Doświadczenie Cavendisha stała G
|
|
- Kajetan Jastrzębski
- 6 lat temu
- Przeglądów:
Transkrypt
1
2 Pojęcia Gawitacja postawowe i histoia Doświaczenie Cavenisha stała G Heny Cavenish (73-80) Bytyjski cheik i fizyk, członek Royal Society. Stuiował w kolegiu Petehouse na Uniwesytecie Cabige, lecz opuścił uczelnię pze uzyskanie yplou. Pochoził z aystokatycznej oziny i ozieziczył znaczną fotunę, któa uożliwiła u powazenie baań. Założył własne laboatoiu w Lonynie. Większość jego pac nie została opublikowana za jego życia. Osiągnięcia: wyzielenie woou wyzielenie wutlenku węgla oznaczenie skłau powietza oznaczenie skłau woy oznaczenie skłau kwasu azotowego Powaził liczne pace z zieziny elektyczności np. okył pze Coulobe i Ohe pawo Couloba i pawo Oha, jenak swoich pac nie publikował i z tego wzglęu pozostały pzez wiele lat nieznane. Piewszy w iaę okłanie obliczył asę Ziei. Użył o tego celu uoskonalonej pzez siebie wagi skęceń, któej twócą był John Michell.
3 Pojęcia Gawitacja postawowe i histoia Doświaczenie Cavenisha stała G T I L L F M F G M LG LF G L MT M g G R G M N kg g Ziei Ziei Ziei Ziei Ziei G R (5,45 g/c 3 ) g G 3 4R Ziei
4 Pojęcia Gawitacja postawowe i histoia W XVII w. Izaak Newton okył pawo powszechnej gawitacji. Okeśla ono wielkość siły oziaływania ięzy woa, posiaającyi asy ( i M) oalonyi o siebie o. Pawo powszechnego ciążenia: Siła oziaływania gawitacyjnego ięzy woa ciałai jest wpost popocjonalna o iloczynu tych as i owotnie popocjonalna o kwaatu oległości ięzy nii ԦF = G Ԧ Ԧ V F V F = G ρ ρ V V ρ F = G න ρ V න V V V
5 Pojęcia Gawitacja postawowe i histoia Pojęcie gaientu F ga U U x cos y sin z z x cos cos y sin cos z z sin i ˆ x, ˆ j, kˆ y z i ˆ, ˆ j, kˆ z i ˆ, ˆ j, kˆ sin
6 Pojęcia Gawitacja postawowe i histoia Natężenie pola gawitacyjnego Ԧγ = Ԧ F Ԧγ = G M Ƹ M Ԧγ = ԦF Ԧg = ԦF Ԧg Ԧ = Ԧγ Ԧ
7 Pojęcia Gawitacja postawowe i histoia Siły centalne Enegia potencjalna E p B A E p ( ) E p A F W ( A W ( ) B) B A F Pawo gawitacji (siła gawitacji) - Newton 665 M N k F G ˆ G F ˆ, F kg U F G M ˆ G M gh h R Z
8 Pojęcia Gawitacja postawowe i histoia Potencjał pola gawitacyjnego Potencjał - paca wykonana pzez siły gawitacji pzy pzeieszczeniu punktu ateialnego o jenostkowej asie z anego punktu pola o nieskończoności enegia potencjalna asy jenostkowej. V GM Powiezchnie ekwipotencjalne
9 Pojęcia Gawitacja postawowe i histoia Potencjał pola gawitacyjnego V GM Wekto natężenia pola gawitacyjnego jest postopały o powiezchni ekwipotencjalnej i jest skieowany o powiezchni o potencjale wyższy o powiezchni o potencjale niższy.
10 Pojęcia Gawitacja postawowe i histoia Pole gawitacyjne na zewnątz kuli (I) Kulę ożey pozielić na nieskończenie wiele cienkich koncentycznych powłok Postaay się wykazać że oziaływanie gawitacyjne asy punktowej z taką powłoką ożna zeukować o oziaływania asy punktowej z asą punkową leżącą w śoku asy powłoki (o opowieniej asie). Rozpatzy oziaływanie ięzy eleentai asy powłoki a asą : F = G M s. Ze wzglęu na syetię pobleu wiziy, że skłaowe pionowe wektoa F zniosą się i pozostanie tylko oziaływanie w kieunku : F = G M s Całkowitą siłę otzyay całkując : F = G M s cosφ. Musiy powiązać ze sobą: M, s,, fi i theta cosφ Powiezchnia pasa ięzy θ i θ: πr sinθθ, zaś powiezchnia całej powłoki: a jej asa M. Otzyujey: M = πr sinθ 4πR Mθ oaz F = GM sinθcosφ θ. s Z twiezenia kosinusów: R = + s scosφ oaz s = + R Rcosθ Dugie z powyższych óżniczkujey stonai: ss = Rsinθθ Ganice całkowania: θ: 0 π φ: 0 φ aks 0 s: R + R
11 Pojęcia Gawitacja postawowe i histoia Pole gawitacyjne na zewnątz kuli (II) θ: 0 π φ: 0 φ aks 0 s: R + R F = G න M GM cosφ = s න sinθcosφ s θ = ss = Rsinθθ cosφ = + s R s = GM +R න R + R s F = GM s R s + R ቤ R = G M Powtazając powyższe la nieskończonej ilości powłok o poieniu o 0 o R otzyay, że: Oziaływanie ięzy kulą o asie M a asą punktową oległą o niej o ożna taktować jak oziaływanie ięzy woa asai punktowyi i M oległyi o.
