1.4. STAN ODKSZTAŁCENIA STRONA GEOMETRYCZNA

Wielkość: px
Rozpocząć pokaz od strony:

Download "1.4. STAN ODKSZTAŁCENIA STRONA GEOMETRYCZNA"

Transkrypt

1 J. Wyrwał Wyłady z mechan materałów.. STAN ODKSZTAŁCENA STRONA GEOMETRYCZNA... Wetor przemeszczena Rozważmy bryłę (cało materalne) o dowolnym ształce meszczoną w prostoątnym ładze odnesena Ox xx (rys. ) Rys. gdze x oznacza położene (mesce) pnt materalnego w tym ładze x x x są ego współrzędnym wersoram (wetoram ednostowym) os ład odnesena. Bryła neobcążona zame w trówymarowe przestrzen obszar B zwany onfgraca początową (neobcążoną). Pod wpływem sł zewnętrznych (powerzchnowych masowych) bryła odształca sę zamąc nowy obszar B zwany onfgracą ońcową (odształconą). Pnt materalny bryły (cząsta materalna) zamący w onfgrac początowe położene x znadze sę na ste odształcena bryły w położen x. Wetor o począt w pnce x ońc w pnce x nazywamy wetorem przemeszczena [m]. Poneważ przemeszczene ażdego pnt materalnego bryły est w ogólnośc nne zatem wetor ten est fncą położena ( ) ( x) ( x) ( x) ( x) ( x ) x () Współrzędne wetora przemeszczeń w zagadnenach nżynersch oznacza sę ao v w.... Tensor odształceń Rozpatrzymy przemeszczene dwóch dowolne wybranych pntów materalnych bryły znadących sę nesończene blso sebe. Nech perwszy z nch zame w onfgrac początowe położene x zaś drg x. Pod wpływem obcążena pnty te przemeszczą sę odpowedno o d zamąc w onfgrac ońcowe

2 (odształcone) nowe położene czyl x (rys. ). x d x równeż nesończene blso sebe Rys. Z rysn tego wyna że d x d ' ' d () Sąd otrzymemy d x d () Poneważ ( x ) zatem () d x w onsewenc ( δ ) δ (5) Jao marę odształcena bryły w danym pnce x możemy przyąć różncę odległośc mędzy rozważanym pntam po odształcen przed odształcenem lb co est wygodnesze różncę wadratów tych odległośc czyl. Poneważ d x d oraz δ zatem x δ (6) Poneważ z (5) wyna że ( δ )( δ ) ( δ δ δ δ ) ( δ ) (7) zatem podstawaąc (7) do (6) względnaąc że otrzymemy

3 ( ) e (8) Powyższą zależność można przedstawć w neco nne łatwesze w nterpretac postac a manowce ( e δ ) e e δ (9) Poneważ e E oraz δ gdze δ est tensorem ednostowym zatem Tensor ( E ) () E e nazywamy tensorem odształceń. Z () wyna że tensor ten przyporządowe wetorow d x w onfgrac początowe (neodształcone) wadrat dłgośc d x ( ) wetora w onfgrac ońcowe (odształcone). Poneważ welość ta w ażdym pnce bryły est zależna od ern wetora d x zatem tensor odształceń E oreśla stan odształcena w pnce. Z (8) wyna że współrzędne równanam geometrycznym e E tego tensora oreślone są następącym ( ) () e Z równań tych wyna że tensor odształceń est nelnową fncą pochodnych przemeszczeń (nelnowość geometryczna). Powode to dże trdnośc oblczenowe. Poneważ edna w przypad węszośc onstrc bdowlanych pochodne przemeszczeń są bardzo małe zatem zwąz () można zlnearyzować. Z przyład P w rozdzale. wyna że w przypad bel twerdzone o dłgośc l sztywnośc E obcążone równomerne obcążenem q masymalne gęce w ( x l) obrót (pochodna gęca) ( x l) sztywnośc wymaga aby ql zaś masymalny 8E max ql ϕ max. Wyna stąd że ϕ max w max. Poneważ warne 6E l l max ϕ max x l wmax l 5 w zatem ( ) 7 Możemy zatem przyąć że << w zależnośc () pomnąć loczyny Otrzymamy w ten sposób wyrażene ( ). () oreślaące tensor małych odształceń CAUCHY EGO tóry est lnową fncą pochodnych przemeszczeń. Tensor ten est tensorem drgego rzęd ma 9

4 współrzędnych. Jedna z () wyna że tensor odształceń est symetryczny a węc lczba ego nezależnych współrzędnych wynos sześć. Powyższe zlnearyzowane zwąz łączące współrzędne tensora odształceń z pochodnym współrzędnym wetora przemeszczeń zwane są równanam geometrycznym CAUCHY EGO. Po rozpsan ch względem wsaźnów otrzymamy sześć następących równań salarnych: ( ) ( ) ( ) ()... nterpretaca geometryczne współrzędnych tensora odształceń W przypad małych odształceń zależność (8) można zapsać ao gdze ( ) ( ) ( )( ) () d x natomast różnca est przyrostem dłgośc w następstwe odształcena. Poneważ w przypad małych odształceń możemy przyąć zatem zależność () przyme postać ( ) Dzeląc (5) stronam przez ( ) otrzymemy (5) (6) Lewa strona powyższego wzor przedstawa względny przyrost dłgośc na ste odształcena. Nech d x oznacza wetor równoległy w onfgrac początowe do os Ox (rys. ). Poneważ zatem (6) przyme postać (7) z tóre wyna że est względnym przyrostem dłgośc element tóry w onfgrac początowe był równoległy do os x na ste ego odształcena.

5 Rys. Podobna est nterpretaca współrzędnych. Dlatego współrzędne te nazywamy odształcenam lnowym. Przedstawaąc pnt materalny w postac sześcan o ednostowych rawędzach możemy współrzędne tensora odształceń nterpretować ao przyrosty dłgośc ego rawędz. Rozważmy z ole dwa elementy lnowe d x oraz d x o wspólnym począt leżące w płaszczyźne Ox x przy czym perwszy z nch w onfgrac początowe est równoległy do os Ox zaś drg do Ox (rys. ). Rys. W tam przypad zależność () przyme postać d d d d (8) Ze wzor () wyna że d d d d ( ) ( ) (9) Podstawaąc (9) do (8) dostaemy () 5

