Robert Kowalczyk. Zbiór zadań z teorii miary i całki
|
|
- Liliana Wysocka
- 5 lat temu
- Przeglądów:
Transkrypt
1 Robert Kowalczyk Zbiór zadań z teorii miary i całki
2 2 Zadanie 1 Pokazać, że poniższe dwie definicje σ-ciała M są równoważne: (i) Rodzinę M podzbiorów przestrzeni X nazywamy σ-ciałem jeżeli zachodzą następujące warunki: (1) M, (2) jeżeli A M, to X \ A M, (3) jeżeli A n M, n N, to A n M. n N (ii) Rodzinę M podzbiorów przestrzeni X nazywamy σ-ciałem, jeżeli zachodzą następujące warunki: (1) M, (2) jeżeli A M, to X \ A M, (3) jeżeli A n M, n N, to A n M. n N Zadanie 2 Niech X = 1, 2, 7, 11}. Sprawdzić, czy rodzina M jest σ-ciałem w X, jeżeli (i) M =, X, 1, 2}, 7, 11}} (ii) M =, X, 1}, 2}, 2, 7, 11}, 1, 2, 7}, 1, 11}, 2, 7}} (iii) M =, X} Zadanie 3 Czy istnieje σ-ciało M złożone z (i) dokładnie jednego elementu, (ii) dokładnie dwóch elementów, (iii) dokładnie trzech elementów, (iv) dokładnie czterech elementów, (v) dokładnie pięciu elementów. Zadanie 4 Niech X będzie dowolnym zbiorem skończonym, a M będzie σ-ciałem w X. Co można powiedziec o liczbie elementów σ-ciała M? Zadanie 5 Niech M będzie rodziną wszystkich takich zbiorów A N, że co najmniej jeden ze zbiorów A, N \ A jest skończony. (i) Sprawdzić, czy rodzina M jest σ-ciałem w N. (ii) Sprawdzić, czy rodzina M jest ciałem w N.
3 Zadanie 6 Niech M będzie rodziną wszystkich takich zbiorów A R, że co najmniej jeden ze zbiorów A, R \ A jest przeliczalny. Pokazać, że M jest σ-ciałem w R. Zadanie 7 Niech X, Y będą dwoma dowolnymi zbiorami, M będzie dowolnym σ-ciałem w X, f : X Y oraz niech R = B Y : f 1 (B) M}. Pokazać, że R jest σ-ciałem w Y. Zadanie 8 Niech X będzie dowolnym zbiorem, a M 1 i M 2 będą dwoma dowolnymi σ-ciałami w X. Czy (i) M 1 M 2, (ii) M 1 M 2, (iii) M 1 \ M 2, są σ-ciałami w X? Zadanie 9 Niech X = N. Czy rodzina M jest σ-ciałem w X, gdy: (i) M = A X : 2 / A} N}, (ii) M = A X : 2 A} }, Zadanie 10 Niech X = 1, 2, 3, 4}. Wyznaczyć najmniejsze σ-ciało w X zawierające rodzinę R, gdzie: (i) R = 1}, 4}}, (ii) R = 1}, 2, 3}}, (iii) R = 1, 2}, 3, 4}}, (iv) R = 1}, 2, 3}, 3, 4}}. Zadanie 11 Niech X = R. Wyznaczyć najmniejsze σ-ciało w X zawierające rodzinę R, gdzie: (i) R = (, a) : a R}, (ii) R = (a, b) : a, b R}, 3
4 4 Zadanie 12 Niech X = N. Wyznaczyć najmniejsze σ-ciało w X zawierające rodzinę R, gdzie: (i) R = 1, 2, 3, 4, 5, 6, 7, 8, 9}, 2, 4, 6, 8, 10, 12,... }}, (ii) R = A N : A = 1}, gdzie A - oznacza moc zbioru A. Zadanie 13 Niech X będzie dowolnym zbiorem. Dla dowolnego zbioru A X połóżmy 0 gdy A =, µ(a) = + gdy A. Pokazać, że µ jest miarą na σ-ciele M = 2 X. Zadanie 14 Nech X = 1, 2, 3,..., 10}. Dla dowolnego zbioru A X połóżmy µ(a) = A. Pokazać, że funkcja µ określona na σ-ciele M = 2 X jest miarą. Zadanie 15 Dla dowolnego zbioru A N połóżmy 0 gdy zbiór A jest skończony, µ(a) = + gdy zbiór A jest nieskończony. (i) Sprawdzić, czy funkcja µ określona na σ-ciele M = 2 N jest miarą. (ii) Sprawdzić, czy funkcja µ określona na σ-ciele M = 2 N jest skończenie addytywna. Zadanie 16 Dla dowolnego zbioru A R połóżmy 0 gdy zbiór A jest przeliczalny, µ(a) = + gdy zbiór A jest nieprzeliczalny. Sprawdzić, czy funkcja µ określona na σ-ciele M = 2 R jest miarą. Zadanie 17 Pokazać, że funkcja µ określona na σ-ciele M zdefiniowanym w zadaniu 6 wzorem 0 gdy zbiór A jest przeliczalny, µ(a) = 1 gdy zbiór R\A jest nieprzeliczalny, jest miarą.
