Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki"

Transkrypt

1 Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2018

2 Wstęp Stabilność O układzie możemy mówić, że jest stabilny jeżeli jego odpowiedź na wymuszenie (zakłócenie) o ograniczonej wartości jest ograniczona. O układzie możemy mówić, że jest stabilny gdy wytrącony ze stanu równowagi (rozpatrywanego punktu pracy P) powraca do niej (do pewnego stanu K) po ustaniu działania czynników (zakłóceń z), które go z tego stanu wytrąciły. W przypadku układów liniowych, zachowanie się układu po zaniku oddziaływania, które wytrąciło go ze stanu równowagi, jest cechą charakterystyczną danego układu i nie zależy od przebiegu oddziaływania przed jego zanikiem. (łatwa analiza) W przypadku układów nieliniowych, ich zachowanie pod wpływem wymuszeń i po ich zaniku może zależeć od punktu pracy układu oraz od rodzaju i wielkości wymuszeń. (trudna analiza)

3 Stabilność Możliwe są trzy rodzaje zachowań układów po wytrąceniu ze stanu równowagi: 1 Układ nie osiąga stanu równowagi - układ niestabilny; szczególnym przypadkiem takiego zachowania jest wykonywanie przez układ oscylacji o stałej amplitudzie - układ na granicy stabilności. 2 Układ powraca do stanu równowagi w punkcie pracy zajmowanym przed wytrąceniem go ze stanu równowagi - układ stabilny asymptotycznie, 3 Układ osiąga stan równowagi w innym punkcie pracy niż początkowy - układ stabilny nieasymptotycznie, Rysunek 1: Układ a) niestabilny, b) stabilny asymptotycznie, c) stabilny nieasymptotycznie

4 Odpowiedź na wymuszenie impulsowe Wymuszenie impulsowe jest najprostszym przypadkiem wymuszenia, pozwalającego określić stabilność liniowego układu dynamicznego. Impuls - Delta Diraca x(t) = δ(t) = { 0 dla t 0 dla t = 0 (1) x(s) = 1 (2) Odpowiedź na wymuszenie impulsowe wyznacza się korzystając z zależności y(t) u(t)=δ = L 1 {G(s)x(s)} dla x(s)=1 y(t) = L 1 {G(s)} (3)

5 Odpowiedź na wymuszenie impulsowe Wybrane orginały trasformat Laplace po wymuszeniu impulsowym, przydatne do analizy: { } { } 1 1 L 1 = 1(t) (4) L 1 = e αt s s ± α (6) { } { } 1 L 1 s 2 = t (5) L 1 1 (s ± α) 2 = te αt (7) { } ( ) As + B L 1 s 2 = Ae C 2 t cos t D C Cs + D 4 ( ) 2B AC + e C 2 t sin t D C (8) 2 4D + C 2 4 jeżeli: C 2 4D < 0 (nie ma pierwiastków rzeczywistych).

6 Odpowiedź na wymuszenie impulsowe Rysunek 2: Przykładowe odpowiedzi impulsowe układów: 1, 2 stabilnych nieasymptotycznie, 3, 4 - stabilnych asymptotycznie, 5, 6 niestabilnych, 7 układ na granicy stabilności (drgania niegasnące)

7 Stabilność Równanie ruchu liniowego, stacjonarnego układu dynamicznego a n d (n) y(t) dt (n) + + a 1 dy(t) dt Transmitancja operatorowa Odpowiedź impulsowa + a 0 = b m d (m) u(t) dt (m) + + b 1 du(t) dt + b 0 (9) G(s) = Y (s) U(s) = b ms m + + b 2 s 2 + b 1 s + b 0 a n s n + + a 2 s 2 + a 1 s + a 0 (10) y(t) u(t)=δ = g(t) = L 1 {G(s)} (11) Równanie charakterystyczne - mianownik transmitancji operatorowej

8 Stabilność asymptotyczna Przypadek 1: Równanie charakterystyczne ma tylko ujemne, pojedyncze pierwiastki rzeczywiste. G(s) = L(s) a n (s s 1 )(s s 2 )... (s s n ) (12) Po rozłożeniu na ułamki proste G(s) = C 1 + C C n (13) s s 1 s s 2 s s n g(t) = L 1 {G(s)} = C 1 e s1t + C 2 e s2t C n e snt (14) lim g(t) = 0 jeżeli s 1,..., s n < 0 (15) t

9 Stabliność asymptotyczna Rysunek 3: Położenie pierwiastków równania charakterystycznego na płaszczyznie liczb zespolonych s

10 Stabilność asymptotyczna Przypadek 2: Równanie charakterystyczne ma jeden podwójny, ujemny, pierwiastek rzeczywisty, a pozostałe pierwiastki są pojedyncze, ujemne, rzeczywiste. L(s) G(s) = a n (s s 1 ) 2 (16) (s s 3 )... (s s n ) Po rozłożeniu na ułamki proste G(s) = C 1 s s 1 + C 2 (s s 1 ) 2 + C 3 s s C n s s n (17) g(t) = L 1 {G(s)} = C 1 e s1t + C 2 te s1t + C 3 e s3t C n e snt (18) lim g(t) = 0 jeżeli s 1,..., s n < 0 (19) t ponieważ funkcja wykładnicza e s1t s1<0 maleje szybciej niż rośnie t.

11 Stabliność asymptotyczna Rysunek 4: Położenie pierwiastków równania charakterystycznego na płaszczyznie liczb zespolonych s

12 Stabilność nieasymptotyczna Przypadek 3: Równanie charakterystyczne ma jeden pierwiastek zerowy a pozostałe pierwiastki pojedyncze ujemne rzeczywiste G(s) = L(s) a n (s)(s s 2 )... (s s n ) (20) Po rozłożeniu na ułamki proste G(s) = C 1 s + C C n (21) s s 2 s s n g(t) = L 1 {G(s)} = C 1 + C 2 e s2t C n e snt (22) lim g(t) = C 1 jeżeli s 2,..., s n < 0 (23) t

13 Stabliność nieasymptotyczna Rysunek 5: Położenie pierwiastków równania charakterystycznego na płaszczyznie liczb zespolonych s

