w dniu r

Wykład 5. Zagadnienia omawiane na wykładzie w dniu r Wykład 5. Zagadnienia omawiane na wykładzie w dniu 14.11.2018r Definicja (iloraz różnicowy) Niech x 0 R oraz niech funkcja f będzie określona przynajmnniej na otoczeniu O(x 0 ). Ilorazem różnicowym funkcji

Bardziej szczegółowo

Matematyka I. BJiOR Semestr zimowy 2018/2019 Wykład 2

Matematyka I. BJiOR Semestr zimowy 2018/2019 Wykład 2 Matematyka I BJiOR Semestr zimowy 2018/2019 Wykład 2 Definicja funkcji przypomnienie Definicja Dla danych dwóch niepustych zbiorów X, Y przypisanie każdemu elementowi zbioru X dokładnie jednego elementu

Bardziej szczegółowo

Wykład 5. Informatyka Stosowana. 6 listopada Informatyka Stosowana Wykład 5 6 listopada / 28

Wykład 5. Informatyka Stosowana. 6 listopada Informatyka Stosowana Wykład 5 6 listopada / 28 Wykład 5 Informatyka Stosowana 6 listopada 2017 Informatyka Stosowana Wykład 5 6 listopada 2017 1 / 28 Definicja (Funkcja odwrotna) Niech f : X Y będzie różnowartościowa na swojej dziedzinie. Funkcja odwrotna

Bardziej szczegółowo

Analiza Matematyczna MAEW101 MAP1067

Analiza Matematyczna MAEW101 MAP1067 Analiza Matematyczna MAEW MAP67 Wydział Elektroniki Przykłady do Listy Zadań nr 4 Funkcje wielu zmiennych. Pochodne cząstkowe Opracowanie: dr hab. Agnieszka Jurlewicz Przykłady do zadania 4.: Wyznaczyć

Bardziej szczegółowo

Wykład 11. Informatyka Stosowana. Magdalena Alama-Bućko. 18 grudnia Magdalena Alama-Bućko Wykład grudnia / 22

Wykład 11. Informatyka Stosowana. Magdalena Alama-Bućko. 18 grudnia Magdalena Alama-Bućko Wykład grudnia / 22 Wykład 11 Informatyka Stosowana Magdalena Alama-Bućko 18 grudnia 2017 Magdalena Alama-Bućko Wykład 11 18 grudnia 2017 1 / 22 Twierdzenie Granica lim f (x) x x 0 istnieje i wynosi a wtedy i tylko wtedy,

Bardziej szczegółowo

Blok V: Ciągi. Różniczkowanie i całkowanie. c) c n = 1 ( 1)n n. d) a n = 1 3, a n+1 = 3 n a n. e) a 1 = 1, a n+1 = a n + ( 1) n

Blok V: Ciągi. Różniczkowanie i całkowanie. c) c n = 1 ( 1)n n. d) a n = 1 3, a n+1 = 3 n a n. e) a 1 = 1, a n+1 = a n + ( 1) n V. Napisz 4 początkowe wyrazy ciągu: Blok V: Ciągi. Różniczkowanie i całkowanie a) a n = n b) a n = n + 3 n! c) a n = n! n(n + ) V. Oblicz (lub zapisz) c, c 3, c k, c n k dla: a) c n = 3 n b) c n = 3n

Bardziej szczegółowo

x2 + 2x 15 x 2 + 4x ) f(x) = x 2 + 2x 15 x2 + x 12 3) f(x) = x 3 + 3x 2 10x. x 3 + 3x 2 10x x 2 + x 12 10) f(x) = log 2.

x2 + 2x 15 x 2 + 4x ) f(x) = x 2 + 2x 15 x2 + x 12 3) f(x) = x 3 + 3x 2 10x. x 3 + 3x 2 10x x 2 + x 12 10) f(x) = log 2. Příklady k 1 zápočtové písemce Definiční obor funkce Určete definiční obor funkce: x + x 15 1 f(x x + x 1 ( x + x 1 f(x log x + x 15 x + x 1 3 f(x x 3 + 3x 10x ( x 3 + 3x 10x f(x log x + x 1 x3 + 5x 5

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era

Bardziej szczegółowo

Analiza Matematyczna MAEW101 MAP1067

Analiza Matematyczna MAEW101 MAP1067 1 Analiza Matematyczna MAEW101 MAP1067 Wydział Elektroniki Przykłady do Listy Zadań nr 14 Funkcje wielu zmiennych. Płaszczyzna styczna. Ekstrema Opracowanie: dr hab. Agnieszka Jurlewicz Przykłady do zadania