5 5 Zadanie 18 Dla dowolnego zbioru A R połóżmy µ(a) = 0 gdy 1 / A, 2 gdy 1 A. Pokazać, że µ określona na σ-ciele M = 2 R jest miarą. Zadanie 19 Niech X = R. Dla dowolnego zbioru A X połóżmy 0 gdy 1 / A i 1 / A, µ(a) = 1 gdy ( 1 A i 1 / A) lub ( 1 / A i 1 A), 2 gdy 1 A i 1 A. Pokazać, że µ określona na σ-ciele M = 2 R jest miarą. Zadanie 20 Dla dowolnego zbioru A N połóżmy µ(a) = n N 1 2 n, A N. (i) Pokazać, że µ jest miarą określoną na σ-ciele M = 2 N, (ii) Pokazać, że zbiór wartości funkcji µ pokrywa się z przedziałem [0, 1], (iii) Czy z tego, że µ(a) = µ(b) wynika, że A = B? Zadanie 21 Niech X = 1, 2, 3, 4}, M =, X, 3}, 1, 2, 4}} oraz niech funkcja µ : M [0, + ] będzie dana wzorem (i) Czy M jest σ-ciałem? (ii) Czy µ jest miarą? (iii) Czy µ jest miarą zupełną? µ(a) = 0, A M. Zadanie 22 Niech M będzie dowolnym σ-ciałem w X, µ będzie miarą określoną na M, a A i B będą dowolnymi elementami M takimi, że A B =. Pokazać, że µ(a B) + µ(a B) = µ(a) + µ(b).
6 6 Zadanie 23 Niech (X, M, µ) będzie przestrzenią mierzalną. Pokazać, że jeśli A, B M oraz µ(b) = 0, to µ(a B) = µ(a\b) = µ(a). Zadanie 24 Uogólnić wynik z zadania 22 na dowolną skończoną ilość zbiorów. Zadanie 25 Niech (X, M, µ) będzie przestrzenią mierzalną, µ(x) = 1 oraz niech ciąg A n } elementów σ-ciała M będzie taki, że µ(a n ) = 1, n N. Pokazać, że µ( A n ) 1. n N Zadanie 26 Dla dowolnego zbioru A N połóżmy µ (A) = 0 gdy A =, 1 gdy A. (i) Pokazać, że µ jest miarą zewnętrzną, ale nie jest miarą. (ii) Wyznaczyć rodzinę wszystkich zbiorów mierzalnych w sensie Carathéodory ego. Zadanie 27 Dla dowolnego zbioru A N połóżmy 0 gdy A =, µ (A) = 1 gdy A i A N, 2 gdy A = N. (i) Pokazać, że µ jest miarą zewnętrzną. (ii) Wyznaczyć rodzinę wszystkich zbiorów mierzalnych w sensie Carathéodory ego. Zadanie 28 Niech µ (A) = 0 gdy A jest zbiorem przeliczalnym, 1 gdy A jest zbiorem nieprzeliczalnym. Wykazać, że µ jest miarą zewnętrzną i wyznaczyć rodzinę wszystkich zbiorów mierzalnych w sensie Carathéodory ego.
7 7 Zadanie 29 Połóżmy µ A gdzie A jest zbiorem skończonym, (A) = 1+A 1 gdy A jest zbiorem nieskończonym. Pokazać, że µ jest miarą zewnętrzną i wyznaczyć rodzinę wszystkich zbiorów mierzalnych w sensie Carathéodory ego. Zadanie 30 Dla dowolnego zbioru A N połóżmy 0 gdy A =, µ (A) = 1 gdy A i A - skończony, + gdy A - nieskończony. Czy µ jest miarą zewnętrzną? Jeżeli jest, to wyznaczyć rodzinę wszystkich zbiorów mierzalnych w sensie Carathéodory ego. Zadanie 31 Wykazać, że jeśli µ jest miarą zewnętrzną w X oraz A, B X i µ (B) = 0, to µ(a B) = µ(a\b) = µ(a). Zadanie 32 Niech X = N i niech M = A N : A skończony} B N : B skończony i N\B nieskończony}. Czy M jest σ-ciałem w X? Zadanie 33 Sprawdzić, czy poniższe podzbiory R są (L) mierzalne. Jeżeli tak, to wyznaczyć ich jednowymiarową miarę Lebesgue a λ 1. (i) A =, (ii) x}, x R, (iii) x 1, x 2,..., x n }, x i N, i 1, 2,..., n}, (iv) (0, 1), (v) [ 1, 1], (vi) (1, + ), (vii) Q, (viii) R\Q,
8 8 (ix) R. Zadanie 34 Niech dany będzie ciąg funkcyjny f n (x)}, gdzie f n (x) = n sin ( x ), n N, x R. π Czy zbiór tych x R dla których ciąg ten jest (i) ograniczony, (ii) zbieżny, jest (L) mierzalny? Jeżeli tak, to znaleźć miary Lebesgue a λ 1 tych zbiorów. Zadanie 35 Sprawdzić, czy poniższe podzbiory R 2 są (L) mierzalne. Jeżeli tak, to wyznaczyć ich dwuwymiarową miarę Lebesgue a λ 2. (i) (x, y)}, x, y R, (ii) [1, 2] [ 1, 1], (iii) Q Q, (iv) (x, 3) R 2 : x R}, (v) (x, x) R 2 : x R}, (vi) (x, y) R 2 : x y Q}. Zadanie 36 Skonstruować na prostej liczbowej R zbiór nieprzeliczalny i miary Lebesgue a 0. Wskazówka: Zbiór Cantora C ma wymagane własności. Zadanie 37 Skonstruować na prostej liczbowej R zbiór nie mierzalny w sensie Lebesgue a. Wskazówka: Zbiór Vitaliego V ma wymagane własności. Zadanie 38 Pokazać, że (i) każdy przedział domknięty, lewostronie domknięty, prawostronnie domknięty, otwarty w R jest zbiorem zarówno typu G δ jak i typu F σ,