12 Pojęcia Gawitacja postawowe i histoia Pole gawitacyjne wewnątz sfey. Sfea a asę i jest jej gubość jest nieskończenie ała. Na owolną asę punktową leżącą wewnątz sfey ziała siła popocjonalna o asy (wielkości) powiezchni i owotnie popocjonalna o kwaatu oległości asy punktowej o tej powiezchni: F () ~ A () () Wewnątz sfey siła oziaływania gawitacyjnego jest ówna zeu. 3. Z ozważań geoetycznych wynika, że: A 4. Z obu powyższych wiać, że: F F = A A = A = 5. Wynika stą, że wkłay o A i A znoszą się. Można w ten sposób pozielić całą powiezchnię sfeyczną i uzyskać siłę wypakową ówną zeo. Pole wewnątz sfey o owolnej gubości też jest zeo, ponieważ ożna pozielić tą sfeę na szeeg cienkich wastw współśokowych.
13 Pojęcia Gawitacja postawowe i histoia Pole gawitacyjne wewnątz kuli. Kula a asę M. Na owolną asę punktową leżącą wewnątz sfey ziałają siły pochozące o zewnętznej powłoki i o kuli znajującej się ięzy śokie ukłau a aktualny położenie asy punktowej. Wewnątz sfey siła oziaływania gawitacyjnego jest ówna zeu. Oziaływanie ięzy kulą o asie M a asą punktową oległą o niej o ożna taktować jak oziaływanie ięzy woa asai punktowyi i M oległyi o. F = G න M M = G න 0 M 4 4 4πx x = 3 Gρπ 3 = 4 3 Gρπ 3 πr3
14 Pojęcia Gawitacja postawowe i histoia Pole gawitacyjne kuli F = 4 3 Gρπ F = G M
15 Gawitacja Pzyspieszenie ośokowe Zgonie z ugi pawe ynaiki siła ziałająca na eleent asy powinna u naawać pzyśpieszenie, któe nazyway pzyśpieszenie zieski lub gawitacyjny ówne: a jego watość: M g G ˆ c 3 Rb = 6357 k w = R cos G R G e R 0 = 6378 k F = w g c M G Zieia wiuje wokół własnej osi z pękością kątową ω=π/t (gzie T 4 h). Czyli każy jej eleent ulega swego ozaju unoszeniu z taką właśnie pękością i po toze w kształcie koła o poieniu wozący φ =R cosφ. Iloczyn wektoowy pękości liniowej takiego eleentu i pękości kątowej jest pzyspieszenie ośokowy tzn.: wv a w( w ) l
16 Gawitacja Siła ośokowa Siła ośokowa ziałająca na ten eleent: F a w -G e siła wypou Czyli jej watość wynosi: F w w Rcos Ta siła a wpływ na zeczywistą wielkość i kieunek wypakowej siły gawitacji G e. Bioąc po uwagę siłę ośokową, a właściwie eakcję bezwłanej asy na tę siłę czyli siłę ośokową, zeczywistą watość pzyśpieszenia zieskiego wyznaczoną la nieuchoej Ziei usiy popawić o efekt jej ziałania. Zakłaając tylko inialną zianę kieunku wynikającą z bazo użej yspopocji poięzy siłą ośokową i gawitacji tzn. ając na uwaze, że F <<G e ożey napisać, że skłaowa noalna F n : F R n w cos a efektywne pzyśpieszenie zieskie: w siła ciężkości G G F = R cos R G e ~ F o siła ośokowa F n ~ F o cos ~ w R cos F o ~ w R cos F s ~ Fo sin ~ w R sin g g R e w cos
17 Pojęcia postawowe i histoia Gawitacja (IX) Masa zeukowana 0 CM = - R CM G G const R R R R R const G G CM CM CM CM CM ˆ ˆ 0 0 ) ( ˆ ˆ
18 Pojęcia postawowe i histoia Gawitacja Masa zeukowana ˆ ˆ ) ( ˆ ˆ G G G G 0 CM = - R CM Dla atou woou: e e e e p e e
19 Pojęcia Gawitacja postawowe i histoia Ruch po wpływe sił centalnych Moent siły centalnej ówny zeu: M F 0 Z II zasay ynaiki la uchu obotowego: wynika, że oent pęu jest stały: L L M 0 const
20 Pojęcia Gawitacja postawowe i histoia Ruch po wpływe sił centalnych Po wpływe siły centalnej ciała pouszają się po tzw. kzywych stożkowych: elipsie, paaboli lub hipeboli. Wszystkie kzywe stożkowe ożna opisać ównanie we współzęnych biegunowych:, - współzęne punktu; p p paaet kąta ozwacia e iośó kzywej, ecos ecyujący o jej kształcie: 0<e< elipsa e=0 okąg, szczególny pzypaek elipsy; e= paabola; e> hipebola.
21 Pojęcia Gawitacja postawowe i histoia Pawa Keplea (I). Planety pouszają się po toach eliptycznych. Słońce znajuje się w jeny z ognisk elipsy.. Poień wozący planety zakeśla w ównych czasach ówne pola (pękość polowa jest stała). 3. Stosunek kwaatów czasów obiegu planet wokół Słońca ówny jest stosunkowi tzecich potęg użych półosi.
22 Pojęcia Gawitacja postawowe i histoia Pawa Keplea (II). Planety pouszają się po toach eliptycznych. Słońce znajuje się w jeny z ognisk elipsy. Słońce
23 Pojęcia Gawitacja postawowe i histoia Pawa Keplea (II). Poień wozący planety zakeśla w ównych czasach ówne pola (pękość polowa jest stała). S - pole tójkąta - pękość polowa
24 Pojęcia Gawitacja postawowe i histoia Pawa Keplea (IV) 3. Stosunek kwaatów czasów obiegu planet wokół Słońca ówny jest stosunkowi tzecich potęg użych półosi. Ruch planety wokół Słońca obywa się po wpływe siły ośokowej, któą stanowi siła ich wzajenego pzyciągania gawitacyjnego: Pzyspieszenie ośokowe a z jaki pousza się planeta wynosi: Zapisując la tego ukłau ugą zasaę ynaiki Newtona ostaniey:
25 Gawitacja Piewsza pękość kosiczna Siła pzyciągania gawitacyjnego jest ównoważona pzez siłę ośokową:
26 Gawitacja Piewsza pękość kosiczna Piewszą pękością kosiczną nazyway najniejszą ożliwą pękość jaką usi ieć punkt ateialny kążący wokół Ziei na obicie bliskiej poieniowi Ziei.