6 Dzeląc perwszą z powyższych relac przez zaś drgą przez. otrzymemy n n () gdze n oraz n są wetoram ednostowym o ern zwroce zgodnym z wetoram d x oraz d x. W () przyęto że wag na małe odształcena. loczyn salarny powyższych wetorów est równy cosθ n n ( ) ( ) δ δ δ () gdze z wag na małe odształcena przyęto ż. Jeśl γ Π Θ oznacza zmanę ąta prostego medzy rozważanym elementam d x d x to z wag na małe odształcena możemy napsać że snγ γ sn( Π Θ ) cos Θ γ cos Θ () Oblczaąc zmanę ąta medzy nesończene małym wetoram leżącym w płaszczyznach Ox x oraz Ox x otrzymamy podobne wyrażena. Czyl cos cos cos Θ Θ Θ γ γ γ () Powyższe współrzędne tensora odształceń nazywamy odształcenam ątowym (postacowym). Przedstawaąc pnt materalny w postac sześcan o ednostowych rawędzach możemy współrzędne nterpretować ao zmany ąta prostego mędzy ego rawędzam (sześcan stae sę równoległoścanem).... Warn nerozdzelnośc W równanach geometrycznych () do wyznaczena trzech fnc opsących pole przemeszczeń słży sześć fnc opsących pole odształceń. Wyna stąd że współrzędne tensora odształcena ne mogą być nezależne mszą spełnać dodatowe warn. 6

7 Warn te otrzymemy różncząc dwrotne równana () zmenaąc oleno wsaźn l l l l ( ) l ( ) l ( ) l ( ) l l l l l (5) Dodaąc dwa perwsze równana stronam a od wyn odemąc dwa pozostałe otrzymemy następące zwąz mędzy współrzędnym tensora odształceń: (6) l l l l zwane warnam (równanam) nerozdzelnośc (cągłośc). Chocaż równań tych est 8 to edna tylo sześć z nch est nezależnych (różn sę medzy sobą). Otrzymemy e przymąc w powyższych równanach l. Czyl ostateczne (7) Spełnene powyższych równań oznacza że ośrode cągły przed odształcenem est równeż cągły po odształcen zaś ażdem pntow materalnem bryły w onfgrac początowe odpowada doładne eden pnt w onfgrac ońcowe z zachowanem sąsedztwa elementów. Dae to zatem gwarancę że po odształcen w ośrod ne powstaną pst a myślowo wycęte elementy cała ne będą sę przenały...5. Macerz odształceń Współrzędne [ ] tensora odształceń możemy zapsać w postac macerzy wadratowe [ ] x γ γ yx zx γ γ y xy zy γ xz γ yz z (8) zwane macerzą odształceń (obo oznaczeń elementów macerzy odształceń wyorzystywanych w naszych rozważanach powyże przedstawono równeż oznaczena lasyczne wyorzystywane w zagadnenach nżynersch). Na główne przeątne te macerzy leżą odształcena lnowe natomast poza główna przeątną odształcena ątowe (postacowe). 7

8 ..6. Odształcena główne Wartośc główne tensora odształceń oblczamy z równana charaterystycznego (9) gdze () są nezmennam macerzy odształceń. Z wag na symetrę macerzy odształceń powyższe równane ma trzy perwast rzeczywste ; ażdem z tych perwastów (odształceń głównych) przyporządowany est erne główny oreślony wetorem normalnym n n n czyl n n n ( n n n ) ( n n n ) ( n n n ) () przy czym współrzędne ernów głównych tensora odształceń wyznaczamy z równań ( ) n n n n ( ) n n n n ( ) n () Wetory główne są ortonormalne czyl mszą spełnać warn n n δ n n n n n n n n n () W ładze odnesena oreślonym przez ern główne macerz odształceń ma postać [ ] () 8

9 9 zaś e nezmenn dane są zależnoścam (5)..7. Względna zmana obętośc Rozpatrzmy sześcan tórego rawędze o dłgośc ednostowe są w onfgrac początowe równoległe do ernów głównych (rys. 5). Rys. 5 Obętość tego sześcan wynos V. Po odształcen ształt sześcan sę ne zmen zaś ego obętość będze równa ( )( )( ) V. Względna zmana obętośc tego sześcan wynos ( )( )( ) V V V (6) Z wag na założene o małych odształcenach w powyższym wyrażen pomnęto loczyny odształceń głównych Porównąc () (5) (6) otrzymemy V V V (7) Wyna stąd że względna zmana obętośc ednostowego sześcan zwana dylatacą est równa perwszem nezmennow macerzy odształceń.

10 ..8. Asator dewator odształceń Tensor odształceń można przedstawć ao smę dwóch tensorów (8) a d Perwszy z nch czyl δ (9) a m nazywamy asatorem odształceń (tensorem lstym) przy czym m () est średnm odształcenem lnowym natomast drg a węc d δ () m dewatorem odształceń. Asator odształceń opse zmanę obętośc elementarnego sześcan natomast dewator zmanę ego postac (ształt). Współrzędne tych tensorów przedstawaą macerze a [ ] m m m () d [ ] m m m () Ja łatwo sprawdzć perwszy nezmenn asatora odształceń est równy perwszem a nezmennow tensora odształceń czyl natomast perwszy nezmenn d dewatora odształceń est równy zer a węc. m..9. Płas stan odształcena Płas stan odształcena występe wtedy gdy w ażdym pnce bryły edna współrzędna wetora przemeszczena na płaszczyźne prostopadłe do edne z os ład odnesena est równa zer zaś pozostałe współrzędne tego wetora są fncam tylo dwóch zmennych oreślaących położene pnt na te płaszczyźne. Przymmy zatem że osą tą est Ox natomast płaszczyzną Ox x. W tam przypad natomast pozostałe współrzędne wetora przemeszczeń są fncam x x czyl ( x x ). Poneważ z () wyna że w tam przypad

11 zatem. W tam przypad płaszczyzna Ox x est płaszczyzną główną na tóre zaś w bryle występą tylo odształcena. Ta stan odształcena występe np. w bardzo dłge ścane równomerne obcążone w płaszczyźne Ox x (rys. 6). Rys. 6 W przypad płasego stan odształcena macerz odształceń można przedstawć w postac () [ ] Wartośc główne te macerzy wyznaczamy z równana charaterystycznego (9) tóre z wag na a tym samym przyme następącą postać: gdze (5) są nezmennam macerzy [ ]. Poneważ wyróżn powyższego równana est zawsze węszy od zera (dodatn) ( ) ( ) ( ) (6) > (7) zatem estremalne wartośc odształceń (perwast powyższego równana) czyl odształcena główne oreślaą następące relace: max mn ( ) ( ) (8)

12 Każdem z tych odształceń głównych przyporządowany est erne główny oreślony wetorem normalnym n n czyl n n ( n n ) ( n n ) Do wyznaczena ernów głównych wyorzystemy ład równań (9) ( ) n n n ( ) n (5) z dodatowym warnem ortonormalnośc wetorów n n wyznaczaących ern główne n n δ (5) Z warn tego wyna że n n n n n n n n n n n n n n (5) W ładze odnesena wyznaczonym przez ern główne macerz odształceń ma postać zaś e nezmenn oreślaą zależnośc (5) [ ] (5) Przyłady Przyład. Wyznaczyć porównać nezmenn następących dwóch macerzy odształceń: 5 [ ] [ ] 6 Dane: 5 6