Bardziej szczegółowo

Funkcja rzeczywista zmiennej rzeczywistej. Pochodna (szkic wykªadu)

Funkcja rzeczywista zmiennej rzeczywistej. Pochodna (szkic wykªadu) Funkcja rzeczywista zmiennej rzeczywistej. Pochodna (szkic wykªadu) opracowaªa Gra»yna Ciecierska 1 Denicja pochodnej Denicja. Niech : X R, X R oraz U(x 0, r) X dla pewnego r > 0. Ilorazem ró»nicowym unkcji

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt

Bardziej szczegółowo

1 Funkcje elementarne

1 Funkcje elementarne 1 Funkcje elementarne Funkcje elementarne, które będziemy rozważać to: x a, a x, log a (x), sin(x), cos(x), tan(x), cot(x), arcsin(x), arccos(x), arctan(x), arc ctg(x). 1.1 Funkcje x a. a > 0, oraz a N

Bardziej szczegółowo

Funkcje. Alina Gleska. Instytut Matematyki, Wydział Elektryczny, Politechnika Poznańska

Funkcje. Alina Gleska. Instytut Matematyki, Wydział Elektryczny, Politechnika Poznańska Dr Instytut Matematyki, Wydział Elektryczny, Politechnika Poznańska Definicja Funkcja f ze zbioru X w zbiór Y nazywamy relację, która każdemu elementowi x X przyporzadkowuje dokładnie jeden element y Y.

Bardziej szczegółowo

1. Definicja granicy właściwej i niewłaściwej funkcji.

1. Definicja granicy właściwej i niewłaściwej funkcji. V. Granica funkcji jednej zmiennej. 1. Definicja granicy właściwej i niewłaściwej funkcji. Definicja 1.1. (sąsiedztwa punktu i sąsiedztwa nieskończoności) Niech x 0 R, r > 0, a, b R. Definiujemy S(x 0,

Bardziej szczegółowo

Analiza Matematyczna MAT1317

Analiza Matematyczna MAT1317 Analiza Matematyczna MAT37 Wydziaª Informatyki i Zarz dzania Listy zada«nr -0 cz ±ciowo na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykªady i zadania, GiS, Wrocªaw 008 M.Gewert,

Bardziej szczegółowo

(4) (b) m. (c) (d) sin α cos α = sin 2 k = sin k sin k. cos 2 m = cos m cos m. (g) (e)(f) sin 2 x + cos 2 x = 1. (h) (f) (i)

(4) (b) m. (c) (d) sin α cos α = sin 2 k = sin k sin k. cos 2 m = cos m cos m. (g) (e)(f) sin 2 x + cos 2 x = 1. (h) (f) (i) (3) (e) sin( θ) sin θ cos( θ) cos θ sin(θ + π/) cos θ cos(θ + π/) sin θ sin(θ π/) cos θ cos(θ π/) sin θ sin(θ ± π) sin θ cos(θ ± π) cos θ sin(θ ± π) sin θ cos(θ ± π) cos θ (f) cos x cos y (g) sin x sin

Bardziej szczegółowo

Funkcje trygonometryczne

Funkcje trygonometryczne Funkcje trygonometryczne Wartości funkcji trygonometrycznych kątów 30 o, 45 o, 60 o Kąt α [ o ] 30 o 45 o 60 o sin α ½ 2 / 2 3 / 2 cos α 3 / 2 2 / 2 ½ tg α 3 / 3 1 3 ctg α 3 1 3 / 3 Związki między funkcjami

Bardziej szczegółowo

MATEMATYKA. Skrypt dla studentów kierunków przyrodniczych

MATEMATYKA. Skrypt dla studentów kierunków przyrodniczych MATEMATYKA Skrypt dla studentów kierunków przyrodniczych Małgorzata Graczyk Poznań, 015 Wydawnictwo Rafał Zieliński i Recenzent: prof. dr hab. Bronisław Ceranka Małgorzata Graczyk c ISBN 978-83-940663-0-7

Bardziej szczegółowo

Zadanie 1. Z definicji wyprowadź wzory na pochodne funkcji. Przypominam definicję pochodnej f (x)

Zadanie 1. Z definicji wyprowadź wzory na pochodne funkcji. Przypominam definicję pochodnej f (x) Tekst na niebiesko jest komentarzem lub treścią zadania. Zadanie. Z definicji wyprowadź wzory na pocodne funkcji. Przypominam definicję pocodnej f (x) f (x) lim f(x + ) f(x) przy czym, aby pocodna istniała,