9 (ii) suma dwóch zbiorów typu G δ jest zbiorem typu G δ, a iloczyn dwóch zbiorów typu F σ jest zbiorem typu F σ, (iii) zbiór wszystkich liczb wymiernych jest zbiorem typu F σ, a zbiór wszystkich liczb niewymiernych jest zbiorem typu G δ, (iv) istnieją zbiory które nie są ani typu F σ ani typu G δ. Zadanie 39 Niech M będzie σ-ciałem przestrzeni X, A X i niech f : A R będzie funkcją mierzalną, tj. A M i x A : f(x) < c} M dla każdego c R. Pokazać, że dla każdego c R zachodzą następujące warunki: (i) x A : f(x) c} M, (ii) x A : f(x) > c} M, (iii) x A : f(x) c} M, (iv) x A : f(x) = c} M, (v) x A : f(x) < + } M, (vi) x A : f(x) > } M, (vii) x A : f(x) = } M, (viii) x A : f(x) = + } M. Zadanie 40 Niech funkcja f : R R będzie dana wzorem f(x) = x. Czy funkcja f jest mierzalna względem σ-ciała M, gdzie (i) M = 2 R, (ii) M jest σ-ciałem zbiorów (L) mierzalnych na prostej liczbowej R. Zadanie 41 Pokazać, że każda z funkcji f : R R, gdzie: (i) f(x) = x 2 1, (ii) f(x) = x 2 + 1, 9
10 10 (ii) f(x) = arctan(x), jest (L) mierzalna. Zadanie 42 Pokazać, że: (i) funkcja Dirichleta (ii) funkcja Signum (iii) funkcja Cantora są (L) mierzalne. Zadanie 43 Podać przykład funkcji niemierzalnej. Zadanie 44 Niech V będzie zbiorem Vitaliego, a funkcja f : R R będzie dana wzorem x gdy x V, f(x) = x gdy x R\V. Czy funkcja f jest (L) mierzalna? Zadanie 45 Niech funkcja f : [0, 1] R + 0} będzie dana wzorem f(x) = 0 gdy x Q, 1 gdy x R\Q. Pokazać, że funkcja f jest funkcją prostą nieujemną oraz obliczyć fdµ. Zadanie 46 Niech f : [0, 1] R + 0} będzie dana wzorem f(x) = [0,1] 0 gdy x C, 1 gdy x R\C, gdzie C jest zbiorem Cantora. Pokazać, że funkcja f jest funkcją prostą nieujemną oraz obliczyć fdµ. [0,1]
11 Zadanie 47 Niech f : [0, 1] R + 0} będzie dana wzorem f(x) = x. Obliczyć z definicji fdµ. [0,1] Zadanie 48 Niech funkcja f : [0, 1] R + 0} będzie dana wzorem f(x) = gdzie C jest zbiorem Cantora. Obliczyć x gdy x [0, 1]\C, 1 gdy x C, [0,1] fdµ. Zadanie 49 Udowodnić, że ciąg funkcyjny f n } zadany wzorem f n (x) = exp (cos n (πx)) jest prawie wszędzie zbieżny w przestrzeni (R, L 1, λ 1 ). Wyznaczyć jego granicę punktową. Zadanie 50 Udowodnić, że ciąg funkcyjny f n } zadany wzorem f n (x) = sin n (x 3 nx) jest prawie wszędzie zbieżny w przestrzeni (R, L 1, λ 1 ). Wyznaczyć jego granicę punktową. 11
Rodzinę spełniającą trzeci warunek tylko dla sumy skończonej nazywamy ciałem (algebrą) w zbiorze X.
1 σ-ciała Definicja 1.1 (σ - ciało) σ - ciałem (σ - algebrą) w danym zbiorze X (zwanym przestrzenią) nazywamy rodzinę M pewnych podzbiorów zbioru X, spełniającą trzy warunki: 1 o M; 2 o jeśli A M, to X
Zadania do Rozdziału X
Zadania do Rozdziału X 1. 2. Znajdź wszystkie σ-ciała podzbiorów X, gdy X = (i) {1, 2}, (ii){1, 2, 3}. (b) Znajdź wszystkie elementy σ-ciała generowanego przez {{1, 2}, {2, 3}} dla X = {1, 2, 3, 4}. Wykaż,
G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28
G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28 1.9 Zadania 1.9.1 Niech R będzie pierścieniem zbiorów. Zauważyć, że jeśli A, B R to A B R i A B R. Sprawdzić, że (R,, ) jest także pierścieniem w sensie
1 Relacje i odwzorowania
Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X
1. Struktury zbiorów 2. Miara 3. Miara zewnętrzna 4. Miara Lebesgue a 5. Funkcje mierzalne 6. Całka Lebesgue a. Analiza Rzeczywista.
