2.7 Przestrzenie unormowane skończenie wymiarowe
|
|
- Maciej Sosnowski
- 6 lat temu
- Przeglądów:
Transkrypt
1 2.7 Przestrzenie unormowane skończenie wymiarowe Rozważamy teraz przestrzenie unormowane X skończenie wymiarowe. Załóżmy, że dimx = m. Niech dalej e,e 2,...,e m będzie bazą algebraiczną tej przestrzeni (niekonicznie kanoniczną). Wtedy każdy element x X ma jednoznaczne przedstawienie m x = t k e k, gdzie t, t 2,...,t m są współrzędnymi elementu x w tej bazie (wyznaczonymi jednoznacznie). Sformułujemy najpierw pomocny lemat techniczny. Lemat 2.5. Istnieje taka liczba dodatnia γ, że dla dowolnych liczb t,t 2,...,t k. m t k e k γ m t k 2 (4) Twierdzenie 2.8. W przestrzeni unormowanej skończenie wymierowej X zbaząe,e 2,...,e m zbieżność ciągu punktów (x n ) n= tej przestrzeni do elementu x X oznacza zbiezność ciągów współrzędnych do współrzędnych punktu x. Innymi słowy, jeśli x n = m n= t k,n e n X zbiega (przy n )dox = m t k e k X, to lim t k,n = t k dla k =, 2,...,m. n Dowód. Niech x n x. Na mocy poprzedniego lematu dlakażdego wskaźnika n zachodzi nierówność m m m x n x = t k,n e n t k e n = (t k,n t k )e n γ m t k,n t k 2, n= n= skąd t k,n t k dla k =, 2...,m. Na odwrót, jeśli t k,n t k dla k =, 2...,m, to z ciągłości działań algebraicznych w przestrzeni X izwiązku m m m x n x = t k,n e n t k e n = (t k,n t k )e n wynika, że x n x. n= Wniosek 2.. W przestrzeni liniowej skończenie wymiarowej każde dwie normy są równoważne. n= Dowód. Weźmy dwie normy i 2. Załóżmy, że (x n ) n= jest ciągiem elementów zbieżnych do x względem normy,tzn.dlax n = m n= t k,n e n i x = m t k e k mamy n= n= x n x 0 przy n lim t k,n = t k n na podstawie poprzedniego twierdzenia. dla k =, 2,...,m x n x 2 0 przy n 23
2 Przypomnijmy, że dla przestrzeni nieskończenie wymiarowych takie twierdzenie nie zachodzi. Na przykład, jeśli X oznacza przestrzeń funkcji ciągłych okrerślonych na przedziale [0, ], to normy zdefiniowane wzorami: x = sup x(t) i x 2 = u(t) dt t [0,] 0 nie są równoważne. Wystarczy wziąć ciąg funkcji x n (t) =t n dla n =, 2,...Wtedy x n 2 = 0 t n dt = n + tn+ 0 = 0 przy n, n + a x n = sup t n = przy n. t [0,] Twierdzenie 2.9. Każda przestrzeń unormowana skończenie wymiarowa jest przestrzenią Banacha. Dowód. Jeśli dim(x) = 0, to twierdzenie jest oczywiście prawdziwe. Jeśli dim(x) =m, tonieche,e 2,...,e m będzie bazą algebraiczną w tej przestrzeni. Weźmy ciąg punktów postaci x n = m t k,n e k X dla n =, 2,... spełniający warunek Cauchy ego. Wtedy z nierówności (4) otrzymujemy m x n x n = t k,n e k m m t k,n e k = (t k,n e k t k,n e k ) γ m t k,n t k,n 2, n,n =, 2,.... Zatem każdy z ciągów (t k,n ) n= (k =, 2,...m) jest zbieżny. Zatem x n x, gdziex = m t k e k i t k = lim n t k,n dla k =, 2,...,m. Twierdzenie 2.0. Każda podprzestrzeń liniowa skończenie wymiarowa przestrzeni unormowanej jest zbiorem domkniętym. 3 Przestrzenie Hilberta 3. Przestrzenie unitarne Rozważmy przestrzeń liniową X. Definicja 3.. Iloczynem skalarnym elementów x i y z X nazywamy funkcję ( ) :X X R(C), która każdej parze uporządkowanej tych elementów przyporządkowuje liczbę rzeczywistą lub zespoloną (w zależności od tego, czy X jest przestrzenią rzeczywistą lub zespoloną), przy czym zachodzą warunki:. (x y) =(y x), 24
3 2. (x + y z) =(x z)+(y z), 3. (αx y) =α(x y), 4. (x x) 0 i (x x) =0tylko, gdy x = θ. ILoczyn skalarny (x y) można zapisywać również jako (x, y, x, y, x y. Z trzech pierwszych warunków łatwo wywnioskować, że (z x + y) =(z x)+(z y), (x αy) =α(x y). Twierdzenie 3.. Nierówność Schwarza Ilooczyn skalarny spełnia nierówność (x y) 2 (x x)(y y), zwaną nierównością Schwarza. Dowód. Nierówność ta jest oczywiśćie prawdziwa, jeśli y = 0. Załóżmy więc, że y 0. Z czwartego aksjomatu iloczyny skalarnego mamy dla każdej liczby λ (x + λy x + λy) 0. Dostajemy Podstawimy teraz idostaniemy (x x)+λ(x y)+λ(x y)+ λ 2 (y y) 0. λ = (x y) (y y) (x x) (x y) (x y) (x y) (y y) (y y) (x y)+ 2 (x y) (y y) 0, (y y) czyli nierówność Schwarza. (x x) (x y) 2 (y y) 0, Twierdzenie 3.2. Jeśli (x y) jest iloczynem skalarnym w przestrzeni liniowej X, towzór określa normę w X. x = (x x) (5) 25