Bardziej szczegółowo

Rachunek różniczkowy i całkowy 2016/17

Rachunek różniczkowy i całkowy 2016/17 Rachunek różniczkowy i całkowy 26/7 Zadania domowe w pakietach tygodniowych Tydzień 3-7..26 Zadanie O. Czy dla wszelkich zbiorów A, B i C zachodzą następujące równości: (A B)\C = (A\C) (B\C), A\(B\C) =

Bardziej szczegółowo

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008 Zajęcia fakultatywne z matematyki 008 WYRAŻENIA ARYTMETYCZNE I ALGEBRAICZNE. Wylicz b z równania a) ba + a = + b; b) a = b ; b+a c) a b = b ; d) a +ab =. a b. Oblicz a) [ 4 (0, 5) ] + ; b) 5 5 5 5+ 5 5

Bardziej szczegółowo

1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci

1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci Zebraª do celów edukacyjnych od wykªadowców PK, z ró»nych podr czników Maciej Zakarczemny 1 Przypomnienie wiadomo±ci ze szkoªy ±redniej Rozwi zywanie prostych równa«i nierówno±ci dotycz cych funkcji elementarnych,

Bardziej szczegółowo

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na

Bardziej szczegółowo

Lista 2 - Granica. 2n d) dn = ( 1 1 ) n 2. 2n+1 n; 1+x

Lista 2 - Granica. 2n d) dn = ( 1 1 ) n 2. 2n+1 n; 1+x Lista - Logika. Każde z poniższych twierdzeń wyraź w postaci p = q. Wskaż założenie i tezę twierdzenia. A. W trójkącie prostokątnym suma kwadratów przyprostokątnych jest równa kwadratowi przeciwprostokątnej.

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

FUNKCJE WIELU ZMIENNYCH

FUNKCJE WIELU ZMIENNYCH FUNKCJE WIELU ZMIENNYCH 1. Wyznaczyć i narysować dziedziny naturalne podanych funkcji: 4 x 2 y 2 ; (b) g(x, y) = e y x 2 1 ; (c) u(x, y) = arc sin xy; (d) v(x, y) = sin(x 2 + y 2 ); (e) w(x, y) = x sin

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j),

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j), ELEKTROTECHNIKA Semestr Rok akad. / 5 ZADANIA Z MATEMATYKI Zestaw. Przedstaw w postaci algebraicznej liczby zespolone: (3 + j)(5 j) 3 j +j (5 + j) (3 + j) 3. Narysuj zbiory punktów na płaszczyźnie: +j

Bardziej szczegółowo

Rachunek różniczkowy i całkowy 2016/17

Rachunek różniczkowy i całkowy 2016/17 Rachunek różniczkowy i całkowy 206/7 Zadania na ćwiczenia w pakietach tygodniowych Tydzień 3-7.0.206 Elementy teorii zbiorów. Zbiory oznaczamy dużymi literami łacińskimi (mogą być indeksy): A, B, C, D,....

Bardziej szczegółowo

Analiza matematyczna

Analiza matematyczna Analiza matematyczna Stanisław Jaworski Katedra Ekonometrii i Statystyki Zakład Statystyki Funkcje Podstawowe pojęcia Funkcje Definicja (Funkcja) Funkcją określoną na zbiorze X R o wartościach w zbiorze

Bardziej szczegółowo

1 Funkcja wykładnicza i logarytm

1 Funkcja wykładnicza i logarytm 1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres

Bardziej szczegółowo

1 Funkcja wykładnicza i logarytm

1 Funkcja wykładnicza i logarytm 1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych dr Krzysztof yjewski Informatyka I rok I 0 in» 12 stycznia 2016 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0 y 0 )

Bardziej szczegółowo

Materiały do ćwiczeń z matematyki. 3 Rachunek różniczkowy funkcji rzeczywistych jednej zmiennej

Materiały do ćwiczeń z matematyki. 3 Rachunek różniczkowy funkcji rzeczywistych jednej zmiennej Materiały do ćwiczeń z matematyki Kierunek: chemia Specjalność: podstawowa 3 Rachunek różniczkowy funkcji rzeczywistych jednej zmiennej 3.1 Podstawowe wzory i metody różniczkowania Definicja. Niech funkcja

Bardziej szczegółowo

Podstawy nauk przyrodniczych Matematyka Wstęp

Podstawy nauk przyrodniczych Matematyka Wstęp Podstawy nauk przyrodniczych Matematyka Wstęp Katarzyna Kluzek i Adrian Silesian Zakład Genetyki Molekularnej Człowieka tel. 61 829 58 33 adrian.silesian@amu.edu.pl katarzyna.kluzek@amu.edu.pl Pokój 1.117