Literatura P. Billingsley, Miara i prawdopodobieństwo, PWN, Warszawa 1997, P. R. Halmos, Measure theory, Springer-Verlag, 1994, W, Kołodziej, naliza matematyczna, PWN, Warszawa 1978, S. Łojasiewicz, Wstęp
Teoria miary i całki
Teoria miary i całki Spis treści 1 Wstęp 3 2 lgebra zbiorów 5 3 Pierścienie, ciała, σ ciała zbiorów. 7 3.1 Definicja pierścienia ciała i σ ciała............... 7 3.2 Pierścień, ciało i σ ciało generowane
Teoria miary. WPPT/Matematyka, rok II. Wykład 5
Teoria miary WPPT/Matematyka, rok II Wykład 5 Funkcje mierzalne Niech (X, F) będzie przestrzenią mierzalną i niech f : X R. Twierdzenie 1. NWSR 1. {x X : f(x) > a} F dla każdego a R 2. {x X : f(x) a} F
7. Miara, zbiory mierzalne oraz funkcje mierzalne.
7. Miara, zbiory mierzalne oraz funkcje mierzalne. Funkcję rzeczywistą µ nieujemną określoną na ciele zbiorów S będziemy nazywali miarą, gdy dla dowolnego ciągu A 0, A 1,... zbiorów rozłącznych należących
Wykłady ostatnie. Rodzinę P podzbiorów przestrzeni X nazywamy σ - algebrą, jeżeli dla A, B P (2) A B P, (3) A \ B P,
Wykłady ostatnie CAŁKA LBSGU A Zasadnicza różnica koncepcyjna między całką Riemanna i całką Lebesgue a polega na zamianie ról przestrzeni wartości i przestrzeni argumentów przy konstrukcji sum górnych
7 Twierdzenie Fubiniego
M. Beśka, Wstęp do teorii miary, wykład 7 19 7 Twierdzenie Fubiniego 7.1 Miary produktowe Niech i będą niepustymi zbiorami. Przez oznaczmy produkt kartezjański i tj. zbiór = { (x, y : x y }. Niech E oraz
n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = :
4. Zbiory borelowskie. Zbiór wszystkich podzbiorów liczb naturalnych będziemy oznaczali przez ω. Najmniejszą topologię na zbiorze ω, w której zbiory {A ω : x A ω \ y}, gdzie x oraz y są zbiorami skończonymi,
Wykład 10. Stwierdzenie 1. X spełnia warunek Borela wtedy i tylko wtedy, gdy każda scentrowana rodzina zbiorów domkniętych ma niepusty przekrój.
Wykład 10 Twierdzenie 1 (Borel-Lebesgue) Niech X będzie przestrzenią zwartą Z każdego pokrycia X zbiorami otwartymi można wybrać podpokrycie skończone Dowód Lemat 1 Dla każdego pokrycia U przestrzeni ośrodkowej
Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?
Zadania z Analizy Funkcjonalnej I - 1 1. Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi? a) X = R, d(x, y) = arctg x y ; b) X = R n, d(x, y) = x 1 y 1 + x 2 y 2 + max i 3 x i
2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11
M. Beśka, Wstęp do teorii miary, rozdz. 2 11 2 Rodziny zbiorów 2.1 Algebry i σ - algebry zbiorów Niech X będzie niepustym zbiorem. Rodzinę indeksowaną zbiorów {A i } i I 2 X nazywamy rozbiciem zbioru X
IMIĘ NAZWISKO... grupa C... sala Egzamin ELiTM I
IMIĘ NAZWISKO............................ grupa C... sala 10... Egzamin ELiTM I 02.02.15 1. 2. 3. 4.. 1. (8 pkt.) Niech X a,b = {(x, y) R 2 : (x b) 2 + (y 1 b )2 a 2 } dla a, b R, a > 0, b 0. Wyznaczyć:
Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa
Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa 2.1. σ ciało (algebra) zdarzeń Katarzyna Rybarczyk-Krzywdzińska losowe Zdarzenie losowe to pewien podzbiór przestrzeni zdarzeń
Teoria miary. Matematyka, rok II. Wykład 1
Teoria miary Matematyka, rok II Wykład 1 NAJBLIŻSZY CEL: Nauczyć się mierzyć wielkość zbiorów. Pierwsze przymiarki: - liczność (moc) zbioru - słabo działa dla zbiorów nieskończonych: czy [0, 1] powinien
1 Przestrzenie metryczne
1 Przestrzenie metryczne Definicja 1.1 (metryka) Niech będzie niepustym zbiorem. Funkcję d: R + nazywamy metryką, jeśli spełnia warunki: 1 o d(x, y) = d(y, x) (symetria) 2 o d(x, y) + d(y, z) d(x, z) (nierówność
A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.
M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A
Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi
M. Beśka, Wstęp do teorii miary, Dodatek 158 10 Dodatek 10.1 Przestrzenie metryczne Niech X będzie niepustym zbiorem. Funkcję d : X X [0, ) spełniającą dla x, y, z X warunki (i) d(x, y) = 0 x = y, (ii)
F t+ := s>t. F s = F t.
M. Beśka, Całka Stochastyczna, wykład 1 1 1 Wiadomości wstępne 1.1 Przestrzeń probabilistyczna z filtracją Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną i niech F = {F t } t 0 będzie rodziną
Podstawy metod probabilistycznych. dr Adam Kiersztyn
Podstawy metod probabilistycznych dr Adam Kiersztyn Przestrzeń zdarzeń elementarnych i zdarzenia losowe. Zjawiskiem lub doświadczeniem losowym nazywamy taki proces, którego przebiegu i ostatecznego wyniku
Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki.