27 Gawitacja Duga pękość kosiczna v GM Duga pękość kosiczna - najniejszą pękość, któa uożliwia punktowi ateialnego pokonanie siły gawitacji zieskiej i oalenie się w pzestzeń kosiczną.
28 Gawitacja Tzecia pękość kosiczna Tzecia pękość kosiczna - najniejszą pękość, któa uożliwia punktowi ateialnego pokonanie siły gawitacji Słońca i opuszczenie ukłau słonecznego. v 3 GM R S gzie M S asa Słońca, R oległość o Słońca
29 Gawitacja Soczewkowanie gawitacyjne Niezależne potwiezenie użych as goa galaktyk uzyskuje się zięki zjawisku soczewkowania gawitacyjnego, tj. ugięcia poieni świetlnych pzez pole gawitacyjne. Ze wzglęu na uże asy goa, efekt ten jest stosunkowo łatwo i często obsewowany. Jenocześnie, wskutek ogniskowania wiązki światła wzocnieniu ulega obsewowana jasność bazo oległych galaktyk i kwazaów.
30 Gawitacja Soczewkowanie gawitacyjne Goaa galaktyk A8 zniekształca obazy oległych galaktyk. Na piewszy planie wiać jasne galaktyki z goay; cienkie świetliste łuki są wyłużonyi i zakzywionyi koncentycznie wokół śoka asy obazai galaktyk tła. Rozieszczenie i kształt łuków pozwalają wyznaczyć ozkła asy tej goay. Fot. HST/NASA.
31 Gawitacja Soczewkowanie gawitacyjne Zaginanie poieni świetlnych galaktyki spialnej pzez pole gawitacyjne goay galaktyk Cl Znajujące się na piewszy planie żółtawe galaktyki goay uginają poienie świetlne niebieskiej galaktyki spialnej. W wyniku tego powstało pięć ozielnych obazów tej galaktyki: jeen blisko śoka zjęcia, a pozostałe cztey - ozieszczone w pzybliżeniu wzłuż okęgu "na gozinach" 4, 8, 9 i 0. Goaa Cl znajuje się w gwiazozbioze Ryb, w oległości około 500 egapaseków (Mpc); galaktyka spialna - niej więcej wa azy alej. Fot. HST/NASA.
32
33 Fale gawitacyjne zaejestowane pzez wa aeykańskie etektoy należące o LIGO (Laseowe Intefeoetyczne Obsewatoiu Fal Gawitacyjnych) w Livingstone (Luizjana) i w Hanfo (Waszyngton) oaz etekto Avance Vigo, znajujący się w Euopejski Obsewatoiu Gawitacyjny (EGO) w Cascinie we Włoszech.
34
35 ,7 sekuny po onotowaniu fal gawitacyjnych teleskop Feiego wykył kótką seię poieni gaa z tego saego źóła. gozin później po az piewszy ostzeżono światło wizialne w obsewowany obszaze galaktyki NGC 4993, zlokalizowanej w oległości około 30 ilionów lat świetlnych o Ziei w kieunku konstelacji Hya. Po połączeniu wóch gwiaz neutonowych, nastąpił silny ozbłysk aioaktywnych ciężkich piewiastków. Opuściły kilonową z pękością jenej piątej pękości światła. Wia zebane w aach epessto i za poocą instuentu X-shoote na VLT wskazują na eisje cezu i telluu. W ciągu zalewie kilku ni bawa gwiazy zieniła się z niebieskiej na czewoną (piewszy az zaejestowano ta szybko pzebiegający poces). Sskła cheiczny wytwozonego ateiału: około 6 poc. asy kilonowej stanowią ciężkie piewiastki. Ilość saego złota jest 00 azy większa niż asa Ziei, a platyny pawie 500.
Siły centralne, grawitacja (I)
Pojęcia Gawitacja postawowe (I) i histoia Siły centalne, gawitacja (I) Enegia potencjalna E p B A E p ( ) E p A W ( ) F W ( A B) B A F Pawo gawitacji (siła gawitacji) - Newton 665 M N k F G G 6.6700 F,
GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r.
GRAWITACJA Pawo powszechnego ciążenia (pawo gawitacji) Dwa punkty mateialne o masach m 1 i m pzyciągają się wzajemnie siłą popocjonalną do iloczynu ich mas i odwotnie popocjonalną do kwadatu ich odległości.
Fizyka 10. Janusz Andrzejewski
Fizyka 10 Pawa Keplea Nauki Aystotelesa i Ptolemeusza: wszystkie planety i gwiazdy pouszają się wokół Ziemi po skomplikowanych toach( będących supepozycjami uchów Ppo okęgach); Mikołaj Kopenik(1540): planety
ver grawitacja
ve-18.10.07 gawitacja początki Galileusz 1564-164 układ słoneczny http://www.aachnoid.co/gavitation/sall.htl pawa Keplea 1. obity planet kążących wokół słońca są elipsai ze słońce w ognisku Johannes Keple
Fizyka 9. Janusz Andrzejewski
Fizyka 9 Janusz Andzejewski R K Księżyc kążący wokół iei (Rozważania Newtona) Pzyśpieszenie dośodkowe księżyca 4πRK ak = T Wstawiając dane dla obity księżyca: R K = 3.86 10 T = 7. 3dnia 5 k R 6300 = 386000
Krystyna Gronostaj Maria Nowotny-Różańska Katedra Chemii i Fizyki, FIZYKA Uniwersytet Rolniczy do użytku wewnętrznego ĆWICZENIE 4
Kystyna Gonostaj Maia Nowotny-Różańska Katea Cheii i Fizyki, FIZYKA Uniwesytet Rolniczy o użytku wewnętznego ĆWICZENIE 4 WYZNACZANIE GĘSTOŚCI CIAŁ STAŁYCH I CIECZY PRZY POMOCY PIKNOMETRU Kaków, 2004-2012
cz. 1. dr inż. Zbigniew Szklarski
Wykład 10: Gawitacja cz. 1. d inż. Zbiniew Szklaski szkla@ah.edu.pl http://laye.uci.ah.edu.pl/z.szklaski/ Doa do pawa powszechneo ciążenia Ruch obitalny planet wokół Słońca jak i dlaczeo? Reulane, wieloletnie
Fizyka. Wykład 2. Mateusz Suchanek
Fizyka Wykład Mateusz Suchanek Zadanie utwalające Ruch punktu na płaszczyźnie okeślony jest ównaniai paaetycznyi: x sin(t ) y cos(t gdzie t oznacza czas. Znaleźć ównanie tou, położenie początkowe punktu,
Pole grawitacyjne. Definicje. Rodzaje pól. Rodzaje pól... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek.