14 Brak stabilności Przypadek 4: Równanie charakterystyczne ma dwa (lub więcej) pierwiastki zerowe a pozostałe pierwiastki pojedyncze ujemne rzeczywiste. G(s) = L(s) a n (s) 2 (s s 3 )... (s s n ) (24) Po rozłożeniu na ułamki proste G(s) = C 1 s + C 2 (s) 2 + C C n (25) s s 3 s s n g(t) = L 1 {G(s)} = C 1 + C 2 t + C 3 e s3t C n e snt (26) lim g(t) = układ jest niestabilny bo C 2t (27) t

15 Brak stabilności Rysunek 6: Położenie pierwiastków równania charakterystycznego na płaszczyznie liczb zespolonych s

16 Stabilność asymptotyczna (oscylacje) Przypadek 5: Równanie charakterystyczne ma niezerowe pojedyncze pierwiastki rzeczywiste i pierwiastki zespolone sprzężone - o ujemnych częściach rzeczywistych s 1 = a + jb, s 2 = a jb (28) G(s) = po rozłożeniu na ułamki proste L(s) a n (s 2 2as + a 2 + b 2 )(s s 3 )... (s s n ) (29) G(s) = C 1 s + C 2 (s 2 2as + a 2 + b 2 ) + C C n (30) s s 3 s s n g(t) = L 1 {G(s)} = C 1 e at cos(bt)+ C 2 + ac 1 e at sin(bt)+c 3 e s3t +...+C n e snt b (31) lim g(t) = 0 jeżeli a < 0, i Re(s 3),..., Re(s n ) < 0 (32) t

17 Stabilność asymptotyczna (oscylacje) Rysunek 7: Położenie pierwiastków równania charakterystycznego na płaszczyznie liczb zespolonych s

18 Brak stabilności (granica stabliności) Przypadek 6: Równanie charakterystyczne ma niezerowe pojedyncze pierwiastki rzeczywiste i pierwiastki zespolone sprzężone o zerowych częściach rzeczywistych x 1 = jb, x 2 = jb (33) G(s) = po rozłożeniu na ułamki proste L(s) (s 2 + b 2 )(s s 3 )... (s s n ) (34) G(s) = C 1s + C 2 (s 2 + b 2 ) + C C n (35) s s 3 s s n g(t) = L 1 {G(s)} = C 1 cos(bt) + C 2 b sin(bt) + C 3e s3t C n e snt (36) Jeżeli s3,..., sn < 0, to układ jest na granicy stabilności, w którym ustalają się drgania niegasnące (funkcje okresowe nie mają czynnika ekspotencjalnego).

19 Brak stabilności (granica stabliności) Rysunek 8: Położenie pierwiastków równania charakterystycznego na płaszczyznie liczb zespolonych s

20 Stabilność Reasumując można stwierdzić, że: Układ jest stabilny asymptotycznie, jeżeli jego równanie charakterystyczne układu ma pierwiastki rzeczywiste ujemne lub zespolone o ujemnych częściach rzeczywistych. Układ ten jest stabilny nieasymptotycznie jeżeli jego równanie charakterystyczne oprócz pierwiastków rzeczywistych ujemnych lub o ujemnych częściach rzeczywistych ma jeden pierwiastek zerowy. Układ ten jest niestabilny jeżeli jego równanie charakterystyczne ma więcej niż jeden pierwiastek zerowy lub pierwiastki rzeczywiste dodatnie lub zespolone o dodatnich częściach rzeczywistych. Układ jest na granicy stabilności (generuje drgania niegasnące) jeżeli równanie charakterystyczne układu nie ma więcej niż jednego pierwiastka zerowego i nie ma pierwiastków rzeczywistych dodatnich lub zespolonych o dodatnich częściach rzeczywistych, natomiast ma pierwiastki zespolone o zerowych częściach rzeczywistych.

21 Stabilność - kryteria stabilności Do oceny stabilności układów liniowych wystarczy znajomość rozkładu pierwiastków równania charakterystycznego układu na płaszczyźnie zmiennej zespolonej s. Problemy, które się pojawiają przy tej metodzie obliczanie pierwiastków równań wyższych rzędów nie jest łatwe, nie zawsze znane jest równanie charakterystyczne układu. Inne metody określania stabilności tzw. kryteria stabilności, które nie wymagają wyznaczania wartości pierwiastków równania charakterystycznego: kryteria analityczne (Hurwitza, Routha), kryteria graficzne (kryterium Michajłowa, metoda Evansa), kryteria graficzno analityczne (kryterium Nyquista, rozkład D).

22 Kryterium Hurwitza Kryterium Hurwitza Kryterium Hurwitza umożliwia sprawdzenie, czy równanie algebraiczne dowolnego stopnia ma wyłącznie pierwiastki ujemne lub o częściach rzeczywistych ujemnych. Zastosowanie jego ograniczone jest do stacjonarnych liniowych układów o parametrach skupionych (LTI) i transmitancji danej w postaci analitycznej. Równanie algebraiczne stopnia n o stałych rzeczywistych współczynnikach a n d (n) y(t) dt (n) + a n 1 d (n 1) y(t) dt (n 1) + + a 1 dy(t) dt + a 0 (37) ma wszystkie pierwiastki ujemne, lub o ujemnych częściach rzeczywistych, jeżeli są spełnione dwa warunki, zwane warunkami Hurwitza. 1 WARUNEK I: Wszystkie współczynniki a 0, a 1,..., a n, tego równania są różne od zera i są jednakowego znaku, 2 WARUNEK II: Wszystkie wyznaczniki minorów głównych tzw. macierzy Hurwitza n są większe od zera

23 Kryterium Hurwitza Macierz Hurwitza Macierz Hurwitza ma następującą postać a n 1 a n a n 3 a n 2 a n a n 5 a n 4 a n n = a 2 a 3 a a 0 a 1 a a 0 n n (38) W przypadku warunku II, wystarczy policzyć wyznczniki minorów 2,..., n 1.