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 1

ANALIZA MATEMATYCZNA 1 ANALIZA MATEMATYCZNA 1 Marian Gewert Zbigniew Skoczylas ANALIZA MATEMATYCZNA 1 Kolokwia i egzaminy Wydanie siedemnaste zmienione GiS Oficyna Wydawnicza GiS Wrocław 2018 Marian Gewert Wydział Matematyki

Bardziej szczegółowo

f(x) f(x 0 ) i f +(x 0 ) := lim = f(x 0 + x) f(x 0 ) wynika ci gªo± funkcji w punkcie x 0. W ka»dym przypadku zachodzi:

f(x) f(x 0 ) i f +(x 0 ) := lim = f(x 0 + x) f(x 0 ) wynika ci gªo± funkcji w punkcie x 0. W ka»dym przypadku zachodzi: Pochodna funkcji Def 1 Pochodn wªa±ciw funkcji f w punkcie x 0 nazywamy granic f (x 0 ) := lim o ile granica ta istnieje i jest wªa±ciwa Funkcj f nazywamy wtedy ró»niczkowaln Przy zaªo»eniu,»e f jest ci

Bardziej szczegółowo

Funkcją sinus kąta α nazywamy stosunek przyprostokątnej leżącej naprzeciw kąta α do przeciwprostokątnej w trójkącie prostokątnym, i opisujemy jako:

Funkcją sinus kąta α nazywamy stosunek przyprostokątnej leżącej naprzeciw kąta α do przeciwprostokątnej w trójkącie prostokątnym, i opisujemy jako: 1. Trygonometria 1.1Wprowadzenie Jednym z podstawowych działów matematyki który wykorzystywany jest w rozwiązywaniu problemów technicznych jest trygonometria. W szkole średniej wprowadzone zostały podstawowe

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 1

ANALIZA MATEMATYCZNA 1 ANALIZA MATEMATYCZNA Marian Gewert Zbigniew Skoczylas ANALIZA MATEMATYCZNA Kolokwia i egzaminy Wydanie szesnaste uzupełnione GiS Oficyna Wydawnicza GiS Wrocław 204 Marian Gewert Instytut Matematyki i Informatyki

Bardziej szczegółowo

Równania różniczkowe zwyczajne. 1 Rozwiązywanie równań różniczkowych pierwszego rzędu

Równania różniczkowe zwyczajne. 1 Rozwiązywanie równań różniczkowych pierwszego rzędu Wydział Matematyki Stosowanej Zestaw zadań nr 13 Akademia Górniczo-Hutnicza w Krakowie WFiIS, informatyka stosowana, I rok Elżbieta Adamus 17 maja 2018r. Równania różniczkowe zwyczajne 1 Rozwiązywanie

Bardziej szczegółowo

Obliczanie pochodnej funkcji. Podstawowe wzory i twierdzenia. Autorzy: Tomasz Zabawa

Obliczanie pochodnej funkcji. Podstawowe wzory i twierdzenia. Autorzy: Tomasz Zabawa Obliczanie pocodnej funkcji. Podstawowe wzory i twierdzenia Autorzy: Tomasz Zabawa 207 ./matjax/matjax.js?configtex-ams-mml_htmlormml"> Obliczanie pocodnej funkcji. Podstawowe wzory i twierdzenia Autor:

Bardziej szczegółowo

Rachunek ró»niczkowy funkcji jednej zmiennej

Rachunek ró»niczkowy funkcji jednej zmiennej Lista Nr 5 Rachunek ró»niczkowy funkcji jednej zmiennej 5.0. Obliczanie pochodnej funkcji Pochodne funkcji podstawowych. f() = α f () = α α. f() = log a f () = ln a '. f() = ln f () = 3. f() = a f () =

Bardziej szczegółowo

I Rok LOGISTYKI: wykªad 2 Pochodna funkcji. iloraz ró»nicowy x y x

I Rok LOGISTYKI: wykªad 2 Pochodna funkcji. iloraz ró»nicowy x y x I Rok LOGISTYKI: wykªad 2 Pochodna funkcji Niech f jest okre±lona w Q(x 0, δ) i x Q(x 0, δ). Oznaczenia: x = x x 0 y = y y 0 = f(x 0 + x) f(x 0 ) y x = f(x 0 + x) f(x 0 ) iloraz ró»nicowy x y x = tgβ,

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Matematyka Poziom rozszerzony Listopad 0 Zadania zamknięte Za każdą poprawną odpowiedź zdający otrzymuje punkt. Poprawna odpowiedź Wskazówki do rozwiązania.