Pole gawitacyjne d inż. Ieneusz Owczaek CNMiF PŁ ieneusz.owczaek@p.lodz.pl http://cmf.p.lodz.pl/iowczaek 1 d inż. Ieneusz Owczaek Pole gawitacyjne Definicje to pzestzenny ozkład wielkości fizycznej. jest
Prawo powszechnego ciążenia Newtona
Pawo powszechnego ciążenia Newtona m M FmM Mm =G 2 Mm FMm = G 2 Stała gawitacji G = 6.67 10 11 2 Nm 2 kg Wielkość siły gawitacji z jaką pzyciągają się wzajemnie ciała na Ziemi M = 100kg N M = Mg N m =
Grawitacyjna energia potencjalna gdy U = 0 w nieskończoności. w funkcji r
Wykład z fizyki Piot Posykiewicz 113 Ponieważ, ważne są tylko ziany enegii potencjalnej, ożey pzyjąć, że enegia potencjalna jest ówna zeo w dowolny położeniu. Powiezchnia iei oże być odpowiedni wyboe w
3b. ELEKTROSTATYKA. r r. 4πε. 3.4 Podstawowe pojęcia. kqq0 E =
3b. LKTROTATYKA 3.4 Postawowe pojęcia Zasaa zachowania łaunku umayczny łaunek ukłau elektycznie izolowanego jest stały. Pawo Coulomba - siła oziaływania elektostatycznego 4 1 18 F C A s ˆ gzie : k 8,85*1
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 8 gudnia KOLOKWIUM W pzyszłym tygodniu więcej infomacji o pytaniach i tym jak pzepowadzimy te kolokwium 2 Moment bezwładności Moment bezwładności masy punktowej m pouszającej się
Plan wykładu. Rodzaje pól
Plan wykładu Pole gawitacyjne d inż. Ieneusz Owczaek CMF PŁ ieneusz.owczaek@p.lodz.pl http://cmf.p.lodz.pl/iowczaek 2013/14 1 Wielkości chaakteyzujace pole Pawo Gaussa wewnatz Ziemi 2 Enegia układu ciał
Siła. Zasady dynamiki
Siła. Zasady dynaiki Siła jest wielkością wektoową. Posiada okeśloną watość, kieunek i zwot. Jednostką siły jest niuton (N). 1N=1 k s 2 Pzedstawienie aficzne A Siła pzyłożona jest do ciała w punkcie A,
dr inż. Zbigniew Szklarski
Wykład 10: Gawitacja d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Siły centalne Dla oddziaływań gawitacyjnych C Gm 1 m C ˆ C F F 3 C C Dla oddziaływań elektostatycznych
Zasady dynamiki ruchu obrotowego
DYNAMIKA (cz.) Dynamika układu punktów Śodek masy i uch śodka masy Dynamika były sztywnej Moment bezwładności, siły i pędu Zasada zachowania momentu pędu Pawo Steinea Zasady dynamiki uchu obotowego Politechnika
Fizyka 1- Mechanika. Wykład 5 2.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
izyka 1- Mechanika Wykład 5.XI.017 Zygunt Szefliński Śodowiskowe Laboatoiu Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Ruch po okęgu - bezwładność Aby ciało pozostawało w uchu po okęgu
cz.2 dr inż. Zbigniew Szklarski
Wykład 11: Gawitacja cz. d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Pawo Gaussa - PZYKŁADY: Masa punktowa: ds Powiezchnia Gaussa M g g S g ds S g ds 0 cos180 S gds
Nierelatywistyczne równania ruchu = zasady dynamiki Newtona
DYNAMIKA: siły ównania uchu uch Nieelatywistyczne ównania uchu zasady dynaiki Newtona Pojęcia podstawowe dla punktu ateialnego Masa - iaa bezwładności Pęd iaa ilości uchu v v p v p v v v Siła wywołuje
- substancje zawierające swobodne nośniki ładunku elektrycznego:
Pzewodniki - substancje zawieające swobodne nośniki ładunku elektycznego: elektony metale, jony wodne oztwoy elektolitów, elektony jony zjonizowany gaz (plazma) pzewodnictwo elektyczne metali pzewodnictwo
( ) Praca. r r. Praca jest jednąz form wymiany energii między ciałami. W przypadku, gdy na ciało
Paca i enegia Paca Paca jest jenąz fom wymiany enegii mięzy ciałami. pzypaku, gy na ciało bęące punktem mateialnym ziała stała siła F const oaz uch ciała obywa się o punktu A o B po linii postej bez zawacania
II.6. Wahadło proste.