13 Szane: Rozwązane: Kro. Korzystaąc ze wzorów () oblczamy nezmenn perwsze macerzy ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Kro. Korzystaąc ze wzorów (5) oblczamy nezmenn drge macerzy Kro. Porównemy nezmenn ob macerzy. Z porównana tego wyna że Poneważ nezmenn ob macerzy są sobe równe zatem ch elementy są współrzędnym tego samego tensora odształceń w dwóch różnych ładach odnesena (drg z nch tworzą ose główne). Przyład. Wyznaczyć macerz odształceń w przypad bryły tóra w onfgrac początowe (neobcążone) B est sześcanem o ednostowych rawędzach (rys. P.) Rys. P. eśl pole przemeszczeń oreślone est wetorem ( ) bx ax. Wyznaczyć onfgracę ońcową (odształconą) B bryły. Dane: b a bx ax Szane: [ ] B Rozwązane: Kro. Wyznaczamy macerz odształceń

14 () Oblczamy pochodne wetora przemeszczeń ; a b () Korzystaąc ze wzorów () oblczamy współrzędne macerzy odształceń ; a b () Podstawaąc powyższe współrzędne do macerzy (8) otrzymemy następącą macerz odształceń [ ] a b Z postac powyższe macerzy wyna że w bryle występą tylo odształcena lnowe są to odształcena główne a b. Kro. Wyznaczamy onfgracę ońcową (odształconą) bryły Poneważ zadany wetor przemeszczene est lnową fncą położena (czyl zmennych x x ) to w cel wyznaczena onfgrac ońcowe bryły wystarczy oblczyć przemeszczene werzchołów sześcan Wyorzystemy do tego wzór ax bx O : x A : x B : x C : x D : x F : x E : x G : x x x x x x x x x x x x x x x x x O E A C D b a a G B F a a b b b Konfgracę ońcową (odształconą) bryły przedstawa rys. P. Rys. P. Przyład. Wyznaczyć macerz odształceń w przypad bryły tóra w onfgrac początowe (neobcążone) est sześcanem o ednostowych rawędzach (rys. P.) eśl pole przemeszczeń ax ax. Wyznaczyć onfgracę ońcową (odształconą) bryły. oreślone est wetorem ( ) Dane:

15 ax ax a Szane: [ ] B Rozwązane: Kro. Wyznaczamy macerz odształceń () Oblczamy pochodne wetora przemeszczeń a ; () Korzystaąc ze wzorów () oblczamy współrzędne macerzy odształceń ; a () Podstawaąc powyższe współrzędne do macerzy (8) otrzymemy następącą macerz odształceń [ ] a a Z postac powyższe macerzy wyna że w bryle występą tylo odształcena ątowe (postacowe) γ γ cos Θ a γ γ a. Kro. Wyznaczamy onfgracę ońcową (odształconą) bryły Poneważ zadany wetor przemeszczene est lnową fncą położena (czyl zmennych x x ) to w cel wyznaczena onfgrac ońcowe bryły wystarczy oblczyć przemeszczene werzchołów sześcan Wyorzystemy do tego wzór ax ax O : x x A : x B : x F : x G : x x x x C : x x D : x x E : x x x x x x x x x x x O E A C D a G B a a ( ) a F a a ( ) Konfgracę ońcową (odształconą) bryły przedstawa rys. P. 5

16 Rys. P. Zagadnena na egzamn. Zdefnować omówć tensor (macerz odształceń). Podać nterpretacę geometryczną sładowych tensora odształceń.. Zdefnować omówć asator (tensor lsty) dewator odształceń.. Wyprowadzć omówć wzór oreślaący względną zmanę obętośc (dylatacę) ednostowego sześcan.. Wyprowadzć omówć wzory oreślaące naprężena główne w przypad płasego stan odształcena. Zdefnować nezmenn tensora odształceń. Wsazówa: Wyorzystać macerz odształceń y τ yz τ yz z 6

punktów ciała w dowolnej fazie deformacji. W chwili początkowej, tuż przed przyłożeniem obciążenia, mamy oczywiście (1)

punktów ciała w dowolnej fazie deformacji. W chwili początkowej, tuż przed przyłożeniem obciążenia, mamy oczywiście (1) Wyład II STAN ODKSZTAŁCENIA Przeeszczena odształcena Oznaczy przez B obszar zaowany przez analzowane cało w chwl początowe a przez b przestrzeń zaowaną przez ne w dowolne faze proces deforac Na rysn oznaczono:

Bardziej szczegółowo

Wykład 1 Zagadnienie brzegowe liniowej teorii sprężystości. Metody rozwiązywania, metody wytrzymałości materiałów. Zestawienie wzorów i określeń.

Wykład 1 Zagadnienie brzegowe liniowej teorii sprężystości. Metody rozwiązywania, metody wytrzymałości materiałów. Zestawienie wzorów i określeń. Wykład Zagadnene brzegowe lnowe teor sprężystośc. Metody rozwązywana, metody wytrzymałośc materałów. Zestawene wzorów określeń. Układ współrzędnych Kartezańsk, prostokątny. Ose x y z oznaczono odpowedno

Bardziej szczegółowo

obliczenie różnicy kwadratów odległości punktów po i przed odkształceniem - różniczka zupełna u i, j =1, 2, 3

obliczenie różnicy kwadratów odległości punktów po i przed odkształceniem - różniczka zupełna u i, j =1, 2, 3 TEORI STNU ODKSZTŁCENI. WEKTOR RZEMIESZCZENI x u r r ' ' x stan p defrmacj x stan przed defrmacją płżene pt. przed defrmacją ( r) ( x, x, x ) płżene pt. p defrmacj ( r ) ( x, x, x ) przemeszczene puntu

Bardziej szczegółowo

MECHANIKA 2 MOMENT BEZWŁADNOŚCI. Wykład Nr 10. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 MOMENT BEZWŁADNOŚCI. Wykład Nr 10. Prowadzący: dr Krzysztof Polko MECHANIKA Wykład Nr 10 MOMENT BEZWŁADNOŚCI Prowadzący: dr Krzysztof Polko Defncja momentu bezwładnośc Momentem bezwładnośc punktu materalnego względem płaszczyzny, os lub beguna nazywamy loczyn masy punktu

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

1.4. STAN ODKSZTAŁCENIA STRONA GEOMETRYCZNA

1.4. STAN ODKSZTAŁCENIA STRONA GEOMETRYCZNA .4. STAN ODKSZTAŁCENA STRONA GEOMETRYCZNA.4.. Wetor przemeszcze Rozwżmy bryłę (cło mterle) o dowolym sztłce meszczoą w prostoątym łdze odese O (rys. ) Rys. gdze ozcz położee (mesce) pt mterlego w tym łdze,,,