3. Funkcje borelowskie. Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. (1): Jeśli zbiór Y należy do rodziny F, to jego dopełnienie X
f(t) f(x), D f(x) = lim sup t x oraz D f(x) = lim inf
9. Różniczkowanie. Jeśli f jest funkcją rzeczywistą, to granice D + f(x) = lim sup t x + f(t) f(x), D f(x) = lim sup t x t x f(t) f(x), t x f(t) f(x) f(t) f(x) D + f(x) = lim inf oraz D f(x) = lim inf
Funkcje mierzalne, całka z funkcji nieujemnej, twierdzenia o przechodzeniu do granicy pod znakiem całki
Funkcje mierzalne, całka z funkcji nieujemnej, twierdzenia o przechodzeniu do granicy pod znakiem całki Ostatnio poprawiłem 25 stycznia 2015 r. Nadeszła pora na całkowanie. Pierwsza rzecza jest zdefiniowanie
jest ciągiem elementów z przestrzeni B(R, R)
Wykład 2 1 Ciągi Definicja 1.1 (ciąg) Ciągiem w zbiorze X nazywamy odwzorowanie x: N X. Dla uproszczenia piszemy x n zamiast x(n). Przykład 1. x n = n jest ciągiem elementów z przestrzeni R 2. f n (x)
I kolokwium ze Wstępu do Teorii Miary
I kolokwium ze Wstępu do Teorii Miary 17.11.05 Grupa A 1. (a)udowodnić,żelim(a n B n ) lima n limb n. (b) Znaleźć granice górną i dolną ciągu zbiorów: ( A n = ( 1) n 1,1 ( 1)n 1 ) [3,4+( 1) n ). n n a)x
Metody probabilistyczne
Metody probabilistyczne 2. Aksjomatyczna definicja prawdopodobieństwa Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 10.10.2017 1 / 33 Klasyczna definicja prawdopodobieństwa
1 Działania na zbiorach
M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej
Prawdopodobieństwo i statystyka
Wykład V: Zmienne losowe i ich wartości oczekiwane 25 października 2017 Definicja zmiennej losowej Definicja Zmienne losowa to charakterystyka liczbowa wyniku eksperymentu losowego. Zmienne losowa na przestrzeni
Uwaga 1. Zbiory skończone są równoliczne wtedy i tylko wtedy, gdy mają tyle samo elementów.
Logika i teoria mnogości Wykład 11 i 12 1 Moce zbiorów Równoliczność zbiorów Def. 1. Zbiory X i Y są równoliczne (X ~ Y), jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy, że ustala równoliczność
Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5
Dystrybucje Marcin Orchel Spis treści 1 Wstęp 1 1.1 Dystrybucje................................... 1 1.2 Pochodna dystrybucyjna............................ 3 1.3 Przestrzenie...................................
WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki
WYKŁAD Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2006 Spis treści 1. CIĄGI LICZBOWE 2 1.1. Własności ciągów liczbowych o wyrazach
Wykłady... b i a i. i=1. m(d k ) inf
Wykłady... CŁKOWNIE FUNKCJI WIELU ZMIENNYCH Zaczniemy od konstrukcji całki na przedziale domkniętym. Konstrukcja ta jest, w gruncie rzeczy, powtórzeniem definicji całki na odcinku domkniętym w R 1. Przedziałem
Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?
Zadania z Analizy Funkcjonalnej I - 1 1. Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?. a) X = R, x = arctg x ; b) X = R n, d(x, y) = x 1 y 1 + x 2 y 2 + max i 3 x i y i ;
Równoliczność zbiorów
Logika i Teoria Mnogości Wykład 11 12 Teoria mocy 1 Równoliczność zbiorów Def. 1. Zbiory X i Y nazywamy równolicznymi, jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy,że ustala równoliczność
Dekompozycje prostej rzeczywistej
Dekompozycje prostej rzeczywistej Michał Czapek michal@czapek.pl www.czapek.pl 26 X AD MMXV Streszczenie Celem pracy jest zwrócenie uwagi na ciekawą różnicę pomiędzy klasami zbiorów pierwszej kategorii
. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:
9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym
Informacja o przestrzeniach Sobolewa
Wykład 11 Informacja o przestrzeniach Sobolewa 11.1 Definicja przestrzeni Sobolewa Niech R n będzie zbiorem mierzalnym. Rozważmy przestrzeń Hilberta X = L 2 () z iloczynem skalarnym zdefiniowanym równością
PRAWDOPODOBIEŃSTWO. ZMIENNA LOSOWA. TYPY ROZKŁADÓW
PRAWDOPODOBIEŃSTWO. ZMIENNA LOSOWA. TYPY ROZKŁADÓW Rachunek prawdopodobieństwa (probabilitis - prawdopodobny) zajmuje się badaniami pewnych prawidłowości (regularności) zachodzących przy wykonywaniu doświadczeń
Kombinowanie o nieskończoności. 3. Jak policzyć nieskończone materiały do ćwiczeń
Kombinowanie o nieskończoności. 3. Jak policzyć nieskończone materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 22 marzec 2018 Szybkie przypomnienie z wykładu Prezentacja
O pewnych klasach funkcji prawie okresowych (niekoniecznie ograniczonych)
(niekoniecznie ograniczonych) Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza, Poznań Będlewo, 25-30 maja 2015 Funkcje prawie okresowe w sensie Bohra Definicja Zbiór E R nazywamy względnie
Zadania z Analizy Funkcjonalnej I* - 1
Zadania z Analizy Funkcjonalnej I* - 1 1. Która z następujących przestrzeni jest przestrzenią Banacha w normie supremum: C(R); C ogr (R) przestrzeń funkcji ciągłych ograniczonych; C zw (R) przestrzeń funkcji
PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA
PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA 1. Trójkę (Ω, F, P ), gdzie Ω, F jest σ-ciałem podzbiorów Ω, a P jest prawdopodobieństwem określonym na F, nazywamy przestrzenią probabilistyczną. 2. Rodzinę F
Informacja o przestrzeniach Hilberta
Temat 10 Informacja o przestrzeniach Hilberta 10.1 Przestrzenie unitarne, iloczyn skalarny Niech dana będzie przestrzeń liniowa X. Załóżmy, że każdej parze elementów x, y X została przyporządkowana liczba
Wykład 7: Szeregi liczbowe i potęgowe. S 1 = a 1 S 2 = a 1 + a 2 S 3 = a 1 + a 2 + a 3. a k
Wykład 7: Szeregi liczbowe i potęgowe. Definicja 1. Niech (a n ) - ustalony ciąg liczbowy. Określamy nowy ciąg: S 1 = a 1 S 2 = a 1 + a 2 S 3 = a 1 + a 2 + a 3. S n =. Ciąg sum częściowych (S n ) nazywamy
Zbiory liczbowe widziane oczami topologa
Zbiory liczbowe widziane oczami topologa Aleksander Błaszczyk Instytut Matematyki Uniwersytetu Ślaskiego Brenna, 25 wrzesień 2018 Aleksander Błaszczyk (UŚ) Zbiory liczbowe widziane oczami topologa Brenna,
(b) Suma skończonej ilości oraz przekrój przeliczalnej ilości zbiorów typu G α
FUNKCJE BORELOWSKIE Rodzinę F podzbiorów zbioru X (tzn. F X) będziemy nazywali ciałem gdy spełnione są warunki: (1) Jeśli zbiór Y F, to dopełnienie X \ Y też należy do rodziny F. (2) Jeśli S F jest skończoną
Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe
Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.0. Rozkłady zmiennych losowych, dystrybuanta. Katarzyna Rybarczyk-Krzywdzińska Wprowadzenie Rozważmy eksperymenty 1 gra Bolka w ruletkę w kasynie;
zbiorów domkniętych i tak otrzymane zbiory domknięte ustawiamy w ciąg. Oznaczamy
5. Funkcje 1 klasy Baire a. Pod koniec XIX i początkiem XX wieku kilku matematyków zajmowało się problemami dotyczącymi klasyfikacji funkcji borelowskich: między innymi R. Baire, E. Borel, H. Lebesgue
1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.
1 Zbiory 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1.3 Pokazać, że jeśli A, B oraz (A B) (B A) = C C, to A = B = C. 1.4 Niech {X t } będzie rodziną niepustych
Teoria miary WPPT IIr. semestr zimowy 2009 Wyk lady 6 i 7. Mierzalność w sensie Carathéodory ego Miara Lebesgue a na prostej
Teoria miary WPPT IIr. semestr zimowy 2009 Wyk lady 6 i 7. Mierzalność w sensie Carathéodory ego Miara Lebesgue a na prostej 27-28/10/09 ZBIORY MIERZALNE WZGLȨDEM MIARY ZEWNȨTRZNEJ Niech µ bȩdzie miar
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. L. Kowalski, Statystyka, 2005
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. Literatura: Marek Cieciura, Janusz Zacharski, Metody probabilistyczne w ujęciu praktycznym, L. Kowalski, Statystyka, 2005 R.Leitner, J.Zacharski, "Zarys matematyki
Wykład 1: Przestrzeń probabilistyczna. Prawdopodobieństwo klasyczne. Prawdopodobieństwo geometryczne.
Rachunek prawdopodobieństwa MAP1151 Wydział Elektroniki, rok akad. 2011/12, sem. letni Wykładowca: dr hab. A. Jurlewicz Wykład 1: Przestrzeń probabilistyczna. Prawdopodobieństwo klasyczne. Prawdopodobieństwo
Grzegorz Plebanek Miara i całka skrypt do wykładu Funkcje rzeczywiste
Instytut Matematyczny Uniwersytetu Wrocławskiego Grzegorz Plebanek Miara i całka skrypt do wykładu Funkcje rzeczywiste c Grzegorz Plebanek (2009) wersja γ (2013) Spis treści 0 Wiadomości wstępne 1 0.1
SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
Wstęp do Matematyki (4)
Wstęp do Matematyki (4) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Liczby kardynalne Jerzy Pogonowski (MEG) Wstęp do Matematyki (4) Liczby kardynalne 1 / 33 Wprowadzenie
Elementy Teorii Miary i Całki
Elementy Teorii Miary i Całki c Lech Drewnowski Wydział Matematyki i Informatyki Uniwersytet im. dama Mickiewicza w Poznaniu Poznań 2008 http://main2.amu.edu.pl/ drewlech/dydaktyka.html http://main2.amu.edu.pl/
PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek
PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Piotr Wiącek ROZKŁAD PRAWDOPODOBIEŃSTWA Jest to miara probabilistyczna określona na σ-ciele podzbiorów borelowskich pewnej przestrzeni metrycznej. σ-ciało podzbiorów
MNRP r. 1 Aksjomatyczna definicja prawdopodobieństwa (wykład) Grzegorz Kowalczyk
MNRP 18.03.2019r. Grzegorz Kowalczyk 1 Aksjomatyczna definicja prawdopodobieństwa (wykład) Definicja (σ - ciało) Niech Ω - dowolny zbiór. Rodzinę F P (Ω), gdzie P (Ω) jest rodziną wszystkich podzbiorów
Matematyka i Statystyka w Finansach. Rachunek Różniczkowy
Rachunek Różniczkowy Ciąg liczbowy Link Ciągiem liczbowym nieskończonym nazywamy każdą funkcję a która odwzorowuje zbiór liczb naturalnych N w zbiór liczb rzeczywistych R a : N R. Tradycyjnie wartość a(n)
Zdzisław Dzedzej. Politechnika Gdańska. Gdańsk, 2013
Zdzisław Dzedzej Politechnika Gdańska Gdańsk, 2013 1 PODSTAWY 2 3 Definicja. Przestrzeń metryczna (X, d) jest zwarta, jeśli z każdego ciągu {x n } w X można wybrać podciąg zbieżny {x nk } w X. Ogólniej
2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ.