Bardziej szczegółowo

Analiza Matematyczna MAEW101

Analiza Matematyczna MAEW101 Analiza Matematyczna MAEW Wydział Elektroniki Listy zadań nr 8-4 (część II) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 5 M.Gewert, Z Skoczylas,

Bardziej szczegółowo

WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA1, lista zadań 1

WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA1, lista zadań 1 WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA, lista zadań. Dla podanych ciągów napisać wzory określające wskazane wyrazy tych ciągów: a) a n = n 3n +, a n+, b) b n = 3

Bardziej szczegółowo

MATERIAŁY DO ZAJEĆ WYRÓWNAWCZYCH Z MATEMATYKI

MATERIAŁY DO ZAJEĆ WYRÓWNAWCZYCH Z MATEMATYKI Projekt Wiedza i kompetencje z fizyki, chemii i informatyki na potrzeby gospodarki - Wiking Opracowanie: Aleksandra Wrońska MATERIAŁY DO ZAJEĆ WYRÓWNAWCZYCH Z MATEMATYKI Wydział Fizyki, Astronomii i Informatyki

Bardziej szczegółowo

Podstawy analizy matematycznej II

Podstawy analizy matematycznej II Podstawy analizy matematycznej II Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań

Bardziej szczegółowo

Pochodne i ich zastosowania

Pochodne i ich zastosowania Maciej Grzesiak Pochodne i ich zastosowania. Pochodna.. Iloraz różnicowy Niechx 0 Riniechfunkcjay=fx)będzieokreślonawpewnymotoczeniupunktux 0. Niech oznacza przyrost argumentu xmoże być ujemny!). Wtedy

Bardziej szczegółowo

Blok III: Funkcje elementarne. e) y = 1 3 x. f) y = x. g) y = 2x. h) y = 3x. c) y = 3x + 2. d) y = x 3. c) y = x. d) y = x.

Blok III: Funkcje elementarne. e) y = 1 3 x. f) y = x. g) y = 2x. h) y = 3x. c) y = 3x + 2. d) y = x 3. c) y = x. d) y = x. Blok III: Funkcje elementarne III. Narysuj wykres funkcji: a) y = x y = x y = x y = x III. Narysuj wykres funkcji: a) y = x + y = 4 x III. Znajdź miejsca zerowe funkcji: a) y = 6 x y = x e) y = x f) y

Bardziej szczegółowo

Szereg Taylora Javier de Lucas. f k) (x 0 ) (x x 0 ) k + R n (x, x 0 ), k! (x x 0 ) k k!

Szereg Taylora Javier de Lucas. f k) (x 0 ) (x x 0 ) k + R n (x, x 0 ), k! (x x 0 ) k k! Szereg Taylora Javier de Lucas Zadanie 1. Wyka»,»e e x > 1 + x dla ka»dego x 0. Rozwiazanie: Funkcja f : x R e x R jest niesko«czenie wiele razy ró»niczkowalna w R. Z tego powodu, dla ka»dych x, x 0 R

Bardziej szczegółowo

< > Sprawdzić prawdziwość poniższych zdań logicznych (odpowiedź uzasadnić) oraz podać ich zaprzeczenia:

< > Sprawdzić prawdziwość poniższych zdań logicznych (odpowiedź uzasadnić) oraz podać ich zaprzeczenia: Zadania na zajęcia z przedmiotu Repetytorium z matematyki elementarnej, GiK, 06/7 Zdania logiczne Funkcje zdaniowe i kwantyfikatory Ocenić wartość logiczną zdania (odpowiedź uzasadnić): < Nieprawda, że

Bardziej szczegółowo

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12 Matematyka I Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12 Egzamin Termin: 28.01, godz. 10.15-11.45, sala 309 3 pytania teoretyczne 2 zadania wybór pytań i wybór zadań

Bardziej szczegółowo

Használati utasítás Instrukcja obs?ugi Návod k pouïití Návod na obsluhu

Használati utasítás Instrukcja obs?ugi Návod k pouïití Návod na obsluhu Használati utasítás Instrukcja obs?ugi Návod k pouïití Návod na obsluhu 136LiC Olvassa el figyelmesen a használati utasítást, és gyoezoedjön meg róla, hogy megértette azt, mieloett a gépet használatba