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE METODY KLASYFIKACJI. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE METODY KLASYFIKACJI. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE MEODY KLASYFIKACJI Częstochowa 4 Dr hab. nż. Grzegorz Dude Wydzał Eletryczny Poltechna Częstochowsa FUNKCJE FISHEROWSKA DYSKRYMINACYJNE DYSKRYMINACJA I MASZYNA LINIOWA

Bardziej szczegółowo

Diagonalizacja macierzy kwadratowej

Diagonalizacja macierzy kwadratowej Dagonalzacja macerzy kwadratowej Dana jest macerz A nân. Jej wartośc własne wektory własne spełnają równane Ax x dla,..., n Każde z równań własnych osobno można zapsać w postac: a a an x x a a an x x an

Bardziej szczegółowo

Egzamin poprawkowy z Analizy II 11 września 2013

Egzamin poprawkowy z Analizy II 11 września 2013 Egzamn poprawkowy z nalzy II 11 wrześna 13 Uwag organzacyjne: każde zadane rozwązujemy na osobnej kartce Każde zadane należy podpsać menem nazwskem własnym oraz prowadzącego ćwczena Na wszelk wypadek prosmy

Bardziej szczegółowo

Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. TWIERDZENIA O WZAJEMNOŚCI Twierdzenie Bettiego (o wzajemności prac)

Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. TWIERDZENIA O WZAJEMNOŚCI Twierdzenie Bettiego (o wzajemności prac) Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. 7. TWIERDZENIA O WZAJEMNOŚCI 7.1. Twerdzene Bettego (o wzajemnośc prac) Nech na dowolny uład ramowy statyczne wyznaczalny lub newyznaczalny, ale o nepodatnych

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 9. jej modyfkacje. Oznaczena Będzemy rozpatrywać zagadnene rozwązana następującego układu n równań lnowych z n newadomym x 1... x n : a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x

Bardziej szczegółowo

u u u( x) u, x METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH i METODA ELEMENTÓW SKOŃCZONYCH

u u u( x) u, x METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH i METODA ELEMENTÓW SKOŃCZONYCH METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH METODA ELEMENTÓW SKOŃCZONYCH Szkc rozwązana równana Possona w przestrzen dwuwymarowe. Równane Possona to równae różnczkowe cząstkowe opsuące wele

Bardziej szczegółowo

Metody Numeryczne 2017/2018

Metody Numeryczne 2017/2018 Metody Numeryczne 7/8 Inormatya Stosowana II ro Inżynera Oblczenowa II ro Wyład 7 Równana nelnowe Problemy z analtycznym rozwązanem równań typu: cos ln 3 lub uładów równań ja na przyład: y yz. 3z y y.

Bardziej szczegółowo

KONSPEKT WYKŁADU. nt. METODA ELEMENTÓW SKOŃCZONYCH TEORIA I ZASTOSOWANIA. Piotr Konderla

KONSPEKT WYKŁADU. nt. METODA ELEMENTÓW SKOŃCZONYCH TEORIA I ZASTOSOWANIA. Piotr Konderla Studa doktorancke Wydzał Budownctwa Lądowego Wodnego Poltechnk Wrocławskej KONSPEKT WYKŁADU nt. METODA ELEMENTÓW SKOŃCZONYCH TEORIA I ZASTOSOWANIA Potr Konderla maj 2007 Kurs na Studach Doktoranckch Poltechnk

Bardziej szczegółowo

Reprezentacje grup symetrii. g s

Reprezentacje grup symetrii. g s erezentace ru ymetr Teora rerezentac dea: oeracom ymetr rzyać oeratory dzałaące w rzetrzen func zwązać z nm funce, tóre oeratory te rzerowadzaą w ebe odobne a zb. untów odcza oerac ymetr rozważmy rzeztałcene

Bardziej szczegółowo

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna rzykład.. Kratownca dwukrotne statyczne newyznaczana oecene: korzystaąc z metody sł wyznaczyć sły w prętach ponższe kratowncy. const Rozwązane zadana rozpoczynamy od obczena stopna statyczne newyznaczanośc

Bardziej szczegółowo

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:

Bardziej szczegółowo

Materiały do wykładów na temat Obliczanie sił przekrojowych i momentów przekrojowych. dla prętów zginanych.

Materiały do wykładów na temat Obliczanie sił przekrojowych i momentów przekrojowych. dla prętów zginanych. ateriały do wyładów na temat Obliczanie sił przerojowych i momentów przerojowych dla prętów zginanych Wydr eletroniczny. slajdów na. stronach przeznaczony do celów dydatycznych dla stdentów II ro stdiów

Bardziej szczegółowo

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem Zestaw zadań : Przestrzene wektorowe. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar : C C C, (z, v) z v := z v jest przestrzeną lnową nad całem lczb zespolonych

Bardziej szczegółowo

5. MES w mechanice ośrodka ciągłego

5. MES w mechanice ośrodka ciągłego . MES w mechance ośroda cągłego P.Pucńs. MES w mechance ośroda cągłego.. Stan równowag t S P x z y n ρb(x, y, z) u(x, y, z) P Wetor gęstośc sł masowych N/m 3 ρb ρ g Wetor gęstośc sł powerzchnowych N/m

Bardziej szczegółowo

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego. RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu

Bardziej szczegółowo

Analiza Matematyczna Ćwiczenia. J. de Lucas

Analiza Matematyczna Ćwiczenia. J. de Lucas Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y

Bardziej szczegółowo

F - wypadkowa sił działających na cząstkę.

F - wypadkowa sił działających na cząstkę. PRAWA ZACHOWAIA Podstawowe termny Cała tworzące uład mechanczny oddzałują mędzy sobą z całam nenależącym do uładu za omocą: Sł wewnętrznych Sł zewnętrznych - Sł dzałających na dane cało ze strony nnych

Bardziej szczegółowo

I. Elementy analizy matematycznej

I. Elementy analizy matematycznej WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem

Bardziej szczegółowo

4. Zjawisko przepływu ciepła

4. Zjawisko przepływu ciepła . Zawso przepływu cepła P.Plucńs. Zawso przepływu cepła wymana cepła przez promenowane wymana cepła przez unoszene wymana cepła przez przewodzene + generowane cepła znane wartośc temperatury zolowany brzeg

Bardziej szczegółowo

MODELOWANIE UKŁADÓW MECHANICZNYCH Z NIEPEWNYMI PARAMETRAMI

MODELOWANIE UKŁADÓW MECHANICZNYCH Z NIEPEWNYMI PARAMETRAMI Smlaca Andrze POWNUK Katedra Mecan Teoretczne Wdzał Bdownctwa Poltecna Śląsa w Glwcac MODELOWANIE UKŁADÓW MECHANICZNYCH Z NIEPEWNYMI PARAMETRAMI Streszczene. Wszste parametr ładów mecancznc są znane z