II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia
Arkusze maturalne poziom podstawowy
Akusze matualne poziom postawowy zaania zamknięte N zaania 5 7 8 9 0 Pawiłowa opowieź a c a b c b a Liczba punktów zaania otwate N zaania Pawiłowa opowieź Punkty Q mg 00 N Z III zasay ynamiki wynika, że
Fizyka 1- Mechanika. Wykład 5 3.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
Fizyka 1- Mechanika Wykład 5 3.XI.016 Zygunt Szefliński Śodowiskowe Laboatoiu Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Układ inecjalny Zasada bezwładności Każde ciało twa w swy stanie
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 Zasady zachowania: enegia mechaniczna E E const. k p E p ()+E k (v) = 0 W układzie zachowawczym odosobnionym całkowita enegia mechaniczna, czyli suma enegii potencjalnej, E p, zaówno
Wykład FIZYKA I. 8. Grawitacja. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 8. Gawitacja D hab. inż. Władysław Atu Woźniak Instytut Fizyki Politechniki Wocławskiej http://www.if.pw.woc.pl/~wozniak/fizyka1.html CIĄŻENIE POWSZECHNE (GRAWITACJA) Wzajemne pzyciąganie
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 Zasady dynamiki Newtona I II Każde ciało twa w stanie spoczynku lub pousza się uchem postoliniowym i jednostajnym, jeśli siły pzyłożone nie zmuszają ciała do zmiany tego stanu Zmiana
Prawo Gaussa. Potencjał elektryczny.
Pawo Gaussa. Potencjał elektyczny. Wykład 3 Wocław Univesity of Technology 7-3- Inne spojzenie na pawo Coulomba Pawo Gaussa, moŝna uŝyć do uwzględnienia szczególnej symetii w ozwaŝanym zagadnieniu. Dla
Oddziaływania fundamentalne
Oddziaływania fundamentalne Siła gawitacji (siła powszechnego ciążenia, oddziaływanie gawitacyjne) powoduje spadanie ciał i ządzi uchem ciał niebieskich Księżyc Ziemia Słońce Newton Dotyczy ciał posiadających
Fizyka 1- Mechanika. Wykład 10 7.XII Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
Fizyka - Mechanika Wykład 0 7.XII.07 Zygmunt Szefliński Śodowiskowe Laboatoium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Pawo powszechnego ciążenia F G mm Opisuje zaówno spadanie jabłka
Moment pędu w geometrii Schwarzshilda
Moent pędu w geoetii Schwazshilda Zasada aksyalnego stazenia się : Doga po jakiej pousza się cząstka swobodna poiędzy dwoa zdazeniai w czasopzestzeni jest taka aby czas ziezony w układzie cząstki był aksyalny.
Wyznaczanie promienia krzywizny soczewki płasko-wypukłej metodą pierścieni Newtona
Wyznaczanie poienia kzywizny soczewki płasko-wypukłej etodą pieścieni Newtona I. Cel ćwiczenia: zapoznanie ze zjawiskie intefeencji światła, poia poienia soczewki płasko-wypukłej. II. Pzyządy: lapa sodowa,
Zasady zachowania, zderzenia ciał
Naa -Japonia -7 (Jaoszewicz) slajdów Zasady zachowania, zdezenia ciał Paca, oc i enegia echaniczna Zasada zachowania enegii Zasada zachowania pędu Zasada zachowania oentu pędu Zasady zachowania a syetia
FIZYKA 2. Janusz Andrzejewski
FIZYKA 2 wykład 4 Janusz Andzejewski Pole magnetyczne Janusz Andzejewski 2 Pole gawitacyjne γ Pole elektyczne E Definicja wektoa B = γ E = Indukcja magnetyczna pola B: F B F G m 0 F E q 0 qv B = siła Loentza
Ruch obrotowy. Wykład 6. Wrocław University of Technology
Wykład 6 Wocław Univesity of Technology Oboty - definicje Ciało sztywne to ciało któe obaca się w taki sposób, że wszystkie jego części są związane ze sobą dzięki czemu kształt ciała nie ulega zmianie.
WPROWADZENIE. Czym jest fizyka?
WPROWADZENIE Czym jest fizyka? Fizyka odgywa dziś olę tego co dawniej nazywano filozofią pzyody i z czego zodziły się współczesne nauki pzyodnicze. Można powiedzieć, że fizyka stanowi system podstawowych
Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii.
Wykład: paca siły, pojęcie enegii potencjalnej. Zasada zachowania enegii. Uwaga: Obazki w tym steszczeniu znajdują się stonie www: http://www.whfeeman.com/tiple/content /instucto/inde.htm Pytanie: Co to
Pęd, d zasada zac zasad a zac owan owan a p a p du Zgod Zg n od ie n ie z d r d u r g u im g pr p a r wem e N ew e tona ton :
Mechanika ogólna Wykład n 13 Zasady zachowania w dynamice. Dynamika były sztywnej. Dynamika układu punktów mateialnych. 1 Zasady zachowania w dynamice Zasada: zachowania pędu; zachowania momentu pędu (kętu);
11. DYNAMIKA RUCHU DRGAJĄCEGO
11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie
MECHANIKA OGÓLNA (II)
MECHNIK GÓLN (II) Semest: II (Mechanika I), III (Mechanika II), ok akademicki 2017/2018 Liczba godzin: sem. II*) - wykład 30 godz., ćwiczenia 30 godz. sem. III*) - wykład 30 godz., ćwiczenia 30 godz. (dla
Na skutek takiego przemieszcznia ładunku, energia potencjalna układu pole-ładunek zmienia się o:
E 0 Na ładunek 0 znajdujący się w polu elektycznym o natężeniu E działa siła elektostatyczna: F E 0 Paca na pzemieszczenie ładunku 0 o ds wykonana pzez pole elektyczne: dw Fds 0E ds Na skutek takiego pzemieszcznia
Zagadnienie dwóch ciał oddziałujących siłą centralną Omówienie ruchu ciał oddziałujących siłą o wartości odwrotnie proporcjonalnej do kwadratu ich
Zagadnienie dwóch ciał oddziałujących iłą centalną Oówienie uchu ciał oddziałujących iłą o watości odwotnie popocjonalnej do kwadatu ich odległości F F Siła centalna F F F F Dla oddziaływania gawitacyjnego
IV.2. Efekt Coriolisa.
IV.. Efekt oiolisa. Janusz B. Kępka Ruch absolutny i względny Załóżmy, że na wiującej taczy z pędkością kątową ω = constant ciało o masie m pzemieszcza się ze stałą pędkością = constant od punktu 0 wzdłuż
IV OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy część 2 ZADANIA 29 lutego 2012r.