Bardziej szczegółowo

1 Pochodne wyższych rzędów

1 Pochodne wyższych rzędów Pochodne wyższych rzędów Pochodną rzędu drugiego lub drugą pochodną funkcji y = f(x) nazywamy pochodną pierwszej pochodnej tej funkcji. Analogicznie definiujemy pochodne wyższych rzędów, jako pochodne

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Granice funkcji, asymptoty i ciągłość

Zadania z analizy matematycznej - sem. I Granice funkcji, asymptoty i ciągłość Zadania z analizy matematycznej - sem. I Granice funkcji asymptoty i ciągłość Definicja sąsiedztwo punktu. Niech 0 a b R r > 0. Sąsiedztwem o promieniu r punktu 0 nazywamy zbiór S 0 r = 0 r 0 0 0 + r;

Bardziej szczegółowo

RACHUNEK RÓŻNICZKOWY I CAŁKOWY SEMESTR LETNI 2017/2018 Materiał na ćwiczenia w pakietach tygodniowych

RACHUNEK RÓŻNICZKOWY I CAŁKOWY SEMESTR LETNI 2017/2018 Materiał na ćwiczenia w pakietach tygodniowych RACHUNEK RÓŻNICZKOWY I CAŁKOWY SEMESTR LETNI 207/208 Materiał na ćwiczenia w pakietach tygodniowych Zadania zgrupowane są w pakietach jednotygodniowych i dzielą się na trzy klasy:. Zadania, które muszą

Bardziej szczegółowo

Analiza matematyczna 1 zadania z odpowiedziami

Analiza matematyczna 1 zadania z odpowiedziami Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Elementy logiki, zbiory, funkcje Funkcje trygonometryczne 3 3 Ciągi 4 4 Granice funkcji, ciągłość 5 5 Rachunek różniczkowy

Bardziej szczegółowo

2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2.

2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2. 2. ZASTOSOWANIA POCHODNYCH. Koniecznie trzeba znać: twierdzenia o ekstremach (z wykorzystaniem pierwszej i drugiej pochodnej), Twierdzenie Lagrange a, Twierdzenie Taylora (z resztą w postaci Peano, Lagrange

Bardziej szczegółowo

Egzamin z matematyki dla I roku Biochemii i Biotechnologii

Egzamin z matematyki dla I roku Biochemii i Biotechnologii Egzamin z matematyki dla I roku Biochemii i Biotechnologii 9..04 Zadanie (0 punktów). Rozwiązać układ + 3y z = 3 5y + z = a 5 ay + 3z = 3 dla a = oraz dla a = 4. Zadanie (0 punktów). Wyznaczyć dziedzinę,

Bardziej szczegółowo

MATERIAŁY DO ZAJEĆ WYRÓWNAWCZYCH Z MATEMATYKI

MATERIAŁY DO ZAJEĆ WYRÓWNAWCZYCH Z MATEMATYKI Projekt Wiedza i kompetencje z fizyki, chemii i informatyki na potrzeby gospodarki - Wiking Opracowanie: Aleksandra Wrońska MATERIAŁY DO ZAJEĆ WYRÓWNAWCZYCH Z MATEMATYKI Wydział Fizyki, Astronomii i Informatyki

Bardziej szczegółowo

Informacje pomocnicze:

Informacje pomocnicze: dr Krzysztof yjewski Informatyka; S-I 0.in». 7 grudnia 06 Rachunek caªkowy funkcji jednej zmiennej. Caªka nieoznaczona. przydatne wzory: Informacje pomocnicze: Lp. Wzór Uwagi. dx = x c. adx = ax c 3. x

Bardziej szczegółowo

o d ro z m ia r u /p o w y ż e j 1 0 c m d ł c m śr e d n ic y 5 a ) o ś r e d n ic y 2,5 5 c m 5 b ) o śr e d n ic y 5 c m 1 0 c m 8

o d ro z m ia r u /p o w y ż e j 1 0 c m d ł c m śr e d n ic y 5 a ) o ś r e d n ic y 2,5 5 c m 5 b ) o śr e d n ic y 5 c m 1 0 c m 8 T A B E L A O C E N Y P R O C E N T O W E J T R W A Ł E G O U S Z C Z E R B K U N A Z D R O W IU R o d z a j u s z k o d z e ń c ia ła P r o c e n t t r w a łe g o u s z c z e r b k u n a z d r o w iu

Bardziej szczegółowo

Analiza matematyczna 1 zadania z odpowiedziami

Analiza matematyczna 1 zadania z odpowiedziami Analiza matematyczna zadania z odpowiedziami Maciej Burnecki Spis treści I Elementy logiki, zbiory, funkcje 3 Zadania................................ 3....................... 4 II Funkcje trygonometryczne