24 Kryterium Hurwitza- przykład 1 Wyznaczyć macierz Hurwitza dla równania czwartego stopnia a 4 s 4 + a 3 s 3 + a 2 s 2 + a 1 s + a 0 = 0 (39) a 3 a = a 1 a 2 a 3 a 4 0 a 0 a 1 a a 0 (40) Jego podwyznacznikami głównymi są: 2 = a 3 a 1 a 4 a 2 (41) a 3 a = a 4 a 2 a 0 0 a 3 a 1 (42)

25 Kryterium Hurwitza - przykład 2 Wyznaczyć zakres wartości wzmocnienia k p, zapewniający stabilną pracę układu. G s = 1 (Ts+1) (Ts+1) 4 k p = 1 (Ts + 1) 4 + k p (43) Równanie charakterystyczne układu: (Ts + 1) 4 + k p = 0 (44)

26 Kryterium Hurwitza - przykład 2 cd. Równanie charakterystyczne układu: (Ts + 1) 4 + k p = 0 (45) czyli T 4 s 4 + 4T 3 s 3 + 6T 2 s 2 + 4Ts k p = 0 (46) a 4 = T 4, a 3 = 4T 3, a 2 = 6T 2, a 1 = 4T, a 0 = 1 + k p (47) I. warunek Hurwitza będzie spełniony, jeżeli a 0 = 1 + k p > 0, czyli gdy k p > 1 (48)

27 Kryterium Hurwitza - przykład 2 cd Macierz Hurwitza a 3 a = a 1 a 2 a 3 a 4 0 a 0 a 1 a 2 = a 0 4T 3 4T 0 0 4T 6T 2 4T 3 T k p 4T 6T k p (49) II. warunek Hurwitza będzie spełniony, jeżeli ( ) 4T det( 2 ) = det 3 4T 4T 6T 2 > 0 (50) det( 3 ) = det 4T 3 4T 0 4T 6T 2 4T k p 4T > 0 (51)

28 Kryterium Hurwitza - przykład 2 cd det( 2 ) = 24T 5 4T 5 = 20T 5 > 0 (52) det( 3 ) = 96T 6 16T 6 16T 6 k p 16T 6 = 64T 6 16T 6 k p > 0 (53) czyli z II warunku Hurwitza k p < 4 (54) I. i II. warunek Hurwitza będą spełnione, jeżeli 1 < k p < 4 (55)

29 Kryterium Hurwitza Uwagi do kryterium Hurwitza UWAGA 1: Możliwość wystąpienia stabilności nieasymptotycznej zachodzi gdy w równaniu charakterystycznym stopnia n współczynnik a 0 = 0 (równanie ma jeden pierwiastek zerowy), natomiast pozostałe współczynniki są większe od zera. Po podzieleniu stron równania charakterystycznego przez s, otrzymuje się równanie stopnia n 1, w odniesieniu do którego należy zastosować kryterium Hurwitza w celu sprawdzenia znaku pozostałych pierwiastków. Jeżeli równanie to spełni warunki Hurwitza to oznaczać będzie, że układ posiada jeden pierwiastek zerowy a pozostałe pierwiastki są ujemne lub mają części rzeczywiste ujemne i sprawdzany układ jest stabilny nieasymptotycznie. UWAGA 2: Kryterium Hurwitza nie umożliwia badania stabilności układu z opóźnieniami.

30 Kryterium Nyquista Kryterium Nyquista umożliwia ocenę stabilności układu zamkniętego na podstawie charakterystyk częstotliwościowych układu otwartego. Transmitancja układu zamkniętego G Z (s) = G 1 (s) 1 + G 1 (s)g 2 (s) (56) Transmitancja układu otwartego G 0 (s) = G 1 (s)g 2 (s) (57)

31 Uproszczone kryterium Nyquista Uproszczone kryterium Nyquista W przypadku kiedy równanie charakterystyczne układu otwartego nie ma pierwiastków dodatnich lub o dodatnich częściach rzeczywistych (może mieć dowolna liczbę pierwiastów zerowych), układ zamknięty jest stabilny, jeżeli charakterystyka amplitudowo fazowa układu otwartego nie obejmuje punktu o współrzędnych { 1, j0}. Nie obejmuje oznacza, że przy przesuwaniu się wzdłuż charakterystyki w kierunku wzrastających pulsacji, punkt { 1, j0} pozostaje po lewej stronie charakterystyki UWAGA: Uproszczone kryterium Nyquista nie obejmuje przypadków kiedy równanie charakterystyczne układu otwartego, oprócz ujemnych lub zerowych, ma także pierwiastki dodatnie lub o dodatnich częściach rzeczywistych.

32 Kryterium Nyquista Cechy kryterium Nyquista charakterystyka częstotliwościowa układu otwartego, na podstawie której określana jest stabilność układu zamkniętego, może być łatwo wyznaczana analitycznie lub doświadczalnie, kryterium umożliwia nie tylko stwierdzenie faktu stabilności, lecz także umożliwia projektowanie układu o określonych właściwościach dynamicznych, kryterium umożliwia badanie stabilności układów zawierających elementy opóźniające.

33 Kryterium Nyquista Rysunek 9: Charakterystyki aplitudowe-fazowe układu otwartego w przypadku 1) stabilnego układu zamkniętego, 2) niestabilnego układu zamkniętego Warunki Nyquista M(ω π ) < 1; gdzie ω π : ϕ(ω π ) = π (58) ϕ(ω p ) > π; gdzie ω p : M(ω p ) = 1 (59)

34 Kryterium Nyquista - przykłady charakterystyk układów stabilnych Rysunek 10: Przykłady charakterystyk amplitudowo fazowych układów otwartych, odpowiadających: stabilnym układom zamkniętym - charakterystyka nie obejmuje punktu { 1, j0}

35 Kryterium Nyquista - przykłady charakterystyk układów niestabilnych Rysunek 11: Przykłady charakterystyk amplitudowo fazowych układów otwartych, odpowiadających: niestabilnym układom zamkniętym - charakterystyka obejmuje punkt { 1, j0}

36 Kryterium Nyquista

37 Kryterium Nyquista - charaktersytyki Bodego Warunki Nyquista dla charakterystyk amplitudowej i fazowej L(ω π ) = 20 log M(ω π ) < 0; (60) ϕ(ω p ) > π; gdzie L(ω p ) = 0 (61)

38 Kryterium Nyquista - zapas modułu i zapas fazy Zapas modułu M = 1 M(ω π ) (62) L = 20 log M(ω π ) (63) Zapas fazy ϕ = π + ϕ(ω p ) (64) Zapas modułu i fazy układu stabilnego ma wartości dodatnie. PRAKTYKA PRZEMYSŁOWA 30 deg < ϕ < 60 deg (65) 2 M 4 6dB L 12dB (66)