V OGÓLNOPOLSK KONKS Z FZYK Fizyka się liczy część ZADANA 9 lutego 0.. Dwie planety obiegają Słooce po, w pzybliżeniu, kołowych obitach o pomieniach 50 0 km (Ziemia) i 080 km (Wenus). Znaleź stosunek ich
Rys. 1. Ilustracja modelu. Oddziaływanie grawitacyjne naszych ciał z masą centralną opisywać będą wektory r 1
6 FOTON 6, Wiosna 0 uchy Księżyca Jezy Ginte Uniwesytet Waszawski Postawienie zagadnienia Kiedy uczy się o uchach ciał niebieskich na pozioie I klasy liceu, oawia się najczęściej najpiew uch Ziei i innych
Elektrodynamika. Część 2. Specjalne metody elektrostatyki. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM
Elektroynamika Część 2 Specjalne metoy elektrostatyki Ryszar Tanaś Zakła Optyki Nieliniowej, UAM http://zon8.phys.amu.eu.pl/\~tanas Spis treści 3 Specjalne metoy elektrostatyki 3 3. Równanie Laplace a....................
Wykład 6. F m 1 m 2 R T. a = m/s 2
. ąkol-notatki do Wykładu z izyki Wykład 6 6. Ciążenie powszechne (gawitacja) 6. Pawo powszechnego ciążenia Newton - 665 spadanie ciał. Skoo istnieje siła pzyciągania poiędzy dowolny ciałe i ieią, to usi
Siła tarcia. Tarcie jest zawsze przeciwnie skierowane do kierunku ruchu (do prędkości). R. D. Knight, Physics for scientists and engineers
Siła tacia Tacie jest zawsze pzeciwnie skieowane do kieunku uchu (do pędkości). P. G. Hewitt, Fizyka wokół nas, PWN R. D. Knight, Physics fo scientists and enginees Symulacja molekulanego modelu tacia
cz.1 dr inż. Zbigniew Szklarski
ykład : Gawitacja cz. d inż. Zbiniew Szklaski szkla@ah.edu.l htt://laye.uci.ah.edu.l/z.szklaski/ Doa do awa owszechneo ciążenia Ruch obitalny lanet wokół Słońca jak i dlaczeo? Reulane, wieloletnie omiay
Blok 8: Moment bezwładności. Moment siły Zasada zachowania momentu pędu
Blo 8: Moent bezwładności Moent siły Zasada zachowania oentu pędu Moent bezwładności awiając uch postępowy ciała, posługujey się pojęciai pzeieszczenia, szybości, pzyspieszenia tego ciała oaz wypadowej
PRĘDKOŚCI KOSMICZNE OPRACOWANIE
PRĘDKOŚCI KOSMICZNE OPRACOWANIE I, II, III pędkość komiczna www.iwiedza.net Obecnie, żyjąc w XXI wieku, wydaje ię nomalne, że człowiek potafi polecieć w komo, opuścić Ziemię oaz wylądować na Kiężycu. Poza
Lista zadań nr 1 - Wektory
Lista zadań n 1 - Wektoy Zad. 1 Dane są dwa wektoy: a = 3i + 4 j + 5k, b = i + k. Obliczyć: a) długość każdego wektoa, b) iloczyn skalany a b, c) kąt zawaty między wektoami,, d) iloczyn wektoowy a b e)
ZJAWISKA ELEKTROMAGNETYCZNE
ZJAWISKA LKTROMAGNTYCZN 1 LKTROSTATYKA Ładunki znajdują się w spoczynku Ładunki elektyczne: dodatnie i ujemne Pawo Coulomba: siły pzyciągające i odpychające między ładunkami Jednostką ładunku elektycznego
PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA
PĄD LKTYCZNY SŁA MAGNTYCZNA Na ładunek, opócz siły elektostatycznej, działa ównież siła magnetyczna popocjonalna do pędkości ładunku v. Pzekonamy się, że siła działająca na magnes to siła działająca na
Ekspansja Wszechświata
Ekspansja Wszechświata Odkrycie Hubble a w 1929 r. Galaktyki oddalają się od nas z prędkościami wprost proporcjonalnymi do odległości. Prędkości mierzymy za pomocą przesunięcia ku czerwieni efekt Dopplera
Geodezja fizyczna. Siła grawitacji. Potencjał grawitacyjny Ziemi. Modele geopotencjału. Dr inż. Liliana Bujkiewicz. 23 października 2018
Geodezja fizyczna Siła gawitacji. Potencjał gawitacyjny iemi. Modele geopotencjału. D inż. Liliana Bujkiewicz 23 paździenika 2018 D inż. Liliana Bujkiewicz Geodezja fizyczna 23 paździenika 2018 1 / 24
Pędu Momentu pędu Ładunku Liczby barionowej. Przedmiot: Fizyka. Przedmiot: Fizyka. Wydział EAIiE Kierunek: Elektrotechnika.
ZASADY ZACHOWANIA W FIZYCE ZASADY ZACHOWANIA: Enegii Pęd Moent pęd Ładnk Liczby baionowej ZASADA ZACHOWANIA ENERGII W = E calk Paca siły zewnętznej Jeżeli W=0 to E calk =0 Ziana enegii całkowitej Ziana
Teoria Względności. Czarne Dziury
Teoia Względności Zbigniew Osiak Czane Dziuy 11 Zbigniew Osiak (Tekst) TEORIA WZGLĘD OŚCI Czane Dziuy Małgozata Osiak (Ilustacje) Copyight by Zbigniew Osiak (tt) and Małgozata Osiak (illustations) Wszelkie
GEOMETRIA PŁASZCZYZNY
GEOMETRIA PŁASZCZYZNY. Oblicz pole tapezu ównoamiennego, któego podstawy mają długość cm i 0 cm, a pzekątne są do siebie postopadłe.. Dany jest kwadat ABCD. Punkty E i F są śodkami boków BC i CD. Wiedząc,
Podstawy fizyki sezon 1 VII. Pole grawitacyjne*
Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha * Resnick, Halliday,
= ± Ne N - liczba całkowita.