Bardziej szczegółowo

Lista nr 1 - Liczby zespolone

Lista nr 1 - Liczby zespolone Lista nr - Liczby zespolone Zadanie. Obliczyć: a) ( 3 i) 3 ( 6 i ) 8 c) (+ 3i) 8 (i ) 6 + 3 i + e) f*) g) ( 3 i ) 77 ( ( 3 i + ) 3i 3i h) ( + 3i) 5 ( i) 0 i) i ( 3 i ) 4 ) +... + ( 3 i ) 0 Zadanie. Przedstawić

Bardziej szczegółowo

1. Przedstaw w postaci algebraicznej liczby zespolone: 2. Narysuj zbiory punktów na pªaszczy¹nie:

1. Przedstaw w postaci algebraicznej liczby zespolone: 2. Narysuj zbiory punktów na pªaszczy¹nie: ZADANIA Z MATEMATYKI Zestaw. Przedstaw w postaci algebraicznej liczby zespolone: (3 + j)(5 j) 3 j +j (5 + j) (3 + j) 3. Narysuj zbiory punktów na pªaszczy¹nie: +j +j 3 Re z = Im z = 5 z ( j) = z j z +

Bardziej szczegółowo

f x f x(x, y) (1.1) f(x, y, z) = xyz (1.5)

f x f x(x, y) (1.1) f(x, y, z) = xyz (1.5) 1 Pochodne cząstkowo Pochodną cząstkową funkcji dwóch zmiennych z = f(x, y) względem zmiennej x oznaczamy i definiujemy jako granicę f(x + h, y) f(x, y) lim h 0 h natomiast pochodną cząstkową względem

Bardziej szczegółowo

Wykład 2 Zmienne losowe i ich rozkłady

Wykład 2 Zmienne losowe i ich rozkłady Wykład 2 Zmienne losowe i ich rozkłady Magdalena Frąszczak Wrocław, 11.10.2017r Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe Doświadczenie

Bardziej szczegółowo

MATrix LABoratory. A C21 delta tvx444 omega_zero. hxx J23 aaa g4534 Fx_38

MATrix LABoratory. A C21 delta tvx444 omega_zero. hxx J23 aaa g4534 Fx_38 MATLAB wprowadzenie MATrix LABoratory MATLAB operuje tylko na jednym typie zmiennych na macierzach. Liczby (skalary) są szczególnymi przypadkami macierzy o wymiarze 1 1, (zawierającymi jeden wiersz i jedną

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa Pochodna funkcji

Analiza matematyczna i algebra liniowa Pochodna funkcji Analiza matematyczna i algebra liniowa Pochodna funkcji Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje:

Bardziej szczegółowo

Analiza Matematyczna Ćwiczenia

Analiza Matematyczna Ćwiczenia Analiza Matematyczna Ćwiczenia Spis treści Ciągi i ich własności Granica ciągu Granica funkcji 4 4 Ciągłość funkcji 6 Szeregi 8 6 Pochodna funkcji 7 Zastosowania pochodnej funkcji 8 Badanie przebiegu zmienności

Bardziej szczegółowo

22 Pochodna funkcji definicja

22 Pochodna funkcji definicja 22 Pochodna funkcji definicja Rozważmy funkcję f : (a, b) R, punkt x 0 b = +. (a, b), dopuszczamy również a = lub Definicja 33 Mówimy, że funkcja f jest różniczkowalna w punkcie x 0, gdy istnieje granica

Bardziej szczegółowo

WBiA Architektura i Urbanistyka. 1. Wykonaj dziaªania na macierzach: Które z iloczynów: A 2 B, AB 2, BA 2, B 2 3, B = 1 2 0

WBiA Architektura i Urbanistyka. 1. Wykonaj dziaªania na macierzach: Które z iloczynów: A 2 B, AB 2, BA 2, B 2 3, B = 1 2 0 WBiA Architektura i Urbanistyka Matematyka wiczenia 1. Wykonaj dziaªania na macierzach: 1) 2A + C 2) A C T ) B A 4) B C T 5) A 2 B T 1 0 2 dla A = 1 2 1 1 0 B = ( 1 2 1 0 1 ) C = 1 2 1 0 2 1 0 1 2. Które