4 Dowód. Wystarczy sprawdzić warunki normy. Warunek x 0i x = 0 tylko, gdy x = θ jest natychmiastową konsekwencją aksjomatu czwartego. Dalej αx = Zostaje do pokazania nierówność trójkąta. (αx αx) = αα(x x) = α 2 (x x) = α (x x) = α x. x + y 2 =(x + y x + y) =(x x)+(x y)+(y x)+(y y) (x x)+2 (x y) +(y y), a na mocy nierównośći Schwarza x + y 2 (x x)+2 (x x) (y y)+(y y) = x 2 +2 x y = y 2 =( x + y ) 2, czyli x + y x + y. Uwaga 5. Nierówność Schwarza można zapisać również w postaci (x y) x y, (6) jeśli wykorzystamy normę. Definicja 3.2. Przestrzeń X nazywamy przestrzenią unitarną, jeżeli: X jest przestrzenią liniową, został w niej określony iloczyn skalarny (x y) oraz zdefiniowano normę wzorem (5). Zauważmy więc, że przestrzeń unitarne jest zawsze przestrzenią unormowaną. Twierdzenie 3.3. Iloczyn skalarny w przestrzeni unitarnej X jest funkcjonałem ciągłym na X X, tzn. jeżeli x n x i y n y, to (x n y n ) (x y). Dowód. Teza wynika natychmiast z ciągłości normy: (x n y n ) (x y) (x n y n ) (x n y) + (x n y) (x y) = (x n y n y) + (x n x y) x n y n y + x n x y dla n =, 2,... Jeżeli x n x i y n y, to mamy tezę. 26
5 3.2 Przestrzeń Hilberta Definicja 3.3. Przestrzenią Hilberta nazywamy przestrzeń unitarną zupełną. Z definicji tej wynika natychmiast, że z wszystkich poznanych wcześniej przykładów przestrzeni Banacha, te będą przestrzeniami Hilberta, w których jest wprowadzony iloczyn skalarny. Podamy teraz kilka przykładów przestrzeni Hilberta. Przykład 20. Przestrzeń euklidesowam m wymiarowa l 2 m Określmy iloczyn skalarny wzorem m (x y) = t k s k dla x =(t,t 2,...t m )iy =(s,s 2,...s m ). Łatwo sprawdzić, że spełnione są wszystkie aksjomaty iloczynu skalarnego (ćw.). Ponadto łatwo widać, że norma w tej przestrzeni wyraża się wzorem (5). x = m t k 2 Przykład 2. Przestrzeń ciągów sumowalnych z kwadratem l 2 Określmy iloczyn skalarny wzorem (x y) = t k s k dla x =(t,t 2,...)iy =(s,s 2,...). Zbieżność tego szeregu wynika natychmiast z nierówności t k s k ( t 2 k 2 + s k 2 ). Łatwo sprawdzić, że spełnione są wszystkie aksjomaty iloczynu skalarnego (ćw.). Ponadto łatwo widać, że norma w tej przestrzeni x = t k 2 wyraża się wzorem (5). Zauważmy jeszcze, że nierówność Schwarza (6) w tej przestrzeni przyjmuje postać: t k s k t k 2 s k 2 i jest poznaną już wcześniej nierównością Cauchy ego dla szeregów. Przykład 22. Przestrzeń funkcji całkowalnych z kwadratem L 2 (Ω) Określmy iloczyn skalarny wzorem (x y) = x(t)y(t) dt Ω 27
6 dla x, y L 2 (Ω). Zbieżność tego szeregu wynika natychmiast z nierówności x(t)y(t) 2 ( x(t) 2 + y(t) 2 ). Łatwo sprawdzić, że spełnione są wszystkie aksjomaty iloczynu skalarnego (ćw.). Ponadto łatwo widać, że norma w tej przestrzeni x = x(t) 2 dt Ω wyraża się wzorem (5). Zauważmy jeszcze, że nierówność Schwarza (6) w tej przestrzeni przyjmuje postać: x(t)y(t) dt x(t) 2 dt y(t) 2 dt. Ω Ω Ω 3.3 Liniowa niezależność elementów przestrzeni unitarnej, ortogonalność i ortonormalność Niech dane będą elementy a,a 2,...,a m przestrzeni unitarnej X. Określmy G(a,a 2,...,a m )=det[(a i a k )] = (a a ) (a a 2 )... (a a m ) (a 2 a ) (a 2 a 2 )... (a 2 a m ) (a m a ) (a m a 2 )... (a m a m ) zwany wyznacznikiem Grama elementów a,a 2,...a m. Wyznacznik ten jest nieujemny. Twierdzenie 3.4. Na to, aby elmenty a,a 2,...,a m przestrzeni unitarnej X były liniowo niezależne, potrzeba i wystarcza, aby ich wyznacznik Grama był różny od zera. Dowód. Definicja Dwa elementy x i y przestrzeni unitarnej X są ortogonalne, jeżeli (x y) =0. Piszemy wtedy x y. 2. Jeżeli X 0 jest podprzestrzenią liniową przestrzeni unitarnej X ipewienelementx X jest ortogonalny do każdego elementu y X 0, to mówimy, że element x jest ortogonalny do podprzestrezni X 0 i piszemy x X Podprzestrzenie liniowe X,X 2 X są ortogonalne, jeżeli każde dwa elementy x X i x 2 X 2 są do siebie ortogonalne. Piszemy wtedy X X 2. Łatwo zauważyć (ćw.), że jeśli elementy x i y są ortogonalne, to zachodzi twierdzenie Pitagorasa, czyli x + y 2 = x 2 + y 2. Można też sformułować tzw. uogólnione twierdzenie Pitagorasa, x + x x n 2 = x 2 + x x n 2, 28
7 o ile elementy x,x 2,...,x n są parami ortogonalne. Podstawowym twierdzeniem w teorii przestrzeni Hilberta jest twierdzenie o rzucie ortogonalnym. Twierdzenie 3.5. (o rzucie ortogonalnym) Niech X 0 będzie podprzestrzenią liniową domkniętą przestrzeni Hilberta X. Wtedykażdyelementx X da się przedstawić w postaci x = x 0 + z, gdzie x 0 X 0,z X 0, przy czym rozkład ten jest jednoznaczny. Element x 0 nazywamy wtedy rzutem ortogonalnym elementu x na podprzestrzeń X 0. Zauważmy teraz, że jeśli X 0 jest podprzestrzenią liniową domkniętą przestrzeni Hilberta X, tozbiórx wszystkich elementów x X ortogonalnych do podprzestrzeni X 0 jest też podprzestrzenią liniową domkniętą przestrzeni X (domkniętość wynika z ciągłości iloczynu skalarnego). Twierdzenie o rzucie ortogonalnym mówi w takim razie, że X jest sumą prostą podprzestrzeni X 0 i X : X = X 0 X Ponieważ x 0 i X są ortogonalne, to