39 Kryterium Nyquista - przykład 1 Stosując kryterium Nyquista zbadać stabilność układu G 0 (s) = 1 s 3 + 3s 2 + s G 0 (jω) = iω 3 3ω 2 + jω + 1 = 1 1 3ω 2 j(ω ω 3 1 3ω 2 + j(ω ω 3 ) 1 3ω 2 j(ω ω 3 ) = 1 3ω 2 (1 3ω 2 ) 2 + (ω ω 3 ) 2 + j (ω ω 3 ) (1 3ω 2 ) 2 + (ω ω 3 ) 2 Część rzeczywista i urojona (67) (68) P(ω) = 1 3ω 2 (1 3ω 2 ) 2 + (ω ω 3 ) 2 ; Q(ω) = (ω ω 3 ) (1 3ω 2 ) 2 + (ω ω 3 ) 2 (69)

40 Kryterium Nyquista - przykład 1 Część rzeczywista Część urojona P(ω) = Q(ω) = 1 3ω 2 (1 3ω 2 ) 2 + (ω ω 3 ) 2 (70) (ω ω 3 ) (1 3ω 2 ) 2 + (ω ω 3 ) 2 (71) ω 0 1/3 1 P(ω) Q(ω)

41 Rzeczywisty kształt charakterystyki - MATLAB

42 Kryterium Nyquista - przykład 2 Stosując kryterium Nyquista zbadać stabilność układu i wyznaczyć zapasy stabilności G 0 (s) = (0.1s + 1)(0.001s + 1) 0.3s (72)

43 Kryterium Nyquista - przykład 2 G 0 (s) = G 1 (s)g 2 (s)g 3 (s)g 4 (s) (73) czyli 1 1 G 0 (s) = s s s (74) W przypadku połączenia szeregowego sumuje się charakterystyki Bode go poszczególnych elementów. L 0 (ω) = L 1 (ω) + L ω + L 3 (ω) + L 4 (ω) (75) ϕ 0 (ω) = ϕ 1 (ω)+ϕ ω +ϕ 3 (ω)+ϕ 4 (ω) (76)

44 Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2018

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi

Bardziej szczegółowo

Badanie stabilności liniowych układów sterowania

Badanie stabilności liniowych układów sterowania Badanie stabilności liniowych układów sterowania ver. 26.2-6 (26-2-7 4:6). Badanie stabilności liniowych układów sterowania poprzez analizę równania charakterystycznego. Układ zamknięty liniowy i stacjonarny

Bardziej szczegółowo

Układ regulacji automatycznej (URA) kryteria stabilności

Układ regulacji automatycznej (URA) kryteria stabilności Układ regulacji automatycznej (URA) kryteria stabilności y o e G c (s) z z 2 u G o (s) y () = () ()() () H(s) oraz jego wartością w stanie ustalonym. Transmitancja układu otwartego regulacji: - () = ()

Bardziej szczegółowo

Laboratorium z podstaw automatyki

Laboratorium z podstaw automatyki Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z podstaw automatyki Analiza stabilności obiektów automatyzacji, Wpływ sprzężenia zwrotnego na stabilność obiektów Kierunek studiów: Transport,

Bardziej szczegółowo

Stabilność. Krzysztof Patan

Stabilność. Krzysztof Patan Stabilność Krzysztof Patan Pojęcie stabilności systemu Rozważmy obiekt znajdujący się w punkcie równowagi Po przyłożeniu do obiektu siły F zostanie on wypchnięty ze stanu równowagi Jeżeli po upłynięciu

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - podstawy matematyczne Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe, n.p. turbulencje, wiele

Bardziej szczegółowo

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie

Bardziej szczegółowo

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2017 część 1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe

Bardziej szczegółowo

Automatyka i robotyka

Automatyka i robotyka Automatyka i robotyka Wykład 5 - Stabilność układów dynamicznych Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 43 Plan wykładu Wprowadzenie Stabilność modeli

Bardziej szczegółowo

Teoria sterowania - studia niestacjonarne AiR 2 stopień

Teoria sterowania - studia niestacjonarne AiR 2 stopień Teoria sterowania - studia niestacjonarne AiR stopień Kazimierz Duzinkiewicz, dr hab. Inż. Katedra Inżynerii Systemów Sterowania Wykład 4-06/07 Transmitancja widmowa i charakterystyki częstotliwościowe

Bardziej szczegółowo

Ćwiczenie nr 6 Charakterystyki częstotliwościowe

Ćwiczenie nr 6 Charakterystyki częstotliwościowe Wstęp teoretyczny Ćwiczenie nr 6 Charakterystyki częstotliwościowe 1 Cel ćwiczenia Celem ćwiczenia jest wyznaczenie charakterystyk częstotliwościowych układu regulacji oraz korekta nastaw regulatora na

Bardziej szczegółowo

Podstawowe człony dynamiczne

Podstawowe człony dynamiczne . Człon proporcjonalny 2. Człony całkujący idealny 3. Człon inercyjny Podstawowe człony dynamiczne charakterystyki czasowe = = = + 4. Człony całkujący rzeczywisty () = + 5. Człon różniczkujący rzeczywisty

Bardziej szczegółowo

Przeksztacenie Laplace a. Krzysztof Patan

Przeksztacenie Laplace a. Krzysztof Patan Przeksztacenie Laplace a Krzysztof Patan Wprowadzenie Transformata Fouriera popularna metoda opisu systemów w dziedzinie częstotliwości Transformata Fouriera umożliwia wykonanie wielu użytecznych czynności:

Bardziej szczegółowo

Transmitancje i charakterystyki częstotliwościowe. Krzysztof Patan

Transmitancje i charakterystyki częstotliwościowe. Krzysztof Patan Transmitancje i charakterystyki częstotliwościowe Krzysztof Patan Transmitancja systemu czasu ciągłego Przekształcenie Laplace a systemu czasu ciągłego jest superpozycją składowych pochodzących od wymuszenia

Bardziej szczegółowo

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2017 cz.1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe

Bardziej szczegółowo

Sterowanie Serwonapędów Maszyn i Robotów

Sterowanie Serwonapędów Maszyn i Robotów Wykład 3.1 - Modelowanie układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe, n.p. turbulencje,

Bardziej szczegółowo

Kompensacja wyprzedzająca i opóźniająca fazę. dr hab. inż. Krzysztof Patan, prof. PWSZ

Kompensacja wyprzedzająca i opóźniająca fazę. dr hab. inż. Krzysztof Patan, prof. PWSZ Kompensacja wyprzedzająca i opóźniająca fazę dr hab. inż. Krzysztof Patan, prof. PWSZ Kształtowanie charakterystyki częstotliwościowej Kształtujemy charakterystykę układu otwartego aby uzyskać: pożądane