Bardziej szczegółowo

t) x 2 a)x 2 4x + 3 < 0 b) 3x 2 21x 30 > 0 c) x > 1 x d)2 x 2x + 3 < 1 e) > 1 < 1 m)3 n)2

t) x 2 a)x 2 4x + 3 < 0 b) 3x 2 21x 30 > 0 c) x > 1 x d)2 x 2x + 3 < 1 e) > 1 < 1 m)3 n)2 Zestaw I - Równania i nierówności kwadratowe logarytmiczne i wyk ladnicze.. Rozwi azać równania: a) 2 + 6 = 0 b) 2 + 3 4 = 0 c) 2 2 + 6 = 0 d) 2 4 = 0 e)2 3 + 2 3 + 6 = 0 f) 4 4 3 + 2 4 = 0 g)2 2 2 = 0

Bardziej szczegółowo

Analiza Matematyczna I

Analiza Matematyczna I Analiza Matematyczna I Informatyka, WPPT, Politechnika Wrocławska Wprowadzenie (2 godziny ćwiczeń) Pokaż, że dla dowolnych liczb rzeczywistych a i b zachodzą nierówności:. a b = a b, 2. a + b a + b, 3.

Bardziej szczegółowo

MATEMATYKA I SEMESTR WSPIZ (PwZ) 1. Ciągi liczbowe

MATEMATYKA I SEMESTR WSPIZ (PwZ) 1. Ciągi liczbowe MATEMATYKA I SEMESTR WSPIZ (PwZ). Ciągi liczbowe.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony) liczbom naturalnym.

Bardziej szczegółowo

g liczb rzeczywistych (a n ) spe lnia warunek

g liczb rzeczywistych (a n ) spe lnia warunek . Czy jest prawda, że a) R y R z R y + yz + = 0 ; b) R y R z R y + yz + 0 ; c) R y R z R y + yz + = 0 ; d) R y R z R y + yz + 0? 2. Czy jest prawdziwa nierówność a) ctg > ; b) tg < cos ; c) cos < sin ;

Bardziej szczegółowo

Kurs Start plus poziom zaawansowany, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1.

Kurs Start plus poziom zaawansowany, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1. Projekt Fizyka Plus nr POKL.04.0.0-00-034/ współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Kapitał Ludzki Kurs Start plus poziom zaawansowany,

Bardziej szczegółowo

Analiza matematyczna 2 zadania z odpowiedziami

Analiza matematyczna 2 zadania z odpowiedziami Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści I Całki niewłaściwe pierwszego rodzaju II Całki niewłaściwe drugiego rodzaju 5 III Szeregi liczbowe 6 IV Szeregi potęgowe

Bardziej szczegółowo

u l. W i d o k 8 t e l. 2 2 6 9 0 6 9 6 9

u l. W i d o k 8 t e l. 2 2 6 9 0 6 9 6 9 T A D E U S Z R O L K E J U T R O B Ę D Z I E L E P I E J T o m o r r o w W i l l B e B e t t e r K a w i a r n i a F a f i k, K r a k ó w, 1 9 9 2 F a f i k C a f e, C r a c o w, 1 9 9 2 W ł a c i c i

Bardziej szczegółowo

Wstęp do chemii kwantowej - laboratorium. Zadania

Wstęp do chemii kwantowej - laboratorium. Zadania Wstęp do chemii kwantowej - laboratorium. Zadania 2 października 2012 1 Wstęp Używanie maximy jako kalkulatora Zadanie 1 1. Oblicz 2+2*2 2. Oblicz 18769 3. Oblicz 2 10 4. Oblicz 7/8 i 7.0/8.0 5. Oblicz

Bardziej szczegółowo

Scenariusz lekcji: Przekształcania wykresów funkcji trygonometrycznych

Scenariusz lekcji: Przekształcania wykresów funkcji trygonometrycznych 1 Scenariusz lekcji: Przekształcania wykresów funkcji trygonometrycznych 1. Cele lekcji a) Wiadomości Uczeń wie: jakie są kolejne etapy podczas składania wykresów funkcji trygonometrycznych, jakie są własności

Bardziej szczegółowo

MATEMATYKA 8. Funkcje trygonometryczne kąta ostrego (α < 90 ). Stosunki długości boków trójkąta prostokątnego nazywamy funkcjami trygonometrycznymi.

MATEMATYKA 8. Funkcje trygonometryczne kąta ostrego (α < 90 ). Stosunki długości boków trójkąta prostokątnego nazywamy funkcjami trygonometrycznymi. INSTYTUT MEDICUS Kurs przygotowawczy do matury i rekrutacji na studia medyczne Rok 017/018 www.medicus.edu.pl tel. 501 38 39 55 MATEMATYKA 8 FUNKCJE TRYGONOMETRYCZNE. Funkcje trygonometryczne kąta ostrego

Bardziej szczegółowo