ten przypadek sumy prostej nazywamy sumą ortogonalną, a każdą z popdrzestrzeni X 0 i X nazywamy dopełnieniem ortogonalmym drugiej z nich do przestrzeni X i piszemy X 0 = X X oraz X = X X 0. Najważniejsze wnioski z twierdzenia o rzucie ortogonalnym są następujące Wniosek 3.. Niech X 0 będzie podprzestrzenią liniową domkniętą przestrzeni Hilberta X. Jeżeli x 0 jest rzutem ortogonalnym elementu x X na podprzestrzeń X, to x x 0 x y dla każdego y X 0 (co oznacza, że x x 0 równa się odległości d(x, X 0 )), przy czym równość zachodzi tylko wtedy, gdy y = x 0. Jeżeli X jest przestrzenią Hilberta, to podprzestrzeń liniowa X 0 X jest gęsta w X wtedy i tylko wtedy, gdy jedynym elementem x X ortogonalnym do podprzestrzeni X 0 jest x = θ. Ciąg (a n ) n elementów przestrzeni Hilberta X generuje przestrzeń X (tzn. zbiór wszystkich kombinacji liniowych elementów a,a 2,... jest gęsty w przestrzeni X) wtedyitylkowtedy,gdy(a n x) =0dla n =, 2,... Definicja 3.5. Układem ortogonalnym przestrzeni Hilberta X nazywamy każdy zbiór Z X, którego elementy są parami ortogonalne. Jeżeli ponadto wszystkie elementy tego zbioru mają normę równą, to mówimy, że zbiór Z jest układem ortonormalnym. 29
8 Największe znaczenie mają układy ortonormalne przeliczalne, tzn. złożone ze wszystkich wyrazów pewnego ciągu nieskończonego (e k ) k. Zgodnie z definicją taki ciąg jest ortonormalny wtedy i tylko wtedy, gdy (e n e m )= dla n = m 0 dla n m. Przykład 23. Przykłady układów ortonormalnych. X = l 2. Wtedy ciąg elementów e =(, 0, 0,...),e 2 =(0,, 0,...),... jest układem ortonormalnym w tej przestrzeni. X = L 2 (0, 2π). Wtedy ciąg funkcji 2π, π coskt, π sinkt (k =, 2,...) jest układem ortonormalnym w tej przestrzeni. Jest to tzw. układ trygonometryczny. X = L 2 (0, 2π) zespolona. Wtedy ciąg funkcji 2π e ikt (k =0, ±, ±2,...) jest układem ortonormalnym w tej przestrzeni. Łatwo można zauważyć, że każdy układ ortonormalny (e k ) k jest utworzony z elementów liniowo niezależnych, tzn. dla każdej liczby naturalnej m elementy e,e 2,...,e m są liniowo niezależne. Istotnie, jeśli dla pewnych liczb a,a 2,...a m mamy m a k e k =0, czyli dla n =, 2,...,m. ( m m ) a n = a k (e k e n )= a k e k e n =0 Twierdzenie 3.6. Niech (a k ) k będzie dowolnym ciągiem liniowo niezależnych elementów przestrzeni Hilberta X. Istniejewtedy w X układ ortonormalny (e k ) k taki, że lin(e,e 2,...,e m ) = lin(a,a 2,...,a m ) dla m =,
9 Dowód. Przekształcamy ciąg (a k ) k w układ ortonormalny (e k ) k za pomocą procesu ortonormalizacji, tzn. przyjmujemy kolejno e = a, a e 2 = x 2, gdzie x x 2 2 = a 2 (a 2 e )e,... e m+ = x m+, gdzie x x m+ m+ = a m+ m (a m+ e k )e k Oczywiście a 0,x 2 0,...x m+ 0, bo elementy a,a 2,...,a m+ były liniowo niezależne. Ponadto e =, e 2 =,..., e m+ = oraz (e e 2 )=0,...,(e m+ e k )=0dlak =, 2,...m. Natychmiast z definicji e m lin(a,a 2,...,a m )ia m lin(e,e 2,...,e m )dlam =, 2,... Zauważmy, że jeśli w naszej konstrukcji elementów ortonormalnych nie będziemy dzielić przez normę elementu, to otrzymamy układ ortogonalny, a proces nazywać się wtedy będzie procesem ortogonalizacji. 3.4 Szeregi w przestrzeni Hilberta Będziemy zajmować się teraz badaniem zbieżności szeregów postaci a k e k, gdzie a k są liczbami, a e k elementami układu ortonormalnego. Twierdzenie 3.7. Niech (e k ) k będzie układem ortonormalnym w przestrzeni Hilberta X. Jeżeli (a k ) jest ciągiem elementów przestrzeni l 2, to szereg a k e k, jest zbieżny i a k e k, = a k 2. Dowód. Przypuśćmy teraz, że dla pewnego ciągu liczbowego (a k ) k szereg a k e k jest zbieżny i jego sumą jest dany element x X (X jest przestrzenią Hilberta): x = a k e k. Wtedy a k =(x e k ) k =, 2,.... Istotnie, wystarczy zauważyć, że a k =( m n= a n e n e k )dlam k i przejść do granicy dla m. 3
10 Definicja 3.6. Liczby (x e k ) (k =, 2,...) nazywamy współczynnikami Fouriera elementu x względem układu ortonormalnego (e k ) k, a szereg (x e k )e k nazywamy szeregiem Fouriera elementu x względem tego układu. Twierdzenie 3.8. Nierówność Bessela Jeżeli (e k ) k jest układem ortonormalnym w przestrzeni Hilberta X, to dla dowolnego elementu x X szereg (x e k ) 2 jest zbieżny i zachodzi nierówność (x e k ) 2 x 2, zwana nierównośćią Bessela, która przechodzi w równość wtedy i tylko wtedy, gdy (x e k )e k = x. Twierdzenie 3.9. Jeżeli (e k ) k jest układem ortonormalnym w przestrzeni Hilberta X, to dla każdego elementu x X szereg Fouriera (x e k )e k jest zbieżny i 2 (x e k )e k = (x e k ) Układy ortonormalne zupełne Definicja 3.7. Układ ortonormalny (e k ) k w przestrzeni Hilebrta X nazywamy zupełnym, jeśli nie istnieje w przestrzeni X element różźny od zera, ortogonalny do wsztystkich elementów e k. Układ ortonormalny (e k ) k w przestrzeni Hilebrta X nazywamy zamkniętym, jeśli dla każdego x X zachodzi równość (x e k ) 2 = x 2. Twierdzenie 3.0. Dla układu orotonormalnego (e k ) k przestrzeni Hilberta X następujące warunki są równoważne: układ (e k ) k jest zupełny; ciąg (e k ) k generuje przestrzeń X; każdy element x X jest sumą swojego szeregu Fouriera względem układu (e k ) k ; układ (e k ) k jest zamknięty. 32