Bardziej szczegółowo

Ćw. S-III.3 ELEMENTY ANALIZY I SYNTEZY UAR Badanie stabilności liniowego UAR

Ćw. S-III.3 ELEMENTY ANALIZY I SYNTEZY UAR Badanie stabilności liniowego UAR Dr inż Michał Chłędowski PODSTAWY AUTOMATYKI I ROBOTYKI LABORATORIUM Ćw S-III3 ELEMENTY ANALIZY I SYNTEZY UAR Badanie stabilności liniowego UAR Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z pojęciem

Bardziej szczegółowo

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2015 cz.1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe

Bardziej szczegółowo

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra InŜynierii Systemów Sterowania Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra InŜynierii Systemów Sterowania Podstawy Automatyki Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra InŜynierii Systemów Sterowania Podstawy Automatyki Stabilność systemów sterowania kryterium Nyquist a Materiały pomocnicze do ćwiczeń termin

Bardziej szczegółowo

Technika regulacji automatycznej

Technika regulacji automatycznej Technika regulacji automatycznej Wykład 3 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 32 Plan wykładu Wprowadzenie Układ pierwszego rzędu Układ drugiego

Bardziej szczegółowo

Część 1. Transmitancje i stabilność

Część 1. Transmitancje i stabilność Część 1 Transmitancje i stabilność Zastosowanie opisu transmitancyjnego w projektowaniu przekształtników impulsowych Istotne jest przewidzenie wpływu zmian w warunkach pracy (m. in. v g, i) i wielkości

Bardziej szczegółowo

układu otwartego na płaszczyźnie zmiennej zespolonej. Sformułowane przez Nyquista kryterium stabilności przedstawia się następująco:

układu otwartego na płaszczyźnie zmiennej zespolonej. Sformułowane przez Nyquista kryterium stabilności przedstawia się następująco: Kryterium Nyquista Kryterium Nyquista pozwala na badanie stabilności jednowymiarowego układu zamkniętego na podstawie przebiegu wykresu funkcji G o ( jω) układu otwartego na płaszczyźnie zmiennej zespolonej.

Bardziej szczegółowo

Projektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ

Projektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ Projektowanie układów regulacji w dziedzinie częstotliwości dr hab. inż. Krzysztof Patan, prof. PWSZ Wprowadzenie Metody projektowania w dziedzinie częstotliwości mają wiele zalet: stabilność i wymagania

Bardziej szczegółowo

KRYTERIA ALGEBRAICZNE STABILNOŚCI UKŁADÓW LINIOWYCH

KRYTERIA ALGEBRAICZNE STABILNOŚCI UKŁADÓW LINIOWYCH KRYTERIA ALEBRAICZNE STABILNOŚCI UKŁADÓW LINIOWYCH Zadie 1 Problem: Zbadać stabilność układu zamkniętego przedstawionego na schemacie według kryterium Hurwitza. 1 (s) (s) Rys 1. Schemat układu regulacji

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Procesy wykładniczego wzrostu i spadku (np populacja bakterii, rozpad radioaktywny, wymiana ciepła) można modelować równaniem

Bardziej szczegółowo

Inżynieria Systemów Dynamicznych (3)

Inżynieria Systemów Dynamicznych (3) Inżynieria Systemów Dynamicznych (3) Charakterystyki podstawowych członów dynamicznych Piotr Jacek Suchomski Katedra Systemów Automatyki WETI, Politechnika Gdańska 2 grudnia 2010 O czym będziemy mówili?

Bardziej szczegółowo

Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM

Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM Aademia GórniczoHutnicza im. St. Staszica w Kraowie Wydział Inżynierii Mechanicznej i Robotyi Katedra Automatyzacji Procesów Podstawy Automatyi Zbiór zadań dla studentów II rou AiR oraz MiBM Tomasz Łuomsi

Bardziej szczegółowo

Technika regulacji automatycznej

Technika regulacji automatycznej Technika regulacji automatycznej Wykład 5 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 38 Plan wykładu Kompensator wyprzedzający Kompensator opóźniający

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - modelowanie matematyczne układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe,

Bardziej szczegółowo

Sposoby modelowania układów dynamicznych. Pytania

Sposoby modelowania układów dynamicznych. Pytania Sposoby modelowania układów dynamicznych Co to jest model dynamiczny? PAScz4 Modelowanie, analiza i synteza układów automatyki samochodowej równania różniczkowe, różnicowe, równania równowagi sił, momentów,

Bardziej szczegółowo

Transmitancje układów ciągłych

Transmitancje układów ciągłych Transmitancja operatorowa, podstawowe człony liniowe Transmitancja operatorowa (funkcja przejścia, G(s)) stosunek transformaty Laplace'a sygnału wyjściowego do transformaty Laplace'a sygnału wejściowego

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - modelowanie matematyczne układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2019 Wstęp Obiekty (procesy) rzeczywiste, a co za tym idzie układy regulacji, mają właściwości nieliniowe,

Bardziej szczegółowo

Opis matematyczny. Równanie modulatora. Charakterystyka statyczna. Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy. dla 0 v c.

Opis matematyczny. Równanie modulatora. Charakterystyka statyczna. Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy. dla 0 v c. Opis matematyczny Równanie modulatora Charakterystyka statyczna d t = v c t V M dla 0 v c t V M D 1 V M V c Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy v c (t )=V c + v c (t ) d (t

Bardziej szczegółowo

Plan wykładu. Własności statyczne i dynamiczne elementów automatyki:

Plan wykładu. Własności statyczne i dynamiczne elementów automatyki: Plan wykładu Własności statyczne i dynamiczne elementów automatyki: - charakterystyka statyczna elementu automatyki, - sygnały standardowe w automatyce: skok jednostkowy, impuls Diraca, sygnał o przebiegu

Bardziej szczegółowo

( 1+ s 1)( 1+ s 2)( 1+ s 3)

( 1+ s 1)( 1+ s 2)( 1+ s 3) Kryteria stabilności przykład K T (s)= (s+1)(s+2)(s+3) = K /6 1 1+T (s) = (s+1)(s+2)(s+3) K +6+11s+6s 2 +s 3 ( 1+ s 1)( 1+ s 2)( 1+ s 3) Weźmy K =60: 1 1+T (s) =(s+1)(s+2)(s+3) 66+11s+6s 2 +s =(s+1)(s+2)(s+3)

Bardziej szczegółowo

Procedura modelowania matematycznego

Procedura modelowania matematycznego Procedura modelowania matematycznego System fizyczny Model fizyczny Założenia Uproszczenia Model matematyczny Analiza matematyczna Symulacja komputerowa Rozwiązanie w postaci modelu odpowiedzi Poszerzenie

Bardziej szczegółowo

Tematyka egzaminu z Podstaw sterowania

Tematyka egzaminu z Podstaw sterowania Tematyka egzaminu z Podstaw sterowania Rafał Trójniak 6 września 2009 Spis treści 1 Rozwiązane tematy 1 1.1 Napisać równanie różniczkowe dla zbiornika z odpływem grawitacyjnym...............................