Zadania z Procesów Stochastycznych 1 1. Udowodnij, że z prawdopodobieństwem 1 trajektorie procesu Poissona są niemalejące, przyjmują wartości z Z +, mają wszystkie skoki równe 1 oraz dążą do nieskończoności.
Jednowymiarowa zmienna losowa
1 Jednowymiarowa zmienna losowa Przykład Doświadczenie losowe - rzut kostką do gry. Obserwujemy ilość wyrzuconych oczek. Teoretyczny model eksperymentu losowego - przestrzeń probabilistyczna (Ω, S, P ),
Ciągłość funkcji f : R R
Ciągłość funkcji f : R R Definicja 1. Otoczeniem o promieniu δ > 0 punktu x 0 R nazywamy zbiór O(x 0, δ) := (x 0 δ, x 0 + δ). Otoczeniem prawostronnym o promieniu δ > 0 punktu x 0 R nazywamy zbiór O +
2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ.
Zadania z Procesów Stochastycznych 1 1. Udowodnij, że z prawdopodobieństwem 1 trajektorie procesu Poissona są niemalejące, przyjmują wartości z Z +, mają wszystkie skoki równe 1 oraz dążą do nieskończoności.
Analiza Funkcjonalna - Zadania
Analiza Funkcjonalna - Zadania 1 Wprowadzamy następujące oznaczenia. K oznacza ciało liczb rzeczywistych lub zespolonych. Jeżeli T jest dowolnym zbiorem niepustym, to l (T ) = {x : E K : x funkcja ograniczona}.
Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń
Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Leszek Skrzypczak 1. Niech E = {x [0, 1] : x = k 2 n k = 1, 2,... 2 n, n = 1, 2, 3,...} Wówczas: (a) Dla dowolnych liczb wymiernych p, q [0,
Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru
Prawdopodobieństwo i statystyka
Wykład IV: 27 października 2014 Współczynnik korelacji Brak korelacji a niezależność Definicja współczynnika korelacji Współczynnikiem korelacji całkowalnych z kwadratem zmiennych losowych X i Y nazywamy
Ośrodkowość procesów, proces Wienera. Ośrodkowość procesów, proces Wienera Procesy Stochastyczne, wykład, T. Byczkowski,
Procesy Stochastyczne, wykład, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 27 luty, 2012 Ośrodkowość procesów Dalej zakładamy, że (Ω, Σ, P) jest zupełną przestrzenią miarową. Definicja.
Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa
Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa Rozdział 2.3: Przykłady przestrzeni probabilistycznych. Katarzyna Rybarczyk-Krzywdzińska Przestrzeń probabilistyczna Przestrzeń
Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe
Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.0. Rozkłady zmiennych losowych, dystrybuanta. Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2016/2017 Wprowadzenie Przykład 1 Bolek, Lolek i Tola
Funkcje. Oznaczenia i pojęcia wstępne. Elementy Logiki i Teorii Mnogości 2015/2016
Funkcje Elementy Logiki i Teorii Mnogości 2015/2016 Oznaczenia i pojęcia wstępne Niech f X Y będzie relacją. Relację f nazywamy funkcją, o ile dla dowolnego x X istnieje y Y taki, że (x, y) f oraz dla
PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω)
PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) określonych na tej samej przestrzeni probabilistycznej
Wykład 21 Funkcje mierzalne. Kostrukcja i własności całki wzglȩdem miary przeliczalnie addytywnej
Wykład 2 Funkcje mierzalne. Kostrukcja i własności całki wzglȩdem miary przeliczalnie addytywnej czȩść II (opracował: Piotr Nayar) Definicja 2.. Niech (E, E) bȩdzie przestrzenia mierzalna i niech λ : E
Metoda kategorii Baire a w przestrzeniach metrycznych zupełnych
Metoda kategorii Baire a w przestrzeniach metrycznych zupełnych Michał Czapek michal@czapek.pl www.czapek.pl 8 IX AD MMXIII Streszczenie Celem pracy jest zaprezentowanie jednej z metod dowodzenia istnienia
Analiza matematyczna 2, cze ść dziesia ta
Analiza matematyczna 2, cze ść dziesia ta Informacja ogólna dla tych, którzy jeszcze ze mna chca rozmawiać o stopniach: zdecydowana wie kszość twierdzeń w matematyce, w analizie w szczególności, sk lada
AM1.2 zadania 14. Zadania z numerami opatrzonymi gwiazdka
AM.2 zadania 4 Tekst poprawiony 24 kwietnia 206 r. Zadania 26, 28, 29, 3, 33, 34, 35, 36, 40, 42, 62 i inne z wykrzyknikiem obok numeru sa obowiazkowe! Zadania z numerami opatrzonymi gwiazdka można napisać