11 Zauważmy, że jesli rozważamy układy ortonormalne skończone, tzn. zlożone ze skańczonej ilości elementóew, to wszystkie sumy pojawiającer się w powyższej teroii są skończone Ponadto dostajemy natychmiast, że układ skończony (e k ) m w przestrzeni X jest zupełny wtedy i tylko wtedy, gdy X jest przestrzenia m-wymiarową. Wtedy układ taki nazywa się bazą ortonormalną przestrzeni X (jest on oczywiście bazą algebraiczną tej przestrzeni). Twierdzenie 3.. W każdej ośrodkowej przestrzeni Hilberta X (o dodatnim wymiarze) istnieje układ ortonormalny zupełny (skończony lub przeliczalny). Przykłady układów ortonormalnych zupełnych w konkretnych przestrzeniach X. X = l 2 m - przestrzeń euklidesowa m-wymiarowa. Układem ortonormalnym zupełnym jest np. e =(, 0, 0,...,0), e 2 =(0,, 0,...,0),...,e m =(0, 0,...,0, ). Istotnie, weźmy x =(t,t 2,...t m ) lm 2 ortogonalny do wszystkich elementów e k.wtedyt k =(x e k ) dla k =, 2,l...,m, więc z ortogonalności x do każdego z elementów e k,wynika,żex = θ. X = l 2 - przestrzeń ciągów sumowalnych z kwadratem. Układem ortonormalnym zupełnym jest np. e =(, 0, 0,...), e 2 =(0,, 0,...),...,e m =(0, 0,...),.... Istotnie, weźmy x =(t,t 2,...) l 2 ortogonalny do wszystkich elementów e k.wtedyt k =(x e k )dla k =, 2,l..., więc ponieważ x = t k e k = (x e k )e k, czyli każdy element x jest sumą swojego szeregu Fouriera. Zatem układ (e k ) k jest zupełny. X = L 2 (a, b) - przestrzeń funkcji całkowalnych z kwadratem na przedziale [a, b]. Rozważmy ciąg potęg:, t,t 2,t 3,... Zortonormalizujmy go w tej przestrzeni. Otrzymamy wtedy pewien układ ortonormalny wielomianów (w k ), który będzie zupełny, bo generuje całą przestrzeń L 2 (a, b) (zbiór wszystkich wielomianów jest gęsty w tej przestrzeni, a każdy weielomian jest kombinacją liniową potęg, t,t 2,t 3,..., które są z kolei kombinacjami liniowymie wielomianów w,w 2,... X = L 2 (0, 2π) - rzeczywista. Układ ortonormalny zupełny tworzą funkcje trygonometryczne: 2π, π coskt, π sinkt (k =, 2,...). (7) Wystarczy sprawdzić, że ciąg ten generuje całą przestrzeń, czyli, że zbiór kombinacji liniowych m w(t) =α 0 + (α k coskt + β k sinkt) 33
12 (czyli tzw. wielomianów trygonometrycznych) jest gęsty w L 2 (0, 2π). Weźmy zatem u L 2 (0, 2π). Ponmieważ przerstrzeń ta jest ośrodkowa, to istnieje funkcja ciągła v określona na [0, 2π] (nawet wielomian) dowolnie blisko u. Można założyć, że v(0) = v(2π). Rozszerzamy teraz v wsposóbokresowy, dostając funkcję v ciągłą i okresową o okresie 2π. Na mocy drugiego twierdzenia aproksymacyjnego Weierstrassa ([4]), istnieje wielomian trygonometryczny dowolnie blisko v, co kończy dowód. X = L 2 (0, 2π) - zespolona. Układ ortonormalny zupełny tworzą funkcje 2π e ikt,(k =0, ±, ±2,...). Istatnie, wynika to natychmiast ze związków: coskt = 2 (eikt + e ikt ), sinkt = 2i (eikt e ikt ). Wprowdzimy jeszcze jedno pojęcie, które często wykorzystuje się podczas rozwiązywania niektórych równań różniczkowych cząstkowych. Definicja 3.8. Szeregiem trygonometrycznym Fauriera funkcji u L 2 (0, 2π) względem układu (7) jest szereg przy czym α 0 + (α k coskt + β k sinkt), α 0 = 2π u(s) ds, α k = 2π u(s)cosks ds, β k = 2π u(s)sinks ds, k =, 2,.... 2π 0 π 0 π 0 Ponieważ układ (7) jest zupełny, to szereg ten jest zbieżny przeciętnie do funkcji u, tzn. 2π n 2 lim n 0 u(s) α 0 (α k cosks + β k sinks) ds =0. To nie daje oczywiście zbieżności punktowej du u na [0, 2π]. Ale można sie posłużyć standardowymi kryteriami zbieżności szeregów znanymi z analizy. 34
Informacja o przestrzeniach Hilberta
Temat 10 Informacja o przestrzeniach Hilberta 10.1 Przestrzenie unitarne, iloczyn skalarny Niech dana będzie przestrzeń liniowa X. Załóżmy, że każdej parze elementów x, y X została przyporządkowana liczba
Analiza funkcjonalna 1.
Analiza funkcjonalna 1. Wioletta Karpińska Semestr letni 2015/2016 0 Bibliografia [1] Banaszczyk W., Analiza matematyczna 3. Wykłady. (http://math.uni.lodz.pl/ wbanasz/am3/) [2] Birkholc A., Analiza matematyczna.