POL LKTRYCZN W PRÓŻNI Ładunek - elementany Nieodłączna własność niektóych cząstek elementanych, [n. elektonu (-e), otonu (+e)], zejawiająca się w oddziaływaniu elektomagnetycznym tych cząstek. e =,6-9
Metoda odbić zwierciadlanych
Metoa obić zwiecialanych Pzypuśćmy, że łaunek punktowy (Rys ) umieszczony jest w oległości o nieskończonej powiezchni pzewozącej, umiejscowionej na płaszczyźnie X0Y Piewsze pytanie, jakie o azu się nasuwa
WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA INNOWACYJNY PROGRAM NAUCZANIA FIZYKI W SZKOŁACH PONADGIMNAZJALNYCH
WITUALNE LABOATOIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA INNOWACYJNY POGAM NAUCZANIA FIZYKI W SZKOŁACH PONADGIMNAZJALNYCH Moduł dydaktyczny: fizyka - infoatyka Gawitacja Gzegoz F. Wojewoda Człowiek - najlepsza
WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA INNOWACYJNY PROGRAM NAUCZANIA FIZYKI W SZKOŁACH PONADGIMNAZJALNYCH
WITULNE LBOTOI FIZYCZNE NOWOCZESNĄ METODĄ NUCZNI INNOWCYJNY POGM NUCZNI FIZYKI W SZKOŁCH PONDGIMNZJLNYCH Moduł dydaktyczny: fizyka - infoatyka Gawitacja Gzegoz F. Wojewoda Człowiek - najlepsza inwestycja
Grawitacja. W Y K Ł A D IX. 10-1 Prawa Keplera.
Wykład z fizyki, Piot Posmykiewicz 106 W Y K Ł A D IX Gawitacja. Siły gawitacyjne są najsłabsze z pośód czteech podstawowych sił pzyody. Są całkowicie zaniedbywalne w oddziaływaniach między atomami i nukleonami
T E S T Z F I Z Y K I
1* Miejsce egzainu 2* Nue kandydata 3* Kieunek studiów 4 Liczba uzyskanych punktów * wypełnia kandydat /100 T E S T Z F I Z Y K I Test ekutacyjny dla kandydatów na studia w Polsce WERSJA I - A 2014 ok
XXXVII OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne
XXXVII OIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne ZADANIE D Nazwa zadania: Obacający się pęt swobodnie Długi cienki pęt obaca się swobodnie wokół ustalonej pionowej osi, postopadłej do niego yc.
Pola siłowe i ich charakterystyka
W-6 (Jaosewic) 10 slajdów Pola siłowe i ich chaaktestka Pola siłowe: pojęcie i odaje pól siłowch, wielkości chaakteujące pola siłowe Pola achowawce Pole gawitacjne: uch w polu gawitacjnm 3/10 L.R. Jaosewic
Równania Lagrange a II r.
Mechania Analityczna i Dgania Równania Lagange a II. pzyłay Równania Lagange a II. pzyłay mg inż. Sebastian Pauła Aaemia Góniczo-Hutnicza im. Stanisława Staszica w Kaowie Wyział Inżynieii Mechanicznej
Zasada zachowania pędu
Zasada zachowania pędu Fizyka I (B+C) Wykład XIII: Zasada zachowania pędu Zasada zachowania oentu pędu Ruch ciał o ziennej asie Zasada zachowania pędu Układ izolowany Każde ciało oże w dowolny sposób oddziaływać
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 Paca Paca jest ówna iloczynowi pzemieszczenia oaz siły, któa te pzemieszczenie wywołuje. Paca jest wielkością skalaną wyażaną w dżulach (ang. Joul) [J] i w ogólności może być zdefiniowana
Energia w geometrii Schwarzshilda
Enegia w geometii Schwazshilda Doga po jakiej pousza się cząstka swobodna pomiędzy dwoma zdazeniami w czasopzestzeni jest taka aby czas zmiezony w układzie cząstki był maksymalny. Rozważmy cząstkę spadającą
Zastosowanie zasad dynamiki Newtona.
Wykład z fizyki. Piot Posmykiewicz 33 W Y K Ł A D IV Zastosowanie zasad dynamiki Newtona. W wykładzie tym zostanie omówione zastosowanie zasad dynamiki w zagadnieniach związanych z taciem i uchem po okęgu.
Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym
Sztuczny satelita Ziemi Ruch w polu grawitacyjnym Sztuczny satelita Ziemi Jest to obiekt, któremu na pewnej wysokości nad powierzchnią Ziemi nadano prędkość wystarczającą do uzyskania przez niego ruchu
XXI OLIMPIADA FIZYCZNA ( ). Stopień III, zadanie teoretyczne T1. Źródło: XXI i XXII OLIMPIADA FIZYCZNA, WSiP, Warszawa 1975 Andrzej Szymacha,
XXI OLIMPIADA FIZYCZNA (97-97). Stopień III zadanie teoetyczne. Źódło: XXI i XXII OLIMPIADA FIZYCZNA WSiP Waszawa 975 Auto: Nazwa zadania: Działy: Słowa kluczowe: Andzej Szyacha Dwa ciała i spężynka Dynaika