Bardziej szczegółowo

K p. K o G o (s) METODY DOBORU NASTAW Metoda linii pierwiastkowych Metody analityczne Metoda linii pierwiastkowych

K p. K o G o (s) METODY DOBORU NASTAW Metoda linii pierwiastkowych Metody analityczne Metoda linii pierwiastkowych METODY DOBORU NASTAW 7.3.. Metody analityczne 7.3.. Metoda linii pierwiastkowych 7.3.2 Metody doświadczalne 7.3.2.. Metoda Zieglera- Nicholsa 7.3.2.2. Wzmocnienie krytyczne 7.3.. Metoda linii pierwiastkowych

Bardziej szczegółowo

Systemy. Krzysztof Patan

Systemy. Krzysztof Patan Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej

Bardziej szczegółowo

Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 4 - algebra schematów blokowych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Schemat blokowy Schemat blokowy (strukturalny): przedstawia wzajemne powiązania pomiędzy poszczególnymi zespołami

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ eoria maszyn i podstawy automatyki semestr zimowy 2016/2017

Bardziej szczegółowo

Technika regulacji automatycznej

Technika regulacji automatycznej Technika regulacji automatycznej Wykład 2 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 56 Plan wykładu Schematy strukturalne Podstawowe operacje na schematach

Bardziej szczegółowo

Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 4 - algebra schematów blokowych Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Schemat blokowy Schemat blokowy (strukturalny): przedstawia wzajemne powiązania pomiędzy poszczególnymi zespołami

Bardziej szczegółowo

Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 4 - algebra schematów blokowych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Schemat blokowy Schemat blokowy (strukturalny): przedstawia wzajemne powiązania pomiędzy poszczególnymi zespołami

Bardziej szczegółowo

przy warunkach początkowych: 0 = 0, 0 = 0

przy warunkach początkowych: 0 = 0, 0 = 0 MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych,

Bardziej szczegółowo

Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji

Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji Opracowanie: mgr inż. Krystian Łygas, inż. Wojciech Danilczuk Na podstawie materiałów Prof. dr hab.

Bardziej szczegółowo

4. UKŁADY II RZĘDU. STABILNOŚĆ. Podstawowe wzory. Układ II rzędu ze sprzężeniem zwrotnym Standardowy schemat. Transmitancja układu zamkniętego

4. UKŁADY II RZĘDU. STABILNOŚĆ. Podstawowe wzory. Układ II rzędu ze sprzężeniem zwrotnym Standardowy schemat. Transmitancja układu zamkniętego 4. UKŁADY II RZĘDU. STABILNOŚĆ Podstawowe wzory Układ II rzędu ze sprzężeniem zwrotnym Standardowy schemat (4.1) Transmitancja układu zamkniętego częstotliwość naturalna współczynnik tłumienia Odpowiedź

Bardziej szczegółowo

REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ. T I - czas zdwojenia (całkowania) T D - czas wyprzedzenia (różniczkowania) K p współczynnik wzmocnienia

REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ. T I - czas zdwojenia (całkowania) T D - czas wyprzedzenia (różniczkowania) K p współczynnik wzmocnienia REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ Y o (s) - E(s) B(s) /T I s K p U(s) Z(s) G o (s) Y(s) T I - czas zdwojenia (całkowania) T D - czas wyprzedzenia (różniczkowania) K p współczynnik wzmocnienia

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 206/207

Bardziej szczegółowo

Przekształcenia całkowe. Wykład 1

Przekształcenia całkowe. Wykład 1 Przekształcenia całkowe Wykład 1 Przekształcenia całkowe Tematyka wykładów: 1. Liczby zespolone -wprowadzenie, - funkcja zespolona zmiennej rzeczywistej, - funkcja zespolona zmiennej zespolonej. 2. Przekształcenie

Bardziej szczegółowo

ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów

ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów. Cel ćwiczenia Badanie układów pierwszego rzędu różniczkującego, całkującego

Bardziej szczegółowo

analogowego regulatora PID doboru jego nastaw i przetransformowanie go na cyfrowy regulator PID, postępując według następujących podpunktów:

analogowego regulatora PID doboru jego nastaw i przetransformowanie go na cyfrowy regulator PID, postępując według następujących podpunktów: Cel projektu. Projekt składa się z dwóch podstawowych zadań, mających na celu zaprojektowanie dla danej transmitancji: G( s) = m 2 s 2 e + m s + sτ gdzie wartości m 2 = 27, m = 2, a τ = 4. G( s) = 27s

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 5 BADANIE STABILNOŚCI UKŁADÓW ZE SPRZĘŻENIEM ZWROTNYM 1. Cel ćwiczenia Celem ćwiczenia jest ugruntowanie

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 6. Badanie

Bardziej szczegółowo

Automatyka i robotyka

Automatyka i robotyka Automatyka i robotyka Wykład 8 - Regulator PID Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 29 Plan wykładu regulator PID 2 z 29 Kompensator wyprzedzająco-opóźniający

Bardziej szczegółowo

Sterowanie napędów maszyn i robotów

Sterowanie napędów maszyn i robotów Wykład 7b - Układy wieloobwodowe ze sprzężeniem od zmiennych stanu Instytut Automatyki i Robotyki Warszawa, 2014 Układy wieloobwodowe ze sprzężeniem od zmiennych stanu Zadanie przestawiania Postać modalna

Bardziej szczegółowo

Podstawy Automatyki. Wykład 7 - Jakość układu regulacji. Dobór nastaw regulatorów PID. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 7 - Jakość układu regulacji. Dobór nastaw regulatorów PID. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 7 - Jakość układu regulacji. Dobór nastaw regulatorów PID Instytut Automatyki i Robotyki Warszawa, 2015 Jakość układu regulacji Oprócz wymogu stabilności asymptotycznej, układom regulacji stawiane