Analiza Funkcjonalna - Zadania
Analiza Funkcjonalna - Zadania 1 Wprowadzamy następujące oznaczenia. K oznacza ciało liczb rzeczywistych lub zespolonych. Jeżeli T jest dowolnym zbiorem niepustym, to l (T ) = {x : E K : x funkcja ograniczona}.
Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?
Zadania z Analizy Funkcjonalnej I - 1 1. Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?. a) X = R, x = arctg x ; b) X = R n, d(x, y) = x 1 y 1 + x 2 y 2 + max i 3 x i y i ;
Przestrzenie wektorowe
Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:
Wykład 1. Przestrzeń Hilberta
Wykład 1. Przestrzeń Hilberta Sygnały. Funkcje (w języku inżynierów - sygnały) które będziemy rozważali na tym wykładzie będą kilku typów Sygnały ciągłe (analogowe). ) L (R) to funkcje na prostej spełniające
Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH
Katedra Matematyki i Ekonomii Matematycznej SGH 23 października 2018 Definicja iloczynu skalarnego Definicja Iloczynem skalarnym w przestrzeni liniowej R n nazywamy odwzorowanie ( ) : R n R n R spełniające
Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?
Zadania z Analizy Funkcjonalnej I - 1 1. Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi? a) X = R, d(x, y) = arctg x y ; b) X = R n, d(x, y) = x 1 y 1 + x 2 y 2 + max i 3 x i
1 Przestrzenie Hilberta
M. Beśka, Wykład monograficzny, Dodatek 1 1 Przestrzenie Hilberta 1.1 Podstawowe fakty o przestrzeniach Hilberta Niech H będzie przestrzenią liniową nad ciałem liczb rzeczywistych. Określmy odwzorowanie,
Matematyka z el. statystyki, # 1 /Geodezja i kartografia I/
Matematyka z el. statystyki, # 1 /Geodezja i kartografia I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a, bud. Agro
R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} },
nazywa- Definicja 1. Przestrzenią liniową R n my zbiór wektorów R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, z określonymi działaniami dodawania wektorów i mnożenia wektorów przez liczby rzeczywiste.
Akwizycja i przetwarzanie sygnałów cyfrowych
Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Reprezentacje sygnału Jak reprezentujemy sygnał: wybieramy sygnały wzorcowe (bazę) rozwijamy sygnał w wybranej
19 Własności iloczynu skalarnego: norma, kąt i odległość
19 Własności iloczynu skalarnego: norma, kąt i odległość Załóżmy, że V jest przestrzenią liniową z iloczynem skalarnym.,.. Definicja 19.1 Normą (długością) wektora v V nazywamy liczbę v = v, v. Uwaga 1
Wykład 1. Przestrzeń Hilberta
Wykład 1. Przestrzeń Hilberta Sygnały. Funkcje (w języku inżynierów - sygnały) które będziemy rozważali na tym wykładzie będą kilku typów Sygnały ciągłe (analogowe). ) L 2 (R) to funkcje na prostej spełniające
Informacja o przestrzeniach Sobolewa
Wykład 11 Informacja o przestrzeniach Sobolewa 11.1 Definicja przestrzeni Sobolewa Niech R n będzie zbiorem mierzalnym. Rozważmy przestrzeń Hilberta X = L 2 () z iloczynem skalarnym zdefiniowanym równością
Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi
M. Beśka, Wstęp do teorii miary, Dodatek 158 10 Dodatek 10.1 Przestrzenie metryczne Niech X będzie niepustym zbiorem. Funkcję d : X X [0, ) spełniającą dla x, y, z X warunki (i) d(x, y) = 0 x = y, (ii)
Zadania z algebry liniowej Iloczyn skalarny, przestrzenie euklidesowe
Zadania z algebry liniowej Iloczyn skalarny, przestrzenie euklidesowe Definicja 1 (Iloczyn skalarny). Niech V będzie rzeczywistą przestrzenią liniową. Iloczynem skalarnym w przestrzeni V nazywamy funkcję
Układy równań i równania wyższych rzędów
Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem
B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ.
8 Baza i wymiar Definicja 8.1. Bazą przestrzeni liniowej nazywamy liniowo niezależny układ jej wektorów, który generuję tę przestrzeń. Innymi słowy, układ B = (v i ) i I wektorów z przestrzeni V jest bazą
jest ciągiem elementów z przestrzeni B(R, R)
Wykład 2 1 Ciągi Definicja 1.1 (ciąg) Ciągiem w zbiorze X nazywamy odwzorowanie x: N X. Dla uproszczenia piszemy x n zamiast x(n). Przykład 1. x n = n jest ciągiem elementów z przestrzeni R 2. f n (x)
Zadania z Algebry liniowej 4 Semestr letni 2009
Zadania z Algebry liniowej 4 Semestr letni 2009 Ostatnie zmiany 23.05.2009 r. 1. Niech F będzie podciałem ciała K i niech n N. Pokazać, że niepusty liniowo niezależny podzbiór S przestrzeni F n jest także
Iloczyn skalarny. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 10. wykład z algebry liniowej Warszawa, grudzień 2013
Iloczyn skalarny Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 10. wykład z algebry liniowej Warszawa, grudzień 2013 Mirosław Sobolewski (UW) Warszawa, grudzień 2013 1 / 14 Standardowy
Przestrzenie liniowe
Rozdział 4 Przestrzenie liniowe 4.1. Działania zewnętrzne Niech X oraz F będą dwoma zbiorami niepustymi. Dowolną funkcję D : F X X nazywamy działaniem zewnętrznym w zbiorze X nad zbiorem F. Przykład 4.1.
Rozdzia l 11. Przestrzenie Euklidesowe Definicja, iloczyn skalarny i norma. iloczynem skalarnym.
Rozdzia l 11 Przestrzenie Euklidesowe 11.1 Definicja, iloczyn skalarny i norma Definicja 11.1 Przestrzenia Euklidesowa nazywamy par e { X K,ϕ }, gdzie X K jest przestrzenia liniowa nad K, a ϕ forma dwuliniowa
φ(x 1,..., x n ) = a i x 2 i +
Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.