20 ELEKTROSTATYKA. PRAWO COULOMBA.
Włodzimiez Wolczyński Pawo Coulomba 20 ELEKTROSTATYKA. PRAWO COULOMBA. POLE CENTRALNE I JEDNORODNE Q q = k- stała, dla póżni = 9 10 = 1 4 = 8,9 10 -stała dielektyczna póżni ε względna stała dielektyczna
Inercjalne układy odniesienia
Inecjalne ukłay onesena I II zasaa ynamk Newtona są spełnone tylko w pewnej klase ukłaów onesena. Nazywamy je necjalnym ukłaam onesena. Kyteum ukłau necjalnego: I zasaa jeżel F 0, to a 0. Jeżel stneje
magnetyzm ver
e-8.6.7 agnetyz pądy poste pądy elektyczne oddziałują ze soą. doświadczenie Apèe a (18): Ι Ι 1 F ~ siła na jednostkę długości pzewodów pądy poste w póżni jednostki w elektyczności A ape - natężenie pądu
Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna
Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna G m m r F = r r F = F Schemat oddziaływania: m pole sił m Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna Masa M jest
Guma Guma. Szkło Guma
1 Ładunek elektyczny jest cechą mateii. Istnieją dwa odzaje ładunków, nazywane dodatnimi i ujemnymi. Ładunki jednoimienne się odpychają, podczas gdy ładunki óżnoimeinne się pzyciągają Guma Guma Szkło Guma
5. Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej
5. Dynaika uchu postępowego, uchu punktu ateialnego po okęgu i uchu obotowego były sztywnej Wybó i opacowanie zadań 5..-5..0; 5..-5..6 oaz 5.3.-5.3.9 yszad Signeski i Małgozata Obaowska. Zadania 5..-5..4
Zjawisko indukcji. Magnetyzm materii.
Zjawisko indukcji. Magnetyzm mateii. Wykład 6 Wocław Univesity of Technology -04-0 Dwa symetyczne pzypadki PĘTLA Z PĄDEM MOMENT SIŁY + + POLE MAGNETYCZNE POLE MAGNETYCZNE P A W O I N D U K C J I MOMENT
LITERATURA Resnick R., Holliday O., Acosta V., Cowan C. L., Graham B. J., Wróblewski A. K., Zakrzewski J. A., Kleszczewski Z., Zastawny A.
LITERATURA. Resnick R., Holliday O., Fizyka, Tom i, lub nowe wydanie 5-tomowe. Acosta V., Cowan C. L., Gaham B. J., Podstawy Fizyki Współczesnej, 98,PWN. 3. Wóblewski A. K., Zakzewski J. A., Wstęp Do Fizyki,
dr inż. Zbigniew Szklarski
ykład 5: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Enegia a paca Enegia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele
1. SZCZEGÓLNE PRZYPADKI ŁUKÓW.
Olga Kopacz, Aam Łoygowski, Kzysztof Tymbe, ichał Płotkowiak, Wojciech Pawłowski Konsultacje naukowe: pof. hab. Jezy Rakowski Poznań /. SZCZEGÓLNE PRZYPADKI ŁUKÓW.. Łuk jenopzegubowy kołowy. Dla łuku jak
1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym.
Wykład 3. Zasada zachowania momentu pędu. Dynamika punktu mateialnego i były sztywnej. Ruch obotowy i postępowy Większość ciał w pzyodzie to nie punkty mateialne ale ozciągłe ciała sztywne tj. obiekty,
Szczególna i ogólna teoria względności (wybrane zagadnienia)
Szczególna i ogólna teoia względności (wybane zagadnienia) Maiusz Pzybycień Wydział Fizyki i Infomatyki Stosowanej Akademia Góniczo-Hutnicza Wykład 7 M. Pzybycień (WFiIS AGH) Szczególna Teoia Względności
Magnetyzm. A. Sieradzki IF PWr. Pole magnetyczne ŁADUNEK ELEKTRYCZNY ŁADUNEK MAGNETYCZNY POLE ELEKTRYCZNE POLE MAGNETYCZNE
Magnetyzm Wykład 5 1 Wocław Univesity of Technology 14-4-1 Pole magnetyczne ŁADUNEK ELEKTRYCZNY ŁADUNEK MAGNETYCZNY? POLE ELEKTRYCZNE POLE MAGNETYCZNE Jak wytwozyć pole magnetyczne? 1) Naładowane elektycznie
Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne
Rozdział 5 Pole magnetyczne 5.1 Oddziaływanie pola magnetycznego na ładunki i pzewodniki z pądem 5.1.1 Podstawowe zjawiska magnetyczne W obecnym ozdziale ozpatzymy niektóe zagadnienia magnetostatyki. Magnetostatyką
Geodezja fizyczna i geodynamika
Geodezja fizyczna i geodynamika Wstęp. Potencjał gawitacyjny iemi. Modele geopotencjału. D inż. Liliana Bujkiewicz 27 maca 2017 D inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 27 maca 2017 1
Wykład 5: Dynamika. dr inż. Zbigniew Szklarski
Wykład 5: Dynamika d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Pzyczyny uchu - zasady dynamiki dla punktu mateialnego Jeśli ciało znajduje się we właściwym miejscu,
Podstawy fizyki sezon 1 VII. Pole grawitacyjne*
Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha * Resnick, Halliday,
dr inż. Zbigniew Szklarski
ykład 5: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Enegia a paca Enegia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele
POLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął
POLE MAGNETYCZNE W PÓŻNI W oku 8 Oested zaobsewował oddziaływanie pzewodnika, w któym płynął pąd, na igłę magnetyczną Dopowadziło to do wniosku, że pądy elektyczne są pzyczyną powstania pola magnetycznego
Coba, Mexico, August 2015
Coba, Meico, August 015 W-6 (Jaosewic) 10 sladów Pola siłowe i ich chaaktestka Pola siłowe: poęcie i odae pól siłowch, wielkości chaakteuące pola siłowe Pola achowawce Pole gawitacne: uch w polu gawitacnm
Elektrostatyka. + (proton) - (elektron)
lektostatyka Za oddziaływania elektyczne ( i magnetyczne ) odpowiedzialny jest: ładunek elektyczny Ładunek jest skwantowany Ładunek elementany e.6-9 C (D. Millikan). Wszystkie ładunki są wielokotnością
Składowe wektora y. Długość wektora y
FIZYKA I Wykła II Rachunek Pojęcia postawowe wektorowy i (I) historia b a Skłaowe wektora y n = n cos(α) y n = n sin(α) y b Ԧa = a, y a a b = b, y b b a Długość wektora y Ԧa = a + y a y b b = b + y b b