1. Definicja granicy właściwej i niewłaściwej funkcji.
V. Granica funkcji jednej zmiennej. 1. Definicja granicy właściwej i niewłaściwej funkcji. Definicja 1.1. (sąsiedztwa punktu i sąsiedztwa nieskończoności) Niech x 0 R, r > 0, a, b R. Definiujemy S(x 0,
RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA
Wydział: WiLiŚ, Transport, sem.2 dr Jolanta Dymkowska RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA Przestrzeń probabilistyczna Modelem matematycznym (tj. teoretycznym, wyidealizowanym,
Rozdział 6. Ciągłość. 6.1 Granica funkcji
Rozdział 6 Ciągłość 6.1 Granica funkcji Podamy najpierw dwie definicje granicy funkcji w punkcie i pokażemy ich równoważność. Definicja Cauchy ego granicy funkcji w punkcie. Niech f : X R, gdzie X R oraz
Podciała, podciała generowane przez zbiór, rozszerzenia ciał.
Podciała, podciała generowane przez zbiór, rozszerzenia ciał. Definicja Niech F będzie ciałem. Podzbiór L H zbioru F nazywamy podciałem ciała F (piszemy L ă F ), gdy pl, `æ LˆL, æ LˆL q jest ciałem. Jeżeli
Matematyka. rok akademicki 2008/2009, semestr zimowy. Konwersatorium 1. Własności funkcji
. Własności funkcji () Wyznaczyć dziedzinę funkcji danej wzorem: y = 2 2 + 5 y = +4 y = 2 + (2) Podać zbiór wartości funkcji: y = 2 3, [2, 5) y = 2 +, [, 4] y =, [3, 6] (3) Stwierdzić, czy dana funkcja
Repetytorium z przedmiotu Miara i prawdopodobieństwo dla kierunku Informatyka 2003/2004. Adam Jakubowski
Repetytorium z przedmiotu Miara i prawdopodobieństwo dla kierunku Informatyka 2003/2004 Adam Jakubowski Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Toruń, styczeń 2004 Spis treści
1 Elementy analizy funkcjonalnej
M. Beśka, Dodatek 1 1 Elementy analizy funkcjonalnej 1.1 Twierdzenia o reprezentacji Zaczniemy od znanego twierdzenia Riesza Twierdzenie 1.1 (Riesz) Niech będzie zwartą przestrzenią metryczną i załóżmy,
3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B
1. Dla macierzy a) A = b) A = c) A = d) A = 3 1 + i 1 i i i 0 i i 0 1 + i 1 i 0 0 0 0 1 0 1 0 1 + i 1 i Wyznaczyć macierze spełniające własność komutacji: A, X = B. Obliczyć pierwiaski z macierzy: A =
Zasada indukcji matematycznej
Zasada indukcji matematycznej Twierdzenie 1 (Zasada indukcji matematycznej). Niech ϕ(n) będzie formą zdaniową zmiennej n N 0. Załóżmy, że istnieje n 0 N 0 takie, że 1. ϕ(n 0 ) jest zdaniem prawdziwym,.
Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.
Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej
ZADANIA PRZYGOTOWAWCZE DO EGZAMINU Z UKŁADÓW DYNAMICZNYCH
ZADANIA PRZYGOTOWAWCZE DO EGZAMINU Z UKŁADÓW DYNAMICZNYCH Punkty okresowe, zbiory graniczne, sprzężenia Zadanie 1. Pokazać, że trajektoria (w przód) punktu x w przestrzeni metrycznej X pod działaniem ciągłego
Repetytorium z przedmiotu MIARA I PRAWDOPODOBIEŃSTWO dla kierunku Informatyka 2001/2002. Adam Jakubowski
Repetytorium z przedmiotu MIARA I PRAWDOPODOBIEŃSTWO dla kierunku Informatyka 2001/2002 Adam Jakubowski Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Toruń, 2002 Spis treści Wstęp 1
etrzna, miara, miara Lebesgue a
Miara zewn etrzna, miara, miara Lebesgue a Ostatnio poprawiłem 14 luteg 2015 r. dziękuję p. Dorocie B. za wskazówkę Nie jest jasne, ile bł edów jeszcze zostawiłem Państwu do wykrycia. Prosz e w każdym
Dystrybucje, wiadomości wstępne (I)
Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów
1 Określenie pierścienia
1 Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące
Procesy stochastyczne
Wykład I: Istnienie procesów stochastycznych 21 lutego 2017 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane
Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z 21 grudnia 2014)
dr inż. Ryszard Rębowski DEFINICJA CIĄGU LICZBOWEGO Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z grudnia 04) Definicja ciągu liczbowego Spośród
σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F;
Zdarzenie losowe i zdarzenie elementarne Zdarzenie (zdarzenie losowe) - wyni pewnej obserwacji lub doświadczenia; może być ilościowy lub jaościowy. Zdarzenie elementarne - najprostszy wyni doświadczenia
Prawdopodobieństwo i statystyka
Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja
Ciągi. Granica ciągu i granica funkcji.
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Ciągi. Granica ciągu i granica funkcji.. Ciągi Ciąg jest to funkcja określona na zbiorze N lub jego podzbiorze. Z tego względu ciągi dziey na