Bardziej szczegółowo

Prosta i płaszczyzna w przestrzeni

Prosta i płaszczyzna w przestrzeni Prosta i płaszczyzna w przestrzeni Wybrane wzory i informacje Równanie prostej przechodzącej przez punkt P 0 = (x 0, y 0, z 0 ) o wektorze wodzącym r 0 i równoległej do wektora v = [a, b, c] : postać parametrycznego

Bardziej szczegółowo

PODSTAWY MATEMATYCZNE

PODSTAWY MATEMATYCZNE PODSTAWY MATEMATYCZNE ALGEBRA WEKTORÓW I TENSORÓW Baza ortonormalna w E 3 : e 1, e 2, e 3 ( e, e ) j j 1 f j 0 f j Każdy wektor w E 3 może być wyrażony jako lnowa kombnacja wersorów bazowych a a e a e

Bardziej szczegółowo

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni. Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :

Bardziej szczegółowo

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp

Bardziej szczegółowo

Parametry zmiennej losowej

Parametry zmiennej losowej Eonometra Ćwczena Powtórzene wadomośc ze statysty SS EK Defncja Zmenną losową X nazywamy funcję odwzorowującą przestrzeń zdarzeń elementarnych w zbór lczb rzeczywstych, taą że przecwobraz dowolnego zboru

Bardziej szczegółowo

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadane teoretyczne Rozwąż dowolne rzez sebe wybrane dwa sośród odanych nże zadań: ZADANIE T Nazwa zadana: Protony antyrotony A. Cząstk o mase równe mase rotonu, ale

Bardziej szczegółowo

Fizyka dla Informatyków Wykład 7 Mechanika Ośrodków Ciągłych

Fizyka dla Informatyków Wykład 7 Mechanika Ośrodków Ciągłych Fizyka dla Informatyków Wykład 7 Mechanika Ośrodków Ciągłych Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 4 5 Ciało sprężyste Spis treści Spis treści 1 Wstęp 2 3 4 5 Ciało

Bardziej szczegółowo

V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH

V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH Krs na Stdach Doktoranckch Poltechnk Wrocławskej wersja: lty 007 34 V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH. Zbór np. lczb rzeczywstych a, b elementy zbor A a A b A, podzbór B zbor A : B A, sma zborów

Bardziej szczegółowo

KONSPEKT WYKŁADU. nt. MECHANIKA OŚRODKÓW CIĄGŁYCH. Piotr Konderla

KONSPEKT WYKŁADU. nt. MECHANIKA OŚRODKÓW CIĄGŁYCH. Piotr Konderla Studa doktorancke Wydzał Budownctwa Lądowego Wodnego Poltechnk Wrocławskej KONSPEKT WYKŁADU nt. MECHANIKA OŚRODKÓW CIĄGŁYCH Potr Konderla paźdzernk 2014 2 SPIS TREŚCI Oznaczena stosowane w konspekce...

Bardziej szczegółowo

Natalia Nehrebecka. Zajęcia 4

Natalia Nehrebecka. Zajęcia 4 St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0 1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

Geometria analityczna przestrzeni

Geometria analityczna przestrzeni ALGEBRA LINIOWA 1 Wydział Mechaniczny / AIR, MTR Semestr zimowy 2009/2010 Prowadzący: dr Teresa Jurlewicz Wetory, długość wetora Geometria analityczna przestrzeni Zadanie 1 [5.1] Obliczyć długości podanych

Bardziej szczegółowo

ZASADY WYZNACZANIA DEPOZYTÓW ZABEZPIECZAJĄCYCH PO WPROWADZENIU DO OBROTU OPCJI W RELACJI KLIENT-BIURO MAKLERSKIE

ZASADY WYZNACZANIA DEPOZYTÓW ZABEZPIECZAJĄCYCH PO WPROWADZENIU DO OBROTU OPCJI W RELACJI KLIENT-BIURO MAKLERSKIE Zasady wyznazana depozytów zabezpezaąyh po wprowadzenu do obrotu op w rela lent-buro malerse ZAADY WYZNACZANIA DEPOZYTÓW ZABEZPIECZAJĄCYCH PO WPROWADZENIU DO OBROTU OPCJI W RELACJI KLIENT-BIURO MAKLERKIE

Bardziej szczegółowo

Laboratorium ochrony danych

Laboratorium ochrony danych Laboratorum ochrony danych Ćwczene nr Temat ćwczena: Cała skończone rozszerzone Cel dydaktyczny: Opanowane programowej metody konstruowana cał skończonych rozszerzonych GF(pm), poznane ch własnośc oraz

Bardziej szczegółowo

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwczena: BADANIE POPRAWNOŚCI OPISU STANU TERMICZNEGO POWIETRZA PRZEZ RÓWNANIE

Bardziej szczegółowo

ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ

ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BYŁY SZTYWNEJ 1. Welkośc w uchu obotowym. Moment pędu moment sły 3. Zasada zachowana momentu pędu 4. uch obotowy były sztywnej względem ustalonej os -II

Bardziej szczegółowo

Kwantowa natura promieniowania elektromagnetycznego

Kwantowa natura promieniowania elektromagnetycznego Efekt Comptona. Kwantowa natura promenowana elektromagnetycznego Zadane 1. Foton jest rozpraszany na swobodnym elektrone. Wyznaczyć zmanę długośc fal fotonu w wynku rozproszena. Poneważ układ foton swobodny

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

max Wydział Elektroniki studia I st. Elektronika III r. EZI Technika optymalizacji Dr inż. Ewa Szlachcic

max Wydział Elektroniki studia I st. Elektronika III r. EZI Technika optymalizacji Dr inż. Ewa Szlachcic Zadane rograowana lnowego PL dla ogranczeń neszoścowch rz ogranczenach: a f c A b d =n, d c=n, d A =[ n], d b =, Postać anonczna zadana PL a c X : A b, Postać anonczna acerzowa zadana PL a Lczba zennch

Bardziej szczegółowo

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy (MD) MECHANIKA - Dynamka T. Środek cężkośc środek masy (M) Dynamka T: Środek cężkośc środek masy robert.szczotka(at)gmal.com Fzyka astronoma, Lceum 01/014 1 (MD) MECHANIKA - Dynamka T. Środek cężkośc środek

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyi i Informatyi Stosowanej Aademia Górniczo-Hutnicza Wyład 12 M. Przybycień (WFiIS AGH Metody Lagrange a i Hamiltona... Wyład 12

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych 1. Zastosowane

Bardziej szczegółowo

V. TERMODYNAMIKA KLASYCZNA

V. TERMODYNAMIKA KLASYCZNA 46. ERMODYNAMIKA KLASYCZNA. ERMODYNAMIKA KLASYCZNA ermodynamka jako nauka powstała w XIX w. Prawa termodynamk są wynkem obserwacj welu rzeczywstych procesów- są to prawa fenomenologczne modelu rzeczywstośc..