1 Formy hermitowskie. GAL (Informatyka) Wykład - formy hermitowskie. Paweł Bechler
GAL (Informatyka) Wykład - formy hermitowskie Wersja z dnia 23 stycznia 2014 Paweł Bechler 1 Formy hermitowskie Niech X oznacza przestrzeń liniową nad ciałem K. Definicja 1. Funkcję φ : X X K nazywamy
1 Przestrzenie unitarne i przestrzenie Hilberta.
Przestrzenie unitarne i przestrzenie Hilberta.. Wykazać, że iloczyn skalarny w przestrzeni wektorowej X nad cia lem K ma nastepuj ace w lasności: (i) x, y + z = x, y + x, z, (ii) x, λy = λ x, y, (iii)
Zadania egzaminacyjne
Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie
1 Zbiory i działania na zbiorach.
Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu
Analiza funkcjonalna I. Ryszard Szwarc
Analiza funkcjonalna I Ryszard Szwarc Wrocław 2010 2 Spis treści 1 Przestrzenie unormowane 3 1.1 Dodatek.............................. 13 2 Operatory liniowe 15 3 Przestrzenie Hilberta 26 3.1 Podstawowe
F t+ := s>t. F s = F t.
M. Beśka, Całka Stochastyczna, wykład 1 1 1 Wiadomości wstępne 1.1 Przestrzeń probabilistyczna z filtracją Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną i niech F = {F t } t 0 będzie rodziną
Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u
Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u W ) Rzeczywiście U W jest podprzetrzenią przestrzeni
Zadania z Analizy Funkcjonalnej I* - 1
Zadania z Analizy Funkcjonalnej I* - 1 1. Która z następujących przestrzeni jest przestrzenią Banacha w normie supremum: C(R); C ogr (R) przestrzeń funkcji ciągłych ograniczonych; C zw (R) przestrzeń funkcji
Zdzisław Dzedzej. Politechnika Gdańska. Gdańsk, 2013
Zdzisław Dzedzej Politechnika Gdańska Gdańsk, 2013 1 PODSTAWY 2 3 Definicja. Przestrzeń metryczna (X, d) jest zwarta, jeśli z każdego ciągu {x n } w X można wybrać podciąg zbieżny {x nk } w X. Ogólniej
1 Ciągłe operatory liniowe
1 Ciągłe operatory liniowe Załóżmy, że E, F są przestrzeniami unormowanymi. Definicja 1.1. Operator liniowy T : E F nazywamy ograniczonym, jeżeli zbiór T (B) F jest ograniczony dla dowolnego zbioru ograniczonego
Twierdzenie spektralne
Twierdzenie spektralne Algebrę ograniczonych funkcji borelowskich na K R będziemy oznaczać przez B (K). Spektralnym rozkładem jedności w przestrzeni Hilberta H nazywamy odwzorowanie, które każdemu zbiorowi
9 Przekształcenia liniowe
9 Przekształcenia liniowe Definicja 9.1. Niech V oraz W będą przestrzeniami liniowymi nad tym samym ciałem F. Przekształceniem liniowym nazywamy funkcję ϕ : V W spełniającą warunek (LM) v1,v 2 V a1,a 2
Aproksymacja. j<k. L 2 p[a, b] l 2 p,n X = Lemat 1. Wielomiany ortogonalne P 0,P 1,...,P n tworza przestrzeni liniowej Π n. Dowód.
Metody numeryczne Paweł Zieliński p. 1/19 Lemat 1. Wielomiany ortogonalne P 0,P 1,...,P n tworza bazę przestrzeni liniowej Π n. Dowód. Lemat 2. Dowolny wielomian Q j stopnia j niższego od k jest prostopadły
Wyk lad 7 Baza i wymiar przestrzeni liniowej
Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem
Kryptografia - zastosowanie krzywych eliptycznych
Kryptografia - zastosowanie krzywych eliptycznych 24 marca 2011 Niech F będzie ciałem doskonałym (tzn. każde rozszerzenie algebraiczne ciała F jest rozdzielcze lub równoważnie, monomorfizm Frobeniusa jest
ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ
ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ FUNKCJE DWÓCH ZMIENNYCH RZECZYWISTYCH Definicja 1. Niech A będzie dowolnym niepustym zbiorem. Metryką w zbiorze A nazywamy funkcję rzeczywistą
Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.
Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3
n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = :
4. Zbiory borelowskie. Zbiór wszystkich podzbiorów liczb naturalnych będziemy oznaczali przez ω. Najmniejszą topologię na zbiorze ω, w której zbiory {A ω : x A ω \ y}, gdzie x oraz y są zbiorami skończonymi,
14. Przestrzenie liniowe
14. 14.1 Sformułować definicję przestrzeni liniowej. Podać przykłady. Przestrzenią liniową nad ciałem F nazywamy czwórkę uporządkowaną (V, F,+, ), gdzie V jest zbiorem niepustym, F jest ciałem, + jest
Tomasz Downarowicz Instytut Matematyki i Informatyki Politechnika Wroc lawska Wroc law Wroc law, kwiecień 2011
Tomasz Downarowicz Instytut Matematyki i Informatyki Politechnika Wroc lawska 50-370 Wroc law Wroc law, kwiecień 2011 Analiza Funkcjonalna WPPT IIr. Wyk lady 4 i 5: Przestrzenie unitarne i Hilberta (rzeczywiste
Algebra liniowa z geometrią
Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........
II. FUNKCJE WIELU ZMIENNYCH
II. FUNKCJE WIELU ZMIENNYCH 1. Zbiory w przestrzeni R n Ustalmy dowolne n N. Definicja 1.1. Zbiór wszystkich uporzadkowanych układów (x 1,..., x n ) n liczb rzeczywistych, nazywamy przestrzenią n-wymiarową
VI. Równania różniczkowe liniowe wyższych rzędów
VI. 1. Równanie różniczkowe liniowe n-tego rzędu o zmiennych współczynnikach Niech podobnie jak w poprzednim paragrafie K = C lub K = R. Podobnie jak w dziedzinie rzeczywistej wprowadzamy pochodne wyższych
1 Podobieństwo macierzy
GAL (Informatyka) Wykład - zagadnienie własne Wersja z dnia 6 lutego 2014 Paweł Bechler 1 Podobieństwo macierzy Definicja 1 Powiemy, że macierze A, B K n,n są podobne, jeżeli istnieje macierz nieosobliwa
Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki.