Bardziej szczegółowo

Automatyka i robotyka

Automatyka i robotyka Automatyka i robotyka Wykład 2 - Modelowanie w dziedzinie częstotliwości Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 64 Plan wykładu Transformata Laplace

Bardziej szczegółowo

LINIOWE UKŁADY DYSKRETNE

LINIOWE UKŁADY DYSKRETNE LINIOWE UKŁADY DYSKRETNE Współczesne układy regulacji automatycznej wyposażone są w regulatory cyfrowe, co narzuca konieczność stosowania w ich analizie i syntezie odpowiednich równań dynamiki, opisujących

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 7. Metoda projektowania

Bardziej szczegółowo

Podstawowe człony dynamiczne. dr hab. inż. Krzysztof Patan

Podstawowe człony dynamiczne. dr hab. inż. Krzysztof Patan Podstawowe człony dynamiczne dr hab. inż. Krzysztof Patan Człon proporcjonalny Równanie w dziedzinie czasu Transmitancja y(t) = Ku(t) Y (s) = KU(s) G(s) = Y (s) U(S) = K Transmiancja widmowa G(s) = K G(jω)

Bardziej szczegółowo

UKŁADY JEDNOWYMIAROWE. Część II UKŁADY LINIOWE Z OPÓŹNIENIEM

UKŁADY JEDNOWYMIAROWE. Część II UKŁADY LINIOWE Z OPÓŹNIENIEM UKŁADY JEDNOWYMIAROWE Część II UKŁADY LINIOWE Z OPÓŹNIENIEM 1 8. Wprowadzenie do części II W praktyce występują układy regulacji, których człony mogą przejawiać opóźnioną reakcję na sygnał wejściowy. Rozróżniamy

Bardziej szczegółowo

Równania różniczkowe liniowe wyższych rzędów o stałych współcz

Równania różniczkowe liniowe wyższych rzędów o stałych współcz Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym

Bardziej szczegółowo

Wykłady z matematyki Liczby zespolone

Wykłady z matematyki Liczby zespolone Wykłady z matematyki Liczby zespolone Rok akademicki 015/16 UTP Bydgoszcz Liczby zespolone Wstęp Formalnie rzecz biorąc liczby zespolone to punkty na płaszczyźnie z działaniami zdefiniowanymi następująco:

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 7

INSTRUKCJA DO ĆWICZENIA NR 7 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 7 PRZEDMIOT TEMAT OPRACOWAŁ LABORATORIUM MODELOWANIA Przykładowe analizy danych: przebiegi czasowe, portrety

Bardziej szczegółowo

AUTOMATYKA. dr hab. Andrzej Dębowski, prof. PŁ Instytut Automatyki

AUTOMATYKA. dr hab. Andrzej Dębowski, prof. PŁ Instytut Automatyki Kierunek: Transport AUTOMATYKA dr hab. Andrzej Dębowski, prof. PŁ Instytut Automatyki godz. przyjęć: wtorki 9 5 Instytut Automatyki, ul. Stefanowskiego 8/22 środy 8 5 2 Zakład Techniki Sterowania, al.

Bardziej szczegółowo

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach. WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

Bardziej szczegółowo

Reakcja Bielousowa-Żabotyńskiego

Reakcja Bielousowa-Żabotyńskiego Reakcja Bielousowa-Żabotyńskiego 1 Kryteria pomocne przy badaniu stabilności punktów stacjonarnych Często badamy układy dynamiczne w pobliżu punktów stacjonarnych. Rozważamy wtedy ich postać zlinearyzowaną:

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 8 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo

Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy

Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy Automatyka i robotyka ETP2005L Laboratorium semestr zimowy 2017-2018 Liniowe człony automatyki x(t) wymuszenie CZŁON (element) OBIEKT AUTOMATYKI y(t) odpowiedź Modelowanie matematyczne obiektów automatyki

Bardziej szczegółowo

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski Uniwersytet Śląski 23 marca 2012 Ciało liczb zespolonych Rozważmy zbiór C = R R, czyli C = {(x, y) : x, y R}. W zbiorze C definiujemy następujące działania: dodawanie: mnożenie: (a, b) + (c, d) = (a +

Bardziej szczegółowo

Lepkosprężystość. Metody pomiarów właściwości lepkosprężystych materii

Lepkosprężystość. Metody pomiarów właściwości lepkosprężystych materii Metody pomiarów właściwości lepkosprężystych materii Pomiarów dokonuje się w dwóch dziedzinach: czasowej lub częstotliwościowej i nie zależy to od rodzaju przyłożonych naprężeń (normalnych lub stycznych).

Bardziej szczegółowo

Zadania egzaminacyjne

Zadania egzaminacyjne Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi

Bardziej szczegółowo

Równania poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie = Rozwiąż układ równań: (( + 1 ( + 2 = = 1

Równania poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie  = Rozwiąż układ równań: (( + 1 ( + 2 = = 1 Równania poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/). Rozwiąż układ równań: (( + ( + 2 = 3 = 4. http://www.zadania.info/d38/2287 2. Rozwiąż układ równań: ( + 2 (

Bardziej szczegółowo

1. Transformata Laplace a przypomnienie

1. Transformata Laplace a przypomnienie Transformata Laplace a - przypomnienie, transmitancja operatorowa, schematy blokowe, wprowadzenie do pakietu Matlab/Scilab i Simulink, regulatory PID - transmitancja, przykłady modeli matematycznych wybranych

Bardziej szczegółowo

Wprowadzenie do technik regulacji automatycznej. prof nzw. dr hab. inż. Krzysztof Patan

Wprowadzenie do technik regulacji automatycznej. prof nzw. dr hab. inż. Krzysztof Patan Wprowadzenie do technik regulacji automatycznej prof nzw. dr hab. inż. Krzysztof Patan Czym jest AUTOMATYKA? Automatyka to dziedzina nauki i techniki zajmująca się teorią i praktycznym zastosowaniem urządzeń

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE zadania z odpowiedziami

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE zadania z odpowiedziami RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE zadania z odpowiedziami Maciej Burnecki opracowanie strona główna Spis treści I Równania pierwszego rzędu 2 o rozdzielonych zmiennych 2 jednorodne 3 liniowe 3 Bernoulliego

Bardziej szczegółowo

Urz¹dzenie steruj¹ce. Obiekt. Urz¹dzenie steruj¹ce. Obiekt. 1. Podstawowe pojęcia. u 1. y 1 y 2... y n. z 1 z 2... z l.