Bardziej szczegółowo

Budownictwo, II rok sem IV METODY OBLICZENIOWE. dr inŝ. Piotr Srokosz IP Temat 8

Budownictwo, II rok sem IV METODY OBLICZENIOWE. dr inŝ. Piotr Srokosz IP Temat 8 Bdownctwo, II rok sem IV MEODY OBLICZEIOWE dr nŝ. Potr Srokosz IP- emat 8 emat 8 Równana róŝnczkowe cząstkowe Metoda Elementów Skończonch (MES) Zagadnene brzegowe Sformłowane zagadnena fzcznego Równana

Bardziej szczegółowo

MECHANIKA BUDOWLI 2 1. UKŁADY PRZESTRZENNE

MECHANIKA BUDOWLI 2 1. UKŁADY PRZESTRZENNE Oga Kopacz, Adam Łodygows, Krzysztof Tymper, chał łotowa, Wojcech awłows Konsutacje nauowe: prof. dr hab. JERZY RAKOWSKI oznań / ECHANIKA BUDOWLI. UKŁADY RZESTRZENNE O przestrzennośc ne śwadczy tyo geometra

Bardziej szczegółowo

Wykład 2: Stan naprężeń i odkształceń

Wykład 2: Stan naprężeń i odkształceń Wykład : Stan naprężeń odkształceń Leszek CHODOR, dr nż. bud, nż.arch. leszek@chodor.pl ; leszek.chodor@polske-nwestycje.pl Lteratura: [] Tmoschenko S. Gooder A.J.N., Theory of Elastcty Mc Graw Hll, nd,

Bardziej szczegółowo

Symetrie i struktury ciała stałego - W. Sikora

Symetrie i struktury ciała stałego - W. Sikora Symetre struktury cała stałego - W. Skora ( W wykładach zostały wykorzystane fragmenty materałów opracowanych w ramach praktyk wakacyjnej przez studentk specjalnośc Fzyka Cała Stałego WFIS: Sylwę Chudy,

Bardziej szczegółowo

Ćw. 5. Wyznaczanie współczynnika sprężystości przy pomocy wahadła sprężynowego

Ćw. 5. Wyznaczanie współczynnika sprężystości przy pomocy wahadła sprężynowego 5 KATEDRA FIZYKI STOSOWANEJ PRACOWNIA FIZYKI Ćw. 5. Wyznaczane współczynna sprężystośc przy pomocy wahadła sprężynowego Wprowadzene Ruch drgający należy do najbardzej rozpowszechnonych ruchów w przyrodze.

Bardziej szczegółowo

Wykład 2: Uczenie nadzorowane sieci neuronowych - I

Wykład 2: Uczenie nadzorowane sieci neuronowych - I Wykład 2: Uczene nadzorowane sec neuronowych - I Algorytmy uczena sec neuronowych Na sposób dzałana sec ma wpływ e topologa oraz funkconowane poszczególnych neuronów. Z reguły topologę sec uznae sę za

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH 1 Test zgodnośc χ 2 Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład o dystrybuance F). Hpoteza alternatywna H1( Cecha X populacj

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4 Stansław Cchock Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0-1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających Interpretacja

Bardziej szczegółowo

Małe drgania wokół położenia równowagi.

Małe drgania wokół położenia równowagi. ałe rgana woół położena równowag. ałe rgana Anazuemy ułay a tórych potencał Vqq,q,..,q posaa mnmum a oreśonych wartośc współrzęnych uogónonych q,, -czba stopn swoboy. ożemy ta przesaować te współrzęne

Bardziej szczegółowo

METODA ELEMENTU SKOŃCZONEGO. Termokinetyka

METODA ELEMENTU SKOŃCZONEGO. Termokinetyka METODA ELEMENTU SKOŃCZONEGO Termoknetyka Matematyczny ops ruchu cepła (1) Zasada zachowana energ W a Cepło akumulowane, [J] P we Moc wejścowa, [W] P wy Moc wyjścowa, [W] t przedzał czasu, [s] V q S(V)

Bardziej szczegółowo

ef 3 (dziedzina, dziedzina naturalna) Niech f : A R, gdzie A jest podzbiorem płaszczyzny lub przestrzeni Zbiór A nazywamy dziedziną funcji f i oznacza

ef 3 (dziedzina, dziedzina naturalna) Niech f : A R, gdzie A jest podzbiorem płaszczyzny lub przestrzeni Zbiór A nazywamy dziedziną funcji f i oznacza FUNKCJE WÓCH I TRZECH ZMIENNYCH (było w semestrze II) ef 1 (funcja dwóch zmiennych) Funcją f dwóch zmiennych oreśloną na zbiorze A R o wartościach w R nazywamy przyporządowanie ażdemu puntowi ze zbioru

Bardziej szczegółowo

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X PERMUTACJE Permutacą zboru -elemetowego X azywamy dowolą wzaeme edozaczą fucę f : X X f : X X Przyład permutac X = { a, b, c, d } f (a) = d, f (b) = a, f (c) = c, f (d) = b a b c d Zaps permutac w postac

Bardziej szczegółowo

Kier. MTR Programowanie w MATLABie Laboratorium Ćw. 12

Kier. MTR Programowanie w MATLABie Laboratorium Ćw. 12 Ker. MTR Programowane w MATLABe Laboratorum Ćw. Analza statystyczna grafczna danych pomarowych. Wprowadzene MATLAB dysponuje weloma funcjam umożlwającym przeprowadzene analzy statystycznej pomarów, czy

Bardziej szczegółowo

Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że

Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że Twerdzene Bezouta lczby zespolone Javer de Lucas Ćwczene 1 Ustal dla których a, b R można podzelć f 1 X) = X 4 3X 2 + ax b przez f 2 X) = X 2 3X+2 Oblcz a b Z 5 jeżel zak ladamy, że f 1 f 2 s a welomanam

Bardziej szczegółowo

Wykład 2: Uczenie nadzorowane sieci neuronowych - I

Wykład 2: Uczenie nadzorowane sieci neuronowych - I Wykład 2: Uczene nadzorowane sec neuronowych - I Algorytmy uczena sec neuronowych Na sposób dzałana sec ma wpływ e topologa oraz funkconowane poszczególnych neuronów. Z reguły topologę sec uznae sę za

Bardziej szczegółowo

Przykład 3.2. Rama wolnopodparta

Przykład 3.2. Rama wolnopodparta rzykład ama wonopodparta oecene: Korzystając ze wzoru axwea-ohra wyznaczyć wektor przemeszczena w punkce w ponższym układze oszukwać będzemy składowych (ponowej pozomej) wektora przemeszczena punktu, poneważ