3. Funkcje borelowskie. Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. (1): Jeśli zbiór Y należy do rodziny F, to jego dopełnienie X
SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór.
20. Definicje i przykłady podstawowych struktur algebraicznych (grupy, pierścienie, ciała, przestrzenie liniowe). Pojęcia dotyczące przestrzeni liniowych (liniowa zależność i niezależność układu wektorów,
2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11
M. Beśka, Wstęp do teorii miary, rozdz. 2 11 2 Rodziny zbiorów 2.1 Algebry i σ - algebry zbiorów Niech X będzie niepustym zbiorem. Rodzinę indeksowaną zbiorów {A i } i I 2 X nazywamy rozbiciem zbioru X
Lista. Przestrzenie liniowe. Zadanie 1 Sprawdź, czy (V, +, ) jest przestrzenią liniową nadr :
Lista Przestrzenie liniowe Zadanie 1 Sprawdź, czy (V, +, ) jest przestrzenią liniową nadr : V = R[X], zbiór wielomianów jednej zmiennej o współczynnikach rzeczywistych, wraz ze standardowym dodawaniem
Równania różniczkowe. Notatki z wykładu.
Równania różniczkowe Notatki z wykładu http://robert.brainusers.net 17.06.2009 Notatki własne z wykładu. Są niekompletne, bez bibliografii oraz mogą zawierać błędy i usterki. Z tego powodu niniejszy dokument
Układy równań i nierówności liniowych
Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +
1 + iϕ n. = cos ϕ + i sin ϕ. e n z n n n. c M n z n, c n z Mn.
WRAiT 2 #1 1. Dla jakich a C ciągi o wyrazach na n, a n 1 + a n, an /n, są zbieżne? 2. Wykaż zbieżność i znajdź granice ciągów n a k, a n 1 + a 2n ( a < 1), a n 1 + a 2n ( a > 1), 1 n 3. Dla danego ϕ R
Geometria Lista 0 Zadanie 1
Geometria Lista 0 Zadanie 1. Wyznaczyć wzór na pole równoległoboku rozpiętego na wektorach u, v: (a) nie odwołując się do współrzędnych tych wektorów; (b) odwołując się do współrzędnych względem odpowiednio
Układy równań liniowych
Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K
Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone
Rozdział 4 Ciągi nieskończone W rozdziale tym wprowadzimy pojęcie granicy ciągu. Dalej rozszerzymy to pojęcie na przypadek dowolnych funkcji. Jak zauważyliśmy we wstępie jest to najważniejsze pojęcie analizy
Iloczyn skalarny, wektorowy, mieszany. Ortogonalność wektorów. Metoda ortogonalizacji Grama-Schmidta. Małgorzata Kowaluk semestr X
Iloczyn skalarny, wektorowy, mieszany. Ortogonalność wektorów. Metoda ortogonalizacji Grama-Schmidta. Małgorzata Kowaluk semestr X ILOCZYN SKALARNY Iloczyn skalarny operator na przestrzeni liniowej przypisujący
Rozwiązania, seria 5.
Rozwiązania, seria 5. 26 listopada 2012 Zadanie 1. Zbadaj, dla jakich wartości parametru r R wektor (r, r, 1) lin{(2, r, r), (1, 2, 2)} R 3? Rozwiązanie. Załóżmy, że (r, r, 1) lin{(2, r, r), (1, 2, 2)}.
z = x + i y := e i ϕ z. cos ϕ sin ϕ = sin ϕ cos ϕ
Izometrie liniowe Przypomnijmy, że jeśli V jest przestrzenią euklidesową (skończonego wymiaru), to U End V jest izometrią wtedy i tylko wtedy, gdy U U = UU = E, to znaczy, gdy jest odwzorowaniem ortogonalnym.
1 Relacje i odwzorowania
Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X
Analiza matematyczna / Witold Kołodziej. wyd Warszawa, Spis treści
Analiza matematyczna / Witold Kołodziej. wyd. 5. - Warszawa, 2010 Spis treści Wstęp 1. Podstawowe pojęcia mnogościowe 13 1. Zbiory 13 2. Działania na zbiorach 14 3. Produkty kartezjańskie 15 4. Relacje
Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski
Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ
Jak łatwo zauważyć, zbiór form symetrycznych (podobnie antysymetrycznych) stanowi podprzestrzeń przestrzeni L(V, V, K). Oznaczamy ją Sym(V ).
Odwzorowania n-liniowe; formy n-liniowe Definicja 1 Niech V 1,..., V n, U będą przestrzeniami liniowymi nad ciałem K. Odwzorowanie G: V 1 V n U nazywamy n-liniowym, jeśli dla każdego k [n] i wszelkich
Baza w jądrze i baza obrazu ( )
Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem
cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5
Matematyka ZLic - 07 Wektory i macierze Wektorem rzeczywistym n-wymiarowym x x 1, x 2,,x n nazwiemy ciąg n liczb rzeczywistych (tzn odwzorowanie 1, 2,,n R) Zbiór wszystkich rzeczywistych n-wymiarowych
Zaawansowane metody numeryczne
Wykład 6 Własności wielomianów ortogonalnych Wszystkie znane rodziny wielomianów ortogonalnych dzielą pewne wspólne cechy: 1) definicja za pomocą wzoru różniczkowego, jawnej sumy lub funkcji tworzącej;
Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych
Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych Marcin Michalski 14.11.014 1 Wprowadzenie Jedną z intuicji na temat liczb rzeczywistych jest myślenie o nich jako liczbach,
Przykładowe zadania z teorii liczb
Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę
1 Przestrzeń liniowa. α 1 x α k x k = 0
Z43: Algebra liniowa Zagadnienie: przekształcenie liniowe, macierze, wyznaczniki Zadanie: przekształcenie liniowe, jądro i obraz, interpretacja geometryczna. Przestrzeń liniowa Już w starożytności człowiek
Wektory i wartości własne
Treść wykładu Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń W V nazywamy niezmienniczą
Matematyka liczby zespolone. Wykład 1
Matematyka liczby zespolone Wykład 1 Siedlce 5.10.015 Liczby rzeczywiste Zbiór N ={0,1,,3,4,5, } nazywamy zbiorem Liczb naturalnych, a zbiór N + ={1,,3,4, } nazywamy zbiorem liczb naturalnych dodatnich.