Urz¹dzenie steruj¹ce. Obiekt. Urz¹dzenie steruj¹ce. Obiekt. 1. Podstawowe pojęcia. u 1. y 1 y 2... y n. z 1 z 2... z l. Politechnia Poznańsa, Katedra Sterowania i Inżnierii Sstemów Wład,2, str.. Podstawowe pojęcia z (t) z 2 (t)... u (t) u 2 (t). Obiet u m (t) z l (t) (t) 2 (t). n (t) u(t) z(t) Obiet (t) (a) u Rs. u u =

Bardziej szczegółowo

Zadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych

Zadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych Zadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych [ ] e Zadanie 1 Pokazać, że X(t) = 2t cos t sin t e 2t jest specjalną macierzą fundamentalną w sin t cos t [ 2 cos chwili τ = 0 układu

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi

Bardziej szczegółowo

Zadania zaliczeniowe z Automatyki i Robotyki dla studentów III roku Inżynierii Biomedycznej Politechniki Lubelskiej

Zadania zaliczeniowe z Automatyki i Robotyki dla studentów III roku Inżynierii Biomedycznej Politechniki Lubelskiej Zadania zaliczeniowe z Automatyki i Robotyki dla studentów III roku Inżynierii Biomedycznej Politechniki Lubelskiej Rozwiązane zadania należy dostarczyć do prowadzącego w formie wydruku lub w formie odręcznego

Bardziej szczegółowo

Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania

Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania Chemia Budowlana - Wydział Chemiczny - 1 Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania rozwiązywane na wykładzie, rozwiązywane na ćwiczeniach, oraz samodzielnie

Bardziej szczegółowo

1. Liczby zespolone i

1. Liczby zespolone i Zadania podstawowe Liczby zespolone Zadanie Podać część rzeczywistą i urojoną następujących liczb zespolonych: z = ( + 7i)( + i) + ( 5 i)( + 7i), z = + i, z = + i i, z 4 = i + i + i i Zadanie Dla jakich

Bardziej szczegółowo

Równania różniczkowe zwyczajne zadania z odpowiedziami

Równania różniczkowe zwyczajne zadania z odpowiedziami Równania różniczkowe zwyczajne zadania z odpowiedziami Maciej Burnecki opracowanie Spis treści I Równania pierwszego rzędu 2 o rozdzielonych zmiennych 2 jednorodne 4 liniowe 4 Bernoulliego 5 Równania sprowadzalne

Bardziej szczegółowo

Podstawy Automatyki. Wykład 7 - obiekty regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 7 - obiekty regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 7 - obiekty regulacji Instytut Automatyki i Robotyki Warszawa, 2018 Obiekty regulacji Obiekt regulacji Obiektem regulacji nazywamy proces technologiczny podlegający oddziaływaniu zakłóceń, zachodzący

Bardziej szczegółowo

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3 ZESTAW I 1. Rozwiązać równanie. Pierwiastki zaznaczyć w płaszczyźnie zespolonej. z 3 8(1 + i) 3 0, Sposób 1. Korzystamy ze wzoru a 3 b 3 (a b)(a 2 + ab + b 2 ), co daje: (z 2 2i)(z 2 + 2(1 + i)z + (1 +

Bardziej szczegółowo

6. STABILNOŚĆ UKŁADÓW DYNAMICZNYCH

6. STABILNOŚĆ UKŁADÓW DYNAMICZNYCH 6. STABILNOŚĆ UKŁADÓW DYNAMICZNYCH 6.1. POJĘCIA I TWIERDZENIA PODSTAWOWE Stabilność jest właściwością układu, zapewniającą jego powrót do stanu równowagi stałej po ustaniu działania zakłócenia, które wytrąciło

Bardziej szczegółowo

Laboratorium nr 3. Projektowanie układów automatyki z wykorzystaniem Matlaba i Simulinka

Laboratorium nr 3. Projektowanie układów automatyki z wykorzystaniem Matlaba i Simulinka Laboratorium nr 3. Cele ćwiczenia Projektowanie układów automatyki z wykorzystaniem Matlaba i Simulinka poznanie sposobów tworzenia liniowych modeli układów automatyki, zmiana postaci modeli, tworzenie

Bardziej szczegółowo

Laboratorium z automatyki

Laboratorium z automatyki Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z automatyki Algebra schematów blokowych, wyznaczanie odpowiedzi obiektu na sygnał zadany, charakterystyki częstotliwościowe Kierunek studiów:

Bardziej szczegółowo

AUTOMATYKA. Materiały dydaktyczne dotyczące zagadnień przewidzianych w I pracy kontrolnej

AUTOMATYKA. Materiały dydaktyczne dotyczące zagadnień przewidzianych w I pracy kontrolnej Dr inż. Michał Chłędowski AUTOMATYKA Materiały dydaktyczne dotyczące zagadnień przewidzianych w I pracy kontrolnej Zakres tematyczny: Podstawowe człony automatyki, opis własności statycznych i dynamicznych,

Bardziej szczegółowo

A-4. Filtry aktywne RC

A-4. Filtry aktywne RC A-4. A-4. wersja 4 4. Wstęp Filtry aktywne II rzędu RC to układy liniowe, stacjonarne realizowane za pomocą elementu aktywnego jakim jest wzmacniacz, na który załoŝono sprzęŝenie zwrotne zbudowane z elementów

Bardziej szczegółowo

Technika regulacji automatycznej

Technika regulacji automatycznej Technika regulacji automatycznej Wykład 1 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 30 Plan wykładu Podstawowe informacje Modele układów elektrycznych

Bardziej szczegółowo

1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI

1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI Podstawy automatyki / Józef Lisowski. Gdynia, 2015 Spis treści PRZEDMOWA 9 WSTĘP 11 1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI 17 1.1. Automatyka, sterowanie i regulacja 17 1.2. Obiekt regulacji

Bardziej szczegółowo

Techniki regulacji automatycznej

Techniki regulacji automatycznej Techniki regulacji automatycznej Metoda linii pierwiastkowych Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 25 Plan wykładu Podstawy metody linii pierwiastkowych

Bardziej szczegółowo