Bardziej szczegółowo

f(x, y) = arctg x y. f(u) = arctg(u), u(x, y) = x y. x = 1 1 y = y y = 1 1 +

f(x, y) = arctg x y. f(u) = arctg(u), u(x, y) = x y. x = 1 1 y = y y = 1 1 + Różnczkowalność pocodne Ćwczene. Znaleźć pocodne cz astkowe funkcj f(x, y) = arctg x y. Rozw azane: Wdać, że funkcj f można napsać jako f(u(x, y)) gdze f(u) = arctg(u), u(x, y) = x y. Korzystaj ac z reg

Bardziej szczegółowo

9. STATECZNOŚĆ SPRĘŻYSTA UKŁADÓW PRĘTOWYCH

9. STATECZNOŚĆ SPRĘŻYSTA UKŁADÓW PRĘTOWYCH Część 9. STATECZOŚĆ SPRĘŻYSTA UKŁADÓW PRĘTOWYCH 1 9. 9. STATECZOŚĆ SPRĘŻYSTA UKŁADÓW PRĘTOWYCH 9.1. Wstęp Omówene zagadnena statecznośc sprężystej uładów prętowych naeży rozpocząć od przybżena probemu

Bardziej szczegółowo

Różniczkowalność, pochodne, ekstremum funkcji. x 2 1 x x 2 k

Różniczkowalność, pochodne, ekstremum funkcji. x 2 1 x x 2 k Różnczkowalność, pochodne, ekstremum funkcj Ćwczene 1 Polczyć pochodn a kerunkow a funkcj: 1 1 1 x 1 x 2 x k ϕ(x 1,, x k ) x 2 1 x 2 2 x 2 k x k 1 1 x k 1 2 x k 1 w dowolnym punkce p [x 1, x 2,, x k T

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie obwodów prądu sinusoidalnie zmiennego

LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie obwodów prądu sinusoidalnie zmiennego Ćwczene 1 Wydzał Geonżyner, Górnctwa Geolog ABORATORUM PODSTAW EEKTROTECHNK Badane obwodów prądu snusodalne zmennego Opracował: Grzegorz Wśnewsk Zagadnena do przygotowana Ops elementów RC zaslanych prądem

Bardziej szczegółowo

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne XXX OLIMPIADA FIZYCZNA ETAP III Zadane dośwadczalne ZADANIE D Nazwa zadana: Maszyna analogowa. Dane są:. doda półprzewodnkowa (krzemowa) 2. opornk dekadowy (- 5 Ω ), 3. woltomerz cyfrowy, 4. źródło napęca

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7 Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy zmennych dyskretnych 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy

Bardziej szczegółowo

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 3. Analiza obwodów RLC przy wymuszeniach sinusoidalnych w stanie ustalonym

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 3. Analiza obwodów RLC przy wymuszeniach sinusoidalnych w stanie ustalonym ĆWCZENE 3 Analza obwodów C przy wymszenach snsodalnych w stane stalonym 1. CE ĆWCZENA Celem ćwczena jest praktyczno-analtyczna ocena obwodów elektrycznych przy wymszenach snsodalne zmennych.. PODSAWY EOEYCZNE

Bardziej szczegółowo

Defi f nicja n aprę r żeń

Defi f nicja n aprę r żeń Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie

Bardziej szczegółowo

Parametry stanu w przemianie izobarycznej zmieniają się według zależności

Parametry stanu w przemianie izobarycznej zmieniają się według zależności Przyad szzegóne rzemany otroowej /6 5.4. Przemana zobaryzna Przemana rzy stałym śnen, zy zobaryzna jest rzemaną otroową o wyładn m = 0, gdyż m = 0 == onst. Przemana ta zahodz, gdy ogrzewa sę gaz zamnęty

Bardziej szczegółowo

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej Badane współzależnośc dwóch cech loścowych X Y. Analza korelacj prostej Kody znaków: żółte wyróżnene nowe pojęce czerwony uwaga kursywa komentarz 1 Zagadnena 1. Zwązek determnstyczny (funkcyjny) a korelacyjny.

Bardziej szczegółowo

Programowanie Równoległe i Rozproszone

Programowanie Równoległe i Rozproszone Programowane Równoległe Rozproszone Wykład Programowane Równoległe Rozproszone Lucjan Stapp Wydzał Matematyk Nauk Informacyjnych Poltechnka Warszawska (l.stapp@mn.pw.edu.pl) /38 PRR Wykład Chcemy rozwązać

Bardziej szczegółowo

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH Część 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH... 5. 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH 5.. Wprowadzenie Rozwiązywanie zadań z zaresu dynamii budowli sprowadza

Bardziej szczegółowo

ELEKTROCHEMIA. ( i = i ) Wykład II b. Nadnapięcie Równanie Buttlera-Volmera Równania Tafela. Wykład II. Równowaga dynamiczna i prąd wymiany

ELEKTROCHEMIA. ( i = i ) Wykład II b. Nadnapięcie Równanie Buttlera-Volmera Równania Tafela. Wykład II. Równowaga dynamiczna i prąd wymiany Wykład II ELEKTROCHEMIA Wykład II b Nadnapęce Równane Buttlera-Volmera Równana Tafela Równowaga dynamczna prąd wymany Jeśl układ jest rozwarty przez elektrolzer ne płyne prąd, to ne oznacza wcale, że na

Bardziej szczegółowo

ĆWICZENIE NR 2 POMIARY W OBWODACH RLC PRĄDU PRZEMIENNEGO

ĆWICZENIE NR 2 POMIARY W OBWODACH RLC PRĄDU PRZEMIENNEGO ĆWENE N POMAY W OBWODAH PĄD PEMENNEGO el ćwczena: dośwadczalne sprawdzene prawa Oha, praw Krchhoffa zależnośc fazowych ędzy snsodalne zenny przebega prądów napęć w obwodach zawerających eleenty,,, oraz

Bardziej szczegółowo

Natalia Nehrebecka. Wykład 2

Natalia Nehrebecka. Wykład 2 Natala Nehrebecka Wykład . Model lnowy Postad modelu lnowego Zaps macerzowy modelu lnowego. Estymacja modelu Wartośd teoretyczna (dopasowana) Reszty 3. MNK przypadek jednej zmennej . Model lnowy Postad

Bardziej szczegółowo

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału 5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B

Bardziej szczegółowo

1. WZORY TRANSFORMACYJNE METODY PRZEMIESZCZEŃ

1. WZORY TRANSFORMACYJNE METODY PRZEMIESZCZEŃ Część. WZORY TRANSFORMACYJNE METODY PRZEMIESZCZEŃ.. WZORY TRANSFORMACYJNE METODY PRZEMIESZCZEŃ.. Wstęp Podstawowym narzędzem służącym do rozwązywana zadań metodą przemeszczeń są wzory transformacyjne.