Kombinacje liniowe wektorów.
Kombinacje liniowe wektorów Definicja: Niech V będzie przestrzenią liniową nad ciałem F, niech A V Zbiór wektorów A nazywamy liniowo niezależnym, jeżeli m N v,, v m A a,, a m F [a v + + a m v m = θ a =
ALGEBRA LINIOWA 2. Lista zadań 2003/2004. Opracowanie : dr Teresa Jurlewicz, dr Zbigniew Skoczylas
ALGEBRA LINIOWA 2 Lista zadań 23/24 Opracowanie : dr Teresa Jurlewicz dr Zbigniew Skoczylas Lista pierwsza Zadanie Uzasadnić z definicji że zbiór wszystkich rzeczywistych macierzy trójkątnych górnych stopnia
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA realizacja w roku akademickim 2016/2017
Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016-2018 realizacja w roku akademickim 2016/2017 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu
Analiza funkcjonalna Wykłady
Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.. Programu Operacyjnego Kapitał Ludzki Analiza funkcjonalna
1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5)
. Liczby zespolone Zadanie.. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone () i +i, () 3i, (3) ( + i 3) 6, (4) (5) ( +i ( i) 5, +i 3 i ) 4. Zadanie.. Znaleźć moduł i argument główny
Rozdział 5. Szeregi liczbowe. 5.1 Szeregi liczbowe. Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy (a n ) n=1.
Rozdział 5 Szeregi liczbowe 5. Szeregi liczbowe Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy ( ). Ciąg (s n ) określony wzorem s n = n a j, n N, nazywamy ciągiem sum częściowych ciągu
Zagadnienia stacjonarne
Zagadnienia stacjonarne Karol Hajduk 19 grudnia 2012 Nierówność wariacyjna (u (t), v u(t)) + a(u, v u) + Ψ(v) Ψ(u) (f, v u), v V. Zagadnienie stacjonarne ma postać (u (t) = 0): a(u, v u) + Ψ(v) Ψ(u) (f,
Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5
Dystrybucje Marcin Orchel Spis treści 1 Wstęp 1 1.1 Dystrybucje................................... 1 1.2 Pochodna dystrybucyjna............................ 3 1.3 Przestrzenie...................................
Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2
Wykład 16 Geometria analityczna Przegląd wiadomości z geometrii analitycznej na płaszczyźnie rtokartezjański układ współrzędnych powstaje przez ustalenie punktu początkowego zwanego początkiem układu współrzędnych
Zadania do Rozdziału X
Zadania do Rozdziału X 1. 2. Znajdź wszystkie σ-ciała podzbiorów X, gdy X = (i) {1, 2}, (ii){1, 2, 3}. (b) Znajdź wszystkie elementy σ-ciała generowanego przez {{1, 2}, {2, 3}} dla X = {1, 2, 3, 4}. Wykaż,
Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości.
Własności Odległości i normy w Będziemy się teraz zajmować funkcjami od zmiennych, tzn. określonymi na (iloczyn kartezja/nski egzemplarzy ). Punkt należący do będziemy oznaczać jako Przykł. Wysokość terenu
Wektory i wartości własne
Treść wykładu Podprzestrzenie niezmiennicze Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń
1 Elementy logiki i teorii mnogości
1 Elementy logiki i teorii mnogości 11 Elementy logiki Notatki do wykładu Definicja Zdaniem logicznym nazywamy zdanie oznajmujące, któremu przysługuje jedna z dwu logicznych ocen prawda (1) albo fałsz
Wyk lad 11 1 Wektory i wartości w lasne
Wyk lad 11 Wektory i wartości w lasne 1 Wektory i wartości w lasne Niech V bedzie przestrzenia liniowa nad cia lem K Każde przekszta lcenie liniowe f : V V nazywamy endomorfizmem liniowym przestrzeni V
O pewnych związkach teorii modeli z teorią reprezentacji
O pewnych związkach teorii modeli z teorią reprezentacji na podstawie referatu Stanisława Kasjana 5 i 12 grudnia 2000 roku 1. Elementy teorii modeli Będziemy rozważać język L składający się z przeliczalnej
1. Liczby zespolone. Jacek Jędrzejewski 2011/2012
1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać
Wielomiany podstawowe wiadomości
Rozdział Wielomiany podstawowe wiadomości Funkcję postaci f s = a n s n + a n s n + + a s + a 0, gdzie n N, a i R i = 0,, n, a n 0 nazywamy wielomianem rzeczywistym stopnia n; jeżeli współczynniki a i
Liczby zespolone. x + 2 = 0.
Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą
1. Funkcje monotoniczne, wahanie funkcji.
1. Funkcje monotoniczne, wahanie funkcji. Zbiór X będziemy nazywali uporządkowanym, jeśli określona jest relacja zawarta w produkcie kartezjańskim X X, która jest spójna, antysymetryczna i przechodnia.
2. Definicja pochodnej w R n
2. Definicja pochodnej w R n Niech będzie dana funkcja f : U R określona na zbiorze otwartym U R n. Pochodną kierunkową w punkcie a U w kierunku wektora u R n nazywamy granicę u f(a) = lim t 0 f(a + tu)
Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem
Zestaw zadań 9: Przestrzenie wektorowe. Podprzestrzenie () Wykazać, że V = C ze zwykłym dodawaniem jako dodawaniem wektorów i operacją mnożenia przez skalar : C C C, (z, v) z v := z v jest przestrzenią
Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.
1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory
POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny
POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny Funkcja Falowa Postulat 1 Dla każdego układu istnieje funkcja falowa (funkcja współrzędnych i czasu), która jest ciągła, całkowalna w kwadracie,
R n jako przestrzeń afiniczna
R n jako przestrzeń afiniczna Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 11. wykład z algebry liniowej Warszawa, grudzień 2014 Mirosław Sobolewski (UW) Warszawa, grudzień 2014 1