Bardziej szczegółowo

Tomasz Grębski. Liczby zespolone

Tomasz Grębski. Liczby zespolone Tomas Grębsk Lcby espolone Kraśnk 00 Sps Treśc: Lcby espolone Tomas Grębsk- Wstęp. Podstawowe wadomośc o lcbe espolonej.. Interpretacja geometrycna lcby espolonej... Moduł lcby espolonej. Lcby sprężone..

Bardziej szczegółowo

Dokonajmy zestawienia wszystkich równań teorii sprężystości. 1. Różniczkowe równania równowagi (warunki Naviera)

Dokonajmy zestawienia wszystkich równań teorii sprężystości. 1. Różniczkowe równania równowagi (warunki Naviera) Wyład 4 Blas rówań teor srężystośc Dooamy zestawea wszystch rówań teor srężystośc Gra rówań. Różczowe rówaa rówowag (war Navera Lczba rówań Lczba ewadomych X 6 (. Zwąz geometrycze (rówaa Cachy ego ( 6

Bardziej szczegółowo

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza

Bardziej szczegółowo

Integralność konstrukcji w eksploatacji

Integralność konstrukcji w eksploatacji 1 Integralność konstrukcji w eksploatacji Wykład 0 PRZYPOMNINI PODSTAWOWYCH POJĘĆ Z WYTRZYMAŁOŚCI MATRIAŁÓW Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji

Bardziej szczegółowo

Przykład 4.1. Belka dwukrotnie statycznie niewyznaczalna o stałej sztywności zginania

Przykład 4.1. Belka dwukrotnie statycznie niewyznaczalna o stałej sztywności zginania Przykład.. Beka dwukrotne statyczne newyznaczana o stałej sztywnośc zgnana Poecene: korzystając z metody sł sporządzć wykresy sł przekrojowych da ponŝszej bek. Wyznaczyć ugęce oraz wzgędną zmanę kąta w

Bardziej szczegółowo

IN YNIERIA BEZPIECZE STWA LABORATORIUM NR 6

IN YNIERIA BEZPIECZE STWA LABORATORIUM NR 6 IN YNIERIA BEZPIECZE STWA LABORATORIUM NR 6 WYBRANE ZAGADNIENIA Z TEORII LICZB 1. Wybrane zagadnena z teor lczb Do onstruowana systemów ryptografcznych u Ŝ ywa sę czę sto wyrafnowanego aparatu matematycznego,

Bardziej szczegółowo

Funkcja momentu statycznego odciętej części przekroju dla prostokąta wyraża się wzorem. z. Po podstawieniu do definicji otrzymamy

Funkcja momentu statycznego odciętej części przekroju dla prostokąta wyraża się wzorem. z. Po podstawieniu do definicji otrzymamy etoy energetyczne rzykła Wyznaczyć współczynnk z - α z a przekroju prostokątnego który wzłuż os y ma wymar b wzłuż os Funkcja momentu statycznego ocętej częśc przekroju a prostokąta wyraża sę wzorem b

Bardziej szczegółowo

Elementy geometrii analitycznej w R 3

Elementy geometrii analitycznej w R 3 Rozdział 12 Elementy geometrii analitycznej w R 3 Elementy trójwymiarowej przestrzeni rzeczywistej R 3 = {(x,y,z) : x,y,z R} możemy interpretować co najmniej na trzy sposoby, tzn. jako: zbiór punktów (x,

Bardziej szczegółowo

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np. Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas

Bardziej szczegółowo

Podstawy teorii falek (Wavelets)

Podstawy teorii falek (Wavelets) Podstawy teor falek (Wavelets) Ψ(). Transformaca Haara (97).. Przykład pewne metody zapsu obrazu Transformaca Haara Przykład zapsu obrazu -D Podstawy matematyczne transformac Algorytmy rozkładana funkc

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Model potęgowy Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych

Bardziej szczegółowo

dy dx stąd w przybliżeniu: y

dy dx stąd w przybliżeniu: y Przykłady do funkcj nelnowych funkcj Törnqusta Proszę sprawdzć uzasadnć, które z podanych zdań są prawdzwe, a które fałszywe: Przykład 1. Mesęczne wydatk na warzywa (y, w jednostkach penężnych, jp) w zależnośc

Bardziej szczegółowo

- opór właściwy miedzi (patrz tabela 9.1), l długość nawiniętego na cewkę drutu miedzianego,

- opór właściwy miedzi (patrz tabela 9.1), l długość nawiniętego na cewkę drutu miedzianego, Zadana do rozdzału 9. Zad. 9.. Oblcz opór elektryczny cewk, składającej sę z n = 900 zwojów zolowanego drutu medzanego o średncy d = mm (w zolacj, mm) w temperaturze t = 60 o C. Wymary cewk przedstawono

Bardziej szczegółowo

Natalia Nehrebecka. Zajęcia 3

Natalia Nehrebecka. Zajęcia 3 St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 3 1. Dobroć dopasowana równana regresj. Współczynnk determnacj R Dk Dekompozycja warancj zmennej zależnej ż Współczynnk determnacj R. Zmenne cągłe a

Bardziej szczegółowo

Wykład III STAN NAPRĘŻENIA I ODKSZTAŁCENIA

Wykład III STAN NAPRĘŻENIA I ODKSZTAŁCENIA IV. Wprowadzene. Wykład III STAN NAPRĘŻENIA I ODKSZTAŁCENIA Modelowane przepływu ceczy przez ośrodek porowaty pozwala na sformułowane równań opsuących proces fltrac wody lub nne ceczy przez ośrodek gruntowy

Bardziej szczegółowo

AERODYNAMICS I WYKŁAD 6 AERODYNAMIKA SKRZYDŁA O SKOŃCZONEJ ROZPIĘTOŚCI PODSTAWY TEORII LINII NOŚNEJ

AERODYNAMICS I WYKŁAD 6 AERODYNAMIKA SKRZYDŁA O SKOŃCZONEJ ROZPIĘTOŚCI PODSTAWY TEORII LINII NOŚNEJ WYKŁAD 6 AERODYNAMIKA SKRZYDŁA O SKOŃCZONEJ ROZPIĘTOŚCI PODSTAWY TEORII INII NOŚNEJ Prawo Bota-Savarta Pole prędkośc ndukowanej przez lnę (nć) wrową o cyrkulacj może być wyznaczone przy użycu formuły Bota-Savarta

Bardziej szczegółowo

2. STOPIEŃ KINEMATYCZNEJ NIEWYZNACZALNOŚCI

2. STOPIEŃ KINEMATYCZNEJ NIEWYZNACZALNOŚCI Część. STOPIEŃ KINEMATYCZNEJ NIEWYZNACZALNOŚCI.. STOPIEŃ KINEMATYCZNEJ NIEWYZNACZALNOŚCI W metodze sł w celu przyjęca układu podstawowego należało odrzucć węzy nadlczbowe. O lczbe odrzuconych węzów decydował

Bardziej szczegółowo